A novel method for dynamically altering the surface area of intracranial EEG electrodes

Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applicatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 20; no. 2; pp. 26002 - 26018
Main Authors Sindhu, Kavyakantha Remakanthakurup, Ngo, Duy, Ombao, Hernando, Olaya, Joffre E, Shrey, Daniel W, Lopour, Beth A
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2023
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/acb79f

Cover

Abstract Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain. Approach. We first present a theoretical model and an in vitro validation of the method. We then report the results of an in vivo implementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes. Main Results. We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike. Significance. Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.
AbstractList Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain. We first present a theoretical model and an validation of the method. We then report the results of an implementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes. We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike. Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.
Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain. Approach. We first present a theoretical model and an in vitro validation of the method. We then report the results of an in vivo implementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes. Main Results. We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike. Significance. Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.
Objective.Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain.Approach.We first present a theoretical model and anin vitrovalidation of the method. We then report the results of anin vivoimplementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes.Main Results.We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike.Significance.Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.Objective.Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain.Approach.We first present a theoretical model and anin vitrovalidation of the method. We then report the results of anin vivoimplementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes.Main Results.We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike.Significance.Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.
Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease, as well as the development of neural prostheses and brain computer interfaces. While electrode geometries vary widely across these applications, the impact of electrode size on iEEG features and morphology is not well understood. Some insight has been gained from computer simulations, as well as experiments in which signals are recorded using electrodes of different sizes concurrently in different brain regions. Here, we introduce a novel method to record from electrodes of different sizes in the exact same location by changing the size of iEEG electrodes after implantation in the brain. Approach. We first present a theoretical model and an in vitro validation of the method. We then report the results of an in vivo implementation in three human subjects with refractory epilepsy. We recorded iEEG data from three different electrode sizes and compared the amplitudes, power spectra, inter-channel correlations, and signal-to-noise ratio (SNR) of interictal epileptiform discharges, i.e. epileptic spikes. Main Results. We found that iEEG amplitude and power decreased as electrode size increased, while inter-channel correlation did not change significantly with electrode size. The SNR of epileptic spikes was generally highest in the smallest electrodes, but 39% of spikes had maximal SNR in larger electrodes. This likely depends on the precise location and spatial spread of each spike. Significance. Overall, this new method enables multi-scale measurements of electrical activity in the human brain that can facilitate our understanding of neurophysiology, treatment of neurological disease, and development of novel technologies.
