Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer

Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retros...

Full description

Saved in:
Bibliographic Details
Published inTomography (Ann Arbor) Vol. 7; no. 3; pp. 344 - 357
Main Authors Jajodia, Ankush, Gupta, Ayushi, Prosch, Helmut, Mayerhoefer, Marius, Mitra, Swarupa, Pasricha, Sunil, Mehta, Anurag, Puri, Sunil, Chaturvedi, Arvind
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 05.08.2021
MDPI AG
Subjects
Online AccessGet full text
ISSN2379-139X
2379-1381
2379-139X
DOI10.3390/tomography7030031

Cover

Abstract Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis—by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis—was performed to predict clinical outcomes. Results: The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28–79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7–76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis. Conclusions: The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.
AbstractList To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes. The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis. The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.
Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis—by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis—was performed to predict clinical outcomes. Results: The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28–79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7–76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis. Conclusions: The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.
To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis.OBJECTIVESTo explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis.Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes.MATERIALS AND METHODSRetrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes.The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis.RESULTSThe study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis.The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.CONCLUSIONSThe study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.
Author Pasricha, Sunil
Prosch, Helmut
Mayerhoefer, Marius
Jajodia, Ankush
Mehta, Anurag
Gupta, Ayushi
Puri, Sunil
Mitra, Swarupa
Chaturvedi, Arvind
AuthorAffiliation 2 Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India; ayushi16123@iiitd.ac.in
6 Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; drsunilpasricha@yahoo.com
7 Department of Laboratory & Transfusion Services and Director Research, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; anumehta11@gmail.com
3 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; helmut.prosch@meduniwien.ac.at
5 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; swarupamitra@gmail.com
1 Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; skpurigbph@yahoo.co.in (S.P.); arvind.chaturvedi@gmail.com (A.C.)
4 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; marius.mayerhoefer@meduniwien.ac.at
AuthorAffiliation_xml – name: 1 Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; skpurigbph@yahoo.co.in (S.P.); arvind.chaturvedi@gmail.com (A.C.)
– name: 5 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; swarupamitra@gmail.com
– name: 4 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; marius.mayerhoefer@meduniwien.ac.at
– name: 3 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; helmut.prosch@meduniwien.ac.at
– name: 7 Department of Laboratory & Transfusion Services and Director Research, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; anumehta11@gmail.com
– name: 6 Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; drsunilpasricha@yahoo.com
