Exploring C-To-G Base Editing in Rice, Tomato, and Poplar

As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, re...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genome editing Vol. 3; p. 756766
Main Authors Sretenovic, Simon, Liu, Shishi, Li, Gen, Cheng, Yanhao, Fan, Tingting, Xu, Yang, Zhou, Jianping, Zheng, Xuelian, Coleman, Gary, Zhang, Yong, Qi, Yiping
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 15.09.2021
Subjects
Online AccessGet full text
ISSN2673-3439
2673-3439
DOI10.3389/fgeed.2021.756766

Cover

Abstract As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9’s canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.
AbstractList As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9’s canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.
As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9's canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base editors (ABEs) represent the two commonly used base editor types that mediate C-to-T and A-to-G base transition changes at the target sites, respectively. To date, no transversion base editors have been described in plants. Here, we assessed three C-to-G base editors (CGBEs) for targeting sequences with SpCas9's canonical NGG protospacer adjacent motifs (PAMs) as well as three PAM-less SpRY-based CGBEs for targeting sequences with relaxed PAM requirements. The analyses in rice and tomato protoplasts showed that these CGBEs could make C-to-G conversions at the target sites, and they preferentially edited the C6 position in the 20-nucleotide target sequence. C-to-T edits, insertions and deletions (indels) were major byproducts induced by these CGBEs in the protoplast systems. Further assessment of these CGBEs in stably transformed rice and poplar plants revealed the preference for editing of non-GC sites, and C-to-T edits are major byproducts. Successful C-to-G editing in stably transgenic rice plants was achieved by rXRCC1-based CGBEs with monoallelic editing efficiencies up to 38% in T0 lines. The UNG-rAPOBEC1 (R33A)-based CGBE resulted in successful C-to-G editing in polar, with monoallelic editing efficiencies up to 6.25% in T0 lines. Overall, this study revealed that different CGBEs have different preference on preferred editing sequence context, which could be influenced by cell cycles, DNA repair pathways, and plant species.
Author Xu, Yang
Cheng, Yanhao
Sretenovic, Simon
Coleman, Gary
Qi, Yiping
Li, Gen
Zhou, Jianping
Fan, Tingting
Liu, Shishi
Zheng, Xuelian
Zhang, Yong
AuthorAffiliation 3 Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville , MD , United States
1 Department of Plant Science and Landscape Architecture, University of Maryland, College Park , MD , United States
2 Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Technology of China, Center for Informational Biology, Chengdu , China
AuthorAffiliation_xml – name: 2 Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Technology of China, Center for Informational Biology, Chengdu , China
– name: 1 Department of Plant Science and Landscape Architecture, University of Maryland, College Park , MD , United States
– name: 3 Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville , MD , United States
Author_xml – sequence: 1
  givenname: Simon
