Complexity curve: a graphical measure of data complexity and classifier performance
We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast to some popular complexity measures, it is not focused on the shape of a decision boundary in a classification task but on the amount of avai...
Saved in:
| Published in | PeerJ. Computer science Vol. 2; p. e76 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
San Diego
PeerJ. Ltd
08.08.2016
PeerJ, Inc PeerJ Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2376-5992 2376-5992 |
| DOI | 10.7717/peerj-cs.76 |
Cover
| Abstract | We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast to some popular complexity measures, it is not focused on the shape of a decision boundary in a classification task but on the amount of available data with respect to the attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. It demonstrates the relative increase of available information with the growth of sample size. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We then compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining performance of specific classifiers on these sets. We also apply our methodology to a panel of simple benchmark data sets, demonstrating how it can be used in practice to gain insights into data characteristics. Moreover, we show that the complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without compromising classification accuracy. The associated code is available to download at:
https://github.com/zubekj/complexity_curve
(open source Python implementation). |
|---|---|
| AbstractList | We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast to some popular complexity measures, it is not focused on the shape of a decision boundary in a classification task but on the amount of available data with respect to the attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. It demonstrates the relative increase of available information with the growth of sample size. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We then compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining performance of specific classifiers on these sets. We also apply our methodology to a panel of simple benchmark data sets, demonstrating how it can be used in practice to gain insights into data characteristics. Moreover, we show that the complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without compromising classification accuracy. The associated code is available to download at: We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast to some popular complexity measures, it is not focused on the shape of a decision boundary in a classification task but on the amount of available data with respect to the attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. It demonstrates the relative increase of available information with the growth of sample size. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We then compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining performance of specific classifiers on these sets. We also apply our methodology to a panel of simple benchmark data sets, demonstrating how it can be used in practice to gain insights into data characteristics. Moreover, we show that the complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without compromising classification accuracy. The associated code is available to download