AI approach of cycle-consistent generative adversarial networks to synthesize PET images to train computer-aided diagnosis algorithm for dementia
Objective An artificial intelligence (AI)-based algorithm typically requires a considerable amount of training data; however, few training images are available for dementia with Lewy bodies and frontotemporal lobar degeneration. Therefore, this study aims to present the potential of cycle-consistent...
        Saved in:
      
    
          | Published in | Annals of nuclear medicine Vol. 34; no. 7; pp. 512 - 515 | 
|---|---|
| Main Authors | , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          Springer Singapore
    
        01.07.2020
     Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0914-7187 1864-6433 1864-6433  | 
| DOI | 10.1007/s12149-020-01468-5 | 
Cover
| Summary: | Objective
An artificial intelligence (AI)-based algorithm typically requires a considerable amount of training data; however, few training images are available for dementia with Lewy bodies and frontotemporal lobar degeneration. Therefore, this study aims to present the potential of cycle-consistent generative adversarial networks (CycleGAN) to obtain enough number of training images for AI-based computer-aided diagnosis (CAD) algorithms for diagnosing dementia.
Methods
We trained CycleGAN using 43 amyloid-negative and 45 positive images in slice-by-slice.
Results
The CycleGAN can be used to synthesize reasonable amyloid-positive images, and the continuity of slices was preserved.
Discussion
Our results show that CycleGAN has the potential to generate a sufficient number of training images for CAD of dementia. | 
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
| ISSN: | 0914-7187 1864-6433 1864-6433  | 
| DOI: | 10.1007/s12149-020-01468-5 |