Machine Learning-Based Analysis of Optical Coherence Tomography Angiography Images for Age-Related Macular Degeneration

Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment o...

Full description

Saved in:
Bibliographic Details
Published inBiomedicines Vol. 13; no. 9; p. 2152
Main Authors Alfahaid, Abdullah, Morris, Tim, Cootes, Tim, Keane, Pearse A., Khalid, Hagar, Pontikos, Nikolas, Alharbi, Fatemah, Alalwany, Easa, Almars, Abdulqader M., Aldweesh, Amjad, ALMansour, Abdullah G. M., Sergouniotis, Panagiotis I., Balaskas, Konstantinos
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 05.09.2025
Subjects
Online AccessGet full text
ISSN2227-9059
2227-9059
DOI10.3390/biomedicines13092152

Cover

Abstract Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.
AbstractList Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.
Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.
Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.
Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP[sup.2riu]), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.
Audience Academic
Author Khalid, Hagar
Sergouniotis, Panagiotis I.
Balaskas, Konstantinos
Alharbi, Fatemah
Alfahaid, Abdullah
Morris, Tim
Cootes, Tim
Aldweesh, Amjad
ALMansour, Abdullah G. M.
Keane, Pearse A.
Pontikos, Nikolas
Alalwany, Easa
Almars, Abdulqader M.
Author_xml – sequence: 1
  givenname: Abdullah
  orcidid: 0000-0003-2773-5544
  surname: Alfahaid
  fullname: Alfahaid, Abdullah
– sequence: 2
  givenname: Tim
  orcidid: 0000-0001-5334-4913
  surname: Morris
  fullname: Morris, Tim
– sequence: 3
  givenname: Tim
  orcidid: 0000-0002-2695-9063
  surname: Cootes
  fullname: Cootes, Tim
– sequence: 4
  givenname: Pearse A.
  orcidid: 0000-0002-9239-745X
  surname: Keane
  fullname: Keane, Pearse A.
– sequence: 5
  givenname: Hagar
  orcidid: 0000-0002-5311-4015
  surname: Khalid
  fullname: Khalid, Hagar
– sequence: 6
  givenname: Nikolas
  orcidid: 0000-0003-1782-4711
  surname: Pontikos
  fullname: Pontikos, Nikolas
– sequence: 7
  givenname: Fatemah
  orcidid: 0000-0003-3594-6122
  surname: Alharbi
  fullname: Alharbi, Fatemah
– sequence: 8
  givenname: Easa
  orcidid: 0000-0002-0948-0069
  surname: Alalwany
  fullname: Alalwany, Easa
– sequence: 9
  givenname: Abdulqader M.
  orcidid: 0000-0002-6822-1008
  surname: Almars
  fullname: Almars, Abdulqader M.
– sequence: 10
  givenname: Amjad
  orcidid: 0000-0001-9358-1323
  surname: Aldweesh
  fullname: Aldweesh, Amjad
– sequence: 11
  givenname: Abdullah G. M.
  orcidid: 0009-0006-6941-2291
  surname: ALMansour
  fullname: ALMansour, Abdullah G. M.
– sequence: 12
  givenname: Panagiotis I.
  orcidid: 0000-0003-0986-4123
  surname: Sergouniotis
  fullname: Sergouniotis, Panagiotis I.