at: https://github.com/zubekj/complexity_curve (open source Python implementation). We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast to some popular complexity measures, it is not focused on the shape of a decision boundary in a classification task but on the amount of available data with respect to the attribute structure. Complexity is expressed in terms of graphical plot, which we call complexity curve. It demonstrates the relative increase of available information with the growth of sample size. We perform theoretical and experimental examination of properties of the introduced complexity measure and show its relation to the variance component of classification error. We then compare it with popular data complexity measures on 81 diverse data sets and show that it can contribute to explaining performance of specific classifiers on these sets. We also apply our methodology to a panel of simple benchmark data sets, demonstrating how it can be used in practice to gain insights into data characteristics. Moreover, we show that the complexity curve is an effective tool for reducing the size of the training set (data pruning), allowing to significantly speed up the learning process without compromising classification accuracy. The associated code is available to download at: https://github.com/zubekj/complexity_curve (open source Python implementation). |
| ArticleNumber | e76 |
| Audience | Academic |
| Author | Zubek, Julian Plewczynski, Dariusz M. |
| Author_xml | – sequence: 1 givenname: Julian surname: Zubek fullname: Zubek, Julian organization: Centre of New Technologies, University of Warsaw, Warsaw, Poland, Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland – sequence: 2 givenname: Dariusz M. surname: Plewczynski fullname: Plewczynski, Dariusz M. organization: Centre of New Technologies, University of Warsaw, Warsaw, Poland |
| BookMark | eNp9kU1v1DAQhiPUSpTSE38gEicEWex1bCfcqhUfK1VCasvZGjvjxaskDrYD3X-Pt4soi6D2wePx876aGT8rTkY_YlG8oGQhJZVvJ8SwrUxcSPGkOFsyKSretsuTP-KnxUWMW0II5TSv9qy4Wflh6vHOpV1p5vAd35VQbgJMX52BvhwQ4hyw9LbsIEFpHmgYu9L0EKOzDkM5YbA-DDAafF6cWugjXvw6z4svH97frj5VV58_rleXV5WpBU8VgCXUcKmRtYxrRpmgdcPypRZoG91BLtJS2zTYgGBAkDNWa85tSxqma3ZerA--nYetmoIbIOyUB6fuEz5sFITkTI9KS0NFR2otrKw5LjVhQgjNtDXatEuRvd4cvOZxgt0P6PvfhpSo_XzV_XyViUru8ZcHfAr-24wxqa2fw5i7VbTlpBaE1-yB2kCuwY3WpwBmcNGoy_07p4yTTC3-QeXd4eBM_mPrcv5I8OpIkJmEd2kDc4xqfXN9zNIDa4KPMaBVxiVILksCuP4_zb3-S_PYKH4CsKzHIQ |
| CitedBy_id | crossref_primary_10_1016_j_patcog_2022_109240 crossref_primary_10_1002_sam_11463 crossref_primary_10_3233_IDA_215962 crossref_primary_10_1007_s10994_023_06361_6 crossref_primary_10_1145_3347711 crossref_primary_10_1016_j_neucom_2024_127967 crossref_primary_10_3233_JIFS_210624 |
| Cites_doi | 10.1016/j.cor.2013.11.015 10.1016/j.patrec.2014.11.006 10.1109/34.990132 10.1007/s10618-011-0222-1 10.1109/FUZZY.1996.561296 10.1002/9780470316849 10.1007/s10994-013-5422-z 10.1016/j.patcog.2012.09.022 10.1016/0012-365X(79)90084-0 10.1080/713827175 10.1016/j.neucom.2012.04.039 10.1016/j.ins.2015.07.025 10.1016/S0893-6080(00)00026-5 10.1007/978-1-84628-172-3_1 10.1016/j.cor.2011.07.006 10.1098/rsta.2009.0159 10.1007/978-3-540-89689-0_1 10.1007/s10115-013-0700-4 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2016 PeerJ. Ltd. 2016 Zubek and Plewczynski. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2016 PeerJ. Ltd. – notice: 2016 Zubek and Plewczynski. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ Computer Science) and either DOI or URL of the article must be cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ISR 3V. 7XB 8AL 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.7717/peerj-cs.76 |
| DatabaseName | CrossRef Gale In Context: Science ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials Local Electronic Collection Information ProQuest Central Technology Collection (ProQuest) ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) Computing Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2376-5992 |
| ExternalDocumentID | oai_doaj_org_article_b7c16d04b6f745e2b03666b3bfcbc926 10.7717/peerj-cs.76 A543351350 10_7717_peerj_cs_76 |
| GroupedDBID | 53G 5VS 8FE 8FG AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO FRP GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ICD IEA ISR ITC K6V K7- M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC PUEGO 3V. 7XB 8AL 8FK JQ2 M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC ARCSS RPM UNPAY |
| ID | FETCH-LOGICAL-c465t-aaf01c57be3935b3136148339346ef8bda511f1f88e8a63a0e5334b55f9083b43 |
| IEDL.DBID | UNPAY |
| ISSN | 2376-5992 |
| IngestDate | Fri Oct 03 12:44:07 EDT 2025 Wed Oct 01 16:25:38 EDT 2025 Sun Sep 07 03:26:52 EDT 2025 Mon Oct 20 21:59:29 EDT 2025 Mon Oct 20 16:22:22 EDT 2025 Thu Oct 16 15:01:23 EDT 2025 Thu Apr 24 22:53:38 EDT 2025 Wed Oct 01 02:47:50 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-aaf01c57be3935b3136148339346ef8bda511f1f88e8a63a0e5334b55f9083b43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.7717/peerj-cs.76 |
| PQID | 1950460543 |
| PQPubID | 2045934 |
| PageCount | e76 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b7c16d04b6f745e2b03666b3bfcbc926 unpaywall_primary_10_7717_peerj_cs_76 proquest_journals_1950460543 gale_infotracmisc_A543351350 gale_infotracacademiconefile_A543351350 gale_incontextgauss_ISR_A543351350 crossref_citationtrail_10_7717_peerj_cs_76 crossref_primary_10_7717_peerj_cs_76 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20160808 |
| PublicationDateYYYYMMDD | 2016-08-08 |
| PublicationDate_xml | – month: 08 year: 2016 text: 20160808 day: 08 |
| PublicationDecade | 2010 |
| PublicationPlace | San Diego |
| PublicationPlace_xml | – name: San Diego |
| PublicationTitle | PeerJ. Computer science |
| PublicationYear | 2016 |
| Publisher | PeerJ. Ltd PeerJ, Inc PeerJ Inc |
| Publisher_xml | – name: PeerJ. Ltd – name: PeerJ, Inc – name: PeerJ Inc |
| References | Thrun (10.7717/peerj-cs.76/ref-30) 1991 Ho (10.7717/peerj-cs.76/ref-12) 2002; 24 Johnstone (10.7717/peerj-cs.76/ref-15) 2009; 367 Bohanec (10.7717/peerj-cs.76/ref-2) 1988 Smith-Miles (10.7717/peerj-cs.76/ref-28) 2014; 45 Yin (10.7717/peerj-cs.76/ref-31) 2013; 105 Dy (10.7717/peerj-cs.76/ref-9) 2004; 5 Hyvärinen (10.7717/peerj-cs.76/ref-14) 2000; 13 Màcia (10.7717/peerj-cs.76/ref-19) 2013; 46 Li (10.7717/peerj-cs.76/ref-16) 2006 Choubey (10.7717/peerj-cs.76/ref-4) 1996; vol. 2 Orriols-Puig (10.7717/peerj-cs.76/ref-21) 2010 Díez-Pastor (10.7717/peerj-cs.76/ref-7) 2015; 325 Chvátal (10.7717/peerj-cs.76/ref-5) 1979; 25 Frank (10.7717/peerj-cs.76/ref-10) 2010 Liu (10.7717/peerj-cs.76/ref-17) 1998 Domingos (10.7717/peerj-cs.76/ref-8) 2000 Mantovani (10.7717/peerj-cs.76/ref-20) 2015 Smith-Miles (10.7717/peerj-cs.76/ref-29) 2012; 39 