Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis
Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required...
Saved in:
Published in | International journal of neural systems Vol. 24; no. 4; p. 1450013 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Singapore
01.06.2014
|
Subjects | |
Online Access | Get more information |
ISSN | 0129-0657 |
DOI | 10.1142/S0129065714500130 |
Cover
Abstract | Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs. |
---|---|
AbstractList | Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based brain-computer interfaces (BCIs). Despite its efficiency, a potential problem is that using pre-constructed sine-cosine waves as the required reference signals in the CCA method often does not result in the optimal recognition accuracy due to their lack of features from the real electro-encephalo-gram (EEG) data. To address this problem, this study proposes a novel method based on multiset canonical correlation analysis (MsetCCA) to optimize the reference signals used in the CCA method for SSVEP frequency recognition. The MsetCCA method learns multiple linear transforms that implement joint spatial filtering to maximize the overall correlation among canonical variates, and hence extracts SSVEP common features from multiple sets of EEG data recorded at the same stimulus frequency. The optimized reference signals are formed by combination of the common features and completely based on training data. Experimental study with EEG data from 10 healthy subjects demonstrates that the MsetCCA method improves the recognition accuracy of SSVEP frequency in comparison with the CCA method and other two competing methods (multiway CCA (MwayCCA) and phase constrained CCA (PCCA)), especially for a small number of channels and a short time window length. The superiority indicates that the proposed MsetCCA method is a new promising candidate for frequency recognition in SSVEP-based BCIs. |
Author | Zhou, Guoxu Wang, Xingyu Cichocki, Andrzej Zhang, Yu Jin, Jing |
Author_xml | – sequence: 1 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Key Laboratory for Advanced Control and Optimization for Chemical Processes, East China University of Science and Technology, Shanghai, P. R. China – sequence: 2 givenname: Guoxu surname: Zhou fullname: Zhou, Guoxu – sequence: 3 givenname: Jing surname: Jin fullname: Jin, Jing – sequence: 4 givenname: Xingyu surname: Wang fullname: Wang, Xingyu – sequence: 5 givenname: Andrzej surname: Cichocki fullname: Cichocki, Andrzej |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/24694168$$D View this record in MEDLINE/PubMed |
BookMark | eNo1j8tOwzAURL0oog_4ADbIPxDwtV0nXkLUlkqVQAp0W904TmWUOMVOFvl7Wh6rkY40RzNzMvGdt4TcAXsAkPyxYMA1U8sU5JIxEGxCZheUXNiUzGP8PGOZyuyaTLlUWoLKZmS_DvZrsN6MNFjTHb3rXeep87Qo9qu3pMRoK_qcb-kQnT_Sdmh6F21PDZ4HOIMNNV0ItsGfHnpsxujiDbmqsYn29i8X5GO9es9fkt3rZps_7RIjlWKJ5KUGkUKZQc0VSCaqlCNTClFmFi2HuqwM8lTwDK3mNTI0KCpgtdDaSL4g97_e01C2tjqcgmsxjIf_g_wbDc1TCQ |
CitedBy_id | crossref_primary_10_1016_j_eswa_2017_12_015 crossref_primary_10_1016_j_patrec_2018_03_012 crossref_primary_10_3390_s23146310 crossref_primary_10_1007_s11227_024_06027_7 crossref_primary_10_1088_1741_2552_abcb6e crossref_primary_10_1142_S0129065718500181 crossref_primary_10_3390_bios12100772 crossref_primary_10_1016_j_cmpb_2018_07_013 crossref_primary_10_1109_JIOT_2024_3367690 crossref_primary_10_1016_j_neucom_2019_10_049 crossref_primary_10_1142_S0129065716500325 crossref_primary_10_1115_1_4051596 crossref_primary_10_1109_TNSRE_2022_3192413 crossref_primary_10_1109_JBHI_2018_2840085 crossref_primary_10_1080_03772063_2016_1176543 crossref_primary_10_1016_j_neucom_2016_11_008 crossref_primary_10_1109_TBME_2021_3049853 crossref_primary_10_1109_TIM_2022_3150848 crossref_primary_10_1016_j_measurement_2022_111188 crossref_primary_10_1016_j_jneumeth_2016_12_010 crossref_primary_10_1109_ACCESS_2021_3136774 crossref_primary_10_1109_JBHI_2024_3462991 crossref_primary_10_1016_j_neucom_2017_02_050 crossref_primary_10_1109_JSEN_2020_3017491 crossref_primary_10_3389_fncom_2018_00021 crossref_primary_10_1016_j_bspc_2021_103209 crossref_primary_10_1371_journal_pone_0172578 crossref_primary_10_1016_j_jneumeth_2014_04_032 crossref_primary_10_1016_j_neuroimage_2021_118166 crossref_primary_10_1109_ACCESS_2019_2925078 crossref_primary_10_1109_TIM_2022_3219497 crossref_primary_10_1088_1741_2552_ac9861 crossref_primary_10_1016_j_inffus_2025_103069 crossref_primary_10_1109_TNNLS_2015_2487364 crossref_primary_10_1016_j_neunet_2023_12_029 crossref_primary_10_1007_s11571_020_09620_7 crossref_primary_10_1016_j_medengphy_2022_103945 crossref_primary_10_1109_TNSRE_2023_3309543 crossref_primary_10_1109_TNSRE_2023_3288397 crossref_primary_10_1038_s41598_024_84534_6 crossref_primary_10_1088_1741_2552_aa836f crossref_primary_10_1016_j_bspc_2019_101644 crossref_primary_10_1016_j_neucom_2016_08_082 crossref_primary_10_1016_j_neucom_2016_08_083 crossref_primary_10_1080_03772063_2017_1355271 crossref_primary_10_3389_fnbot_2017_00035 crossref_primary_10_1109_TNSRE_2021_3104825 crossref_primary_10_1142_S012906571650009X crossref_primary_10_1088_1741_2552_abd1c0 crossref_primary_10_1371_journal_pone_0226048 crossref_primary_10_1088_1741_2552_ace380 crossref_primary_10_1109_TKDE_2019_2958342 crossref_primary_10_3390_s20216321 crossref_primary_10_1088_1741_2560_12_4_046006 crossref_primary_10_1109_TNSRE_2019_2934496 crossref_primary_10_1109_TNSRE_2016_2627556 crossref_primary_10_3390_s20030891 crossref_primary_10_1016_j_compbiomed_2019_103526 crossref_primary_10_1016_j_jneumeth_2014_03_012 crossref_primary_10_1049_joe_2018_9077 crossref_primary_10_1016_j_neuroimage_2016_11_016 crossref_primary_10_1016_j_neucom_2017_01_002 crossref_primary_10_1088_1741_2552_ad7f89 crossref_primary_10_1038_s42256_019_0091_7 crossref_primary_10_1016_j_cmpb_2016_04_023 crossref_primary_10_3390_e19010041 crossref_primary_10_1016_j_cmpb_2020_105326 crossref_primary_10_1088_1741_2552_aa6a23 crossref_primary_10_1016_j_asoc_2017_08_011 crossref_primary_10_3389_fnins_2021_716051 crossref_primary_10_1007_s12559_021_09941_7 crossref_primary_10_1016_j_bspc_2024_106932 crossref_primary_10_1088_1741_2552_aa5847 crossref_primary_10_3389_fnhum_2017_00391 crossref_primary_10_1109_TFUZZ_2019_2905823 crossref_primary_10_1016_j_jcde_2017_08_002 crossref_primary_10_1109_TNSRE_2023_3274121 crossref_primary_10_1016_j_jneumeth_2015_08_004 crossref_primary_10_1088_1741_2560_12_4_046008 crossref_primary_10_1142_S0129065715500392 crossref_primary_10_3390_brainsci11040450 crossref_primary_10_1109_TCYB_2019_2924237 crossref_primary_10_3389_fninf_2018_00065 crossref_primary_10_1145_3448302 crossref_primary_10_1002_cpe_5476 crossref_primary_10_1016_j_bspc_2018_06_010 crossref_primary_10_1088_1741_2552_aab2f2 crossref_primary_10_1016_j_bspc_2020_101888 crossref_primary_10_1109_TNSRE_2022_3142736 crossref_primary_10_3390_s21041315 crossref_primary_10_1109_TNSRE_2020_3040984 crossref_primary_10_1109_TNSRE_2020_3005771 crossref_primary_10_1109_TIM_2022_3146950 crossref_primary_10_3389_fnins_2023_1142892 crossref_primary_10_3389_fnhum_2021_675091 crossref_primary_10_1109_TNNLS_2021_3118468 crossref_primary_10_1016_j_jneumeth_2020_108686 crossref_primary_10_1016_j_neucom_2015_11_065 crossref_primary_10_1016_j_neucom_2020_03_048 crossref_primary_10_1109_TFUZZ_2018_2866811 crossref_primary_10_1142_S0129065716500222 crossref_primary_10_1016_j_neucom_2015_08_122 crossref_primary_10_1109_ACCESS_2017_2747632 crossref_primary_10_1016_j_jneumeth_2018_04_001 crossref_primary_10_1142_S0129065715500379 crossref_primary_10_1038_s41433_021_01592_0 crossref_primary_10_1142_S0129065720500112 crossref_primary_10_3389_fncom_2016_00105 crossref_primary_10_1109_ACCESS_2020_2980370 crossref_primary_10_1016_j_bspc_2017_09_001 crossref_primary_10_1016_j_patcog_2017_05_004 crossref_primary_10_3390_s24217084 crossref_primary_10_1088_1741_2552_ab2373 crossref_primary_10_1109_TNSRE_2023_3250953 crossref_primary_10_1088_1741_2552_ab7264 crossref_primary_10_1142_S0129065716500106 crossref_primary_10_1371_journal_pone_0140703 crossref_primary_10_1088_1741_2552_ac81ee crossref_primary_10_1142_S0129065716500349 crossref_primary_10_3389_fnhum_2018_00246 crossref_primary_10_1016_j_bspc_2020_102042 crossref_primary_10_1016_j_jneumeth_2022_109674 crossref_primary_10_1109_TNSRE_2020_2983275 crossref_primary_10_1073_pnas_1508080112 crossref_primary_10_1007_s11517_023_02845_8 crossref_primary_10_1080_10447318_2016_1203047 crossref_primary_10_3389_fnins_2020_00717 crossref_primary_10_1109_TNSRE_2022_3215695 crossref_primary_10_1016_j_cmpb_2016_05_002 crossref_primary_10_1007_s12559_017_9478_0 crossref_primary_10_1016_j_eswa_2022_117574 crossref_primary_10_1109_JSEN_2022_3173433 crossref_primary_10_1088_1741_2552_ac823e crossref_primary_10_1007_s42452_024_05816_2 crossref_primary_10_1109_TNSRE_2018_2874975 crossref_primary_10_1088_1741_2552_aa6213 crossref_primary_10_3233_JID_220001 crossref_primary_10_31083_j_jin2304073 crossref_primary_10_11834_jig_230031 crossref_primary_10_1016_j_bbe_2017_10_004 crossref_primary_10_1016_j_jneumeth_2022_109688 crossref_primary_10_1007_s11571_019_09541_0 crossref_primary_10_1109_TBME_2016_2559527 crossref_primary_10_1109_TBME_2024_3406603 crossref_primary_10_1016_j_neuroimage_2023_120501 crossref_primary_10_1109_TNNLS_2015_2476656 crossref_primary_10_1155_2014_908719 crossref_primary_10_1109_TBME_2020_2975552 crossref_primary_10_1016_j_bspc_2024_106063 crossref_primary_10_1109_ACCESS_2017_2675538 crossref_primary_10_1088_1741_2560_13_3_036019 crossref_primary_10_1093_jrsssc_qlad022 crossref_primary_10_1109_TNSRE_2016_2519350 crossref_primary_10_1016_j_bspc_2020_102022 crossref_primary_10_1016_j_jneumeth_2024_110325 crossref_primary_10_1109_MSP_2023_3278074 crossref_primary_10_3389_fnins_2023_1246940 crossref_primary_10_1109_LSP_2014_2368952 crossref_primary_10_1109_TNSRE_2018_2817924 crossref_primary_10_1016_j_bspc_2022_103906 crossref_primary_10_1109_TNSRE_2018_2864119 crossref_primary_10_1109_JPROC_2015_2474704 crossref_primary_10_1007_s11277_020_07738_9 crossref_primary_10_1016_j_artmed_2025_103100 crossref_primary_10_1007_s12204_021_2387_0 crossref_primary_10_1142_S0129065717500393 crossref_primary_10_1109_MSP_2016_2521870 crossref_primary_10_1088_1741_2552_acf7f6 crossref_primary_10_1016_j_bspc_2022_103482 crossref_primary_10_1016_j_compbiomed_2018_08_011 crossref_primary_10_3233_JIFS_169097 crossref_primary_10_1109_ACCESS_2018_2886759 crossref_primary_10_1007_s11280_018_0635_5 crossref_primary_10_1016_j_neucom_2021_07_103 crossref_primary_10_1088_1741_2552_aaca6e crossref_primary_10_1142_S0129065716500143 crossref_primary_10_1088_1741_2552_abf00c crossref_primary_10_1016_j_neucom_2016_09_011 crossref_primary_10_1109_ACCESS_2020_2994226 crossref_primary_10_3390_app6100270 crossref_primary_10_1109_ACCESS_2017_2698068 crossref_primary_10_1109_TNSRE_2024_3424410 crossref_primary_10_1109_TBME_2020_2972747 crossref_primary_10_1080_2326263X_2020_1783170 crossref_primary_10_1109_TNSRE_2023_3305202 crossref_primary_10_3233_JIFS_169089 crossref_primary_10_3389_fnins_2022_863359 crossref_primary_10_1088_1741_2552_aa7ee9 crossref_primary_10_1038_s41598_019_56962_2 crossref_primary_10_1109_TNSRE_2022_3162029 crossref_primary_10_1109_TNSRE_2018_2848222 crossref_primary_10_1142_S0129065720500203 crossref_primary_10_1142_S0129065715500161 crossref_primary_10_3389_fnins_2017_00630 crossref_primary_10_1007_s00542_016_3229_0 crossref_primary_10_1088_1741_2552_abe7cf crossref_primary_10_1088_1741_2552_ac2bb7 crossref_primary_10_1142_S0129065715500306 crossref_primary_10_1007_s11571_016_9398_9 crossref_primary_10_1016_j_neucom_2017_02_080 crossref_primary_10_1088_1741_2552_aac605 crossref_primary_10_1088_1741_2552_ac6b57 crossref_primary_10_1007_s11280_018_0619_5 crossref_primary_10_1109_ACCESS_2020_3044732 crossref_primary_10_1016_j_compbiomed_2023_107806 crossref_primary_10_1007_s10633_020_09770_3 crossref_primary_10_1016_j_neunet_2024_106734 crossref_primary_10_1109_ACCESS_2018_2825378 crossref_primary_10_1007_s11571_022_09923_x crossref_primary_10_1016_j_compbiomed_2023_107488 crossref_primary_10_1088_1741_2552_abfdfa crossref_primary_10_1109_TNSRE_2020_3038718 crossref_primary_10_1109_JSTSP_2016_2594945 crossref_primary_10_1109_TNSRE_2021_3057938 crossref_primary_10_1016_j_eswa_2023_120141 crossref_primary_10_1016_j_jneumeth_2015_01_024 crossref_primary_10_1371_journal_pone_0159988 crossref_primary_10_26599_BSA_2018_9050010 crossref_primary_10_1007_s12559_014_9313_9 crossref_primary_10_1142_S0129065714500191 crossref_primary_10_1007_s11277_021_08135_6 crossref_primary_10_1016_j_jneumeth_2022_109499 crossref_primary_10_1142_S0129065720500549 crossref_primary_10_1088_1741_2552_aa6086 crossref_primary_10_1109_TNSRE_2019_2940712 crossref_primary_10_1088_1741_2552_ac6ae5 crossref_primary_10_1109_JBHI_2018_2832538 crossref_primary_10_3390_s22072568 crossref_primary_10_1109_TBME_2017_2694818 crossref_primary_10_3233_ICA_180586 crossref_primary_10_1088_1741_2552_ab6cb7 crossref_primary_10_1088_1741_2552_aabb82 crossref_primary_10_1016_j_bspc_2021_103162 crossref_primary_10_1016_j_bspc_2020_102304 crossref_primary_10_1109_TNSRE_2021_3073165 crossref_primary_10_1109_TIM_2023_3284952 crossref_primary_10_1007_s10916_016_0475_8 crossref_primary_10_3389_fncom_2022_868642 crossref_primary_10_1109_TSMC_2020_2964684 crossref_primary_10_1142_S0129065715500094 crossref_primary_10_1155_2018_4278782 crossref_primary_10_1016_j_compbiomed_2021_105042 crossref_primary_10_1111_psyp_12916 crossref_primary_10_1109_TNSRE_2018_2826541 crossref_primary_10_1088_1741_2552_ab914e crossref_primary_10_1142_S0129065719500023 crossref_primary_10_1177_1073858414549015 crossref_primary_10_1002_int_22341 crossref_primary_10_1109_TBME_2020_2975773 crossref_primary_10_1109_TKDE_2017_2763618 crossref_primary_10_1109_TCYB_2018_2841847 crossref_primary_10_1002_adfm_202201843 crossref_primary_10_1088_1741_2552_ab13d1 crossref_primary_10_1080_02664763_2021_1939661 |
ContentType | Journal Article |