– sequence: 13
  givenname: Konstantinos
  orcidid: 0000-0003-2034-8920
  surname: Balaskas
  fullname: Balaskas, Konstantinos
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41007725$$D View this record in MEDLINE/PubMed
BookMark eNqNkttq3DAQhk1JadI0b1CKoTe9carjyrrcbk8LWwIlvTZjeeRVsKWtZBP27avNJumBXFQSaBi--Uc_o5fFiQ8ei-I1JZeca_K-dWHEzhnnMVFONKOSPSvOGGOq0kTqkz_i0-IipRuSl6a8puJFcSooIUoxeVbcfgOzzSrlBiF65_vqAyTsyqWHYZ9cKoMtr3aTMzCUq7DFiN5geR3G0EfYbfcZ7N1DvB6hx1TaEMtlj9V3HGDKWrnFPEAsP2KPHiNMLvhXxXMLQ8KL-_u8-PH50_Xqa7W5-rJeLTeVEQs5VVZwijVnvDYdk0JjqwTXCzCaQI0kH0GVEguijLXIVNtygrWoGZHcGqH4ebE-6nYBbppddCPEfRPANXeJEPsGYrY3YEOYglaShTFcik62WoGwUgMstCEtpVlLHrVmv4P9LQzDoyAlzWEuzVNzyXXvjnW7GH7OmKZmdMngMIDHMKeGH5wxoTTJ6Nt_0JswxzyLIyUU04z_pnrI73behimCOYg2y1reMbXI1OUTVN4djs7k_2Rdzv9V8Oa--dxmF4_mHn5LBsQRMDGkFNH-n_9fdlrU1g
Cites_doi 10.1016/j.ophtha.2015.01.029
10.1007/978-981-10-3223-3_15
10.1364/BOE.6.003564
10.1364/BOE.379977
10.1038/eye.2015.80
10.1167/iovs.16-20977
10.1016/0031-3203(95)00067-4
10.1016/j.preteyeres.2017.12.002
10.1097/IAE.0000000000000773
10.1109/TPAMI.2011.222
10.1097/IAE.0000000000000766
10.1177/1120672118766807
10.1097/IAE.0000000000001628
10.1155/2020/7493419
10.1159/000433547
10.1016/j.ophtha.2017.05.035
10.1016/j.preteyeres.2021.100965
10.1109/TPAMI.2006.244
10.1097/IAE.0000000000000836
10.1109/TNNLS.2023.3347722
10.1038/nbt1206-1565
10.1186/s40942-015-0005-8
10.1259/bjr.70.839.9536897
10.1016/B978-0-12-812133-7.00001-6
10.1016/j.preteyeres.2017.11.003
10.1097/IAE.0000000000000834
10.1038/s41433-021-01496-z
10.1007/978-1-4614-7138-7
10.1097/IAE.0000000000001447
10.1016/j.ophtha.2014.01.034
10.1016/j.patcog.2016.08.032
10.1016/S0140-6736(18)31550-2
10.1111/aos.13364
10.1109/SMC.2013.727
10.1097/IAE.0000000000000867
10.1136/thx.2003.020396
10.1073/pnas.1500185112
10.1109/ICPR.1994.576366
10.1016/j.media.2011.06.005
10.1016/j.ajo.2015.06.030
10.1007/978-3-642-15705-9_1
10.1007/978-0-85729-748-8
10.1109/TPAMI.2002.1017623
10.1016/j.compbiomed.2019.103450
10.1136/amiajnl-2012-001503
10.1177/1535370219899893
10.1016/j.preteyeres.2017.07.002
10.1007/s11263-018-1125-z
10.1007/978-3-642-15561-1_56
10.1136/bjophthalmol-2013-304033
10.1148/radiology.213.2.r99nv49317
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
NPM
8FE
8FH
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
ADTOC
UNPAY
DOA
DOI 10.3390/biomedicines13092152
DatabaseName CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials
Biological Science Collection (subscription)
ProQuest Central
Natural Science Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Biological Science Collection
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList Publicly Available Content Database
MEDLINE - Academic
PubMed
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-9059
ExternalDocumentID oai_doaj_org_article_027ab506cc354d5b97a4f59aa69c0b11
10.3390/biomedicines13092152
A857292384
41007725
10_3390_biomedicines13092152
Genre Journal Article
GeographicLocations United States
United Kingdom
Germany
GeographicLocations_xml – name: United Kingdom
– name: Germany
– name: United States
GrantInformation_xml – fundername: the Wellcome Trust (224643/Z/21/Z, Clinical Research Career Development Fellowship to P.I.S.)
  grantid: 224643/Z/21/Z
– fundername: This work was supported by the Moorfields Eye Charity (R190028A Career Development Award to P.A.K; R190031A Career Development Award to N.P.)
  grantid: R190028A
– fundername: Wellcome Trust
– fundername: The research was also supported by the National Institute for Health and Care Research (NIHR) Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology. It was also co-funded by the NIHR Manchester
  grantid: NIHR203308
– fundername: the UK Research and Innovation (UKRI) (MR/T019050/1 Future Leaders Fellowship to P.A.K.)