Luengo (10.7717/peerj-cs.76/ref-18) 2013; 42 Cieslak (10.7717/peerj-cs.76/ref-6) 2011; 24 Pedregosa (10.7717/peerj-cs.76/ref-22) 2011; 12 Smith (10.7717/peerj-cs.76/ref-27) 2013; 95 Ratanamahatana (10.7717/peerj-cs.76/ref-24) 2003; 17 Provost (10.7717/peerj-cs.76/ref-23) 1999 Brent (10.7717/peerj-cs.76/ref-3) 1973 Skala (10.7717/peerj-cs.76/ref-26) 2013 Scott (10.7717/peerj-cs.76/ref-25) 1992 Alcalá (10.7717/peerj-cs.76/ref-1) 2011; 17 Ho (10.7717/peerj-cs.76/ref-11) 2008; vol. 5342 Ho (10.7717/peerj-cs.76/ref-13) 2006 |
| References_xml | – volume: 45 start-page: 12 year: 2014 ident: 10.7717/peerj-cs.76/ref-28 article-title: Towards objective measures of algorithm performance across instance space publication-title: Computers & Operations Research doi: 10.1016/j.cor.2013.11.015 – year: 2010 ident: 10.7717/peerj-cs.76/ref-21 article-title: Documentation for the data complexity library in C++ publication-title: Technical report – volume: 17 start-page: 255 issue: 2–3 year: 2011 ident: 10.7717/peerj-cs.76/ref-1 article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework publication-title: Journal of Multiple-Valued Logic and Soft Computing – year: 1991 ident: 10.7717/peerj-cs.76/ref-30 article-title: The MONK’s problems: a performance comparison of different learning algorithms publication-title: Technical Report CMU.-CS-91-197. Carnegie Mellon University – volume: 5 start-page: 845 year: 2004 ident: 10.7717/peerj-cs.76/ref-9 article-title: Feature selection for unsupervised learning publication-title: The Journal of Machine Learning Research doi: 10.1016/j.patrec.2014.11.006 – volume: 24 start-page: 289 issue: 3 year: 2002 ident: 10.7717/peerj-cs.76/ref-12 article-title: Complexity measures of supervised classification problems publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/34.990132 – start-page: 1 year: 2015 ident: 10.7717/peerj-cs.76/ref-20 article-title: To tune or not to tune: recommending when to adjust SVM hyper-parameters via meta-learning – volume-title: Algorithms for minimization without derivatives year: 1973 ident: 10.7717/peerj-cs.76/ref-3 – volume: 24 start-page: 136 issue: 1 year: 2011 ident: 10.7717/peerj-cs.76/ref-6 article-title: Hellinger distance decision trees are robust and skew-insensitive publication-title: Data Mining and Knowledge Discovery doi: 10.1007/s10618-011-0222-1 – volume-title: UCI machine learning repository year: 2010 ident: 10.7717/peerj-cs.76/ref-10 – volume: vol. 2 start-page: 1122 volume-title: Proceedings of the fifth IEEE international conference on fuzzy systems year: 1996 ident: 10.7717/peerj-cs.76/ref-4 article-title: A comparison of feature selection algorithms in the context of rough classifiers doi: 10.1109/FUZZY.1996.561296 – start-page: 101 volume-title: Machine learning: ECML-98 year: 1998 ident: 10.7717/peerj-cs.76/ref-17 article-title: A monotonic measure for optimal feature selection – volume-title: Multivariate density estimation: theory, practice, and visualization year: 1992 ident: 10.7717/peerj-cs.76/ref-25 doi: 10.1002/9780470316849 – volume: 95 start-page: 225 issue: 2 year: 2013 ident: 10.7717/peerj-cs.76/ref-27 article-title: An instance level analysis of data complexity publication-title: Machine Learning doi: 10.1007/s10994-013-5422-z – volume: 46 start-page: 1054 issue: 3 year: 2013 ident: 10.7717/peerj-cs.76/ref-19 article-title: Learner excellence biased by data set selection: a case for data characterisation and artificial data sets publication-title: Pattern Recognition doi: 10.1016/j.patcog.2012.09.022 – volume: 25 start-page: 285 issue: 3 year: 1979 ident: 10.7717/peerj-cs.76/ref-5 article-title: The tail of the hypergeometric distribution publication-title: Discrete Mathematics doi: 10.1016/0012-365X(79)90084-0 – year: 2006 ident: 10.7717/peerj-cs.76/ref-16 article-title: Data complexity in machine learning publication-title: Technical Report – volume: 17 start-page: 475 issue: 5–6 year: 2003 ident: 10.7717/peerj-cs.76/ref-24 article-title: Feature selection for the naive bayesian classifier using decision trees publication-title: Applied Artificial Intelligence doi: 10.1080/713827175 – volume: 105 start-page: 3 year: 2013 ident: 10.7717/peerj-cs.76/ref-31 article-title: Feature selection for high-dimensional imbalanced data publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.04.039 – volume: 325 start-page: 98 year: 2015 ident: 10.7717/peerj-cs.76/ref-7 article-title: Diversity techniques improve the performance of the best imbalance learning ensembles publication-title: Information Sciences doi: 10.1016/j.ins.2015.07.025 – volume: 12 start-page: 2825 year: 2011 ident: 10.7717/peerj-cs.76/ref-22 article-title: Scikit-learn: machine learning in python publication-title: Journal of Machine Learning Research – volume: 13 start-page: 411 issue: 4–5 year: 2000 ident: 10.7717/peerj-cs.76/ref-14 article-title: Independent component analysis: algorithms and applications publication-title: Neural Networks doi: 10.1016/S0893-6080(00)00026-5 – start-page: 1 volume-title: Data complexity in pattern recognition year: 2006 ident: 10.7717/peerj-cs.76/ref-13 article-title: Measures of geometrical complexity in classification problems doi: 10.1007/978-1-84628-172-3_1 – volume: 39 start-page: 875 issue: 5 year: 2012 ident: 10.7717/peerj-cs.76/ref-29 article-title: Measuring instance difficulty for combinatorial optimization problems publication-title: Computers & Operations Research doi: 10.1016/j.cor.2011.07.006 – year: 1988 ident: 10.7717/peerj-cs.76/ref-2 article-title: Knowledge acquisition and explanation for multi-attribute decision – volume: 367 start-page: 4237 issue: 1906 year: 2009 ident: 10.7717/peerj-cs.76/ref-15 article-title: Statistical challenges of high-dimensional data publication-title: Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences doi: 10.1098/rsta.2009.0159 – start-page: 23 year: 1999 ident: 10.7717/peerj-cs.76/ref-23 article-title: Efficient progressive sampling – volume: vol. 5342 start-page: 1 volume-title: Structural, syntactic, and statistical pattern recognition year: 2008 ident: 10.7717/peerj-cs.76/ref-11 article-title: Data complexity analysis: linkage between context and solution in classification doi: 10.1007/978-3-540-89689-0_1 – volume: 42 start-page: 147 issue: 1 year: 2013 ident: 10.7717/peerj-cs.76/ref-18 article-title: An automatic extraction method of the domains of competence for learning classifiers using data complexity measures publication-title: Knowledge and Information Systems doi: 10.1007/s10115-013-0700-4 – start-page: 564 year: 2000 ident: 10.7717/peerj-cs.76/ref-8 article-title: A Unified bias-variance decomposition for zero-one and squared loss – year: 2013 ident: 10.7717/peerj-cs.76/ref-26 article-title: Hypergeometric tail inequalities: ending the insanity |
| SSID | ssj0001511119 |
| Score | 2.0516365 |
| Snippet | We describe a method for assessing data set complexity based on the estimation of the underlining probability distribution and Hellinger distance. In contrast... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | e76 |
| SubjectTerms | Algorithms Analysis Artificial intelligence Automatic classification Bias Bias-variance decomposition Classification Classifiers Complexity Data complexity Data processing Data pruning Datasets Downloading Graphic methods Hellinger distance Learning curves Methods Neural networks Noise Operations research Pattern recognition Performance measures Probability distribution Probability distributions Pruning Sparsity Variables |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL8CB8qrYtiALLaqElDaOH0m4LYiqILWHPqTeLHtiI9CSXW12i_rvmUmy210VwYVjnDnY4xnPjD3zDWPDTDhROjAYm3iZqFiKpIQUkjxzVa5iqlSg-47TM3Nypb5e6-u1Vl-UE9bBA3eMO_I5CFOlypuYKx0yj0euMV76CB7KrAXbTotyLZjq6oPpKCi7grwcQ5ajaQizHwk0h4QusmaCWqT---fxY_ZwUU_d7S83Hq8ZnOOn7EnvKfJRN8Nn7EGon7PtZRcG3ivlC3ZBQwRrOb_lsJjdhA_c8RaHmvjPf3aXgHwSOWWDcrijdnXFgbzn7xGNI5_e1RC8ZFfHny8_nSR9q4QElNHzxLmYCtC5D1Rq66WQBPAp8UOZEAtfOWRIFLEoQuGMdGmgElyvdSzRB_NK7rCtelKHV4xjtFyhkTLGZaCoUDYTlSdYwgKDnSxLB-z9knsWehxxamcxthhPEKtty2oLjc3NgA1XxNMOPuPPZB9pG1YkhHndDqAk2F4S7L8kYcDe0iZaQrWoKW3mm1s0jf1ycW5HWkmphdQ4-4OeKE5w1uD6KgRcOwFhbVDub1Ci2sHm76Ws2F7tG0s9demhWckBe7eSn7-tfPd_rHyPPUI_zrR5icU-25rPFuE1-kpz_6ZVi99SJBLj priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3raxQxEA_1-kH94Fs8rRKkIghrd_PaXUGklZYqeEhrod9Ckk2Kcu6ut3dK_3tn9rJ3PZR-3OwQ8pjMK5nfELLLMpOVxinwTSxPRCizpHSpS3JmqlyEVAiP8Y4vE3V8Jj6fy_MtMhlyYfBZ5SATe0FdNQ5j5HtYrhTv8AT_0P5KsGoU3q4OJTRMLK1Qve8hxm6QbYbIWCOyfXA4-XqyjrpIFBHlMlEvB1dmr_V-9iNx3VtEHbmimnoE_3_l9G1yc1G35vKPmU6vKKKje-ROtCDp_nLL75MtXz8gd4fqDDQe1ofkFJsQ7nJ-Sd1i9tu_o4b2-NS4L_TnMjhIm0DxlSh1a2pTV9ShVf09gNKk7Tq34BE5Ozr89vE4iSUUEieUnCfGhDRzMrceU3AtzzgCf3L4EMqHwlYGFiRkoSh8YRQ3qcfUXCtlKME2s4I_JqO6qf0TQsGLrkB5KWWYE5hAy7LKIlxhAU4QY-mYvBlWT7uIL45lLqYa_Axcat0vtXadztWY7K6I2yWsxv_JDnAbViSIhd03NLMLHY-WtrnLVJUKq0IupGcWlLJSltvgrCsZdPISN1Ej2kWNz2kuzKLr9KfTE70P7MRlxiWM_nUkCg2M2pmYnQBzR4CsDcqdDUo4jm7z98ArOoqDTq-Zd0xerfjnupk_vb6bZ-QWWG6qf4lY7JDRfLbwz8E6mtsXkeX_AqSkEGw priority: 102 providerName: ProQuest |
| Title | Complexity curve: a graphical measure of data complexity and classifier performance |
| URI | https://www.proquest.com/docview/1950460543 https://doi.org/10.7717/peerj-cs.76 https://doaj.org/article/b7c16d04b6f745e2b03666b3bfcbc926 |
| UnpaywallVersion | publishedVersion |
| Volume | 2 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: DOA dateStart: 20150101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: M~E dateStart: 20150101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: BENPR dateStart: 20150527 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2376-5992 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001511119 issn: 2376-5992 databaseCode: 8FG dateStart: 20150527 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3db9MwED9t7QPwwPgUhVFZMISElC6JP5Lw1sHKQKKaNiqNJ8t2bASUtGoT0Pjr8SVptw4EPMa5RGefz3dn-34HsBdHKsqUET420TRgLouCzIQmSGKVJ8yFjFnc73g_FkcT9u6Mn23B01UuzKXz-8RHGvtzaxdfArMcJGIbuoJ7h7sD3cn4ePixLhuXiIBnWdxk3l39YsPW1JD8vy-8N-BaVczV-Q81nV6yLKMdeL3iqblQ8nVQlXpgfl6Ba_wH07fgZutZkmEzFW7Dli3uwM6qagNplfgunGITwmCW58RUi-_2JVGkxq1GeZFvzaYhmTmCt0eJuaBWRU4MetufnTemZH6Rc3APJqPDD6-Ogra0QmCY4GWglAsjwxNtMTVX04giICj1D0xYl-pceUfMRS5NbaoEVaHFlF3Nucu8z6YZvQ-dYlbYB0B8dJ17oyaEig3DxNo4yjXCGKZeVnEc9uDFSgjStLjjWP5iKn38gcMl6-GSZikT0YO9NfG8gdv4M9kBSnNNghjZdYOXgmxVTurERCIPmRYuYdzG2htrITTVzmiTxf4nT3AuSETBKPCazSdVLZfy7emJHHJGKY8o99w_b4nczHNtVJu14PuOwFkblLsblF5Nzebr1ZST7TKxlFiDFw-mGe3Bs_U0_FvPH_4n3SO47l07UV9VTHehUy4q-9i7T6Xuw3Y6etOH7sHh-PikX29C9FuV-gWjch2z |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbG9jD2wB2tMMBCm5CQsiWx4yRIE9pgU8u2Cu0i7c3Yjj2BSlqalql_jt_GOanTrgLtbY9xjixfjs_NPt8hZDOOVJQrI8A30SzgLo-C3IQmSGNVpNyFnFuMd5x0RfuCf7lMLpfInyYXBp9VNjKxFtRF32CMfAfLleIdHmcfB78CrBqFt6tNCQ3lSysUuzXEmE_sOLKTa3Dhqt3OZ9jvrTg-PDj_1A58lYHAcJGMAqVcGJkk1RazVDWLGGJjMvjgwrpMFwpsEhe5LLOZEkyFFrNXdZK4HMwXzRn0e4-scMZzcP5W9g-6X0_nUZ4ERVI-TQxMwXXaGVg7_BGYahtRTm6owrpiwL96YY2sjsuBmlyrXu-G4jt8RB54i5XuTVnsMVmy5RPysKkGQb1weErOsAnhNUcTasbD3_YDVbTGw0Y-oD-nwUjadxRfpVIzp1ZlQQ1a8d8dKGk6mOcyPCMXd7KYz8ly2S_tOqHgtRegLIVQseGYsBtHhUZ4xAycrjgOW-R9s3rSeDxzLKvRk-DX4FLLeqmlqWQqWmRzRjyYwnj8n2wft2FGgtjbdUN_eCX9UZY6NZEoQq6FS3liYw1GgBCaaWe0yWPo5C1uokR0jRKf71ypcVXJztmp3AP2ZUnEEhj9O0_k-jBqo3w2BMwdAbkWKDcWKOH4m8XfDa9IL34qOT8sLbI145_bZv7i9m7ekNX2-cmxPO50j16S-2A1ivoVZLZBlkfDsX0FltlIv_bsT8m3uz5xfwFO20wI |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbGkLg8cEcUBlhoExJSaGI7ToKE0GCUlcGE2CbtzdiOPYFKGpqWqX-NX8c5ubSrQHvbY5wjy5dztX2-Q8gmi3SUaSshNjE8ED6LgsyGNkiYzhPhQyEcnnd83pe7R-LjcXy8Rv50uTD4rLLTibWizscWz8j7WK4U7_AE7_v2WcSXncGb8leAFaTwprUrp9GwyJ6bn0L4Vr0e7sBebzE2eH_4bjdoKwwEVsh4Gmjtw8jGiXGYoWp4xBEXk8OHkM6nJtfgj_jIp6lLteQ6dJi5auLYZ-C6GMGh30vkcoIo7pilPviwPN-JURllTUpgAkFTv3Ru8iOw1UvENzljBOtaAf9ahOvk6qwo9fxUj0ZnTN7gFrnR-qp0u2Gu22TNFXfIza4OBG3Vwl1ygE0IrDmdUzub_HavqKY1EjZyAP3ZHEPSsaf4HpXaJbUucmrRf__uwTzTcpnFcI8cXchS3ifrxbhwDwiFeD0HMymlZlZgqi6LcoPAiCmEW4yFPfKiWz1lWyRzLKgxUhDR4FKreqmVrVQie2RzQVw2AB7_J3uL27AgQdTtumE8OVGtECuT2EjmoTDSJyJ2zID5l9Jw462xGYNOnuEmKsTVKJBDT_SsqtTw4KvaBsblccRjGP3zlsiPYdRWt3kQMHeE4lqh3FihBMG3q787XlGt4qnUUkx6ZGvBP-fN_OH53TwlV0DO1Kfh_t4jcg3cRVk_f0w3yPp0MnOPwSWbmic171Py7aKF7S8-bEmi |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAcKE-xUJAFRUhIWeL4kYTb8qgKEhWirFROlu3YCFiyq00CKr-emTy23YKAY5xJNPZ4PDO25xtC9hJmWG6cgtjE8kiEnEW5i12UJqZIRYiF8Ljf8fZQHczEm2N5vEUeDrkwZ87vU4g0ni69X32JXDVJ1QWyrSQ43COyPTt8N_3Ylo1LVSTzPOky785_sWFrWkj-3xfey-RiUy7NyQ8zn5-xLPs75OXAU3eh5Oukqe3E_TwH1_gPpq-SK71nSafdVLhGtnx5newMVRtor8Q3yBE2IQxmfUJds_run1FDW9xqlBf91m0a0kWgeHuUulNqUxbUobf9OYAxpcvTnIObZLb_6sOLg6gvrRA5oWQdGRNi5mRqPabmWs44AoJyeBDKh8wWBhyxwEKW-cwobmKPKbtWypCDz2YFv0VG5aL0twmF6LoAo6aUSZzAxNqEFRZhDDOQVZLEY_JkEIJ2Pe44lr-Ya4g_cLh0O1zaVTpVY7K3Jl52cBt_JnuO0lyTIEZ22wBS0L3KaZs6popYWBVSIX1iwVgrZbkNzro8gZ88wLmgEQWjxGs2n0xTVfr10Xs9lYJzybgE7h_3RGEBXDvTZy1A3xE4a4Nyd4MS1NRtvh6mnO6XiUpjDV48mBZ8TB6tp-Hfen7nP-nukkvg2qn2qmK2S0b1qvH3wH2q7f1efX4BfHYaPg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Complexity+curve%3A+a+graphical+measure+of+data+complexity+and+classifier+performance&rft.jtitle=PeerJ.+Computer+science&rft.au=Zubek%2C+Julian&rft.au=Plewczynski%2C+Dariusz+M&rft.date=2016-08-08&rft.pub=PeerJ.+Ltd&rft.issn=2376-5992&rft.eissn=2376-5992&rft.volume=2&rft.spage=e76&rft_id=info:doi/10.7717%2Fpeerj-cs.76&rft.externalDocID=A543351350 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2376-5992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2376-5992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2376-5992&client=summon |