  surname: Sretenovic
  fullname: Sretenovic, Simon
– sequence: 2
  givenname: Shishi
  surname: Liu
  fullname: Liu, Shishi
– sequence: 3
  givenname: Gen
  surname: Li
  fullname: Li, Gen
– sequence: 4
  givenname: Yanhao
  surname: Cheng
  fullname: Cheng, Yanhao
– sequence: 5
  givenname: Tingting
  surname: Fan
  fullname: Fan, Tingting
– sequence: 6
  givenname: Yang
  surname: Xu
  fullname: Xu, Yang
– sequence: 7
  givenname: Jianping
  surname: Zhou
  fullname: Zhou, Jianping
– sequence: 8
  givenname: Xuelian
  surname: Zheng
  fullname: Zheng, Xuelian
– sequence: 9
  givenname: Gary
  surname: Coleman
  fullname: Coleman, Gary
– sequence: 10
  givenname: Yong
  surname: Zhang
  fullname: Zhang, Yong
– sequence: 11
  givenname: Yiping
  surname: Qi
  fullname: Qi, Yiping
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34713268$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1vEzEQhi3UipbQH8AF7ZFDN_j744JEo1AqVWpVhbM1a88GV5t18G4Q_HuyTalaDpxszbzvM6N535CjPvdIyDtG50JY97FdI8Y5p5zNjdJG61fklGsjaiGFO3r2PyFnw3BPKeWKcS74a3IipGGCa3tK3PLXtssl9etqUa9yfVldwIDVMqZxqqW-uksBz6tV3sCYzyvoY3Wbtx2Ut-S4hW7As8d3Rr59Wa4WX-vrm8urxefrOkitxhobLW0ITjbBoZUNooyyBWyRmcAgRoOt48YqoIGqhoGz4BCk1AhOyChm5OrAjRnu_bakDZTfPkPyD4Vc1h7KmEKHXlklnDMiSs2ldsEpoSKLwTRtlA1ne9anA2u7azYYA_Zjge4F9GWnT9_9Ov_0VnElrN0DPjwCSv6xw2H0mzQE7DroMe8Gz5Wj1PJJPSPvn896GvL39nsBOwhCycNQsH2SMOqniP1DxH6K2B8i3nvMP56QRhhTntZN3X-cfwAMY6rr
CitedBy_id crossref_primary_10_1093_plphys_kiab591
crossref_primary_10_1111_pbi_13841
crossref_primary_10_1038_d41586_022_01117_z
crossref_primary_10_1186_s13765_023_00775_5
crossref_primary_10_1111_jipb_13657
crossref_primary_10_1186_s43556_023_00115_5
crossref_primary_10_1016_j_tplants_2023_05_012
crossref_primary_10_1016_j_copbio_2022_102854
crossref_primary_10_3389_fgeed_2023_1241035
crossref_primary_10_1016_j_cj_2024_08_009
crossref_primary_10_1186_s12284_022_00566_4
crossref_primary_10_1016_j_plantsci_2022_111376
crossref_primary_10_1360_TB_2023_1125
crossref_primary_10_1038_s41580_025_00834_3
crossref_primary_10_3390_ijms23020966
crossref_primary_10_3389_fpls_2022_868027
crossref_primary_10_1002_biot_202100673
crossref_primary_10_1016_j_cj_2023_05_002
crossref_primary_10_3390_cimb45020059
crossref_primary_10_1016_j_xplc_2023_100668
crossref_primary_10_1016_j_cropro_2024_106745
crossref_primary_10_1186_s43897_023_00049_0
crossref_primary_10_1016_j_hpj_2024_04_008
crossref_primary_10_3390_agriculture15010029
crossref_primary_10_1016_j_cj_2023_03_002
crossref_primary_10_1038_s41576_024_00720_2
crossref_primary_10_3390_ijms23147990
crossref_primary_10_1093_hr_uhad250
crossref_primary_10_1007_s12033_024_01290_8
crossref_primary_10_1016_j_plantsci_2022_111400
crossref_primary_10_1093_hr_uhad155
crossref_primary_10_1016_j_pbi_2022_102329
crossref_primary_10_1016_j_jare_2024_08_024
crossref_primary_10_1590_1678_4685_gmb_2022_0217
crossref_primary_10_3389_fgene_2022_876987
crossref_primary_10_1016_j_tig_2022_06_015
crossref_primary_10_3389_fpls_2023_1121209
Cites_doi 10.1101/gad.1819909
10.1093/plphys/kiab264
10.1038/s41587-020-0453-z
10.1038/s41477-019-0461-5
10.1016/j.molp.2021.02.007
10.1126/science.aba8853
10.1186/s13059-020-02231-9
10.1016/j.molp.2018.02.007
10.7150/ijbs.24581
10.3389/fpls.2017.01598
10.1038/s41587-020-0414-6