  grantid: MR/T019050/1
GroupedDBID 53G
5VS
8FE
8FH
AADQD
AAFWJ
AAYXX
ACPRK
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EMOBN
GROUPED_DOAJ
GX1
HCIFZ
HYE
IAO
IHR
INH
ITC
KQ8
LK8
M7P
MODMG
M~E
OK1
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RPM
NPM
PUEGO
ABUWG
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
ADTOC
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c465t-f431e83238cd2549eb74396ac90a8e08e041774607cffe27bb30e8482053fc473
IEDL.DBID BENPR
ISSN 2227-9059
IngestDate Tue Oct 14 19:04:33 EDT 2025
Sun Oct 26 04:15:04 EDT 2025
Sat Sep 27 17:45:58 EDT 2025
Fri Sep 26 22:10:05 EDT 2025
Mon Oct 20 22:39:04 EDT 2025
Mon Oct 20 16:52:19 EDT 2025
Thu Oct 02 04:49:24 EDT 2025
Thu Oct 16 04:25:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords choroidal neovascularisation (CNV)
optical coherence tomography angiography (OCTA)
age-related macular degeneration (AMD)
automated diagnosis
texture analysis
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-f431e83238cd2549eb74396ac90a8e08e041774607cffe27bb30e8482053fc473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9358-1323
0000-0002-9239-745X
0000-0003-2034-8920
0000-0002-2695-9063
0000-0003-1782-4711
0000-0003-2773-5544
0000-0002-0948-0069
0000-0003-0986-4123
0000-0002-6822-1008
0009-0006-6941-2291
0000-0001-5334-4913
0000-0002-5311-4015
0000-0003-3594-6122
OpenAccessLink https://www.proquest.com/docview/3254472923?pq-origsite=%requestingapplication%&accountid=15518
PMID 41007725
PQID 3254472923
PQPubID 2032426
ParticipantIDs doaj_primary_oai_doaj_org_article_027ab506cc354d5b97a4f59aa69c0b11
unpaywall_primary_10_3390_biomedicines13092152
proquest_miscellaneous_3254924790
proquest_journals_3254472923
gale_infotracmisc_A857292384
gale_infotracacademiconefile_A857292384
pubmed_primary_41007725
crossref_primary_10_3390_biomedicines13092152
PublicationCentury 2000
PublicationDate 2025-09-05
PublicationDateYYYYMMDD 2025-09-05
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-05
  day: 05
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Biomedicines
PublicationTitleAlternate Biomedicines
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ojala (ref_27) 2002; 24
Lupidi (ref_22) 2018; 28
Choi (ref_21) 2021; 36
ref_58
ref_13
ref_57
ref_54
Ali (ref_50) 2014; Volume 9035
ref_53
Miere (ref_20) 2017; 37
ref_52
ref_51
Robinson (ref_23) 1997; 70
ref_16
Sulzbacher (ref_9) 2017; 95
ref_15
Jia (ref_6) 2014; 121
Aziz (ref_25) 2004; 59
Muakkassa (ref_29) 2015; 35
Mehta (ref_4) 2018; 65
ref_60
Bourne (ref_2) 2014; 98
Liu (ref_39) 2019; 127
Coscas (ref_28) 2015; 54
Chin (ref_12) 2015; 122
Tourassi (ref_24) 2013; 20
Liu (ref_10) 2015; 6
Liu (ref_40) 2017; 62
Ojala (ref_42) 1994; Volume 1
ref_36
ref_35
ref_30
Coscas (ref_17) 2015; 35
Mitchell (ref_3) 2018; 392
Kuehlewein (ref_8) 2015; 160
Liu (ref_61) 2024; 36
ref_38
Calonder (ref_45) 2011; 34
Colijn (ref_1) 2017; 124
Cohen (ref_18) 2015; 35
Liu (ref_49) 2011; 15
Spaide (ref_11) 2018; 64
Kuehlewein (ref_32) 2015; 29
Miere (ref_19) 2015; 35
Ahonen (ref_55) 2006; 28
ref_47
ref_46
Wang (ref_37) 2020; 11
ref_44
Zhang (ref_34) 2017; 58
ref_41
Kashani (ref_14) 2017; 60
Yao (ref_31) 2020; 245
ref_48
Noble (ref_56) 2006; 24
Tourassi (ref_26) 1999; 213
Jia (ref_5) 2015; 112
Ojala (ref_43) 1996; 29
Iafe (ref_33) 2018; 38
Pedregosa (ref_59) 2011; 12
ref_7
References_xml – volume: 122
  start-page: 1228
  year: 2015
  ident: ref_12