– name: 2 Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India; ayushi16123@iiitd.ac.in
Author_xml – sequence: 1
  givenname: Ankush
  orcidid: 0000-0002-7689-9484
  surname: Jajodia
  fullname: Jajodia, Ankush
– sequence: 2
  givenname: Ayushi
  orcidid: 0000-0002-7889-074X
  surname: Gupta
  fullname: Gupta, Ayushi
– sequence: 3
  givenname: Helmut
  orcidid: 0000-0002-6119-6364
  surname: Prosch
  fullname: Prosch, Helmut
– sequence: 4
  givenname: Marius
  orcidid: 0000-0001-8786-8686
  surname: Mayerhoefer
  fullname: Mayerhoefer, Marius
– sequence: 5
  givenname: Swarupa
  surname: Mitra
  fullname: Mitra, Swarupa
– sequence: 6
  givenname: Sunil
  surname: Pasricha
  fullname: Pasricha, Sunil
– sequence: 7
  givenname: Anurag
  surname: Mehta
  fullname: Mehta, Anurag
– sequence: 8
  givenname: Sunil
  surname: Puri
  fullname: Puri, Sunil
– sequence: 9
  givenname: Arvind
  surname: Chaturvedi
  fullname: Chaturvedi, Arvind
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34449713$$D View this record in MEDLINE/PubMed
BookMark eNp1ktFqFDEUhgep2Fr7AN5ILr2ZmkxmksmNIFOtCyuVouhdyGROZlJmkjXJVvoGPrbpbiutIgQSTv7_-w_JeV4cOO-gKF4SfEqpwG-SX_wY1Ga64ZhiTMmT4qiiXJSEiu8HD86HxUmMVxjjCld58WfFIa3rWnBCj4pfnV9661Sy3iFv0KUarF-sjki5AX1SerIO0BpUcNaN6KdNEzqzxmxjNpTfwI5Tgiy8RKtFjbcS4wPqZuusVjO62CbtF0Cfgx-djykXd0nWoQ7C9U7TKachvCieGjVHOLnbj4uvH95_6T6W64vzVfduXeqaNakEDoBND6KvOAZOe9JXeDBDQwXUPSGtpsIQ0gyGtdpwURmqWsrJwLTOBUWPi9WeO3h1JTfBLircSK-s3BV8GKUKuc8ZpKgpMMxEz0Vb960RrG0pYT3jMJgGt5n1ds_abPsFBg0uBTU_gj6-cXaSo7-WLRWMNiwDXt8Bgv-xhZjkYqOGeVYO_DbKqmEMU84oz9JXD7P-hNx_ZRbwvUAHH2MAI7VNu9fO0XaWBMvbuZH_zE12kr-c9_D_e34Do6bMWA
CitedBy_id crossref_primary_10_3390_diagnostics14010005
crossref_primary_10_3390_app132111839
crossref_primary_10_1155_2022_4688327
crossref_primary_10_3390_cancers16152647
crossref_primary_10_1016_j_artmed_2023_102536
crossref_primary_10_3390_tomography7040073
crossref_primary_10_1002_jmri_28676
crossref_primary_10_1155_2022_1008652
crossref_primary_10_3390_tomography10090107
crossref_primary_10_3390_cancers15010086
crossref_primary_10_3389_fonc_2022_976168
crossref_primary_10_1088_2057_1976_ad5207
Cites_doi 10.1016/j.ijrobp.2016.11.015
10.1038/srep01364
10.1016/j.ejrad.2016.10.011
10.1016/j.ebiom.2019.07.049
10.1016/j.lungcan.2017.10.015
10.1007/s00330-019-06204-w
10.1007/s00259-011-1978-7
10.1259/bjr.20180986
10.1016/j.ygyno.2015.06.035
10.1097/IGC.0b013e31829ee012
10.1109/TBME.2015.2433397
10.7150/thno.37429
10.3389/fonc.2013.00034
10.1016/j.ejrad.2009.04.025
10.1016/j.ygyno.2012.07.104
10.1016/j.ygyno.2015.06.027
10.1097/IGC.0000000000000472
10.1002/ijgo.12611
10.1186/s13014-020-01502-w
10.1002/jmri.26301
10.1259/bjr.20190105
10.1007/s00259-017-3898-7
10.1016/S0146-664X(75)80008-6
10.1016/j.critrevonc.2020.102985
10.1038/s41598-018-29838-0
10.1158/0008-5472.CAN-17-0339
10.1016/j.mri.2012.05.001
10.2967/jnumed.118.222893
10.1002/jmri.26697
10.1007/s00259-018-4231-9
10.1016/j.radonc.2019.04.035
10.1118/1.3081408
10.1088/0031-9155/61/13/R150
10.1002/jmri.26531
10.1200/JCO.2006.09.4532
10.1148/radiol.2015150400
10.1016/j.ejrad.2019.01.003
10.1002/jmri.26192
10.1016/j.ejca.2011.11.036
10.3322/caac.21492
10.1007/s11547-019-01055-3
10.1002/cncr.25260
10.18632/oncotarget.16025
10.1007/s13139-013-0248-y
10.1016/j.ejmp.2017.10.009
10.1088/0031-9155/60/13/5123
10.1097/IGC.0000000000000853
10.1016/j.phro.2018.11.006
10.1016/j.ygyno.2012.07.123
10.1002/jmri.26209
10.1016/j.radonc.2019.08.008
10.1200/JCO.2014.57.7122
10.1038/srep11044
10.1038/sj.bjc.6601870
10.1016/j.ejrad.2012.10.023
10.1148/radiol.13130819
ContentType Journal Article
Copyright 2021 by the authors. 2021