10.1016/j.molp.2018.01.005
10.1038/s41477-020-00827-4
10.1038/nature24644
10.1038/nplants.2017.18
10.1016/j.molp.2018.02.008
10.1038/nbt.3811
10.1016/j.molp.2016.11.013
10.1016/j.molcel.2020.07.005
10.1038/s41587-020-0592-2
10.1016/j.molp.2019.03.011
10.1186/s13059-018-1443-z
10.1007/s11427-018-9402-9
10.1016/j.cell.2021.01.005
10.1111/pbi.13635
10.1038/s41587-020-0609-x
10.1126/science.aaf8729
10.1016/j.tig.2020.09.001
10.1038/nbt.4261
10.1038/s41467-021-21559-9
10.1016/j.molp.2020.12.017
10.1111/pbi.13508
10.1111/pbi.13068
10.1104/pp.15.00636
10.1007/s00299-018-2340-3
10.3389/fpls.2019.01173
10.1016/j.tibtech.2019.03.008
10.1016/j.molp.2016.12.001
10.1111/pbi.12982
10.1111/pbi.13581
10.1038/s41586-019-1161-z
10.1186/s13059-015-0715-0
10.1007/BF00232166
10.1038/nature17946
10.1111/pbi.13444
10.1038/s41587-021-00938-z
10.1038/nbt.3833
10.1186/s12284-020-0369-8
ContentType Journal Article
Copyright Copyright © 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi.
Copyright © 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi. 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi
Copyright_xml – notice: Copyright © 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi.
– notice: Copyright © 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi. 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgeed.2021.756766
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic
PubMed


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Sretenovic et al
EISSN 2673-3439
ExternalDocumentID oai_doaj_org_article_58539973d462469c9535d1dc7bfd4b21
PMC8525388
34713268
10_3389_fgeed_2021_756766
Genre Journal Article
GroupedDBID 9T4
AAFWJ
AAYXX
ACXDI
AFPKN
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
OK1
PGMZT
RPM
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-eb648cc94bc9e84bee4d4faefe17c1add7ef92785a0c05b1a98a9ea446ea934d3
IEDL.DBID DOA
ISSN 2673-3439
IngestDate Wed Aug 27 01:21:46 EDT 2025
Thu Aug 21 18:17:47 EDT 2025
Fri Sep 05 04:40:45 EDT 2025
Thu Jan 02 22:44:33 EST 2025
Thu Apr 24 23:05:00 EDT 2025
Tue Jul 01 02:27:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords SPRY
poplar
tomato
rice
C-to-G base editors
PAM-less
Language English
License Copyright © 2021 Sretenovic, Liu, Li, Cheng, Fan, Xu, Zhou, Zheng, Coleman, Zhang and Qi.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-eb648cc94bc9e84bee4d4faefe17c1add7ef92785a0c05b1a98a9ea446ea934d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Yinong Yang, The Pennsylvania State University (PSU), United States
Laurens Pauwels, Vlaams Instituut voor Biotechnologie, Belgium
Edited by: Bing Yang, University of Missouri, United States
These authors have contributed equally to this work
This article was submitted to Genome Editing in Plants, a section of the journal Frontiers in Genome Editing
Kabin Xie, Huazhong Agricultural University, China
OpenAccessLink https://doaj.org/article/58539973d462469c9535d1dc7bfd4b21
PMID 34713268
PQID 2590082525
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_58539973d462469c9535d1dc7bfd4b21
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8525388
proquest_miscellaneous_2590082525
pubmed_primary_34713268
crossref_primary_10_3389_fgeed_2021_756766
crossref_citationtrail_10_3389_fgeed_2021_756766