  article-title: Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2015.01.029
– ident: ref_15
  doi: 10.1007/978-981-10-3223-3_15
– volume: 6
  start-page: 3564
  year: 2015
  ident: ref_10
  article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.6.003564
– volume: 11
  start-page: 927
  year: 2020
  ident: ref_37
  article-title: Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.379977
– volume: 29
  start-page: 932
  year: 2015
  ident: ref_32
  article-title: OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy
  publication-title: Eye
  doi: 10.1038/eye.2015.80
– volume: 58
  start-page: 1506
  year: 2017
  ident: ref_34
  article-title: Automated quantitation of choroidal neovascularization: A comparison study between spectral-domain and swept-source OCT angiograms
  publication-title: Investig. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.16-20977
– volume: 29
  start-page: 51
  year: 1996
  ident: ref_43
  article-title: A comparative study of texture measures with classification based on featured distributions
  publication-title: Pattern Recognit.
  doi: 10.1016/0031-3203(95)00067-4
– volume: 65
  start-page: 127
  year: 2018
  ident: ref_4
  article-title: Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2017.12.002
– volume: 35
  start-page: 2212
  year: 2015
  ident: ref_18
  article-title: Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000773
– volume: 34
  start-page: 1281
  year: 2011
  ident: ref_45
  article-title: BRIEF: Computing a local binary descriptor very fast
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.222
– volume: 35
  start-page: 2219
  year: 2015
  ident: ref_17
  article-title: Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A new diagnostic challenge
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000766
– volume: 28
  start-page: 349
  year: 2018
  ident: ref_22
  article-title: Optical coherence tomography angiography in age-related macular degeneration: The game changer
  publication-title: Eur. J. Ophthalmol.
  doi: 10.1177/1120672118766807
– volume: 38
  start-page: 220
  year: 2018
  ident: ref_33
  article-title: Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000001628
– ident: ref_36
  doi: 10.1155/2020/7493419
– volume: 54
  start-page: 57
  year: 2015
  ident: ref_28
  article-title: Optical coherence tomography angiography during follow-up: Qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy
  publication-title: Ophthalmic Res.
  doi: 10.1159/000433547
– ident: ref_52
– volume: 124
  start-page: 1753
  year: 2017
  ident: ref_1
  article-title: Prevalence of age-related macular degeneration in Europe: The past and the future
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2017.05.035
– ident: ref_13
  doi: 10.1016/j.preteyeres.2021.100965
– ident: ref_48
– volume: 28
  start-page: 2037
  year: 2006
  ident: ref_55
  article-title: Face description with local binary patterns: Application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 35
  start-page: 2252
  year: 2015
  ident: ref_29
  article-title: Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000836
– volume: 36
  start-page: 2648
  year: 2024
  ident: ref_61
  article-title: Capsule networks with residual pose routing
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2023.3347722
– volume: 24
  start-page: 1565
  year: 2006
  ident: ref_56
  article-title: What is a support vector machine?