Copyright_xml – notice: 2021 by the authors. 2021
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3390/tomography7030031
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 2379-139X
EndPage 357
ExternalDocumentID oai_doaj_org_article_943e6069b7984b8f9688316b67edf508
PMC8396356
34449713
10_3390_tomography7030031
Genre Journal Article
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: P30 CA008748
GroupedDBID 53G
AAYXX
AFZYC
ALMA_UNASSIGNED_HOLDINGS
CITATION
EMOBN
GROUPED_DOAJ
HYE
MODMG
M~E
OK1
PGMZT
RPM
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ID FETCH-LOGICAL-c465t-e7ee0fbe9b270e73b1b20dfd539e4b118c39f115df68cf792f3a8371d6cc8cfa3
IEDL.DBID DOA
ISSN 2379-139X
2379-1381
IngestDate Wed Aug 27 01:26:23 EDT 2025
Thu Aug 21 13:42:47 EDT 2025
Fri Jul 11 03:04:17 EDT 2025
Thu Jan 02 22:54:48 EST 2025
Tue Jul 01 01:51:01 EDT 2025
Thu Apr 24 22:52:29 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords radiomics
diffusion-weighted
MRI
cervical cancer
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-e7ee0fbe9b270e73b1b20dfd539e4b118c39f115df68cf792f3a8371d6cc8cfa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6119-6364
0000-0002-7689-9484
0000-0001-8786-8686
0000-0002-7889-074X
OpenAccessLink https://doaj.org/article/943e6069b7984b8f9688316b67edf508
PMID 34449713
PQID 2566037637
PQPubID 23479
PageCount 14
ParticipantIDs doaj_primary_oai_doaj_org_article_943e6069b7984b8f9688316b67edf508
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8396356
proquest_miscellaneous_2566037637
pubmed_primary_34449713
crossref_citationtrail_10_3390_tomography7030031
crossref_primary_10_3390_tomography7030031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210805
PublicationDateYYYYMMDD 2021-08-05
PublicationDate_xml – month: 8
  year: 2021
  text: 20210805
  day: 5
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Tomography (Ann Arbor)
PublicationTitleAlternate Tomography
PublicationYear 2021
Publisher MDPI
MDPI AG
Publisher_xml – name: MDPI
– name: MDPI AG
References Ng (ref_60) 2013; 82
Yu (ref_27) 2019; 92
Sun (ref_45) 2011; 66
Lambin (ref_21) 2012; 48
DeSouza (ref_5) 2004; 90
Angioli (ref_7) 2012; 127
Moore (ref_39) 2016; 143
Yang (ref_6) 2016; 141
Liu (ref_16) 2015; 25
Traverso (ref_59) 2019; 143
Mayerhoefer (ref_35) 2020; 61
Egger (ref_33) 2013; 3
Parmar (ref_17) 2015; 5
Sun (ref_24) 2019; 46
Wang (ref_25) 2019; 114
Gladwish (ref_56) 2015; 279
Nakamura (ref_58) 2012; 127
Rose (ref_9) 2015; 33
Lee (ref_55) 2019; 9
Horvat (ref_29) 2019; 50
Park (ref_30) 2020; 15
Mu (ref_54) 2015; 62
Donati (ref_61) 2014; 270
Lucia (ref_19) 2018; 45
Fedorov (ref_34) 2017; 77
Mu (ref_41) 2015; 60
Yip (ref_63) 2016; 61
Han (ref_42) 2017; 8
Ho (ref_14) 2017; 97
Thawani (ref_18) 2018; 115
ref_36
Bray (ref_2) 2018; 68
Galloway (ref_37) 1975; 4
Schmid (ref_40) 2014; 133
Diab (ref_43) 2017; 27
Bhatla (ref_4) 2018; 143
Wang (ref_8) 2010; 116
Wu (ref_47) 2019; 49
Wu (ref_26) 2019; 138
Ciolina (ref_28) 2019; 124
Meng (ref_50) 2018; 8
Liu (ref_22) 2019; 49
Mayerhoefer (ref_62) 2009; 36
Li (ref_23) 2019; 49
Herrera (ref_10) 2013; 3
Altazi (ref_20) 2018; 46
Pol (ref_44) 2015; 138
Ai (ref_46) 2020; 152
Nakamura (ref_12) 2012; 39
Kan (ref_48) 2019; 49
Gu (ref_57) 2019; 29
Rose (ref_38) 2007; 25
ref_1
Zhao (ref_53) 2013; 23
Fang (ref_49) 2020; 10
Ho (ref_51) 2016; 6
Shrestha (ref_3) 2018; 19
Lucia (ref_52) 2019; 46
Choi (ref_11) 2014; 48
Chen (ref_13) 2010; 74
Wang (ref_15) 2016; 85
Fedorov (ref_31) 2012; 30
Schick (ref_32) 2019; 92
References_xml – volume: 97
  start-page: 546
  year: 2017
  ident: ref_14
  article-title: Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation
  publication-title: Int. J. Radiat. Oncol. Biol. Phys.