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-15
PublicationDateYYYYMMDD 2021-09-15
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-15
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genome editing
PublicationTitleAlternate Front Genome Ed
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Ren (B28) 2018; 11
Stewart (B34) 1993; 14
Jin (B10) 2020; 79
Li (B20); 19
Husbands (B9) 2009; 23
Tang (B36) 2019; 17
Li (B17); 19
You (B42) 2018; 14
Ren (B31) 2019; 10
Zhou (B47) 2017; 8
Ren (B29)
Zong (B49) 2018; 36
Li (B19); 14
Molla (B25) 2019; 37
Tang (B35) 2017; 3
Li (B16) 2018; 19
Lowder (B22) 2015; 169
Shimatani (B33) 2017; 35
Molla (B24) 2020; 36
Koblan (B11) 2021
Yan (B41) 2018; 11
Liu (B21) 2019; 62
Zhou (B48) 2019; 38
Walton (B37) 2020; 368
Nishida (B26) 2016; 353
Yan (B40) 2021; 14
Ren (B30); 7
Wang (B38) 2015; 16
Zhong (B45) 2020; 13
Grünewald (B6) 2019; 569
Zhong (B46) 2019; 12
Gurel (B7) 2020
Randall (B27) 2021; 187
Komor (B12) 2016; 533
Kurt (B13) 2021; 39
Lee (B14) 2019; 17
Li (B18) 2017; 10
Cheng (B2) 2021; 19
Gao (B4) 2021; 184
Hua (B8) 2018; 11
Xu (B39) 2021; 22
Gaudelli (B5) 2017; 551
Richter (B32) 2020; 38
Zong (B50) 2017; 35
Leple (B15) 1992; 11
Lu (B23) 2017; 10
Zhao (B44) 2021; 39
Chen (B1) 2021; 12
Doman (B3) 2020; 38
Zhang (B43) 2019; 5
References_xml – volume: 23
  start-page: 1986
  year: 2009
  ident: B9
  article-title: Signals and Prepatterns: New Insights into Organ Polarity in Plants
  publication-title: Genes Dev.
  doi: 10.1101/gad.1819909
– volume: 187
  start-page: 73
  year: 2021
  ident: B27
  article-title: Genome- and Transcriptome-wide Off-Target Analyses of an Improved Cytosine Base Editor
  publication-title: Plant Physiol.
  doi: 10.1093/plphys/kiab264
– volume: 38
  start-page: 883
  year: 2020
  ident: B32
  article-title: Phage-assisted Evolution of an Adenine Base Editor with Improved Cas Domain Compatibility and Activity
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0453-z
– volume: 5
  start-page: 778
  year: 2019
  ident: B43
  article-title: The Emerging and Uncultivated Potential of CRISPR Technology in Plant Science
  publication-title: Nat. Plants
  doi: 10.1038/s41477-019-0461-5
– volume: 14
  start-page: 722
  year: 2021
  ident: B40
  article-title: High-efficiency and Multiplex Adenine Base Editing in Plants Using New TadA Variants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2021.02.007
– volume: 368
  start-page: 290
  year: 2020
  ident: B37
  article-title: Unconstrained Genome Targeting with Near-PAMless Engineered CRISPR-Cas9 Variants
  publication-title: Science
  doi: 10.1126/science.aba8853
– volume: 22
  start-page: 6
  year: 2021
  ident: B39
  article-title: SpRY Greatly Expands the Genome Editing Scope in rice with Highly Flexible PAM Recognition
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02231-9
– volume: 11
  start-page: 627
  year: 2018
  ident: B8
  article-title: Precise A·T to G·C Base Editing in the Rice Genome
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.02.007
– volume: 14
  start-page: 858
  year: 2018
  ident: B42
  article-title: CRISPRMatch: An Automatic Calculation and Visualization Tool for High-Throughput CRISPR Genome-Editing Data Analysis
  publication-title: Int. J. Biol. Sci.