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt1206-1565
– ident: ref_7
  doi: 10.1186/s40942-015-0005-8
– volume: 70
  start-page: 1085
  year: 1997
  ident: ref_23
  article-title: Radiology’s Achilles’ heel: Error and variation in the interpretation of the Röntgen image
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.70.839.9536897
– ident: ref_16
  doi: 10.1016/B978-0-12-812133-7.00001-6
– ident: ref_38
– volume: 64
  start-page: 1
  year: 2018
  ident: ref_11
  article-title: Optical coherence tomography angiography
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2017.11.003
– volume: 35
  start-page: 2236
  year: 2015
  ident: ref_19
  article-title: Optical coherence tomography angiography in early type 3 neovascularization
  publication-title: Retina
  doi: 10.1097/IAE.0000000000000834
– volume: 36
  start-page: 414
  year: 2021
  ident: ref_21
  article-title: Quantitative OCT angiography findings according to pattern classification of type 1 neovascularization exudative age-related macular degeneration
  publication-title: Eye
  doi: 10.1038/s41433-021-01496-z
– ident: ref_53
– ident: ref_58
  doi: 10.1007/978-1-4614-7138-7
– volume: 37
  start-page: 1873
  year: 2017
  ident: ref_20
  article-title: Optical coherence tomography angiography changes in early type 3 neovascularization after anti-vascular endothelial growth factor treatment
  publication-title: Retina
  doi: 10.1097/IAE.0000000000001447
– volume: 121
  start-page: 1435
  year: 2014
  ident: ref_6
  article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2014.01.034
– volume: 62
  start-page: 135
  year: 2017
  ident: ref_40
  article-title: Local binary features for texture classification: Taxonomy and experimental study
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.08.032
– volume: 392
  start-page: 1147
  year: 2018
  ident: ref_3
  article-title: Age-related macular degeneration
  publication-title: Lancet
  doi: 10.1016/S0140-6736(18)31550-2
– volume: 95
  start-page: 414
  year: 2017
  ident: ref_9
  article-title: Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography
  publication-title: Acta Ophthalmol.
  doi: 10.1111/aos.13364
– ident: ref_47
  doi: 10.1109/SMC.2013.727
– ident: ref_30
  doi: 10.1097/IAE.0000000000000867
– volume: 59
  start-page: 506
  year: 2004
  ident: ref_25
  article-title: HRCT diagnosis of diffuse parenchymal lung disease: Inter-observer variation
  publication-title: Thorax
  doi: 10.1136/thx.2003.020396
– volume: 112
  start-page: E2395
  year: 2015
  ident: ref_5
  article-title: Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1500185112
– volume: Volume 1
  start-page: 582
  year: 1994
  ident: ref_42
  article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions
  publication-title: Proceedings of the 12th International Conference on Pattern Recognition
  doi: 10.1109/ICPR.1994.576366
– volume: 15
  start-page: 748
  year: 2011
  ident: ref_49
  article-title: Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.06.005
– volume: 160
  start-page: 739
  year: 2015
  ident: ref_8
  article-title: Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration
  publication-title: Am. J. Ophthalmol.
  doi: 10.1016/j.ajo.2015.06.030
– ident: ref_51
  doi: 10.1007/978-3-642-15705-9_1
– volume: 12
  start-page: 2825
  year: 2011
  ident: ref_59
  article-title: Scikit-learn: Machine Learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: ref_54
– ident: ref_41
  doi: 10.1007/978-0-85729-748-8
– volume: 24
  start-page: 971
  year: 2002
  ident: ref_27
  article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref_46
– ident: ref_35
  doi: 10.1016/j.compbiomed.2019.103450
– volume: 20
  start-page: 1067
  year: 2013
  ident: ref_24
  article-title: Investigating the link between radiologists’ gaze, diagnostic decision, and image content
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2012-001503
– volume: 245
  start-page: 301
  year: 2020
  ident: ref_31
  article-title: Quantitative optical coherence tomography angiography: A review
  publication-title: Exp. Biol. Med.
  doi: 10.1177/1535370219899893
– ident: ref_60
– volume: 60
  start-page: 66
  year: 2017
  ident: ref_14
  article-title: Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications
  publication-title: Prog. Retin. Eye Res.
  doi: 10.1016/j.preteyeres.2017.07.002
– volume: 127
  start-page: 74
  year: 2019
  ident: ref_39
  article-title: From BoW to CNN: Two decades of texture representation for texture classification
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-018-1125-z
– ident: ref_57
– ident: ref_44
  doi: 10.1007/978-3-642-15561-1_56
– volume: Volume 9035
  start-page: 903531
  year: 2014
  ident: ref_50
  article-title: Glaucoma detection based on local binary patterns in fundus photographs
  publication-title: Proceedings of the Medical Imaging 2014: Computer-Aided Diagnosis
– volume: 98
  start-page: 629
  year: 2014
  ident: ref_2
  article-title: Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010
  publication-title: Br. J. Ophthalmol.
  doi: 10.1136/bjophthalmol-2013-304033
– volume: 213
  start-page: 317
  year: 1999
  ident: ref_26
  article-title: Journey toward computer-aided diagnosis: Role of image texture analysis
  publication-title: Radiology
  doi: 10.1148/radiology.213.2.r99nv49317
SSID ssj0000913814
Score 2.3045726
Snippet Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography...
Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a...
SourceID doaj
unpaywall
proquest
gale
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 2152
SubjectTerms Age
age-related macular degeneration (AMD)
Algorithms
Angiography
automated diagnosis
Automation
Blood vessels
choroidal neovascularisation (CNV)
Decision making
Eye
Image processing
Information management
Learning algorithms
Machine learning
Macular degeneration
Medical imaging
Medical imaging equipment
Medical personnel
Medical research
Medicine, Experimental
Older people
optical coherence tomography angiography (OCTA)
Pathology
Principal components analysis
Retina
texture analysis
Tomography
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejl22Hse-564YKg520ypFkWcd0W2kL2y4t9CYkWQqD1glNQtl_v_ckJzhssB0KPhj7Wbb1vu33fiLkgxNJpVoE1jgfmWySZs4HySLwPtW647zLVb7fm9NLeX6lrkZLfWFNWIEHLhN3BGmT84o3IQglO-WNdjIp41xjAvelq5e3ZpRMZRtsanBFsvTKCcjrj0o3e_5bvQS7bXA91x1flCH7_zTMI8_0cN0v3K87d309ckEnT8mTIXak0_LMz8iD2D8nj0eIgi_I3bdcHBnpgJs6Y8fgpjq6wR6h80R_LPL3a4qdGbnXj17MbwbkaiCc_dzsn92AsVlSCGvpdBZZrpuDseAWWLtKv8RZxqxG1r4klydfLz6fsmFtBRZko1YsQeAQQZtFGzrMEaPHzKRxwXDXRg6brCEybLgOKcWJ9l7w2EqIF5RIQWrxiuz18z6-IVQkIw1k2SFqMLswinJOiySNr30HI1aEbWbZLgqEhoXUA7li_8aVihwjK7a0CICdD4BY2EEs7L_EoiIfkZEW1XR164Ibug3gkRHwyk5bBWkFvL6syMEOJahX2D29EQU7qPfSCgR2ywQVOdyexiuxZK2P83WhgeRWG16R10WEtq8ksTZFT1RFPm1l6r_mZv8-5uYteTTBVYzxt5g6IHur23V8B6HVyr_PWvQb4ZEhRw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48H4ECjISEhe8TWI73hy3QFWQWjh0pXKKbMdeIdrdVTerCn49M06y2uUhFSmHKBk7foznEc98BnhtRFAhE44Xxnoui6C5sU5yj3MfMl2naR2jfE-Ko4n8dKbOduBtnwuzsX8v0B3fb5PQ4ybzEsVtScew3oDdQqHlPYDdycmX8Vc6Py7PNS_RVGiz4_5ZdEv7RJD-P0Xxhi66uZotzI8rc36-oXQO78Jx39w21uT7cNXYofv5G5LjdftzD-501icbt-xyH3b87AHc3sAkfAhXxzG80rMOeXXKD1DR1axHL2HzwD4v4h9wRrkdMVuQnc4vOuxrJJx-6-8_XqC4WjI0jNl46nmMvMO68BMU_cre-2lEvSbmeASTww-n7454dzoDd7JQDQ9oeniUB2LkavIyvSXfpjCuTM3Ip3jJDG3LItUuBJ9ra0XqRxItDiWCk1o8hsFsPvNPgYlQyhL9dOc1Cm6sRRmjRZClzWyNNSbA-1mrFi0IR4XOCw1o9bcBTeCApnZNSxDa8QHORNWtyAr9cWNVWjgnlKyVLbWRQZXGYDtSm2UJvCHGqGihN5fGmS5fAZtMkFnVeKTQMcHuywT2tihxgbrt1z1rVZ2AWFaCoOEiQQKv1q-pJAW9zfx81dKge6zLNIEnLUuuuyQpukXnKoHhmkevNTbP_rfAc7iV05nHtImm9mDQXK78CzTEGvuyW3-_ABSbMRE
  priority: 102
