Machine Learning-Based Analysis of Optical Coherence Tomography Angiography Images for Age-Related Macular Degeneration
Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment o...
Saved in:
| Published in | Biomedicines Vol. 13; no. 9; p. 2152 |
|---|---|
| Main Authors | , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
MDPI AG
05.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9059 2227-9059 |
| DOI | 10.3390/biomedicines13092152 |
Cover
| Abstract | Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care. |
|---|---|
| AbstractList | Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care. Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care.Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care. Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists' workload and enhancing diagnostic accuracy. Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP2riu), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care. Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a non-invasive imaging modality that enables detailed visualisation of retinal vascular layers. However, clinical assessment of OCTA images is often challenging due to high data volume, pattern variability, and subtle abnormalities. This study aimed to develop automated algorithms to detect and quantify AMD in OCTA images, thereby reducing ophthalmologists’ workload and enhancing diagnostic accuracy. Methods: Two texture-based algorithms were developed to classify OCTA images without relying on segmentation. The first algorithm used whole local texture features, while the second applied principal component analysis (PCA) to decorrelate and reduce texture features. Local texture descriptors, including rotation-invariant uniform local binary patterns (LBP[sup.2riu]), local binary patterns (LBP), and binary robust independent elementary features (BRIEF), were combined with machine learning classifiers such as support vector machine (SVM) and K-nearest neighbour (KNN). OCTA datasets from Manchester Royal Eye Hospital and Moorfields Eye Hospital, covering healthy, dry AMD, and wet AMD eyes, were used for evaluation. Results: The first algorithm achieved a mean area under the receiver operating characteristic curve (AUC) of 1.00±0.00 for distinguishing healthy eyes from wet AMD. The second algorithm showed superior performance in differentiating dry AMD from wet AMD (AUC 0.85±0.02). Conclusions: The proposed algorithms demonstrate strong potential for rapid and accurate AMD diagnosis in OCTA workflows. By reducing manual image evaluation and associated variability, they may support improved clinical decision-making and patient care. |
| Audience | Academic |
| Author | Khalid, Hagar Sergouniotis, Panagiotis I. Balaskas, Konstantinos Alharbi, Fatemah Alfahaid, Abdullah Morris, Tim Cootes, Tim Aldweesh, Amjad ALMansour, Abdullah G. M. Keane, Pearse A. Pontikos, Nikolas Alalwany, Easa Almars, Abdulqader M. |
| Author_xml | – sequence: 1 givenname: Abdullah orcidid: 0000-0003-2773-5544 surname: Alfahaid fullname: Alfahaid, Abdullah – sequence: 2 givenname: Tim orcidid: 0000-0001-5334-4913 surname: Morris fullname: Morris, Tim – sequence: 3 givenname: Tim orcidid: 0000-0002-2695-9063 surname: Cootes fullname: Cootes, Tim – sequence: 4 givenname: Pearse A. orcidid: 0000-0002-9239-745X surname: Keane fullname: Keane, Pearse A. – sequence: 5 givenname: Hagar orcidid: 0000-0002-5311-4015 surname: Khalid fullname: Khalid, Hagar – sequence: 6 givenname: Nikolas orcidid: 0000-0003-1782-4711 surname: Pontikos fullname: Pontikos, Nikolas – sequence: 7 givenname: Fatemah orcidid: 0000-0003-3594-6122 surname: Alharbi fullname: Alharbi, Fatemah – sequence: 8 givenname: Easa orcidid: 0000-0002-0948-0069 surname: Alalwany fullname: Alalwany, Easa – sequence: 9 givenname: Abdulqader M. orcidid: 0000-0002-6822-1008 surname: Almars fullname: Almars, Abdulqader M. – sequence: 10 givenname: Amjad orcidid: 0000-0001-9358-1323 surname: Aldweesh fullname: Aldweesh, Amjad – sequence: 11 givenname: Abdullah G. M. orcidid: 0009-0006-6941-2291 surname: ALMansour fullname: ALMansour, Abdullah G. M. – sequence: 12 givenname: Panagiotis I. orcidid: 0000-0003-0986-4123 surname: Sergouniotis fullname: Sergouniotis, Panagiotis I. – sequence: 13 givenname: Konstantinos orcidid: 0000-0003-2034-8920 surname: Balaskas fullname: Balaskas, Konstantinos |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41007725$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkttq3DAQhk1JadI0b1CKoTe9carjyrrcbk8LWwIlvTZjeeRVsKWtZBP27avNJumBXFQSaBi--Uc_o5fFiQ8ei-I1JZeca_K-dWHEzhnnMVFONKOSPSvOGGOq0kTqkz_i0-IipRuSl6a8puJFcSooIUoxeVbcfgOzzSrlBiF65_vqAyTsyqWHYZ9cKoMtr3aTMzCUq7DFiN5geR3G0EfYbfcZ7N1DvB6hx1TaEMtlj9V3HGDKWrnFPEAsP2KPHiNMLvhXxXMLQ8KL-_u8-PH50_Xqa7W5-rJeLTeVEQs5VVZwijVnvDYdk0JjqwTXCzCaQI0kH0GVEguijLXIVNtygrWoGZHcGqH4ebE-6nYBbppddCPEfRPANXeJEPsGYrY3YEOYglaShTFcik62WoGwUgMstCEtpVlLHrVmv4P9LQzDoyAlzWEuzVNzyXXvjnW7GH7OmKZmdMngMIDHMKeGH5wxoTTJ6Nt_0JswxzyLIyUU04z_pnrI73behimCOYg2y1reMbXI1OUTVN4djs7k_2Rdzv9V8Oa--dxmF4_mHn5LBsQRMDGkFNH-n_9fdlrU1g |
| Cites_doi | 10.1016/j.ophtha.2015.01.029 10.1007/978-981-10-3223-3_15 10.1364/BOE.6.003564 10.1364/BOE.379977 10.1038/eye.2015.80 10.1167/iovs.16-20977 10.1016/0031-3203(95)00067-4 10.1016/j.preteyeres.2017.12.002 10.1097/IAE.0000000000000773 10.1109/TPAMI.2011.222 10.1097/IAE.0000000000000766 10.1177/1120672118766807 10.1097/IAE.0000000000001628 10.1155/2020/7493419 10.1159/000433547 10.1016/j.ophtha.2017.05.035 10.1016/j.preteyeres.2021.100965 10.1109/TPAMI.2006.244 10.1097/IAE.0000000000000836 10.1109/TNNLS.2023.3347722 10.1038/nbt1206-1565 10.1186/s40942-015-0005-8 10.1259/bjr.70.839.9536897 10.1016/B978-0-12-812133-7.00001-6 10.1016/j.preteyeres.2017.11.003 10.1097/IAE.0000000000000834 10.1038/s41433-021-01496-z 10.1007/978-1-4614-7138-7 10.1097/IAE.0000000000001447 10.1016/j.ophtha.2014.01.034 10.1016/j.patcog.2016.08.032 10.1016/S0140-6736(18)31550-2 10.1111/aos.13364 10.1109/SMC.2013.727 10.1097/IAE.0000000000000867 10.1136/thx.2003.020396 10.1073/pnas.1500185112 10.1109/ICPR.1994.576366 10.1016/j.media.2011.06.005 10.1016/j.ajo.2015.06.030 10.1007/978-3-642-15705-9_1 10.1007/978-0-85729-748-8 10.1109/TPAMI.2002.1017623 10.1016/j.compbiomed.2019.103450 10.1136/amiajnl-2012-001503 10.1177/1535370219899893 10.1016/j.preteyeres.2017.07.002 10.1007/s11263-018-1125-z 10.1007/978-3-642-15561-1_56 10.1136/bjophthalmol-2013-304033 10.1148/radiology.213.2.r99nv49317 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION NPM 8FE 8FH ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 ADTOC UNPAY DOA |
| DOI | 10.3390/biomedicines13092152 |
| DatabaseName | CrossRef PubMed ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) ProQuest Central ProQuest Central Essentials Biological Science Collection (subscription) ProQuest Central Natural Science Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Biological Science Collection ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection Biological Science Database ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2227-9059 |
| ExternalDocumentID | oai_doaj_org_article_027ab506cc354d5b97a4f59aa69c0b11 10.3390/biomedicines13092152 A857292384 41007725 10_3390_biomedicines13092152 |
| Genre | Journal Article |
| GeographicLocations | United States United Kingdom Germany |
| GeographicLocations_xml | – name: United Kingdom – name: Germany – name: United States |
| GrantInformation_xml | – fundername: the Wellcome Trust (224643/Z/21/Z, Clinical Research Career Development Fellowship to P.I.S.) grantid: 224643/Z/21/Z – fundername: This work was supported by the Moorfields Eye Charity (R190028A Career Development Award to P.A.K; R190031A Career Development Award to N.P.) grantid: R190028A – fundername: Wellcome Trust – fundername: The research was also supported by the National Institute for Health and Care Research (NIHR) Biomedical Research Centre based at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology. It was also co-funded by the NIHR Manchester grantid: NIHR203308 – fundername: the UK Research and Innovation (UKRI) (MR/T019050/1 Future Leaders Fellowship to P.A.K.) grantid: MR/T019050/1 |
| GroupedDBID | 53G 5VS 8FE 8FH AADQD AAFWJ AAYXX ACPRK ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EMOBN GROUPED_DOAJ GX1 HCIFZ HYE IAO IHR INH ITC KQ8 LK8 M7P MODMG M~E OK1 PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RPM NPM PUEGO ABUWG AZQEC DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7X8 ADTOC IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c465t-f431e83238cd2549eb74396ac90a8e08e041774607cffe27bb30e8482053fc473 |
| IEDL.DBID | BENPR |
| ISSN | 2227-9059 |
| IngestDate | Tue Oct 14 19:04:33 EDT 2025 Sun Oct 26 04:15:04 EDT 2025 Sat Sep 27 17:45:58 EDT 2025 Fri Sep 26 22:10:05 EDT 2025 Mon Oct 20 22:39:04 EDT 2025 Mon Oct 20 16:52:19 EDT 2025 Thu Oct 02 04:49:24 EDT 2025 Thu Oct 16 04:25:14 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | choroidal neovascularisation (CNV) optical coherence tomography angiography (OCTA) age-related macular degeneration (AMD) automated diagnosis texture analysis |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-f431e83238cd2549eb74396ac90a8e08e041774607cffe27bb30e8482053fc473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9358-1323 0000-0002-9239-745X 0000-0003-2034-8920 0000-0002-2695-9063 0000-0003-1782-4711 0000-0003-2773-5544 0000-0002-0948-0069 0000-0003-0986-4123 0000-0002-6822-1008 0009-0006-6941-2291 0000-0001-5334-4913 0000-0002-5311-4015 0000-0003-3594-6122 |
| OpenAccessLink | https://www.proquest.com/docview/3254472923?pq-origsite=%requestingapplication%&accountid=15518 |
| PMID | 41007725 |
| PQID | 3254472923 |
| PQPubID | 2032426 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_027ab506cc354d5b97a4f59aa69c0b11 unpaywall_primary_10_3390_biomedicines13092152 proquest_miscellaneous_3254924790 proquest_journals_3254472923 gale_infotracmisc_A857292384 gale_infotracacademiconefile_A857292384 pubmed_primary_41007725 crossref_primary_10_3390_biomedicines13092152 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-05 |
| PublicationDateYYYYMMDD | 2025-09-05 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland – name: Basel |
| PublicationTitle | Biomedicines |
| PublicationTitleAlternate | Biomedicines |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ojala (ref_27) 2002; 24 Lupidi (ref_22) 2018; 28 Choi (ref_21) 2021; 36 ref_58 ref_13 ref_57 ref_54 Ali (ref_50) 2014; Volume 9035 ref_53 Miere (ref_20) 2017; 37 ref_52 ref_51 Robinson (ref_23) 1997; 70 ref_16 Sulzbacher (ref_9) 2017; 95 ref_15 Jia (ref_6) 2014; 121 Aziz (ref_25) 2004; 59 Muakkassa (ref_29) 2015; 35 Mehta (ref_4) 2018; 65 ref_60 Bourne (ref_2) 2014; 98 Liu (ref_39) 2019; 127 Coscas (ref_28) 2015; 54 Chin (ref_12) 2015; 122 Tourassi (ref_24) 2013; 20 Liu (ref_10) 2015; 6 Liu (ref_40) 2017; 62 Ojala (ref_42) 1994; Volume 1 ref_36 ref_35 ref_30 Coscas (ref_17) 2015; 35 Mitchell (ref_3) 2018; 392 Kuehlewein (ref_8) 2015; 160 Liu (ref_61) 2024; 36 ref_38 Calonder (ref_45) 2011; 34 Colijn (ref_1) 2017; 124 Cohen (ref_18) 2015; 35 Liu (ref_49) 2011; 15 Spaide (ref_11) 2018; 64 Kuehlewein (ref_32) 2015; 29 Miere (ref_19) 2015; 35 Ahonen (ref_55) 2006; 28 ref_47 ref_46 Wang (ref_37) 2020; 11 ref_44 Zhang (ref_34) 2017; 58 ref_41 Kashani (ref_14) 2017; 60 Yao (ref_31) 2020; 245 ref_48 Noble (ref_56) 2006; 24 Tourassi (ref_26) 1999; 213 Jia (ref_5) 2015; 112 Ojala (ref_43) 1996; 29 Iafe (ref_33) 2018; 38 Pedregosa (ref_59) 2011; 12 ref_7 |
| References_xml | – volume: 122 start-page: 1228 year: 2015 ident: ref_12 article-title: Spectral-Domain Optical Coherence Tomography Angiography of Choroidal Neovascularization publication-title: Ophthalmology doi: 10.1016/j.ophtha.2015.01.029 – ident: ref_15 doi: 10.1007/978-981-10-3223-3_15 – volume: 6 start-page: 3564 year: 2015 ident: ref_10 article-title: Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography publication-title: Biomed. Opt. Express doi: 10.1364/BOE.6.003564 – volume: 11 start-page: 927 year: 2020 ident: ref_37 article-title: Automated diagnosis and segmentation of choroidal neovascularization in OCT angiography using deep learning publication-title: Biomed. Opt. Express doi: 10.1364/BOE.379977 – volume: 29 start-page: 932 year: 2015 ident: ref_32 article-title: OCT angiography and sequential quantitative analysis of type 2 neovascularization after ranibizumab therapy publication-title: Eye doi: 10.1038/eye.2015.80 – volume: 58 start-page: 1506 year: 2017 ident: ref_34 article-title: Automated quantitation of choroidal neovascularization: A comparison study between spectral-domain and swept-source OCT angiograms publication-title: Investig. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.16-20977 – volume: 29 start-page: 51 year: 1996 ident: ref_43 article-title: A comparative study of texture measures with classification based on featured distributions publication-title: Pattern Recognit. doi: 10.1016/0031-3203(95)00067-4 – volume: 65 start-page: 127 year: 2018 ident: ref_4 article-title: Real-world outcomes in patients with neovascular age-related macular degeneration treated with intravitreal vascular endothelial growth factor inhibitors publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2017.12.002 – volume: 35 start-page: 2212 year: 2015 ident: ref_18 article-title: Type 2 neovascularization secondary to age-related macular degeneration imaged by optical coherence tomography angiography publication-title: Retina doi: 10.1097/IAE.0000000000000773 – volume: 34 start-page: 1281 year: 2011 ident: ref_45 article-title: BRIEF: Computing a local binary descriptor very fast publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2011.222 – volume: 35 start-page: 2219 year: 2015 ident: ref_17 article-title: Optical coherence tomography angiography versus traditional multimodal imaging in assessing the activity of exudative age-related macular degeneration: A new diagnostic challenge publication-title: Retina doi: 10.1097/IAE.0000000000000766 – volume: 28 start-page: 349 year: 2018 ident: ref_22 article-title: Optical coherence tomography angiography in age-related macular degeneration: The game changer publication-title: Eur. J. Ophthalmol. doi: 10.1177/1120672118766807 – volume: 38 start-page: 220 year: 2018 ident: ref_33 article-title: Biomarkers of neovascular activity in age-related macular degeneration using optical coherence tomography angiography publication-title: Retina doi: 10.1097/IAE.0000000000001628 – ident: ref_36 doi: 10.1155/2020/7493419 – volume: 54 start-page: 57 year: 2015 ident: ref_28 article-title: Optical coherence tomography angiography during follow-up: Qualitative and quantitative analysis of mixed type I and II choroidal neovascularization after vascular endothelial growth factor trap therapy publication-title: Ophthalmic Res. doi: 10.1159/000433547 – ident: ref_52 – volume: 124 start-page: 1753 year: 2017 ident: ref_1 article-title: Prevalence of age-related macular degeneration in Europe: The past and the future publication-title: Ophthalmology doi: 10.1016/j.ophtha.2017.05.035 – ident: ref_13 doi: 10.1016/j.preteyeres.2021.100965 – ident: ref_48 – volume: 28 start-page: 2037 year: 2006 ident: ref_55 article-title: Face description with local binary patterns: Application to face recognition publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2006.244 – volume: 35 start-page: 2252 year: 2015 ident: ref_29 article-title: Characterizing the effect of anti-vascular endothelial growth factor therapy on treatment-naive choroidal neovascularization using optical coherence tomography angiography publication-title: Retina doi: 10.1097/IAE.0000000000000836 – volume: 36 start-page: 2648 year: 2024 ident: ref_61 article-title: Capsule networks with residual pose routing publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2023.3347722 – volume: 24 start-page: 1565 year: 2006 ident: ref_56 article-title: What is a support vector machine? publication-title: Nat. Biotechnol. doi: 10.1038/nbt1206-1565 – ident: ref_7 doi: 10.1186/s40942-015-0005-8 – volume: 70 start-page: 1085 year: 1997 ident: ref_23 article-title: Radiology’s Achilles’ heel: Error and variation in the interpretation of the Röntgen image publication-title: Br. J. Radiol. doi: 10.1259/bjr.70.839.9536897 – ident: ref_16 doi: 10.1016/B978-0-12-812133-7.00001-6 – ident: ref_38 – volume: 64 start-page: 1 year: 2018 ident: ref_11 article-title: Optical coherence tomography angiography publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2017.11.003 – volume: 35 start-page: 2236 year: 2015 ident: ref_19 article-title: Optical coherence tomography angiography in early type 3 neovascularization publication-title: Retina doi: 10.1097/IAE.0000000000000834 – volume: 36 start-page: 414 year: 2021 ident: ref_21 article-title: Quantitative OCT angiography findings according to pattern classification of type 1 neovascularization exudative age-related macular degeneration publication-title: Eye doi: 10.1038/s41433-021-01496-z – ident: ref_53 – ident: ref_58 doi: 10.1007/978-1-4614-7138-7 – volume: 37 start-page: 1873 year: 2017 ident: ref_20 article-title: Optical coherence tomography angiography changes in early type 3 neovascularization after anti-vascular endothelial growth factor treatment publication-title: Retina doi: 10.1097/IAE.0000000000001447 – volume: 121 start-page: 1435 year: 2014 ident: ref_6 article-title: Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration publication-title: Ophthalmology doi: 10.1016/j.ophtha.2014.01.034 – volume: 62 start-page: 135 year: 2017 ident: ref_40 article-title: Local binary features for texture classification: Taxonomy and experimental study publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.08.032 – volume: 392 start-page: 1147 year: 2018 ident: ref_3 article-title: Age-related macular degeneration publication-title: Lancet doi: 10.1016/S0140-6736(18)31550-2 – volume: 95 start-page: 414 year: 2017 ident: ref_9 article-title: Identification and clinical role of choroidal neovascularization characteristics based on optical coherence tomography angiography publication-title: Acta Ophthalmol. doi: 10.1111/aos.13364 – ident: ref_47 doi: 10.1109/SMC.2013.727 – ident: ref_30 doi: 10.1097/IAE.0000000000000867 – volume: 59 start-page: 506 year: 2004 ident: ref_25 article-title: HRCT diagnosis of diffuse parenchymal lung disease: Inter-observer variation publication-title: Thorax doi: 10.1136/thx.2003.020396 – volume: 112 start-page: E2395 year: 2015 ident: ref_5 article-title: Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1500185112 – volume: Volume 1 start-page: 582 year: 1994 ident: ref_42 article-title: Performance evaluation of texture measures with classification based on Kullback discrimination of distributions publication-title: Proceedings of the 12th International Conference on Pattern Recognition doi: 10.1109/ICPR.1994.576366 – volume: 15 start-page: 748 year: 2011 ident: ref_49 article-title: Automated macular pathology diagnosis in retinal OCT images using multi-scale spatial pyramid and local binary patterns in texture and shape encoding publication-title: Med. Image Anal. doi: 10.1016/j.media.2011.06.005 – volume: 160 start-page: 739 year: 2015 ident: ref_8 article-title: Optical coherence tomography angiography of type 1 neovascularization in age-related macular degeneration publication-title: Am. J. Ophthalmol. doi: 10.1016/j.ajo.2015.06.030 – ident: ref_51 doi: 10.1007/978-3-642-15705-9_1 – volume: 12 start-page: 2825 year: 2011 ident: ref_59 article-title: Scikit-learn: Machine Learning in Python publication-title: J. Mach. Learn. Res. – ident: ref_54 – ident: ref_41 doi: 10.1007/978-0-85729-748-8 – volume: 24 start-page: 971 year: 2002 ident: ref_27 article-title: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2002.1017623 – ident: ref_46 – ident: ref_35 doi: 10.1016/j.compbiomed.2019.103450 – volume: 20 start-page: 1067 year: 2013 ident: ref_24 article-title: Investigating the link between radiologists’ gaze, diagnostic decision, and image content publication-title: J. Am. Med. Inform. Assoc. doi: 10.1136/amiajnl-2012-001503 – volume: 245 start-page: 301 year: 2020 ident: ref_31 article-title: Quantitative optical coherence tomography angiography: A review publication-title: Exp. Biol. Med. doi: 10.1177/1535370219899893 – ident: ref_60 – volume: 60 start-page: 66 year: 2017 ident: ref_14 article-title: Optical coherence tomography angiography: A comprehensive review of current methods and clinical applications publication-title: Prog. Retin. Eye Res. doi: 10.1016/j.preteyeres.2017.07.002 – volume: 127 start-page: 74 year: 2019 ident: ref_39 article-title: From BoW to CNN: Two decades of texture representation for texture classification publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-018-1125-z – ident: ref_57 – ident: ref_44 doi: 10.1007/978-3-642-15561-1_56 – volume: Volume 9035 start-page: 903531 year: 2014 ident: ref_50 article-title: Glaucoma detection based on local binary patterns in fundus photographs publication-title: Proceedings of the Medical Imaging 2014: Computer-Aided Diagnosis – volume: 98 start-page: 629 year: 2014 ident: ref_2 article-title: Prevalence and causes of vision loss in high-income countries and in Eastern and Central Europe: 1990–2010 publication-title: Br. J. Ophthalmol. doi: 10.1136/bjophthalmol-2013-304033 – volume: 213 start-page: 317 year: 1999 ident: ref_26 article-title: Journey toward computer-aided diagnosis: Role of image texture analysis publication-title: Radiology doi: 10.1148/radiology.213.2.r99nv49317 |
| SSID | ssj0000913814 |
| Score | 2.3045726 |
| Snippet | Background/Objectives: Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography... Age-related macular degeneration (AMD) is the leading cause of visual impairment among the elderly. Optical coherence tomography angiography (OCTA) is a... |
| SourceID | doaj unpaywall proquest gale pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 2152 |
| SubjectTerms | Age age-related macular degeneration (AMD) Algorithms Angiography automated diagnosis Automation Blood vessels choroidal neovascularisation (CNV) Decision making Eye Image processing Information management Learning algorithms Machine learning Macular degeneration Medical imaging Medical imaging equipment Medical personnel Medical research Medicine, Experimental Older people optical coherence tomography angiography (OCTA) Pathology Principal components analysis Retina texture analysis Tomography |
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Na9swFBejl22Hse-564YKg520ypFkWcd0W2kL2y4t9CYkWQqD1glNQtl_v_ckJzhssB0KPhj7Wbb1vu33fiLkgxNJpVoE1jgfmWySZs4HySLwPtW647zLVb7fm9NLeX6lrkZLfWFNWIEHLhN3BGmT84o3IQglO-WNdjIp41xjAvelq5e3ZpRMZRtsanBFsvTKCcjrj0o3e_5bvQS7bXA91x1flCH7_zTMI8_0cN0v3K87d309ckEnT8mTIXak0_LMz8iD2D8nj0eIgi_I3bdcHBnpgJs6Y8fgpjq6wR6h80R_LPL3a4qdGbnXj17MbwbkaiCc_dzsn92AsVlSCGvpdBZZrpuDseAWWLtKv8RZxqxG1r4klydfLz6fsmFtBRZko1YsQeAQQZtFGzrMEaPHzKRxwXDXRg6brCEybLgOKcWJ9l7w2EqIF5RIQWrxiuz18z6-IVQkIw1k2SFqMLswinJOiySNr30HI1aEbWbZLgqEhoXUA7li_8aVihwjK7a0CICdD4BY2EEs7L_EoiIfkZEW1XR164Ibug3gkRHwyk5bBWkFvL6syMEOJahX2D29EQU7qPfSCgR2ywQVOdyexiuxZK2P83WhgeRWG16R10WEtq8ksTZFT1RFPm1l6r_mZv8-5uYteTTBVYzxt5g6IHur23V8B6HVyr_PWvQb4ZEhRw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48H4ECjISEhe8TWI73hy3QFWQWjh0pXKKbMdeIdrdVTerCn49M06y2uUhFSmHKBk7foznEc98BnhtRFAhE44Xxnoui6C5sU5yj3MfMl2naR2jfE-Ko4n8dKbOduBtnwuzsX8v0B3fb5PQ4ybzEsVtScew3oDdQqHlPYDdycmX8Vc6Py7PNS_RVGiz4_5ZdEv7RJD-P0Xxhi66uZotzI8rc36-oXQO78Jx39w21uT7cNXYofv5G5LjdftzD-501icbt-xyH3b87AHc3sAkfAhXxzG80rMOeXXKD1DR1axHL2HzwD4v4h9wRrkdMVuQnc4vOuxrJJx-6-8_XqC4WjI0jNl46nmMvMO68BMU_cre-2lEvSbmeASTww-n7454dzoDd7JQDQ9oeniUB2LkavIyvSXfpjCuTM3Ip3jJDG3LItUuBJ9ra0XqRxItDiWCk1o8hsFsPvNPgYlQyhL9dOc1Cm6sRRmjRZClzWyNNSbA-1mrFi0IR4XOCw1o9bcBTeCApnZNSxDa8QHORNWtyAr9cWNVWjgnlKyVLbWRQZXGYDtSm2UJvCHGqGihN5fGmS5fAZtMkFnVeKTQMcHuywT2tihxgbrt1z1rVZ2AWFaCoOEiQQKv1q-pJAW9zfx81dKge6zLNIEnLUuuuyQpukXnKoHhmkevNTbP_rfAc7iV05nHtImm9mDQXK78CzTEGvuyW3-_ABSbMRE priority: 102 providerName: Unpaywall |
| Title | Machine Learning-Based Analysis of Optical Coherence Tomography Angiography Images for Age-Related Macular Degeneration |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41007725 https://www.proquest.com/docview/3254472923 https://www.proquest.com/docview/3254924790 https://doi.org/10.3390/biomedicines13092152 https://doaj.org/article/027ab506cc354d5b97a4f59aa69c0b11 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: RPM dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9059 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913814 issn: 2227-9059 databaseCode: BENPR dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED-N7gF4QHyOwJiMhMSTWRLb-XhAqIVNA4kyoVUaT5Ht2BXS1pR-aOK_585JSisQQspDU7uOm_vwnX33O4BXWnjlE2F5po3jMvM518ZK7pD2PsnrOK5DlO84O5vIT5fqcg_GfS4MhVX2OjEo6rqxtEd-LAhLCy3BVLyb_-BUNYpOV_sSGrorrVC_DRBjt2A_JWSsAeyPTsbnXze7LoSCWSSyzaET6O8ft1nu4RR7ifq8pDqvO2tUgPL_U2FvrVi317O5_nmjr662lqbT-3CvsynZsGWCB7DnZg_h7hbS4CO4-RyCJh3r8FSnfITLV816TBLWePZlHva1GWVshBxAdtFcd4jW2HH6vf_88RqV0JKhucuGU8dDPB2OhY-gmFb2wU0DljWR_DFMTk8u3p_xruYCtzJTK-7RoHAo5aKwNfmOzpDHkmlbxrpwMV4yQYsxi3PrvUtzY0TsCol2hBLeylw8gcGsmbmnwIQvZYnet3U5qmMcRWmdCy9Lk5gaR4yA92-5mrfQGhW6JESV6m9UiWBEpNj0JWDs8EWzmFadnFXoZWuj4sxaoWStTJlr6VWpNc4jNkkSwWsiZEXiu1poq7ssBJwyAWFVw0IFJitkBIc7PVHs7G5zzwpVJ_bL6jeTRvBy00y_pFC2mWvWbR90evMyjuCgZaHNX5IUs5KnKoI3G576r3fz7N-zeQ53UqpbTAdh6hAGq8XavUBjamWOOgk5CpsReDcZnw-__QKphyHt |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKeygcEG8WChgJxMl0d23v41ChhLZKaBsQSqXeFttrR0htNuShqH-O38aMdzckAiEulXKIso7jeN72zDeEvFHcSRdxwxKlLROJS5nSRjALtHdRWoZh6bN8B0nvXHy6kBdb5GdbC4Npla1O9Iq6rAyeke9zxNICTzDmHyY_GHaNwtvVtoWGalorlAceYqwp7Dix10sI4WYH_UOg99s4Pj4afuyxpssAMyKRc-bAhFrga56ZEqMlq9FHT5TJQ5XZEF4iAh8pCVPjnI1TrXloMwGWU3JnRMph3ltkR3CRQ_C30z0afPm6OuVB1M0sEnXNHud5uF9X1ftb8xnYjxz7ym7YRN864E8DsWYhdxfjibpeqsvLNVN4fI_cbXxY2qmZ7j7ZsuMH5M4asuFDsjzzSZqWNvitI9YFc1nSFgOFVo5-nvhzdIoVIr7mkA6rqwZBGwaOvrfv-1eg9GYU3GvaGVnm8_dgLvgJzKGlh3bksbORxR6R8xvZ_cdke1yN7VNCuctFDtG-sSmof5hFKpVyJ3Id6RJmDAhrd7mY1FAeBYRASJXib1QJSBdJsRqLQNz-g2o6Khq5LiCqV1qGiTFcilLqPFXCyVwpWEeooygg75CQBaqL-VQZ1VQ9wJIReKvoZNIzdSYCsrcxEsTcbD5uWaFo1Mys-C0UAXm9eozfxNS5sa0W9RgIstM8DMiTmoVWf0lgjkway4C8X_HUf-3Ns3-v5hXZ7Q3PTovT_uDkObkdY89kvISTe2R7Pl3YF-DIzfXLRloo-XbTAvoLlFdapA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKK_E4IN4sFDASiJOb3bW9j0OFEtKqoRAq1Eq9LV6vHSG12ZCHov5FfhUzXm9IBEJcKuUQZR3H8bztmW8IeaO4lTbimiWqNEwkNmWq1IIZoL2N0ioMK5flO0yOzsTHc3m-RX62tTCYVtnqRKeoq1rjGXmHI5YWeIIx71ifFnHSP3w_-cGwgxTetLbtNJRvs1DtO7gxX-RxbK6WEM7N9gd9oP3bOD48OP1wxHzHAaZFIufMgjk1wOM80xVGTqZEfz1ROg9VZkJ4iQj8pSRMtbUmTsuShyYTYEUlt1qkHOa9QXbw8guUxE7vYHjydXXigwicWSSa-j3O87DTVNi7G_QZ2JIce8xu2EfXRuBPY7FmLW8txhN1tVQXF2tm8fAeuev9WdptGPA-2TLjB-TOGsrhQ7L87BI2DfVYriPWA9NZ0RYPhdaWfpm4M3WK1SKu_pCe1pceTRsGjr637weXoABnFFxt2h0Z5nL5YC74CcynpX0zcjjayG6PyNm17P5jsj2ux-YpodzmIofIX5sUTAHMIpVKuRV5GZUVzBgQ1u5yMWlgPQoIh5Aqxd-oEpAekmI1FkG53Qf1dFR4GS8gwlelDBOtuRSVLPNUCStzpWAdYRlFAXmHhCxQdcynSitfAQFLRhCuoptJx-CZCMjuxkgQeb35uGWFwqucWfFbQALyevUYv4lpdGNTL5oxEHCneRiQJw0Lrf6SwHyZNJYB2Vvx1H_tzbN_r-YVuQmCWnwaDI-fk9sxtk_G-zi5S7bn04V5AT7dvHzphYWSb9ctn78AtS1e0w |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6V7QE48H4ECjISEhe8TWI73hy3QFWQWjh0pXKKbMdeIdrdVTerCn49M06y2uUhFSmHKBk7foznEc98BnhtRFAhE44Xxnoui6C5sU5yj3MfMl2naR2jfE-Ko4n8dKbOduBtnwuzsX8v0B3fb5PQ4ybzEsVtScew3oDdQqHlPYDdycmX8Vc6Py7PNS_RVGiz4_5ZdEv7RJD-P0Xxhi66uZotzI8rc36-oXQO78Jx39w21uT7cNXYofv5G5LjdftzD-501icbt-xyH3b87AHc3sAkfAhXxzG80rMOeXXKD1DR1axHL2HzwD4v4h9wRrkdMVuQnc4vOuxrJJx-6-8_XqC4WjI0jNl46nmMvMO68BMU_cre-2lEvSbmeASTww-n7454dzoDd7JQDQ9oeniUB2LkavIyvSXfpjCuTM3Ip3jJDG3LItUuBJ9ra0XqRxItDiWCk1o8hsFsPvNPgYlQyhL9dOc1Cm6sRRmjRZClzWyNNSbA-1mrFi0IR4XOCw1o9bcBTeCApnZNSxDa8QHORNWtyAr9cWNVWjgnlKyVLbWRQZXGYDtSm2UJvCHGqGihN5fGmS5fAZtMkFnVeKTQMcHuywT2tihxgbrt1z1rVZ2AWFaCoOEiQQKv1q-pJAW9zfx81dKge6zLNIEnLUuuuyQpukXnKoHhmkevNTbP_rfAc7iV05nHtImm9mDQXK78CzTEGvuyW3-_ABSbMRE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+Learning-Based+Analysis+of+Optical+Coherence+Tomography+Angiography+Images+for+Age-Related+Macular+Degeneration&rft.jtitle=Biomedicines&rft.au=Alfahaid%2C+Abdullah&rft.au=Morris%2C+Tim&rft.au=Cootes%2C+Tim&rft.au=Keane%2C+Pearse+A.&rft.date=2025-09-05&rft.issn=2227-9059&rft.eissn=2227-9059&rft.volume=13&rft.issue=9&rft.spage=2152&rft_id=info:doi/10.3390%2Fbiomedicines13092152&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_biomedicines13092152 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9059&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9059&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9059&client=summon |