  doi: 10.7150/ijbs.24581
– volume: 8
  start-page: 1598
  year: 2017
  ident: B47
  article-title: CRISPR-Cas9 Based Genome Editing Reveals New Insights into microRNA Function and Regulation in rice
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.01598
– volume: 38
  start-page: 620
  year: 2020
  ident: B3
  article-title: Evaluation and Minimization of Cas9-independent Off-Target DNA Editing by Cytosine Base Editors
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0414-6
– volume: 14
  start-page: 748
  year: 1993
  ident: B34
  article-title: A Rapid CTAB DNA Isolation Technique Useful for RAPD Fingerprinting and Other PCR Applications
  publication-title: Biotechniques
– volume: 11
  start-page: 623
  year: 2018
  ident: B28
  article-title: Improved Base Editor for Efficiently Inducing Genetic Variations in rice with CRISPR/Cas9-guided Hyperactive hAID Mutant
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.01.005
– volume: 7
  start-page: 25
  ident: B30
  article-title: PAM-less Plant Genome Editing Using a CRISPR-SpRY Toolbox
  publication-title: Nat. Plants
  doi: 10.1038/s41477-020-00827-4
– volume: 551
  start-page: 464
  year: 2017
  ident: B5
  article-title: Programmable Base Editing of at to GC in Genomic DNA without DNA Cleavage
  publication-title: Nature
  doi: 10.1038/nature24644
– volume: 3
  start-page: 17018
  year: 2017
  ident: B35
  article-title: A CRISPR-Cpf1 System for Efficient Genome Editing and Transcriptional Repression in Plants
  publication-title: Nat. Plants
  doi: 10.1038/nplants.2017.18
– volume: 11
  start-page: 631
  year: 2018
  ident: B41
  article-title: Highly Efficient A·T to G·C Base Editing by Cas9n-Guided tRNA Adenosine Deaminase in Rice
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2018.02.008
– volume: 35
  start-page: 438
  year: 2017
  ident: B50
  article-title: Precise Base Editing in rice, Wheat and maize with a Cas9-Cytidine Deaminase Fusion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3811
– volume: 10
  start-page: 523
  year: 2017
  ident: B23
  article-title: Precise Editing of a Target Base in the Rice Genome Using a Modified CRISPR/Cas9 System
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.11.013
– volume: 79
  start-page: 728
  year: 2020
  ident: B10
  article-title: Rationally Designed APOBEC3B Cytosine Base Editors with Improved Specificity
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2020.07.005
– volume: 39
  start-page: 35
  year: 2021
  ident: B44
  article-title: Glycosylase Base Editors Enable C-To-A and C-To-G Base Changes
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0592-2
– volume: 12
  start-page: 1027
  year: 2019
  ident: B46
  article-title: Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.03.011
– volume: 19
  start-page: 59
  year: 2018
  ident: B16
  article-title: Expanded Base Editing in rice and Wheat Using a Cas9-Adenosine Deaminase Fusion
  publication-title: Genome Biol.
  doi: 10.1186/s13059-018-1443-z
– volume: 62
  start-page: 1
  year: 2019
  ident: B21
  article-title: Hi-TOM: a Platform for High-Throughput Tracking of Mutations Induced by CRISPR/Cas Systems
  publication-title: Sci. China Life Sci.
  doi: 10.1007/s11427-018-9402-9
– volume: 184
  start-page: 1621
  year: 2021
  ident: B4
  article-title: Genome Engineering for Crop Improvement and Future Agriculture
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.005
– ident: B29
  article-title: Improved Plant Cytosine Base Editors with High Editing Activity, Purity, and Specificity
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13635
– volume: 39
  start-page: 41
  year: 2021
  ident: B13
  article-title: CRISPR C-To-G Base Editors for Inducing Targeted DNA Transversions in Human Cells
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-020-0609-x
– volume: 353
  start-page: aaf8729
  year: 2016
  ident: B26
  article-title: Targeted Nucleotide Editing Using Hybrid Prokaryotic and Vertebrate Adaptive Immune Systems
  publication-title: Science
  doi: 10.1126/science.aaf8729
– volume: 36
  start-page: 899
  year: 2020
  ident: B24
  article-title: Base Editing Landscape Extends to Perform Transversion Mutation
  publication-title: Trends Genet.
  doi: 10.1016/j.tig.2020.09.001
– volume: 36
  start-page: 950
  year: 2018
  ident: B49
  article-title: Efficient C-To-T Base Editing in Plants Using a Fusion of nCas9 and Human APOBEC3A
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.4261
– volume: 12
  start-page: 1384
  year: 2021
  ident: B1
  article-title: Programmable C:G to G:C Genome Editing with CRISPR-Cas9-Directed Base Excision Repair Proteins
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21559-9
– start-page: 1
  volume-title: CRISPR-cas Nucleases and Base Editors for Plant Genome Editing
  year: 2020
  ident: B7
– volume: 14
  start-page: 352
  ident: B19
  article-title: Genome Editing Mediated by SpCas9 Variants with Broad Non-canonical PAM Compatibility in Plants
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2020.12.017
– volume: 19
  start-page: 427
  ident: B20
  article-title: Efficient Multiplex Genome Editing by CRISPR/Cas9 in Common Wheat
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13508
– volume: 17
  start-page: 1431
  year: 2019
  ident: B36
  article-title: Single Transcript Unit CRISPR 2.0 Systems for Robust Cas9 and Cas12a Mediated Plant Genome Editing
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13068
– volume: 169
  start-page: 971
  year: 2015
  ident: B22
  article-title: A CRISPR/Cas9 Toolbox for Multiplexed Plant Genome Editing and Transcriptional Regulation
  publication-title: Plant Physiol.
  doi: 10.1104/pp.15.00636
– volume: 38
  start-page: 475
  year: 2019
  ident: B48
  article-title: Multiplex QTL Editing of Grain-Related Genes Improves Yield in Elite rice Varieties
  publication-title: Plant Cell Rep
  doi: 10.1007/s00299-018-2340-3
– volume: 10
  start-page: 1173
  year: 2019
  ident: B31
  article-title: Bidirectional Promoter-Based CRISPR-Cas9 Systems for Plant Genome Editing
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.01173
– volume: 37
  start-page: 1121
  year: 2019
  ident: B25
  article-title: CRISPR/Cas-Mediated Base Editing: Technical Considerations and Practical Applications
  publication-title: Trends Biotechnol.
  doi: 10.1016/j.tibtech.2019.03.008
– volume: 10
  start-page: 526
  year: 2017
  ident: B18
  article-title: Generation of Targeted Point Mutations in Rice by a Modified CRISPR/Cas9 System
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2016.12.001
– volume: 17
  start-page: 362
  year: 2019
  ident: B14
  article-title: Activities and Specificities of CRISPR/Cas9 and Cas12a Nucleases for Targeted Mutagenesis in maize
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.12982
– volume: 19
  start-page: 1086
  ident: B17
  article-title: Highly Efficient C‐to‐T and A‐to‐G Base Editing in a Populus Hybrid
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13581
– volume: 569
  start-page: 433
  year: 2019
  ident: B6
  article-title: Transcriptome-wide Off-Target RNA Editing Induced by CRISPR-Guided DNA Base Editors
  publication-title: Nature
  doi: 10.1038/s41586-019-1161-z
– volume: 16
  start-page: 144
  year: 2015
  ident: B38
  article-title: Egg Cell-specific Promoter-Controlled CRISPR/Cas9 Efficiently Generates Homozygous Mutants for Multiple Target Genes in Arabidopsis in a Single Generation
  publication-title: Genome Biol.