Author Sindhu, Kavyakantha Remakanthakurup
Shrey, Daniel W
Olaya, Joffre E
Ngo, Duy
Ombao, Hernando
Lopour, Beth A
Author_xml – sequence: 1
  givenname: Kavyakantha Remakanthakurup
  surname: Sindhu
  fullname: Sindhu, Kavyakantha Remakanthakurup
  organization: University of California, Irvine Department of Biomedical Engineering, Irvine, CA, United States of America
– sequence: 2
  givenname: Duy
  surname: Ngo
  fullname: Ngo, Duy
  organization: Western Michigan University Department of Statistics, Kalamazoo, MI, United States of America
– sequence: 3
  givenname: Hernando
  surname: Ombao
  fullname: Ombao, Hernando
  organization: Statistics Program, King Abdullah University of Science and Technology , Thuwal, Saudi Arabia
– sequence: 4
  givenname: Joffre E
  surname: Olaya
  fullname: Olaya, Joffre E
  organization: University of California, Irvine Department of Neurosurgery, Irvine, CA, United States of America
– sequence: 5
  givenname: Daniel W
  surname: Shrey
  fullname: Shrey, Daniel W
  organization: University of California, Irvine Department of Pediatrics, Irvine, CA, United States of America
– sequence: 6
  givenname: Beth A
  orcidid: 0000-0003-4233-4802
  surname: Lopour
  fullname: Lopour, Beth A
  organization: University of California, Irvine Department of Biomedical Engineering, Irvine, CA, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36720162$$D View this record in MEDLINE/PubMed
BookMark eNqNkc1v1DAQxS1URD_onRPyDQ4s9UfirC9IVbUUpEq9FHG0vPa465VjBztptf89idJuKUIVJ1ue95t5fnOMDmKKgNA7Sj5Tslye0aaiC1bX7EybdSPdK3S0fzrY3wU5RMelbAnhtJHkDTrkomGECnaEfp7jmO4g4Bb6TbLYpYztLurWGx3CDuvQQ_bxFvcbwGXIThvAOoPGyWEf-6xN1tHrgFerSwwBTJ-ThfIWvXY6FDh9OE_Qj6-rm4tvi6vry-8X51cLU4m6X2hTG8kdk9yCcBVwWXEurCOMQgXVUhOyttYKA7IGayXn68q4mumGC-Jqzk8QnfsOsdO7-9Gz6rJvdd4pStQUkppSUFMiag5pZL7MTDesW7AGpm88cUl79bwS_UbdpjslpSRcyLHBx4cGOf0aoPSq9cVACDpCGopiTUMFFxUjo_T9n7P2Qx43MArILDA5lZLB_Y9_8RdifK97nya3PrwEfppBnzq1TUOO42pekn_4h3wbQTGimCJMEMJUZx3_DZvOx0M
CODEN JNEOBH
CitedBy_id crossref_primary_10_1097_WNP_0000000000001139
crossref_primary_10_1088_2057_1976_ad4b1c
crossref_primary_10_1016_j_ebiom_2025_105606
crossref_primary_10_1109_TBME_2024_3416440
crossref_primary_10_1162_imag_a_00013
crossref_primary_10_1111_epi_17642
crossref_primary_10_1016_j_clinph_2023_07_002
Cites_doi 10.1016/j.brainres.2009.05.052
10.1016/j.clinph.2015.06.002
10.1093/biomet/88.4.1186
10.1088/0031-9155/46/6/302
10.1146/annurev.neuro.27.070203.144233
10.3389/fnins.2019.00385
10.1109/TMI.2016.2624634
10.1016/j.jphysparis.2004.01.018
10.1109/IEMBS.2009.5333704
10.1016/j.clinph.2005.05.018
10.1088/1741-2560/8/4/045006
10.1093/braincomms/fcaa082
10.1016/S0361-9230(79)80022-2
10.1088/1741-2560/13/2/026016
10.5214/ans.0972.7531.200309
10.1109/TNSRE.2014.2342880
10.1109/PROC.1968.6458
10.1111/j.1749-6632.2012.06650.x
10.3390/mi10010062
10.1016/j.clinph.2019.07.008
10.1016/j.clinph.2011.02.022
10.1016/j.mayocp.2011.12.008
10.1093/brain/awn006
10.1097/WNP.0b013e31818e8010
10.1016/S1350-4533(00)00070-9
10.1152/jn.00177.2011
10.1007/BF01400656
10.1146/annurev.psych.093008.100503
10.3389/fnins.2015.00282
10.1198/jasa.2009.0108
10.1152/jn.00157.2010
10.3389/fnins.2018.00715
10.1097/WNP.0b013e3181fdf8a1
10.1038/s41593-018-0108-2
10.1016/j.jneumeth.2007.12.010
10.1016/j.neuroimage.2018.04.027
10.3171/2020.3.PED.ASPNabstracts
10.1109/NEBEC.2014.6972937
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
2023 The Author(s). Published by IOP Publishing Ltd 2023
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
– notice: 2023 The Author(s). Published by IOP Publishing Ltd 2023
DBID O3W
TSCCA
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1741-2552/acb79f
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes:
    Enrichment Source
    Publisher
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID oai:escholarship.org:ark:/13030/qt5f97s8kd
PMC9990369
36720162
10_1088_1741_2552_acb79f
jneacb79f
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  grantid: R01NS116273
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: Children’s Hospital of Orange County
  grantid: PSF Tithe grant
– fundername: NINDS NIH HHS
  grantid: R01 NS116273
– fundername: ;
  grantid: R01NS116273
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
TSCCA
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RNS
S3P
UNPAY
ID FETCH-LOGICAL-c465t-ac5c93f293de6f4e394336df021e4e48a00bddd6ce95edd933b4cf52a7360f533
IEDL.DBID UNPAY
ISSN 1741-2560
1741-2552
IngestDate Sun Oct 26 03:44:00 EDT 2025
Tue Sep 30 17:15:37 EDT 2025
Fri Sep 05 06:41:10 EDT 2025
Thu Jan 02 22:38:39 EST 2025
Thu Apr 24 23:12:48 EDT 2025
Wed Oct 01 02:30:58 EDT 2025
Wed Aug 21 03:34:31 EDT 2024
Tue Jun 13 23:30:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords power spectrum
electrocorticogram
intracranial electroencephalogram
electrode model
electrode size
electrode properties
interictal epileptiform discharge
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-ac5c93f293de6f4e394336df021e4e48a00bddd6ce95edd933b4cf52a7360f533
Notes JNE-106183
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4233-4802
OpenAccessLink https://proxy.k.utb.cz/login?url=https://escholarship.org/uc/item/5f97s8kd
PMID 36720162
PQID 2771636420
PQPubID 23479
PageCount 17
ParticipantIDs iop_journals_10_1088_1741_2552_acb79f
proquest_miscellaneous_2771636420
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9990369
unpaywall_primary_10_1088_1741_2552_acb79f
pubmed_primary_36720162
crossref_primary_10_1088_1741_2552_acb79f
crossref_citationtrail_10_1088_1741_2552_acb79f
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-04-01
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: 2023-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Little (jneacb79fbib2) 2012; 1265
Worrell (jneacb79fbib26) 2008; 131
Schevon (jneacb79fbib28) 2008; 25
Vorwerk (jneacb79fbib40) 2017; 36
Nelson (jneacb79fbib13) 2012; 107
Chatillon (jneacb79fbib25) 2011; 122
Wang (jneacb79fbib24) 2016; 13
Nelson (jneacb79fbib7) 2010; 103
Behrens (jneacb79fbib1) 1994; 128
Robinson (jneacb79fbib30) 1968; 56
Hermiz (jneacb79fbib23) 2018; 176
Lachaux (jneacb79fbib5) 2003; 97
Boran (jneacb79fbib27) 2019; 130
Lempka (jneacb79fbib16) 2011; 8
Neto (jneacb79fbib17) 2018; 12
Schwartz (jneacb79fbib3) 2004; 27
Joffre Olaya (jneacb79fbib37) 2020; 25
Parvizi (jneacb79fbib12) 2018; 21
Rose (jneacb79fbib9) 1979; 4
Viswam (jneacb79fbib20) 2019; 13
Castagnola (jneacb79fbib38) 2015; 23
Chari (jneacb79fbib10) 2020; 2
Ombao (jneacb79fbib34) 2001; 88
Shih (jneacb79fbib4) 2012; 87
Latikka (jneacb79fbib33) 2001; 46
Schevon (jneacb79fbib29) 2010; 27
López-Pintado (jneacb79fbib36) 2009; 104
Moffitt (jneacb79fbib14) 2005; 116
Ngo (jneacb79fbib35) 2015; 9
Nunez (jneacb79fbib8) 2006
Ollikainen (jneacb79fbib6) 2000; 22
Pomfret (jneacb79fbib32) 2013; 20
Shen (jneacb79fbib39) 2014
Kellis (jneacb79fbib22) 2016; 127
Suihko (jneacb79fbib15) 1994
Ward (jneacb79fbib19) 2009; 1282
Andersen (jneacb79fbib18) 2009; 61
Wang (jneacb79fbib21) 2009
Nelson (jneacb79fbib31) 2008; 169
Shokoueinejad (jneacb79fbib11) 2019; 10
References_xml – volume: 1282
  start-page: 183
  year: 2009
  ident: jneacb79fbib19
  article-title: Toward a comparison of microelectrodes for acute and chronic recordings
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.052
– volume: 127
  start-page: 591
  year: 2016
  ident: jneacb79fbib22
  article-title: Multi-scale analysis of neural activity in humans: implications for micro-scale electrocorticography
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2015.06.002
– volume: 88
  start-page: 1186
  year: 2001
  ident: jneacb79fbib34
  article-title: A simple generalised crossvalidation method of span selection for periodogram smoothing
  publication-title: Biometrika
  doi: 10.1093/biomet/88.4.1186
– volume: 46
  start-page: 1611
  year: 2001
  ident: jneacb79fbib33
  article-title: Conductivity of living intracranial tissues
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/46/6/302
– volume: 27
  start-page: 487
  year: 2004
  ident: jneacb79fbib3
  article-title: Cortical neural prosthetics
  publication-title: Annu. Rev. Neurosci.
  doi: 10.1146/annurev.neuro.27.070203.144233
– volume: 13
  start-page: 385
  year: 2019
  ident: jneacb79fbib20
  article-title: Optimal electrode size for multi-scale extracellular-potential recording from neuronal assemblies
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00385
– volume: 36
  start-page: 930
  year: 2017
  ident: jneacb79fbib40
  article-title: Element method to solve the EEG forward problem
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2624634
– volume: 97
  start-page: 613
  year: 2003
  ident: jneacb79fbib5
  article-title: Intracranial EEG and human brain mapping
  publication-title: J. Physiol. Paris
  doi: 10.1016/j.jphysparis.2004.01.018
– year: 2009
  ident: jneacb79fbib21
  article-title: Human motor cortical activity recorded with micro-ECoG electrodes, during individual finger movements
  doi: 10.1109/IEMBS.2009.5333704
– volume: 116
  start-page: 2240
  year: 2005
  ident: jneacb79fbib14
  article-title: Model-based analysis of cortical recording with silicon microelectrodes
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2005.05.018
– volume: 8
  year: 2011
  ident: jneacb79fbib16
  article-title: Theoretical analysis of intracortical microelectrode recordings
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/8/4/045006
– volume: 2
  start-page: fcaa082
  year: 2020
  ident: jneacb79fbib10
  article-title: Microelectrode recordings in human epilepsy: a case for clinical translation
  publication-title: Brain Commun.
  doi: 10.1093/braincomms/fcaa082
– volume: 4
  start-page: 435
  year: 1979
  ident: jneacb79fbib9
  article-title: Tapered tungsten fine-wire microelectrode for chronic single unit recording
  publication-title: Brain Res. Bull.
  doi: 10.1016/S0361-9230(79)80022-2
– volume: 13
  year: 2016
  ident: jneacb79fbib24
  article-title: Comparison of decoding resolution of standard and high-density electrocorticogram electrodes
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/13/2/026016
– volume: 20
  start-page: 118
  year: 2013
  ident: jneacb79fbib32
  article-title: The substitute brain and the potential of the gel model
  publication-title: Ann. Neurosci.
  doi: 10.5214/ans.0972.7531.200309
– volume: 23
  start-page: 342
  year: 2015
  ident: jneacb79fbib38
  article-title: PEDOT-CNT-coated low-impedance, ultra-flexible, and brain-conformable micro-ECoG arrays
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2014.2342880
– volume: 56
  start-page: 6
  year: 1968
  ident: jneacb79fbib30
  article-title: The electrical properties of metal microelectrodes
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1968.6458
– volume: 1265
  start-page: 9
  year: 2012
  ident: jneacb79fbib2
  article-title: What brain signals are suitable for feedback control of deep brain stimulation in Parkinson’s disease?
  publication-title: Ann. New York Acad. Sci.
  doi: 10.1111/j.1749-6632.2012.06650.x
– volume: 10
  start-page: 62
  year: 2019
  ident: jneacb79fbib11
  article-title: Progress in the field of micro-electrocorticography
  publication-title: Micromachines
  doi: 10.3390/mi10010062
– volume: 130
  start-page: 1882
  year: 2019
  ident: jneacb79fbib27
  article-title: High-density ECoG improves the detection of high frequency oscillations that predict seizure outcome
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2019.07.008
– volume: 122
  start-page: 1701
  year: 2011
  ident: jneacb79fbib25
  article-title: Contact size does not affect high frequency oscillation detection in intracerebral EEG recordings in a rat epilepsy model
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2011.02.022
– volume: 87
  start-page: 268
  year: 2012
  ident: jneacb79fbib4
  article-title: Brain-computer interfaces in medicine
  publication-title: Mayo Clin. Proc.
  doi: 10.1016/j.mayocp.2011.12.008
– volume: 131
  start-page: 928
  year: 2008
  ident: jneacb79fbib26
  article-title: High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings
  publication-title: Brain
  doi: 10.1093/brain/awn006
– volume: 25
  start-page: 6
  year: 2008
  ident: jneacb79fbib28
  article-title: Microphysiology of epileptiform activity in human neocortex
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1097/WNP.0b013e31818e8010
– volume: 22
  start-page: 535
  year: 2000
  ident: jneacb79fbib6
  article-title: Effects of electrode properties on EEG measurements and a related inverse problem
  publication-title: Med. Eng. Phys.
  doi: 10.1016/S1350-4533(00)00070-9
– volume: 107
  start-page: 1291
  year: 2012
  ident: jneacb79fbib13
  article-title: Physical model of coherent potentials measured with different electrode recording site sizes
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00177.2011
– volume: 128
  start-page: 84
  year: 1994
  ident: jneacb79fbib1
  article-title: Subdural and depth electrodes in the presurgical evaluation of epilepsy
  publication-title: Acta Neurochir.
  doi: 10.1007/BF01400656
– volume: 61
  start-page: 169
  year: 2009
  ident: jneacb79fbib18
  article-title: Cognitive neural prosthetics
  publication-title: Annu. Rev. Psychol.
  doi: 10.1146/annurev.psych.093008.100503
– volume: 9
  start-page: 282
  year: 2015
  ident: jneacb79fbib35
  article-title: An exploratory data analysis of electroencephalograms using the functional boxplots approach
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00282
– year: 1994
  ident: jneacb79fbib15
  article-title: Effect of electrode size in electroencephalography and electrical transcranial stimulation
– volume: 104
  start-page: 718
  year: 2009
  ident: jneacb79fbib36
  article-title: On the concept of depth for functional data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/jasa.2009.0108
– volume: 103
  start-page: 2315
  year: 2010
  ident: jneacb79fbib7
  article-title: Do electrode properties create a problem in interpreting local field potential recordings?
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00157.2010
– volume: 12
  start-page: 715
  year: 2018
  ident: jneacb79fbib17
  article-title: Does impedance matter when recording spikes with polytrodes?
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00715
– volume: 27
  start-page: 6
  year: 2010
  ident: jneacb79fbib29
  article-title: Propagation of epileptiform activity on a submillimeter scale
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1097/WNP.0b013e3181fdf8a1
– volume: 21
  start-page: 474
  year: 2018
  ident: jneacb79fbib12
  article-title: Promises and limitations of human intracranial electroencephalography
  publication-title: Nat. Neurosci.
  doi: 10.1038/s41593-018-0108-2
– year: 2006
  ident: jneacb79fbib8
– volume: 169
  start-page: 141
  year: 2008
  ident: jneacb79fbib31
  article-title: Review of signal distortion through metal microelectrode recording circuits and filters
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2007.12.010
– volume: 176
  start-page: 454
  year: 2018
  ident: jneacb79fbib23
  article-title: Sub-millimeter ECoG pitch in human enables higher fidelity cognitive neural state estimation
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2018.04.027
– volume: 25
  start-page: 1
  year: 2020
  ident: jneacb79fbib37
  article-title: Abstract of “use of high-density subdural grid to increase precision of functional mapping and seizure onset zone localization”, 43rd annual meeting of the American Society of Pediatric Neurosurgeons
  publication-title: J. Neurosurg. Pediatr.
  doi: 10.3171/2020.3.PED.ASPNabstracts
– year: 2014
  ident: jneacb79fbib39
  article-title: Tripolar concentric ring electrode electroencephalography using Signa gel for impedance matching
  doi: 10.1109/NEBEC.2014.6972937
SSID ssj0031790
Score 2.4119284
Snippet Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease,...
Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease, as well as...
Objective.Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson's disease,...
Objective. Intracranial electroencephalogram (iEEG) plays a critical role in the treatment of neurological diseases, such as epilepsy and Parkinson’s disease,...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26002
SubjectTerms Brain
electrocorticogram
Electrocorticography - methods
electrode model
electrode properties
electrode size
Electrodes
Electroencephalography - methods
Epilepsy
Humans
interictal epileptiform discharge
intracranial electroencephalogram
power spectrum
SummonAdditionalLinks – databaseName: IOPScience
  dbid: IOP
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1Lb9QwEIBHbTnApTwKbXjJSIAEUnaN7TiJOK3QlgqJx4GKHpAsxw9RWJJVdwNafj3jOBuxUBXELVImicce25_j8QzAQ1vmvjCOpo46kQpBdVoJwVI0FucNqzImwuHk12_k0bF4dZKdbMHz4SxMM--H_hFexkDBsQp7h7hijAz9LEUSZmNtqrz023CJFwjG4fTe23frYZiH0FPxNGSQlrTfozzvDRtz0jZ-9zzc_NNr8nJbz_Xqu57NfpmSDq_Cx7Uy0RPly6hdViPz47c4j_-p7TXY7VGVTKLoddhy9Q3Ym9S4TP-6Io9J5zza_ZXfgw8TUjff3IzEjNQEUZjYmOweC74i3aY8zpIEeZMs2jOvjSMagZU0npwGTQ1OmtgXyHT6kvS5eaxb3ITjw-n7F0dpn7MhNUJmy1SbzJTcI0RYJ71wvBScS-sRJZxwotCUVtZaaVyZOWtLzithfMZ0ziX1yJ63YKduancAJOOBNUReMlMJZ2zhpeaG6lwjY-JIlMB43WrK9AHNQ16Nmeo21otChbpToe5UrLsEngxPzGMwjwtkH2GTqL5HLy6QIxtyn2unGFVMhWBtlKm5RZEHa2tS2HnDjoyuXdMuFMtxucpxCUgT2I_WNRSMyxzhTLIE8g27GwRCYPDNO_Xppy5AOEI_gkmZwNPBQv-q7-1_1PcOXGHIedF56S7sLM9adw-5bFnd7_rfT5hoMPM
  priority: 102
  providerName: IOP Publishing
Title A novel method for dynamically altering the surface area of intracranial EEG electrodes
URI https://iopscience.iop.org/article/10.1088/1741-2552/acb79f
https://www.ncbi.nlm.nih.gov/pubmed/36720162
https://www.proquest.com/docview/2771636420
https://pubmed.ncbi.nlm.nih.gov/PMC9990369
https://escholarship.org/uc/item/5f97s8kd
UnpaywallVersion submittedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOPScience
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db9MwEMAt2j3Ay_gYH-FjMhIggZTV2I6TPFaoYyCx7YFq48ly_KGVdUm0NKDy13OO00IBDXiJIuUi2bq7-Ofc-Q6hZyZPXaYtiS2xPOacqLjgnMZgLNZpWiSU-8PJHw7FwZS_P01O-2LR_iyMXe3pzmZ1F8hvQ0-yUeLytMnOzQBtiQSwe4i2pofH40_hwOPrGNCY_rgXpA9JghON1s9HShdp7jaWoMGsqv9El78nSV5vy1otv6r5_KcVaP9myN1qusKFPvHkfK9dFHv62y9lHf9pcrfQds-heBwM5za6Zss7aGdcwh78Yolf4C4ztPvlvoNOxrisvtg5Du2mMXAuNqGTPQxzibuIOyyBGGASN-2lU9piBTSKK4dnfl4aVkQwdDyZvMV94x1jm7touj_5-OYg7hsyxJqLZBErneicOSAEY4XjluWcMWEccILllmeKkMIYI7TNE2tMzljBtUuoSpkgDsDyHhqWVWkfIJwwDxI8zakuuNUmc0IxTVSqACDhMxOh0UpHUvfVyn3TjLnsouZZJr1WpdeqDFqN0Mv1G3Wo1HGF7HNQu-zdtblCDm_IfS6tpERS6SuxESprAyJPV7YjwTN9uEWVtmobSVPYizLY35EI3Q-2tB4YEymQl6ARSjesbC3gq35vPilnZ131byB6oI48Qq_W9vjX-T78H-FH6AYFkgvpSY_RcHHZ2idAXotiFw3eHR3D9Yid7Pb-9x1E6i3k
linkProvider Unpaywall
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3rb9MwED-xIQFfeI1HeBoJkJiU1tiOk3ysoGW8xj4wsW_G8UPbKGm1NqDy13OO04rCNJD4FinnJGeffT_Hd78DeGzL3BfG0dRRJ1IhqE4rIViKxuK8YVXGREhOfr8rd_bFm4PsoKtz2ubCTKbd0t_Dy0gUHLuwC4gr-oihn6eIhFlfmyovfX9q_Qacb3lKQgbfh73lUswD_VTMiAwtJO3OKU97yppf2sB3nwY5_4ycvNjUU734rsfjX9zS6Ap8XioUo1G-9Jp51TM_fuN6_A-Nr8LlDrKSQRS_BudcfR22BjVu178uyFPSBpG2f-e34NOA1JNvbkxiZWqCkJjYWPQeP35B2sN59JYEcSeZNSdeG0c0Alcy8eQoaGvQeeKcIMPhK9LV6LFudgP2R8OPL3bSrnZDaoTM5qk2mSm5RzBhnfTC8VJwLq1HSOGEE4WmtLLWSuPKzFlbcl4J4zOmcy6pRwx6EzbrSe1uA8l4wBwiL5mphDO28FJzQ3WuEWviipRAfzlyynTE5qG-xli1B-xFoUL_qdB_KvZfAs9WLaaR1OMM2Sc4LKqb2bMz5Mia3HHtFKOKqUDaRpnCIUvg0dKiFE7icDKjazdpZorluG3luBWkCdyKFrb6MC5zBGmSJZCv2d5KIBCEr9-pjw5bonAE_whQygS2V1b6V33v_KO-D-HC3suRevd69-1duMQQ-sV4pnuwOT9p3H2EavPqQTsdfwKu7TZU
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3db9MwEMAt1j3Ay_gYsPAlIwESSFmN7TjJY4U6JiQmHqgYT5Zjn7WykkRLAyp_PeckLRTQgLdIvki27i7-OXe-I-SJy1OfWWAxMJCxlMzEhZQ8RmMBb3mRcBkuJ789Uccz-eY0OR2KRYe7MLA-053N6y6Q3_Y9ycaJz9MmO3c7ZFcliN0jsjs7eTf52F94fBkjGvMfz4oNIUl0ovFmfGxskeZ-awvamVf1n-jy9yTJq21Zm9VXs1j8tAMdXe9zt5qucGFIPDk_bJfFof32S1nHf1rcDbI3cCid9IZzk1yB8hbZn5R4Bv-8os9olxna_XLfJx8mtKy-wIL27aYpci51fSd7nOaKdhF33AIpwiRt2gtvLFCDNEorT-dhXRZ3RDR0Op2-pkPjHQfNbTI7mr5_dRwPDRliK1WyjI1NbC48EoID5SWIXAqhnEdOAAkyM4wVzjllIU_AuVyIQlqfcJMKxTyC5R0yKqsSDghNRAAJmebcFhKsy7wywjKTGgRI_MxEZLzWkbZDtfLQNGOhu6h5lumgVR20qnutRuT55o26r9RxiexTVLse3LW5RI5uyX0qQXOmuQ6V2BjXtUORx2vb0eiZIdxiSqjaRvMUz6ICz3csInd7W9pMTKgUyUvxiKRbVrYRCFW_t0fK-VlX_RuJHqkjj8iLjT3-db33_kf4PrnGkeT69KQHZLS8aOEhkteyeDT43HcvPyvh
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+method+for+dynamically+altering+the+surface+area+of+intracranial+EEG+electrodes&rft.jtitle=Journal+of+neural+engineering&rft.au=Sindhu%2C+Kavyakantha+Remakanthakurup&rft.au=Ngo%2C+Duy&rft.au=Ombao%2C+Hernando&rft.au=Olaya%2C+Joffre+E&rft.date=2023-04-01&rft.eissn=1741-2552&rft.volume=20&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Facb79f&rft_id=info%3Apmid%2F36720162&rft.externalDocID=36720162
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon