基于等维新息的GM(2,1)递推预测模型

针对GM(2,1)白化方程的解影响其预测精度的问题,提出了一种新的预测模型-等维新息GM(2,1)递推预测模型。该模型通过其灰色微分方程推导出GM(2,1)递推预测模型的表达式,避免了对二阶白化方程进行求解,同时解决了差分方程与微分方程之间因转换而产生误差的问题,并结合等维新息的思想更新GM(2,1)递推预测模型的参数。最后通过实例验证了所提等维新息GM(2,1)递推预测模型的有效性和实用性。...

Full description

Saved in:
Bibliographic Details
Published in电信科学 Vol. 33; no. 5; pp. 55 - 61
Main Author 岳赟 卢光跃 刘迪 董静怡
Format Journal Article
LanguageChinese
Published 中国通信学会 01.05.2017
人民邮电出版社有限公司
Subjects
Online AccessGet full text
ISSN1000-0801

Cover

More Information
Summary:针对GM(2,1)白化方程的解影响其预测精度的问题,提出了一种新的预测模型-等维新息GM(2,1)递推预测模型。该模型通过其灰色微分方程推导出GM(2,1)递推预测模型的表达式,避免了对二阶白化方程进行求解,同时解决了差分方程与微分方程之间因转换而产生误差的问题,并结合等维新息的思想更新GM(2,1)递推预测模型的参数。最后通过实例验证了所提等维新息GM(2,1)递推预测模型的有效性和实用性。
Bibliography:YUE Yun, LU Guangyue, LIU Di, DONG Jingyi National Engineering Laboratory for Wireless Security, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
GM (2,1) model, whitening equation, grey differential equation, equal dimension and new information,recursive forecasting model
11-2103/TN
Aiming at the problem that the solution of GM (2,1) whitening equation affects its prediction accuracy, a new prediction model dubbed GM (2,1) recursive l)rediction model of equal dimension new information was pro- posed. The model was deduced from the grey differential equation of GM (2,1) mode, which could avoid solving the second-order whitening equation, solve the problem that the errors between equations and differential equations for conversion, and update the model parameters combining the idea of equal dimension and new information. Both the simulation and analysis of the example demonstrate that the proposed method is more effective and practical.
ISSN:1000-0801