DBID | CGR CUY CVF ECM EIF NPM |
DOI | 10.1142/S0129065714500130 |
DatabaseName | Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed |
DatabaseTitle | MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) |
DatabaseTitleList | MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | no_fulltext_linktorsrc |
Discipline | Computer Science |
ExternalDocumentID | 24694168 |
Genre | Research Support, Non-U.S. Gov't Journal Article |
GroupedDBID | --- .DC 0R~ 36B 4.4 53G 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG CGR COF CS3 CUY CVF DU5 EBS ECM EIF EJD EMOBN F5P HZ~ NPM O9- P2P P71 RWJ WSC |
ID | FETCH-LOGICAL-c4660-42b91371b81f261403d72a066aa48eae21fbdca27328ae92fa0aca3d10f399c42 |
ISSN | 0129-0657 |
IngestDate | Thu Apr 03 06:59:18 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4660-42b91371b81f261403d72a066aa48eae21fbdca27328ae92fa0aca3d10f399c42 |
PMID | 24694168 |
ParticipantIDs | pubmed_primary_24694168 |
PublicationCentury | 2000 |
PublicationDate | 20140600 |
PublicationDateYYYYMMDD | 2014-06-01 |
PublicationDate_xml | – month: 06 year: 2014 text: 20140600 |
PublicationDecade | 2010 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore |
PublicationTitle | International journal of neural systems |
PublicationTitleAlternate | Int J Neural Syst |
PublicationYear | 2014 |
SSID | ssj0014748 |
Score | 2.5198946 |
Snippet | Canonical correlation analysis (CCA) has been one of the most popular methods for frequency recognition in steady-state visual evoked potential (SSVEP)-based... |
SourceID | pubmed |
SourceType | Index Database |
StartPage | 1450013 |
SubjectTerms | Adult Algorithms Brain - physiology Brain Mapping Brain-Computer Interfaces Electroencephalography Evoked Potentials, Visual - physiology Female Humans Male Pattern Recognition, Automated Photic Stimulation Recognition (Psychology) User-Computer Interface Young Adult |
Title | Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis |
URI | https://www.ncbi.nlm.nih.gov/pubmed/24694168 |
Volume | 24 |
hasFullText | |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELa6cOHCsiywC7vIh71VgdiZ1M2RrVqVHiqkPlROlZ3EEgfaqjQS5cJfZ_xIakpBwCWqxqmTZr5OxuOZbwi5w1WEFEpDxJnKIkgTiBQ6JlGmeFkkQqNBtFm-485wBqNFumi1vgdZS9VOvcm_nawr-R-togz1aqpk_0GzzaQowM-oXzyihvH4VzoebF0i9L7d5AG5zMXJZN7_EJk3VNG-771vVzYiYJMHv5Q7k-m1XnlqkO3Wp8O1pecnCf3VnwOGAc2E4cE0pSYB4XkYfv5YHUTrygbfq_XXRjjyPcDq96aN6LtvLlC2r8JgBIND0lQdn-SG1MBxTtcG1hVJeyBBYC0ZpMYFPW3Jgdu9ZBMnw_n8qXF4Lipj89mqloOpx3X9ef48ekSuXQ-dkTMhjF0fm2CP34QCYZuvNb_Jb4rjnb395b4MqbSf62iBYh2V6RPy2K8w6DsHlwvSKldPyXndvYN6Y35J5g16aIAe-mlFA_RQRA-16KE1emiDHhqgh9boeUZmg_60N4x8l40oh04njoCrjCWCqS7TuJyGOCkEl-iJSgndUpacaVXkkhtWJ1lmXMtY5jIpWKzRuc2BPycP8LLlFaFCJ5CoXGQ6BpAFqK5ikhdSa5aqhKfX5IV7MsuNo1JZ1s_s5W9HXpFHB6DdkIca_7vlLTqCO_XaqusH-ahbRw |
linkProvider | National Library of Medicine |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Frequency+recognition+in+SSVEP-based+BCI+using+multiset+canonical+correlation+analysis&rft.jtitle=International+journal+of+neural+systems&rft.au=Zhang%2C+Yu&rft.au=Zhou%2C+Guoxu&rft.au=Jin%2C+Jing&rft.au=Wang%2C+Xingyu&rft.date=2014-06-01&rft.issn=0129-0657&rft.volume=24&rft.issue=4&rft.spage=1450013&rft_id=info:doi/10.1142%2FS0129065714500130&rft_id=info%3Apmid%2F24694168&rft_id=info%3Apmid%2F24694168&rft.externalDocID=24694168 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-0657&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-0657&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-0657&client=summon |