  doi: 10.1186/s13059-015-0715-0
– volume: 11
  start-page: 137
  year: 1992
  ident: B15
  article-title: Transgenic Poplars: Expression of Chimeric Genes Using Four Different Constructs
  publication-title: Plant Cell Rep
  doi: 10.1007/BF00232166
– volume: 533
  start-page: 420
  year: 2016
  ident: B12
  article-title: Programmable Editing of a Target Base in Genomic DNA without Double-Stranded DNA Cleavage
  publication-title: Nature
  doi: 10.1038/nature17946
– volume: 19
  start-page: 87
  year: 2021
  ident: B2
  article-title: Base Editing with High Efficiency in Allotetraploid Oilseed Rape by A3A‐PBE System
  publication-title: Plant Biotechnol. J.
  doi: 10.1111/pbi.13444
– year: 2021
  ident: B11
  article-title: Efficient C*G-to-G*C Base Editors Developed Using CRISPRi Screens, Target-Library Analysis, and Machine Learning
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00938-z
– volume: 35
  start-page: 441
  year: 2017
  ident: B33
  article-title: Targeted Base Editing in rice and Tomato Using a CRISPR-Cas9 Cytidine Deaminase Fusion
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.3833
– volume: 13
  start-page: 8
  year: 2020
  ident: B45
  article-title: Intron-Based Single Transcript Unit CRISPR Systems for Plant Genome Editing
  publication-title: Rice
  doi: 10.1186/s12284-020-0369-8
SSID ssj0002512232
Score 2.3647416
Snippet As a precise genome editing technology, base editing is broadly used in both basic and applied plant research. Cytosine base editors (CBEs) and adenine base...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 756766
SubjectTerms C-to-G base editors
Genome Editing
PAM-less
poplar
rice
SPRY
tomato
Title Exploring C-To-G Base Editing in Rice, Tomato, and Poplar
URI https://www.ncbi.nlm.nih.gov/pubmed/34713268
https://www.proquest.com/docview/2590082525
https://pubmed.ncbi.nlm.nih.gov/PMC8525388
https://doaj.org/article/58539973d462469c9535d1dc7bfd4b21
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS91AFB6KIHRTrPYRW2UKXYmpmcx7WUUrhZYiV3A3zONEL0gi7XXRf98zmev13iK6cZlkkgzfl5xH5uQ7hHzuZAOgA6vRtcdapGRqH0OLm8yojkPko-LNj5_q9Fx8v5AXS62-ck1YkQcuwB1gOIs-VPMkVIupXLSSy8RS1KFLIoy_kLeNbZaSqWyDs9fGWKEsY2IWZg-6S_QGmA-27IuWqqgi3juiUa__oSDz_1rJJedzskFezaNG-rXM9jV5Af0mWS99JP9uEbuopKNH9WSov9FDdE70OE1zUTOd9vQM7cE-nQwYnw771PeJ_hpuMKl9Q85PjidHp_W8J0IdhZKzGoISJkYrQrRgRAAQSXQeOmA6MjRWGjrbaiN9ExsZmLfGW_CY9IG3XCT-lqz1Qw_vCUWWYoxBAOMgdBBWIWdKyIA2R-G7X5HmDiAX54LhuW_FtcPEIWPqRkxdxtQVTCuytzjlpqhlPDb4MKO-GJiFrscdSL-b0--eor8in-44c_hi5NUO38Nw-8e1uR8q5r-trMi7wuHiVhxdMsatpiJ6hd2Vuawe6adXo_i2wQtyY7afY_IfyMuMRy4_YfIjWZv9voUdjHFmYXd8nHfHj0__ALW5-Ic
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+C-To-G+Base+Editing+in+Rice%2C+Tomato%2C+and+Poplar&rft.jtitle=Frontiers+in+genome+editing&rft.au=Sretenovic%2C+Simon&rft.au=Liu%2C+Shishi&rft.au=Li%2C+Gen&rft.au=Cheng%2C+Yanhao&rft.date=2021-09-15&rft.issn=2673-3439&rft.eissn=2673-3439&rft.volume=3&rft.spage=756766&rft_id=info:doi/10.3389%2Ffgeed.2021.756766&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2673-3439&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2673-3439&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2673-3439&client=summon