  providerName: Unpaywall
Title Machine Learning-Based Analysis of Optical Coherence Tomography Angiography Images for Age-Related Macular Degeneration
URI https://www.ncbi.nlm.nih.gov/pubmed/41007725
https://www.proquest.com/docview/3254472923
https://www.proquest.com/docview/3254924790
https://doi.org/10.3390/biomedicines13092152
https://doaj.org/article/027ab506cc354d5b97a4f59aa69c0b11
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: RPM
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9059
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913814
  issn: 2227-9059
  databaseCode: BENPR
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4QHyOwJiMhMSTWRLb-XhAqIVNA4kyoVUaT5Ht2BXS1pR-aOK_585JSisQQspDU7uOm_vwnX33O4BXWnjlE2F5po3jMvM518ZK7pD2PsnrOK5DlO84O5vIT5fqcg_GfS4MhVX2OjEo6rqxtEd-LAhLCy3BVLyb_-BUNYpOV_sSGrorrVC_DRBjt2A_JWSsAeyPTsbnXze7LoSCWSSyzaET6O8ft1nu4RR7ifq8pDqvO2tUgPL_U2FvrVi317O5_nmjr662lqbT-3CvsynZsGWCB7DnZg_h7hbS4CO4-RyCJh3r8FSnfITLV816TBLWePZlHva1GWVshBxAdtFcd4jW2HH6vf_88RqV0JKhucuGU8dDPB2OhY-gmFb2wU0DljWR_DFMTk8u3p_xruYCtzJTK-7RoHAo5aKwNfmOzpDHkmlbxrpwMV4yQYsxi3PrvUtzY0TsCol2hBLeylw8gcGsmbmnwIQvZYnet3U5qmMcRWmdCy9Lk5gaR4yA92-5mrfQGhW6JESV6m9UiWBEpNj0JWDs8EWzmFadnFXoZWuj4sxaoWStTJlr6VWpNc4jNkkSwWsiZEXiu1poq7ssBJwyAWFVw0IFJitkBIc7PVHs7G5zzwpVJ_bL6jeTRvBy00y_pFC2mWvWbR90evMyjuCgZaHNX5IUs5KnKoI3G576r3fz7N-zeQ53UqpbTAdh6hAGq8XavUBjamWOOgk5CpsReDcZnw-__QKphyHt
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEG8WChgJxMl0d23v41ChhLZKaBsQSqXeFttrR0htNuShqH-O38aMdzckAiEulXKIso7jeN72zDeEvFHcSRdxwxKlLROJS5nSRjALtHdRWoZh6bN8B0nvXHy6kBdb5GdbC4Npla1O9Iq6rAyeke9zxNICTzDmHyY_GHaNwtvVtoWGalorlAceYqwp7Dix10sI4WYH_UOg99s4Pj4afuyxpssAMyKRc-bAhFrga56ZEqMlq9FHT5TJQ5XZEF4iAh8pCVPjnI1TrXloMwGWU3JnRMph3ltkR3CRQ_C30z0afPm6OuVB1M0sEnXNHud5uF9X1ftb8xnYjxz7ym7YRN864E8DsWYhdxfjibpeqsvLNVN4fI_cbXxY2qmZ7j7ZsuMH5M4asuFDsjzzSZqWNvitI9YFc1nSFgOFVo5-nvhzdIoVIr7mkA6rqwZBGwaOvrfv-1eg9GYU3GvaGVnm8_dgLvgJzKGlh3bksbORxR6R8xvZ_cdke1yN7VNCuctFDtG-sSmof5hFKpVyJ3Id6RJmDAhrd7mY1FAeBYRASJXib1QJSBdJsRqLQNz-g2o6Khq5LiCqV1qGiTFcilLqPFXCyVwpWEeooygg75CQBaqL-VQZ1VQ9wJIReKvoZNIzdSYCsrcxEsTcbD5uWaFo1Mys-C0UAXm9eozfxNS5sa0W9RgIstM8DMiTmoVWf0lgjkway4C8X_HUf-3Ns3-v5hXZ7Q3PTovT_uDkObkdY89kvISTe