  doi: 10.1016/j.ijrobp.2016.11.015
– volume: 3
  start-page: 1364
  year: 2013
  ident: ref_33
  article-title: GBM volumetry using the 3D Slicer medical image computing platform
  publication-title: Sci. Rep.
  doi: 10.1038/srep01364
– volume: 85
  start-page: 2174
  year: 2016
  ident: ref_15
  article-title: Can diffusion-weighted magnetic resonance imaging predict survival in patients with cervical cancer? A meta-analysis
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2016.10.011
– volume: 46
  start-page: 160
  year: 2019
  ident: ref_24
  article-title: Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer: A multicentre study
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2019.07.049
– volume: 115
  start-page: 34
  year: 2018
  ident: ref_18
  article-title: Radiomics and radiogenomics in lung cancer: A review for the clinician
  publication-title: Lung Cancer
  doi: 10.1016/j.lungcan.2017.10.015
– volume: 29
  start-page: 6236
  year: 2019
  ident: ref_57
  article-title: Prognostic value of ADC quantification for clinical outcome in uterine cervical cancer treated with concurrent chemoradiotherapy
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-019-06204-w
– volume: 39
  start-page: 283
  year: 2012
  ident: ref_12
  article-title: Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-011-1978-7
– volume: 92
  start-page: 20180986
  year: 2019
  ident: ref_27
  article-title: Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB–IIA cervical squamous cell carcinoma
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20180986
– volume: 138
  start-page: 579
  year: 2015
  ident: ref_44
  article-title: Satellite lymphovascular space invasion: An independent risk factor in early stage cervical cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2015.06.035
– volume: 23
  start-page: 1184
  year: 2013
  ident: ref_53
  article-title: Prognostic value of fluorine-18-fluorodeoxyglucose positron emission tomography or PET-computed tomography in cervical cancer: A meta-analysis
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1097/IGC.0b013e31829ee012
– volume: 62
  start-page: 2465
  year: 2015
  ident: ref_54
  article-title: A segmentation algorithm for quantitative analysis of heterogeneous tumors of the cervix with 18F-FDG PET/CT
  publication-title: Biomed. Eng. IEEE Trans
  doi: 10.1109/TBME.2015.2433397
– volume: 10
  start-page: 2284
  year: 2020
  ident: ref_49
  article-title: Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer
  publication-title: Theranostics
  doi: 10.7150/thno.37429
– volume: 3
  start-page: 34
  year: 2013
  ident: ref_10
  article-title: The role of PET/CT in cervical cancer
  publication-title: Front Oncol.
  doi: 10.3389/fonc.2013.00034
– volume: 74
  start-page: 101
  year: 2010
  ident: ref_13
  article-title: The utility of diffusion-weighted MR imaging in cervical cancer
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2009.04.025
– volume: 127
  start-page: 290
  year: 2012
  ident: ref_7
  article-title: Neoadjuvant chemotherapy plus radical surgery followed by chemotherapy in locally advanced cervical cancer
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2012.07.104
– volume: 141
  start-page: 231
  year: 2016
  ident: ref_6
  article-title: The efficacy and safety of neoadjuvant chemotherapy in the treatment of locally advanced cervical cancer: A randomized multicenter study
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2015.06.027
– ident: ref_1
– volume: 25
  start-page: 1073
  year: 2015
  ident: ref_16
  article-title: Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical cancer
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1097/IGC.0000000000000472
– volume: 143
  start-page: 22
  year: 2018
  ident: ref_4
  article-title: Cancer of the cervix uteri
  publication-title: Int. J. Gynecol. Obstet.
  doi: 10.1002/ijgo.12611
– volume: 15
  start-page: 1
  year: 2020
  ident: ref_30
  article-title: Magnetic resonance imaging features of the tumor and lymph node to predict clinical outcome in node-positive cervical cancer: A retrospective analysis
  publication-title: Radiat. Oncol.
  doi: 10.1186/s13014-020-01502-w
– volume: 49
  start-page: 1141
  year: 2019
  ident: ref_47
  article-title: Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26301
– volume: 92
  start-page: 20190105
  year: 2019
  ident: ref_32
  article-title: MRI-derived radiomics: Methodology and clinical applications in the field of pelvic oncology
  publication-title: Br. J. Radiol.
  doi: 10.1259/bjr.20190105
– volume: 45
  start-page: 768
  year: 2018
  ident: ref_19
  article-title: Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-017-3898-7
– volume: 4
  start-page: 172
  year: 1975
  ident: ref_37
  article-title: Texture analysis using gray level run lengths
  publication-title: Comput. Graph. Image Process.
  doi: 10.1016/S0146-664X(75)80008-6
– volume: 133
  start-page: 256
  year: 2014
  ident: ref_40
  article-title: Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy
  publication-title: Gynecoloncology
– volume: 152
  start-page: 102985
  year: 2020
  ident: ref_46
  article-title: Radiomics in cervical cancer: Current applications and future potential
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2020.102985
– volume: 8
  start-page: 1
  year: 2018
  ident: ref_50
  article-title: Texture analysis as imaging biomarker for recurrence in advanced cervical cancer treated with CCRT
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-29838-0
– volume: 6
  start-page: 166
  year: 2016
  ident: ref_51
  article-title: A preliminary investigation into textural features of intratumoral metabolic heterogeneity in 18F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy
  publication-title: Am. J. Nucl. Med. Mol. Imaging
– volume: 77
  start-page: e104
  year: 2017
  ident: ref_34
  article-title: Computational Radiomics System to Decode the Radiographic Phenotype
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-17-0339
– volume: 19
  start-page: 319
  year: 2018
  ident: ref_3
  article-title: Cervical cancer prevalence, incidence and mortality in low and middle income countries: A systematic review
  publication-title: Asian Pac. J. Cancer Prev.
– volume: 30
  start-page: 1323
  year: 2012
  ident: ref_31
  article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 61
  start-page: 488
  year: 2020
  ident: ref_35
  article-title: Introduction to Radiomics
  publication-title: J. Nucl. Med.
  doi: 10.2967/jnumed.118.222893
– volume: 50
  start-page: 836
  year: 2019
  ident: ref_29
  article-title: Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26697
– volume: 46
  start-page: 864
  year: 2019
  ident: ref_52
  article-title: External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy
  publication-title: Eur. J. Nucl. Med. Mol. Imaging
  doi: 10.1007/s00259-018-4231-9
– volume: 138
  start-page: 141
  year: 2019
  ident: ref_26
  article-title: Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2019.04.035
– volume: 36
  start-page: 1236
  year: 2009
  ident: ref_62
  article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study
  publication-title: Med. Phys.
  doi: 10.1118/1.3081408
– volume: 61
  start-page: R150
  year: 2016
  ident: ref_63
  article-title: Applications and limitations of radiomics
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/61/13/R150
– volume: 49
  start-page: 1420
  year: 2019
  ident: ref_23
  article-title: MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26531
– volume: 25
  start-page: 2804
  year: 2007
  ident: ref_38
  article-title: Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: A Gynecologic Oncology Group Study
  publication-title: J. Clin. Oncol.
  doi: 10.1200/JCO.2006.09.4532
– volume: 279
  start-page: 158
  year: 2015
  ident: ref_56
  article-title: Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy
  publication-title: Radiology
  doi: 10.1148/radiol.2015150400
– volume: 66
  start-page: 537
  year: 2011
  ident: ref_45
  article-title: Prediction model of pelvic lymph node metastasis in early stage cervical cancer and its clinical value
  publication-title: Minerva Chir.
– volume: 114
  start-page: 128
  year: 2019
  ident: ref_25
  article-title: Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2019.01.003
– volume: 49
  start-page: 280
  year: 2019
  ident: ref_22
  article-title: Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26192
– volume: 48
  start-page: 441
  year: 2012
  ident: ref_21
  article-title: Radiomics: Extracting more information from medical images using advanced feature analysis
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2011.11.036
– volume: 68
  start-page: 394
  year: 2018
  ident: ref_2
  article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21492
– volume: 124
  start-page: 955
  year: 2019
  ident: ref_28
  article-title: Texture analysis versus conventional MRI prognostic factors in predicting tumor response to neoadjuvant chemotherapy in patients with locally advanced cancer of the uterine cervix
  publication-title: La Radiol. Med.
  doi: 10.1007/s11547-019-01055-3
– volume: 116
  start-page: 5093
  year: 2010
  ident: ref_8
  article-title: Sequential magnetic resonance imaging of cervical cancer: The predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy
  publication-title: Cancer
  doi: 10.1002/cncr.25260
– volume: 8
  start-page: 51840
  year: 2017
  ident: ref_42
  article-title: Predictive factors of para-aortic lymph nodes metastasis in cervical cancer patients: A retrospective analysis based on 723 paraaortic lymphadenectomy cases
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.16025
– volume: 48
  start-page: 130
  year: 2014
  ident: ref_11
  article-title: The role of (18) F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent Chemoradiation therapy
  publication-title: Nucl. Med. Mol. Imaging
  doi: 10.1007/s13139-013-0248-y
– volume: 46
  start-page: 180
  year: 2018
  ident: ref_20
  article-title: Investigating multi-radiomic models for enhancing prediction power of cervical cancer treatment outcomes
  publication-title: Phys. Med.
  doi: 10.1016/j.ejmp.2017.10.009
– volume: 60
  start-page: 5123
  year: 2015
  ident: ref_41
  article-title: Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18F-FDG PET images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/60/13/5123
– volume: 27
  start-page: 154
  year: 2017
  ident: ref_43
  article-title: Sentinel lymph nodes mapping in cervical cancer a comprehensive review
  publication-title: Int. J. Gynecol. Cancer
  doi: 10.1097/IGC.0000000000000853
– volume: 9
  start-page: 1
  year: 2019
  ident: ref_55
  article-title: Changes in apparent diffusion coefficient radiomics features during dose-painted radiotherapy and high dose rate brachytherapy for prostate cancer
  publication-title: Phys. Imaging Radiat. Oncol.
  doi: 10.1016/j.phro.2018.11.006
– volume: 127
  start-page: 7
  year: 2012
  ident: ref_58
  article-title: The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence
  publication-title: Gynecol. Oncol.
  doi: 10.1016/j.ygyno.2012.07.123
– volume: 49
  start-page: 304
  year: 2019
  ident: ref_48
  article-title: Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer
  publication-title: J. Magn. Reson. Imaging
  doi: 10.1002/jmri.26209
– volume: 143
  start-page: 88
  year: 2019
  ident: ref_59
  article-title: Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients
  publication-title: Radiother. Oncol.
  doi: 10.1016/j.radonc.2019.08.008
– ident: ref_36
– volume: 33
  start-page: 2136
  year: 2015
  ident: ref_9
  article-title: Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/Gynecologic oncology group randomized trials of chemoradiotherapy
  publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol.
  doi: 10.1200/JCO.2014.57.7122
– volume: 143
  start-page: 294
  year: 2016
  ident: ref_39
  article-title: Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis
  publication-title: Gynecoloncology
– volume: 5
  start-page: 11044
  year: 2015
  ident: ref_17
  article-title: Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer
  publication-title: Sci. Rep.
  doi: 10.1038/srep11044
– volume: 90
  start-page: 2326
  year: 2004
  ident: ref_5
  article-title: Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: Monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome
  publication-title: Br. J. Cancer
  doi: 10.1038/sj.bjc.6601870
– volume: 82
  start-page: 342
  year: 2013
  ident: ref_60
  article-title: Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis?
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2012.10.023
– volume: 270
  start-page: 454
  year: 2014
  ident: ref_61
  article-title: Diffusion-weighted MR imaging of upper abdominal organs: Field strength and intervendor variability of apparent diffusion coefficients
  publication-title: Radiology
  doi: 10.1148/radiol.13130819
SSID ssj0002022027
Score 2.2944014
Snippet Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent...
To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 344
SubjectTerms cervical cancer
Child
Child, Preschool
Diffusion Magnetic Resonance Imaging
diffusion-weighted
Female
Humans
Machine Learning
MRI
Neoplasm Recurrence, Local - diagnostic imaging
radiomics
Retrospective Studies
Uterine Cervical Neoplasms - diagnostic imaging
Title Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer
URI https://www.ncbi.nlm.nih.gov/pubmed/34449713
https://www.proquest.com/docview/2566037637
https://pubmed.ncbi.nlm.nih.gov/PMC8396356
https://doaj.org/article/943e6069b7984b8f9688316b67edf508
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4pvwJSNxQorqxI4dH8u2VVtpAVVU9BbFzhi2ahO0zf6H_mxmHHe1CwguXJ2JYtnPzjzP-A1j75xqNYRgcm-szpXyDvdBYXOQoAwJTtXxUtj8oz46Uyfn1flGqS_KCZvkgaeB27VKAjrZ1hlbK1cHq-taFtppA12opmu-wooNMnURw2slsfpYWc5YEtorppCmRI6_Ow5XSQ-a8C5ksfVTitr9f3I4f82b3PgRHT5g95MHyfemnj9kd6B_xO7OU4z8MbvBJY50N444HwI_bbsFXT2-5m3f8XlMngSedFW_cTqI5fuLEFZ0bpZ_jUelgIan_PgqljDi6NfypB96yT-tRgQp8M_LgXL0xnTmxxc9n8V9B21mBKXlE3Z2ePBldpSnegu5V7oaczAAIjiwrjQCjHSFK0UXukpaUA6ZiJc2oAfZBV37YGwZZIv8tui099jQyqdspx96eM44BSctdKYAZ5Roa1uChtoBcl_tjSsyJm4HvPFJjJxqYlw2SEpojprf5ihj79ev_JiUOP5m_IFmcW1IItqxAaHVJGg1_4JWxt7eYqDBRUeRlLaHYXXdoJ-oBW3NJmPPJkysPyWVUhapf8bMFlq2-rL9pF98j8Le6KySXOCL_9H5l-xeSek3lN1SvWI743IFr9F_Gt2buFR-AjyuGmk
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Radiomics+and+Machine+Learning+with+Diffusion-Weighted+MR+Imaging+for+Clinical+Outcome+Prognostication+in+Cervical+Cancer&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Jajodia%2C+Ankush&rft.au=Gupta%2C+Ayushi&rft.au=Prosch%2C+Helmut&rft.au=Mayerhoefer%2C+Marius&rft.date=2021-08-05&rft.eissn=2379-139X&rft.volume=7&rft.issue=3&rft.spage=344&rft_id=info:doi/10.3390%2Ftomography7030031&rft_id=info%3Apmid%2F34449713&rft.externalDocID=34449713
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon