Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer
Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retros...
Saved in:
Published in | Tomography (Ann Arbor) Vol. 7; no. 3; pp. 344 - 357 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
05.08.2021
MDPI AG |
Subjects | |
Online Access | Get full text |
ISSN | 2379-139X 2379-1381 2379-139X |
DOI | 10.3390/tomography7030031 |
Cover
Abstract | Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis—by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis—was performed to predict clinical outcomes. Results: The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28–79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7–76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis. Conclusions: The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis. |
---|---|
AbstractList | To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis.
Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes.
The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis.
The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis. Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis. Materials and Methods: Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis—by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis—was performed to predict clinical outcomes. Results: The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28–79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7–76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis. Conclusions: The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis. To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis.OBJECTIVESTo explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion co-efficient (ADC), using supervised classification algorithms in the prediction of outcomes and prognosis.Retrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes.MATERIALS AND METHODSRetrospective evaluation of the imaging was conducted for a study cohort of uterine cervical cancer, candidates for radical treatment with chemo radiation. ADC values were calculated from the darkest part of the tumor, both before (labeled preADC) and post treatment (labeled postADC) with chemo radiation. Post extraction of 851 Radiomics features and feature selection analysis-by taking the union of the features that had Pearson correlation >0.35 for recurrence, >0.49 for lymph node and >0.40 for metastasis-was performed to predict clinical outcomes.The study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis.RESULTSThe study enrolled 52 patients who presented with variable FIGO stages in the age range of 28-79 (Median = 53 years) with a median follow-up of 26.5 months (range: 7-76 months). Disease recurrence occurred in 12 patients (23%). Metastasis occurred in 15 patients (28%). A model generated with 24 radiomics features and preADC using a monotone multi-layer perceptron neural network to predict the recurrence yields an AUC of 0.80 and a Kappa value of 0.55 and shows that the addition of radiomics features to ADC values improves the statistical metrics by approximately 40% for AUC and approximately 223% for Kappa. Similarly, the neural network model for prediction of metastasis returns an AUC value of 0.84 and a Kappa value of 0.65, thus exceeding performance expectations by approximately 25% for AUC and approximately 140% for Kappa. There was a significant input of GLSZM features (SALGLE and LGLZE) and GLDM features (SDLGLE and DE) in correlation with clinical outcomes of recurrence and metastasis.The study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis.CONCLUSIONSThe study is an effort to bridge the unmet need of translational predictive biomarkers in the stratification of uterine cervical cancer patients based on prognosis. |
Author | Pasricha, Sunil Prosch, Helmut Mayerhoefer, Marius Jajodia, Ankush Mehta, Anurag Gupta, Ayushi Puri, Sunil Mitra, Swarupa Chaturvedi, Arvind |
AuthorAffiliation | 2 Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India; ayushi16123@iiitd.ac.in 6 Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; drsunilpasricha@yahoo.com 7 Department of Laboratory & Transfusion Services and Director Research, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; anumehta11@gmail.com 3 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; helmut.prosch@meduniwien.ac.at 5 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; swarupamitra@gmail.com 1 Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; skpurigbph@yahoo.co.in (S.P.); arvind.chaturvedi@gmail.com (A.C.) 4 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; marius.mayerhoefer@meduniwien.ac.at |
AuthorAffiliation_xml | – name: 1 Department of Radiology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; skpurigbph@yahoo.co.in (S.P.); arvind.chaturvedi@gmail.com (A.C.) – name: 5 Department of Radiation Oncology, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi 110085, India; swarupamitra@gmail.com – name: 4 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; marius.mayerhoefer@meduniwien.ac.at – name: 3 Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; helmut.prosch@meduniwien.ac.at – name: 7 Department of Laboratory & Transfusion Services and Director Research, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; anumehta11@gmail.com – name: 6 Department of Laboratory & Histopathology, Rajiv Gandhi Cancer Institute, New Delhi 110085, India; drsunilpasricha@yahoo.com – name: 2 Center for Computational Biology, Indraprastha Institute of Information Technology, New Delhi 110020, India; ayushi16123@iiitd.ac.in |
Author_xml | – sequence: 1 givenname: Ankush orcidid: 0000-0002-7689-9484 surname: Jajodia fullname: Jajodia, Ankush – sequence: 2 givenname: Ayushi orcidid: 0000-0002-7889-074X surname: Gupta fullname: Gupta, Ayushi – sequence: 3 givenname: Helmut orcidid: 0000-0002-6119-6364 surname: Prosch fullname: Prosch, Helmut – sequence: 4 givenname: Marius orcidid: 0000-0001-8786-8686 surname: Mayerhoefer fullname: Mayerhoefer, Marius – sequence: 5 givenname: Swarupa surname: Mitra fullname: Mitra, Swarupa – sequence: 6 givenname: Sunil surname: Pasricha fullname: Pasricha, Sunil – sequence: 7 givenname: Anurag surname: Mehta fullname: Mehta, Anurag – sequence: 8 givenname: Sunil surname: Puri fullname: Puri, Sunil – sequence: 9 givenname: Arvind surname: Chaturvedi fullname: Chaturvedi, Arvind |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34449713$$D View this record in MEDLINE/PubMed |
BookMark | eNp1ktFqFDEUhgep2Fr7AN5ILr2ZmkxmksmNIFOtCyuVouhdyGROZlJmkjXJVvoGPrbpbiutIgQSTv7_-w_JeV4cOO-gKF4SfEqpwG-SX_wY1Ga64ZhiTMmT4qiiXJSEiu8HD86HxUmMVxjjCld58WfFIa3rWnBCj4pfnV9661Sy3iFv0KUarF-sjki5AX1SerIO0BpUcNaN6KdNEzqzxmxjNpTfwI5Tgiy8RKtFjbcS4wPqZuusVjO62CbtF0Cfgx-djykXd0nWoQ7C9U7TKachvCieGjVHOLnbj4uvH95_6T6W64vzVfduXeqaNakEDoBND6KvOAZOe9JXeDBDQwXUPSGtpsIQ0gyGtdpwURmqWsrJwLTOBUWPi9WeO3h1JTfBLircSK-s3BV8GKUKuc8ZpKgpMMxEz0Vb960RrG0pYT3jMJgGt5n1ds_abPsFBg0uBTU_gj6-cXaSo7-WLRWMNiwDXt8Bgv-xhZjkYqOGeVYO_DbKqmEMU84oz9JXD7P-hNx_ZRbwvUAHH2MAI7VNu9fO0XaWBMvbuZH_zE12kr-c9_D_e34Do6bMWA |
CitedBy_id | crossref_primary_10_3390_diagnostics14010005 crossref_primary_10_3390_app132111839 crossref_primary_10_1155_2022_4688327 crossref_primary_10_3390_cancers16152647 crossref_primary_10_1016_j_artmed_2023_102536 crossref_primary_10_3390_tomography7040073 crossref_primary_10_1002_jmri_28676 crossref_primary_10_1155_2022_1008652 crossref_primary_10_3390_tomography10090107 crossref_primary_10_3390_cancers15010086 crossref_primary_10_3389_fonc_2022_976168 crossref_primary_10_1088_2057_1976_ad5207 |
Cites_doi | 10.1016/j.ijrobp.2016.11.015 10.1038/srep01364 10.1016/j.ejrad.2016.10.011 10.1016/j.ebiom.2019.07.049 10.1016/j.lungcan.2017.10.015 10.1007/s00330-019-06204-w 10.1007/s00259-011-1978-7 10.1259/bjr.20180986 10.1016/j.ygyno.2015.06.035 10.1097/IGC.0b013e31829ee012 10.1109/TBME.2015.2433397 10.7150/thno.37429 10.3389/fonc.2013.00034 10.1016/j.ejrad.2009.04.025 10.1016/j.ygyno.2012.07.104 10.1016/j.ygyno.2015.06.027 10.1097/IGC.0000000000000472 10.1002/ijgo.12611 10.1186/s13014-020-01502-w 10.1002/jmri.26301 10.1259/bjr.20190105 10.1007/s00259-017-3898-7 10.1016/S0146-664X(75)80008-6 10.1016/j.critrevonc.2020.102985 10.1038/s41598-018-29838-0 10.1158/0008-5472.CAN-17-0339 10.1016/j.mri.2012.05.001 10.2967/jnumed.118.222893 10.1002/jmri.26697 10.1007/s00259-018-4231-9 10.1016/j.radonc.2019.04.035 10.1118/1.3081408 10.1088/0031-9155/61/13/R150 10.1002/jmri.26531 10.1200/JCO.2006.09.4532 10.1148/radiol.2015150400 10.1016/j.ejrad.2019.01.003 10.1002/jmri.26192 10.1016/j.ejca.2011.11.036 10.3322/caac.21492 10.1007/s11547-019-01055-3 10.1002/cncr.25260 10.18632/oncotarget.16025 10.1007/s13139-013-0248-y 10.1016/j.ejmp.2017.10.009 10.1088/0031-9155/60/13/5123 10.1097/IGC.0000000000000853 10.1016/j.phro.2018.11.006 10.1016/j.ygyno.2012.07.123 10.1002/jmri.26209 10.1016/j.radonc.2019.08.008 10.1200/JCO.2014.57.7122 10.1038/srep11044 10.1038/sj.bjc.6601870 10.1016/j.ejrad.2012.10.023 10.1148/radiol.13130819 |
ContentType | Journal Article |
Copyright | 2021 by the authors. 2021 |
Copyright_xml | – notice: 2021 by the authors. 2021 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM DOA |
DOI | 10.3390/tomography7030031 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 2379-139X |
EndPage | 357 |
ExternalDocumentID | oai_doaj_org_article_943e6069b7984b8f9688316b67edf508 PMC8396356 34449713 10_3390_tomography7030031 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: P30 CA008748 |
GroupedDBID | 53G AAYXX AFZYC ALMA_UNASSIGNED_HOLDINGS CITATION EMOBN GROUPED_DOAJ HYE MODMG M~E OK1 PGMZT RPM CGR CUY CVF ECM EIF NPM 7X8 5PM |
ID | FETCH-LOGICAL-c465t-e7ee0fbe9b270e73b1b20dfd539e4b118c39f115df68cf792f3a8371d6cc8cfa3 |
IEDL.DBID | DOA |
ISSN | 2379-139X 2379-1381 |
IngestDate | Wed Aug 27 01:26:23 EDT 2025 Thu Aug 21 13:42:47 EDT 2025 Fri Jul 11 03:04:17 EDT 2025 Thu Jan 02 22:54:48 EST 2025 Tue Jul 01 01:51:01 EDT 2025 Thu Apr 24 22:52:29 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | radiomics diffusion-weighted MRI cervical cancer |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-e7ee0fbe9b270e73b1b20dfd539e4b118c39f115df68cf792f3a8371d6cc8cfa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6119-6364 0000-0002-7689-9484 0000-0001-8786-8686 0000-0002-7889-074X |
OpenAccessLink | https://doaj.org/article/943e6069b7984b8f9688316b67edf508 |
PMID | 34449713 |
PQID | 2566037637 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_943e6069b7984b8f9688316b67edf508 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8396356 proquest_miscellaneous_2566037637 pubmed_primary_34449713 crossref_citationtrail_10_3390_tomography7030031 crossref_primary_10_3390_tomography7030031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210805 |
PublicationDateYYYYMMDD | 2021-08-05 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210805 day: 5 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Tomography (Ann Arbor) |
PublicationTitleAlternate | Tomography |
PublicationYear | 2021 |
Publisher | MDPI MDPI AG |
Publisher_xml | – name: MDPI – name: MDPI AG |
References | Ng (ref_60) 2013; 82 Yu (ref_27) 2019; 92 Sun (ref_45) 2011; 66 Lambin (ref_21) 2012; 48 DeSouza (ref_5) 2004; 90 Angioli (ref_7) 2012; 127 Moore (ref_39) 2016; 143 Yang (ref_6) 2016; 141 Liu (ref_16) 2015; 25 Traverso (ref_59) 2019; 143 Mayerhoefer (ref_35) 2020; 61 Egger (ref_33) 2013; 3 Parmar (ref_17) 2015; 5 Sun (ref_24) 2019; 46 Wang (ref_25) 2019; 114 Gladwish (ref_56) 2015; 279 Nakamura (ref_58) 2012; 127 Rose (ref_9) 2015; 33 Lee (ref_55) 2019; 9 Horvat (ref_29) 2019; 50 Park (ref_30) 2020; 15 Mu (ref_54) 2015; 62 Donati (ref_61) 2014; 270 Lucia (ref_19) 2018; 45 Fedorov (ref_34) 2017; 77 Mu (ref_41) 2015; 60 Yip (ref_63) 2016; 61 Han (ref_42) 2017; 8 Ho (ref_14) 2017; 97 Thawani (ref_18) 2018; 115 ref_36 Bray (ref_2) 2018; 68 Galloway (ref_37) 1975; 4 Schmid (ref_40) 2014; 133 Diab (ref_43) 2017; 27 Bhatla (ref_4) 2018; 143 Wang (ref_8) 2010; 116 Wu (ref_47) 2019; 49 Wu (ref_26) 2019; 138 Ciolina (ref_28) 2019; 124 Meng (ref_50) 2018; 8 Liu (ref_22) 2019; 49 Mayerhoefer (ref_62) 2009; 36 Li (ref_23) 2019; 49 Herrera (ref_10) 2013; 3 Altazi (ref_20) 2018; 46 Pol (ref_44) 2015; 138 Ai (ref_46) 2020; 152 Nakamura (ref_12) 2012; 39 Kan (ref_48) 2019; 49 Gu (ref_57) 2019; 29 Rose (ref_38) 2007; 25 ref_1 Zhao (ref_53) 2013; 23 Fang (ref_49) 2020; 10 Ho (ref_51) 2016; 6 Shrestha (ref_3) 2018; 19 Lucia (ref_52) 2019; 46 Choi (ref_11) 2014; 48 Chen (ref_13) 2010; 74 Wang (ref_15) 2016; 85 Fedorov (ref_31) 2012; 30 Schick (ref_32) 2019; 92 |
References_xml | – volume: 97 start-page: 546 year: 2017 ident: ref_14 article-title: Diffusion-weighted magnetic resonance imaging as a predictor of outcome in cervical cancer after chemoradiation publication-title: Int. J. Radiat. Oncol. Biol. Phys. doi: 10.1016/j.ijrobp.2016.11.015 – volume: 3 start-page: 1364 year: 2013 ident: ref_33 article-title: GBM volumetry using the 3D Slicer medical image computing platform publication-title: Sci. Rep. doi: 10.1038/srep01364 – volume: 85 start-page: 2174 year: 2016 ident: ref_15 article-title: Can diffusion-weighted magnetic resonance imaging predict survival in patients with cervical cancer? A meta-analysis publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2016.10.011 – volume: 46 start-page: 160 year: 2019 ident: ref_24 article-title: Radiomic analysis for pretreatment prediction of response to neoadjuvant chemotherapy in locally advanced cervical cancer: A multicentre study publication-title: EBioMedicine doi: 10.1016/j.ebiom.2019.07.049 – volume: 115 start-page: 34 year: 2018 ident: ref_18 article-title: Radiomics and radiogenomics in lung cancer: A review for the clinician publication-title: Lung Cancer doi: 10.1016/j.lungcan.2017.10.015 – volume: 29 start-page: 6236 year: 2019 ident: ref_57 article-title: Prognostic value of ADC quantification for clinical outcome in uterine cervical cancer treated with concurrent chemoradiotherapy publication-title: Eur. Radiol. doi: 10.1007/s00330-019-06204-w – volume: 39 start-page: 283 year: 2012 ident: ref_12 article-title: Measurement of SUVmax plus ADCmin of the primary tumour is a predictor of prognosis in patients with cervical cancer publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-011-1978-7 – volume: 92 start-page: 20180986 year: 2019 ident: ref_27 article-title: Feasibility of an ADC-based radiomics model for predicting pelvic lymph node metastases in patients with stage IB–IIA cervical squamous cell carcinoma publication-title: Br. J. Radiol. doi: 10.1259/bjr.20180986 – volume: 138 start-page: 579 year: 2015 ident: ref_44 article-title: Satellite lymphovascular space invasion: An independent risk factor in early stage cervical cancer publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2015.06.035 – volume: 23 start-page: 1184 year: 2013 ident: ref_53 article-title: Prognostic value of fluorine-18-fluorodeoxyglucose positron emission tomography or PET-computed tomography in cervical cancer: A meta-analysis publication-title: Int. J. Gynecol. Cancer doi: 10.1097/IGC.0b013e31829ee012 – volume: 62 start-page: 2465 year: 2015 ident: ref_54 article-title: A segmentation algorithm for quantitative analysis of heterogeneous tumors of the cervix with 18F-FDG PET/CT publication-title: Biomed. Eng. IEEE Trans doi: 10.1109/TBME.2015.2433397 – volume: 10 start-page: 2284 year: 2020 ident: ref_49 article-title: Association of MRI-derived radiomic biomarker with disease-free survival in patients with early-stage cervical cancer publication-title: Theranostics doi: 10.7150/thno.37429 – volume: 3 start-page: 34 year: 2013 ident: ref_10 article-title: The role of PET/CT in cervical cancer publication-title: Front Oncol. doi: 10.3389/fonc.2013.00034 – volume: 74 start-page: 101 year: 2010 ident: ref_13 article-title: The utility of diffusion-weighted MR imaging in cervical cancer publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2009.04.025 – volume: 127 start-page: 290 year: 2012 ident: ref_7 article-title: Neoadjuvant chemotherapy plus radical surgery followed by chemotherapy in locally advanced cervical cancer publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2012.07.104 – volume: 141 start-page: 231 year: 2016 ident: ref_6 article-title: The efficacy and safety of neoadjuvant chemotherapy in the treatment of locally advanced cervical cancer: A randomized multicenter study publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2015.06.027 – ident: ref_1 – volume: 25 start-page: 1073 year: 2015 ident: ref_16 article-title: Clinical application of diffusion-weighted magnetic resonance imaging in uterine cervical cancer publication-title: Int. J. Gynecol. Cancer doi: 10.1097/IGC.0000000000000472 – volume: 143 start-page: 22 year: 2018 ident: ref_4 article-title: Cancer of the cervix uteri publication-title: Int. J. Gynecol. Obstet. doi: 10.1002/ijgo.12611 – volume: 15 start-page: 1 year: 2020 ident: ref_30 article-title: Magnetic resonance imaging features of the tumor and lymph node to predict clinical outcome in node-positive cervical cancer: A retrospective analysis publication-title: Radiat. Oncol. doi: 10.1186/s13014-020-01502-w – volume: 49 start-page: 1141 year: 2019 ident: ref_47 article-title: Radiomics analysis of multiparametric MRI evaluates the pathological features of cervical squamous cell carcinoma publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26301 – volume: 92 start-page: 20190105 year: 2019 ident: ref_32 article-title: MRI-derived radiomics: Methodology and clinical applications in the field of pelvic oncology publication-title: Br. J. Radiol. doi: 10.1259/bjr.20190105 – volume: 45 start-page: 768 year: 2018 ident: ref_19 article-title: Prediction of outcome using pretreatment 18 F-FDG PET/CT and MRI radiomics in locally advanced cervical cancer treated with chemoradiotherapy publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-017-3898-7 – volume: 4 start-page: 172 year: 1975 ident: ref_37 article-title: Texture analysis using gray level run lengths publication-title: Comput. Graph. Image Process. doi: 10.1016/S0146-664X(75)80008-6 – volume: 133 start-page: 256 year: 2014 ident: ref_40 article-title: Distant metastasis in patients with cervical cancer after primary radiotherapy with or without chemotherapy and image guided adaptive brachytherapy publication-title: Gynecoloncology – volume: 152 start-page: 102985 year: 2020 ident: ref_46 article-title: Radiomics in cervical cancer: Current applications and future potential publication-title: Crit. Rev. Oncol. Hematol. doi: 10.1016/j.critrevonc.2020.102985 – volume: 8 start-page: 1 year: 2018 ident: ref_50 article-title: Texture analysis as imaging biomarker for recurrence in advanced cervical cancer treated with CCRT publication-title: Sci. Rep. doi: 10.1038/s41598-018-29838-0 – volume: 6 start-page: 166 year: 2016 ident: ref_51 article-title: A preliminary investigation into textural features of intratumoral metabolic heterogeneity in 18F-FDG PET for overall survival prognosis in patients with bulky cervical cancer treated with definitive concurrent chemoradiotherapy publication-title: Am. J. Nucl. Med. Mol. Imaging – volume: 77 start-page: e104 year: 2017 ident: ref_34 article-title: Computational Radiomics System to Decode the Radiographic Phenotype publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-17-0339 – volume: 19 start-page: 319 year: 2018 ident: ref_3 article-title: Cervical cancer prevalence, incidence and mortality in low and middle income countries: A systematic review publication-title: Asian Pac. J. Cancer Prev. – volume: 30 start-page: 1323 year: 2012 ident: ref_31 article-title: 3D Slicer as an image computing platform for the Quantitative Imaging Network publication-title: Magn. Reson. Imaging doi: 10.1016/j.mri.2012.05.001 – volume: 61 start-page: 488 year: 2020 ident: ref_35 article-title: Introduction to Radiomics publication-title: J. Nucl. Med. doi: 10.2967/jnumed.118.222893 – volume: 50 start-page: 836 year: 2019 ident: ref_29 article-title: Diffusion-weighted imaging (DWI) with apparent diffusion coefficient (ADC) mapping as a quantitative imaging biomarker for prediction of immunohistochemical receptor status, proliferation rate, and molecular subtypes of breast cancer publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26697 – volume: 46 start-page: 864 year: 2019 ident: ref_52 article-title: External validation of a combined PET and MRI radiomics model for prediction of recurrence in cervical cancer patients treated with chemoradiotherapy publication-title: Eur. J. Nucl. Med. Mol. Imaging doi: 10.1007/s00259-018-4231-9 – volume: 138 start-page: 141 year: 2019 ident: ref_26 article-title: Radiomics analysis of magnetic resonance imaging improves diagnostic performance of lymph node metastasis in patients with cervical cancer publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2019.04.035 – volume: 36 start-page: 1236 year: 2009 ident: ref_62 article-title: Effects of MRI acquisition parameter variations and protocol heterogeneity on the results of texture analysis and pattern discrimination: An application-oriented study publication-title: Med. Phys. doi: 10.1118/1.3081408 – volume: 61 start-page: R150 year: 2016 ident: ref_63 article-title: Applications and limitations of radiomics publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/61/13/R150 – volume: 49 start-page: 1420 year: 2019 ident: ref_23 article-title: MR-Based Radiomics Nomogram of Cervical Cancer in Prediction of the Lymph-Vascular Space Invasion preoperatively publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26531 – volume: 25 start-page: 2804 year: 2007 ident: ref_38 article-title: Long-term follow-up of a randomized trial comparing concurrent single agent cisplatin, cisplatin-based combination chemotherapy, or hydroxyurea during pelvic irradiation for locally advanced cervical cancer: A Gynecologic Oncology Group Study publication-title: J. Clin. Oncol. doi: 10.1200/JCO.2006.09.4532 – volume: 279 start-page: 158 year: 2015 ident: ref_56 article-title: Association of apparent diffusion coefficient with disease recurrence in patients with locally advanced cervical cancer treated with radical chemotherapy and radiation therapy publication-title: Radiology doi: 10.1148/radiol.2015150400 – volume: 66 start-page: 537 year: 2011 ident: ref_45 article-title: Prediction model of pelvic lymph node metastasis in early stage cervical cancer and its clinical value publication-title: Minerva Chir. – volume: 114 start-page: 128 year: 2019 ident: ref_25 article-title: Preoperative prediction of pelvic lymph nodes metastasis in early-stage cervical cancer using radiomics nomogram developed based on T2-weighted MRI and diffusion-weighted imaging publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2019.01.003 – volume: 49 start-page: 280 year: 2019 ident: ref_22 article-title: Radiomics analysis of apparent diffusion coefficient in cervical cancer: A preliminary study on histological grade evaluation publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26192 – volume: 48 start-page: 441 year: 2012 ident: ref_21 article-title: Radiomics: Extracting more information from medical images using advanced feature analysis publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2011.11.036 – volume: 68 start-page: 394 year: 2018 ident: ref_2 article-title: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21492 – volume: 124 start-page: 955 year: 2019 ident: ref_28 article-title: Texture analysis versus conventional MRI prognostic factors in predicting tumor response to neoadjuvant chemotherapy in patients with locally advanced cancer of the uterine cervix publication-title: La Radiol. Med. doi: 10.1007/s11547-019-01055-3 – volume: 116 start-page: 5093 year: 2010 ident: ref_8 article-title: Sequential magnetic resonance imaging of cervical cancer: The predictive value of absolute tumor volume and regression ratio measured before, during, and after radiation therapy publication-title: Cancer doi: 10.1002/cncr.25260 – volume: 8 start-page: 51840 year: 2017 ident: ref_42 article-title: Predictive factors of para-aortic lymph nodes metastasis in cervical cancer patients: A retrospective analysis based on 723 paraaortic lymphadenectomy cases publication-title: Oncotarget doi: 10.18632/oncotarget.16025 – volume: 48 start-page: 130 year: 2014 ident: ref_11 article-title: The role of (18) F-FDG PET/CT in assessing therapy response in cervix cancer after concurrent Chemoradiation therapy publication-title: Nucl. Med. Mol. Imaging doi: 10.1007/s13139-013-0248-y – volume: 46 start-page: 180 year: 2018 ident: ref_20 article-title: Investigating multi-radiomic models for enhancing prediction power of cervical cancer treatment outcomes publication-title: Phys. Med. doi: 10.1016/j.ejmp.2017.10.009 – volume: 60 start-page: 5123 year: 2015 ident: ref_41 article-title: Staging of cervical cancer based on tumor heterogeneity characterized by texture features on 18F-FDG PET images publication-title: Phys. Med. Biol. doi: 10.1088/0031-9155/60/13/5123 – volume: 27 start-page: 154 year: 2017 ident: ref_43 article-title: Sentinel lymph nodes mapping in cervical cancer a comprehensive review publication-title: Int. J. Gynecol. Cancer doi: 10.1097/IGC.0000000000000853 – volume: 9 start-page: 1 year: 2019 ident: ref_55 article-title: Changes in apparent diffusion coefficient radiomics features during dose-painted radiotherapy and high dose rate brachytherapy for prostate cancer publication-title: Phys. Imaging Radiat. Oncol. doi: 10.1016/j.phro.2018.11.006 – volume: 127 start-page: 7 year: 2012 ident: ref_58 article-title: The mean apparent diffusion coefficient value (ADCmean) on primary cervical cancer is a predictive marker for disease recurrence publication-title: Gynecol. Oncol. doi: 10.1016/j.ygyno.2012.07.123 – volume: 49 start-page: 304 year: 2019 ident: ref_48 article-title: Radiomic signature as a predictive factor for lymph node metastasis in early-stage cervical cancer publication-title: J. Magn. Reson. Imaging doi: 10.1002/jmri.26209 – volume: 143 start-page: 88 year: 2019 ident: ref_59 article-title: Sensitivity of radiomic features to inter-observer variability and image pre-processing in Apparent Diffusion Coefficient (ADC) maps of cervix cancer patients publication-title: Radiother. Oncol. doi: 10.1016/j.radonc.2019.08.008 – ident: ref_36 – volume: 33 start-page: 2136 year: 2015 ident: ref_9 article-title: Nomograms predicting progression-free survival, overall survival, and pelvic recurrence in locally advanced cervical cancer developed from an analysis of identifiable prognostic factors in patients from NRG oncology/Gynecologic oncology group randomized trials of chemoradiotherapy publication-title: J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. doi: 10.1200/JCO.2014.57.7122 – volume: 143 start-page: 294 year: 2016 ident: ref_39 article-title: Is age a prognostic biomarker for survival among women with locally advanced cervical cancer treated with chemoradiation? An NRG Oncology/Gynecologic Oncology Group ancillary data analysis publication-title: Gynecoloncology – volume: 5 start-page: 11044 year: 2015 ident: ref_17 article-title: Radiomic feature clusters and prognostic signatures specific for Lung and Head & Neck cancer publication-title: Sci. Rep. doi: 10.1038/srep11044 – volume: 90 start-page: 2326 year: 2004 ident: ref_5 article-title: Use of neoadjuvant chemotherapy prior to radical hysterectomy in cervical cancer: Monitoring tumour shrinkage and molecular profile on magnetic resonance and assessment of 3-year outcome publication-title: Br. J. Cancer doi: 10.1038/sj.bjc.6601870 – volume: 82 start-page: 342 year: 2013 ident: ref_60 article-title: Assessment of tumor heterogeneity by CT texture analysis: Can the largest cross-sectional area be used as an alternative to whole tumor analysis? publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2012.10.023 – volume: 270 start-page: 454 year: 2014 ident: ref_61 article-title: Diffusion-weighted MR imaging of upper abdominal organs: Field strength and intervendor variability of apparent diffusion coefficients publication-title: Radiology doi: 10.1148/radiol.13130819 |
SSID | ssj0002022027 |
Score | 2.2944014 |
Snippet | Objectives: To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent... To explore the potential of Radiomics alone and in combination with a diffusion-weighted derived quantitative parameter, namely the apparent diffusion... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 344 |
SubjectTerms | cervical cancer Child Child, Preschool Diffusion Magnetic Resonance Imaging diffusion-weighted Female Humans Machine Learning MRI Neoplasm Recurrence, Local - diagnostic imaging radiomics Retrospective Studies Uterine Cervical Neoplasms - diagnostic imaging |
Title | Combination of Radiomics and Machine Learning with Diffusion-Weighted MR Imaging for Clinical Outcome Prognostication in Cervical Cancer |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34449713 https://www.proquest.com/docview/2566037637 https://pubmed.ncbi.nlm.nih.gov/PMC8396356 https://doaj.org/article/943e6069b7984b8f9688316b67edf508 |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQD4gL4pvwJSNxQorqxI4dH8u2VVtpAVVU9BbFzhi2ahO0zf6H_mxmHHe1CwguXJ2JYtnPzjzP-A1j75xqNYRgcm-szpXyDvdBYXOQoAwJTtXxUtj8oz46Uyfn1flGqS_KCZvkgaeB27VKAjrZ1hlbK1cHq-taFtppA12opmu-wooNMnURw2slsfpYWc5YEtorppCmRI6_Ow5XSQ-a8C5ksfVTitr9f3I4f82b3PgRHT5g95MHyfemnj9kd6B_xO7OU4z8MbvBJY50N444HwI_bbsFXT2-5m3f8XlMngSedFW_cTqI5fuLEFZ0bpZ_jUelgIan_PgqljDi6NfypB96yT-tRgQp8M_LgXL0xnTmxxc9n8V9B21mBKXlE3Z2ePBldpSnegu5V7oaczAAIjiwrjQCjHSFK0UXukpaUA6ZiJc2oAfZBV37YGwZZIv8tui099jQyqdspx96eM44BSctdKYAZ5Roa1uChtoBcl_tjSsyJm4HvPFJjJxqYlw2SEpojprf5ihj79ev_JiUOP5m_IFmcW1IItqxAaHVJGg1_4JWxt7eYqDBRUeRlLaHYXXdoJ-oBW3NJmPPJkysPyWVUhapf8bMFlq2-rL9pF98j8Le6KySXOCL_9H5l-xeSek3lN1SvWI743IFr9F_Gt2buFR-AjyuGmk |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Combination+of+Radiomics+and+Machine+Learning+with+Diffusion-Weighted+MR+Imaging+for+Clinical+Outcome+Prognostication+in+Cervical+Cancer&rft.jtitle=Tomography+%28Ann+Arbor%29&rft.au=Jajodia%2C+Ankush&rft.au=Gupta%2C+Ayushi&rft.au=Prosch%2C+Helmut&rft.au=Mayerhoefer%2C+Marius&rft.date=2021-08-05&rft.eissn=2379-139X&rft.volume=7&rft.issue=3&rft.spage=344&rft_id=info:doi/10.3390%2Ftomography7030031&rft_id=info%3Apmid%2F34449713&rft.externalDocID=34449713 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2379-139X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2379-139X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2379-139X&client=summon |