2R7Pl3YF-DIzfXLRloo-XbTAvoLlFdapA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKK_E4IN4sFDASiJOb3bW9j0OFEtKqoRAq1Eq9LV6vHSG12ZCHov5FfhUzXm9IBEJcKuUQZR3H8bztmW8IeaO4lTbimiWqNEwkNmWq1IIZoL2N0ioMK5flO0yOzsTHc3m-RX62tTCYVtnqRKeoq1rjGXmHI5YWeIIx71ifFnHSP3w_-cGwgxTetLbtNJRvs1DtO7gxX-RxbK6WEM7N9gd9oP3bOD48OP1wxHzHAaZFIufMgjk1wOM80xVGTqZEfz1ROg9VZkJ4iQj8pSRMtbUmTsuShyYTYEUlt1qkHOa9QXbw8guUxE7vYHjydXXigwicWSSa-j3O87DTVNi7G_QZ2JIce8xu2EfXRuBPY7FmLW8txhN1tVQXF2tm8fAeuev9WdptGPA-2TLjB-TOGsrhQ7L87BI2DfVYriPWA9NZ0RYPhdaWfpm4M3WK1SKu_pCe1pceTRsGjr637weXoABnFFxt2h0Z5nL5YC74CcynpX0zcjjayG6PyNm17P5jsj2ux-YpodzmIofIX5sUTAHMIpVKuRV5GZUVzBgQ1u5yMWlgPQoIh5Aqxd-oEpAekmI1FkG53Qf1dFR4GS8gwlelDBOtuRSVLPNUCStzpWAdYRlFAXmHhCxQdcynSitfAQFLRhCuoptJx-CZCMjuxkgQeb35uGWFwqucWfFbQALyevUYv4lpdGNTL5oxEHCneRiQJw0Lrf6SwHyZNJYB2Vvx1H_tzbN_r-YVuQmCWnwaDI-fk9sxtk_G-zi5S7bn04V5AT7dvHzphYWSb9ctn78AtS1e0w
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48H4ECjISEhe8TWI73hy3QFWQWjh0pXKKbMdeIdrdVTerCn49M06y2uUhFSmHKBk7foznEc98BnhtRFAhE44Xxnoui6C5sU5yj3MfMl2naR2jfE-Ko4n8dKbOduBtnwuzsX8v0B3fb5PQ4ybzEsVtScew3oDdQqHlPYDdycmX8Vc6Py7PNS_RVGiz4_5ZdEv7RJD-P0Xxhi66uZotzI8rc36-oXQO78Jx39w21uT7cNXYofv5G5LjdftzD-501icbt-xyH3b87AHc3sAkfAhXxzG80rMOeXXKD1DR1axHL2HzwD4v4h9wRrkdMVuQnc4vOuxrJJx-6-8_XqC4WjI0jNl46nmMvMO68BMU_cre-2lEvSbmeASTww-n7454dzoDd7JQDQ9oeniUB2LkavIyvSXfpjCuTM3Ip3jJDG3LItUuBJ9ra0XqRxItDiWCk1o8hsFsPvNPgYlQyhL9dOc1Cm6sRRmjRZClzWyNNSbA-1mrFi0IR4XOCw1o9bcBTeCApnZNSxDa8QHORNWtyAr9cWNVWjgnlKyVLbWRQZXGYDtSm2UJvCHGqGihN5fGmS5fAZtMkFnVeKTQMcHuywT2tihxgbrt1z1rVZ2AWFaCoOEiQQKv1q-pJAW9zfx81dKge6zLNIEnLUuuuyQpukXnKoHhmkevNTbP_rfAc7iV05nHtImm9mDQXK78CzTEGvuyW3-_ABSbMRE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Analysis+of+Optical+Coherence+Tomography+Angiography+Images+for+Age-Related+Macular+Degeneration&rft.jtitle=Biomedicines&rft.au=Alfahaid%2C+Abdullah&rft.au=Morris%2C+Tim&rft.au=Cootes%2C+Tim&rft.au=Keane%2C+Pearse+A.&rft.date=2025-09-05&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=13&rft.issue=9&rft.spage=2152&rft_id=info:doi/10.3390%2Fbiomedicines13092152&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedicines13092152
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon