Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development
The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recomme...
Saved in:
| Published in | Journal of Nuclear Medicine Vol. 63; no. 4; pp. 500 - 510 |
|---|---|
| Main Authors | , , , , , , , , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
United States
Society of Nuclear Medicine
01.04.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0161-5505 1535-5667 2159-662X 2159-662X 1535-5667 |
| DOI | 10.2967/jnumed.121.262567 |
Cover
| Abstract | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. |
|---|---|
| AbstractList | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging.The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations on technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations and then continuing with descriptions of how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. The nuclear medicine field has seen a rapid expansion of academic and commercial interests in developing artificial intelligence (AI) algorithms. Users and developers can avoid some of the pitfalls of AI by recognizing and following best practices in AI algorithm development. In this article, recommendations for technical best practices for developing AI algorithms in nuclear medicine are provided, beginning with general recommendations followed by descriptions on how one might practice these principles for specific topics within nuclear medicine. This report was produced by the AI Task Force of the Society of Nuclear Medicine and Molecular Imaging. |
| Author | Rahmim, Arman Buvat, Irène Jacobs, Paul Slomka, Piotr J. Bradshaw, Tyler J. Li, Quanzheng Sitek, Arkadiusz Scott, Peter J.H. Dutta, Joyita Wahl, Richard L. Yousefirizi, Fereshteh Liu, Chi Boellaard, Ronald Jha, Abhinav K. Saboury, Babak Zuehlsdorff, Sven Sunderland, John J. |
| Author_xml | – sequence: 1 givenname: Tyler J. surname: Bradshaw fullname: Bradshaw, Tyler J. – sequence: 2 givenname: Ronald surname: Boellaard fullname: Boellaard, Ronald – sequence: 3 givenname: Joyita surname: Dutta fullname: Dutta, Joyita – sequence: 4 givenname: Abhinav K. surname: Jha fullname: Jha, Abhinav K. – sequence: 5 givenname: Paul surname: Jacobs fullname: Jacobs, Paul – sequence: 6 givenname: Quanzheng surname: Li fullname: Li, Quanzheng – sequence: 7 givenname: Chi surname: Liu fullname: Liu, Chi – sequence: 8 givenname: Arkadiusz surname: Sitek fullname: Sitek, Arkadiusz – sequence: 9 givenname: Babak surname: Saboury fullname: Saboury, Babak – sequence: 10 givenname: Peter J.H. surname: Scott fullname: Scott, Peter J.H. – sequence: 11 givenname: Piotr J. surname: Slomka fullname: Slomka, Piotr J. – sequence: 12 givenname: John J. surname: Sunderland fullname: Sunderland, John J. – sequence: 13 givenname: Richard L. surname: Wahl fullname: Wahl, Richard L. – sequence: 14 givenname: Fereshteh surname: Yousefirizi fullname: Yousefirizi, Fereshteh – sequence: 15 givenname: Sven surname: Zuehlsdorff fullname: Zuehlsdorff, Sven – sequence: 16 givenname: Arman surname: Rahmim fullname: Rahmim, Arman – sequence: 17 givenname: Irène surname: Buvat fullname: Buvat, Irène |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34740952$$D View this record in MEDLINE/PubMed https://inserm.hal.science/inserm-03441110$$DView record in HAL |
| BookMark | eNqFkUtv1DAUhS3Uik4LP4ANisSGBRlsx3ZiNmjog1YaHosKsbNc52bGI8ce7GRQ_31dpVCYBawsy-ccn_vdY3TggweEXhA8p1LUbzd-7KGdE0rmVFAu6idoRgmXpRD0-wGaYSJIyTnmR-g4pQ3GWDRN8xQdVaxmWHI6Q98-j8aBjsUnaK2xHgrt22IRB9vlq3bFlR_AObsCb-Bd8QHSUHyN2gzWQCq6EIuFW4Voh3VfnMEOXNj24Idn6LDTLsHzh_MEXV-cX59elssvH69OF8vSMMGHsmHAectlq5kRRGpjoCVtSzuo6xuAikElQLCm1oLXgjNpNKfQUqw7U3e6OkF0ih39Vt_-1M6pbbS9jreKYHXPSE2MVGakJkbZ9H4ybceb_GRy3agfjUFb9feLt2u1CrscKZkkBOeEN1PCes93uVgq6xPEXuGKMZLFO5Llrx8-jOHHmAmq3iaTqWoPYUyKcslyV85Elr7ak27CGH1GmNtz0jCZd5pVL_-c4HeFX2vNgnoSmBhSitApYwc92HA_kHX_hEP2nP8HegfiBMpt |
| CitedBy_id | crossref_primary_10_1016_j_neunet_2023_08_026 crossref_primary_10_1016_j_xcrm_2024_101463 crossref_primary_10_1080_09553002_2023_2214206 crossref_primary_10_2967_jnumed_123_266110 crossref_primary_10_1038_s41571_023_00799_2 crossref_primary_10_1097_RLU_0000000000005526 crossref_primary_10_1055_a_2140_7831 crossref_primary_10_1080_08164622_2023_2197578 crossref_primary_10_3390_cancers14071674 crossref_primary_10_1002_mp_16967 crossref_primary_10_2967_jnumed_124_267924 crossref_primary_10_1080_14737159_2024_2383439 crossref_primary_10_1088_1361_6560_ac6fab crossref_primary_10_1093_ageing_afae101 crossref_primary_10_1186_s40658_023_00598_9 crossref_primary_10_2967_jnumed_121_263703 crossref_primary_10_1007_s00259_024_06616_x crossref_primary_10_2967_jnumed_121_263501 crossref_primary_10_3390_cancers16061090 crossref_primary_10_1007_s00259_023_06152_0 crossref_primary_10_1021_acs_molpharmaceut_2c00830 crossref_primary_10_1148_ryai_220232 crossref_primary_10_1109_ACCESS_2023_3244741 crossref_primary_10_1186_s41181_023_00218_y crossref_primary_10_1200_JCO_24_00675 crossref_primary_10_1007_s00259_022_05891_w crossref_primary_10_2967_jnumed_124_267570 crossref_primary_10_1007_s13246_024_01408_x crossref_primary_10_3390_diagnostics14020181 crossref_primary_10_1136_bmj_2024_081554 crossref_primary_10_1016_j_pdpdt_2025_104528 crossref_primary_10_1097_MNM_0000000000001723 crossref_primary_10_1007_s11547_024_01770_6 crossref_primary_10_2967_jnumed_123_266080 crossref_primary_10_1053_j_semnuclmed_2022_11_003 crossref_primary_10_1111_all_15849 crossref_primary_10_1016_S1470_2045_24_00030_5 crossref_primary_10_3390_jcm13010117 crossref_primary_10_1016_j_ejmp_2023_102615 crossref_primary_10_1055_a_2157_6810 crossref_primary_10_3389_fphar_2023_1173596 crossref_primary_10_1016_j_compbiomed_2022_106165 crossref_primary_10_2967_jnumed_121_263239 crossref_primary_10_3390_diagnostics14121240 crossref_primary_10_1055_a_1909_7013 crossref_primary_10_1093_bjr_tqae235 |
| Cites_doi | 10.1002/mp.14684 10.1109/TRPMS.2018.2884320 10.2967/jnumed.120.242412 10.1016/j.ophtha.2018.01.034 10.1088/1361-6560/ab8535 10.1016/S2589-7500(20)30219-3 10.1088/1361-6560/abcd17 10.1038/s42256-021-00307-0 10.1016/j.radonc.2018.10.027 10.1038/s41570-019-0124-0 10.1117/12.2582765 10.1186/s41824-020-00086-8 10.1109/JBHI.2020.2991043 10.1016/j.jcmg.2020.07.015 10.1371/journal.pone.0238455 10.1148/ryai.2020190137 10.1016/S0140-6736(19)30037-6 10.1088/1361-6560/abb6bd 10.1148/ryai.2020200137 10.1117/12.2582350 10.1038/s41598-019-54190-2 10.1186/s40658-021-00374-7 10.1038/s41586-020-2766-y 10.1109/JPROC.2019.2936809 10.1016/j.jclinepi.2019.02.004 10.1109/TMI.2004.828354 10.1136/bmj.m441 10.1016/j.neuron.2017.12.018 10.1007/978-3-030-67194-5_1 10.1038/s41591-020-1034-x 10.1093/ajhp/zxaa218 10.2967/jnumed.118.213538 10.1007/s12021-018-9377-x 10.1073/pnas.1708274114 10.1093/jamia/ocaa088 10.1148/ryai.2020200016 10.1038/s41591-020-01192-7 10.1109/TRPMS.2020.3014786 10.2967/jnumed.121.262283 10.1088/1361-6560/ab3242 10.1186/s13550-021-00751-4 10.1038/s41591-020-1041-y 10.2967/jnumed.117.202317 10.1186/s40658-020-00346-3 10.1016/j.media.2020.101746 10.2967/jnumed.120.261586 10.1038/s41591-020-0941-1 10.1038/s41598-017-10371-5 10.1214/09-SS054 10.1021/acs.jcim.9b00325 10.1001/jama.2016.17216 10.1148/radiol.2019192515 10.1021/acs.jproteome.6b00618 10.1016/j.media.2019.03.009 10.1038/s41591-021-01229-5 10.18632/oncotarget.17856 10.1371/journal.pmed.1002683 10.1002/mp.12124 |
| ContentType | Journal Article |
| Copyright | 2022 by the Society of Nuclear Medicine and Molecular Imaging. Copyright Society of Nuclear Medicine Apr 1, 2022 Distributed under a Creative Commons Attribution 4.0 International License 2022 by the Society of Nuclear Medicine and Molecular Imaging. 2022 |
| Copyright_xml | – notice: 2022 by the Society of Nuclear Medicine and Molecular Imaging. – notice: Copyright Society of Nuclear Medicine Apr 1, 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 by the Society of Nuclear Medicine and Molecular Imaging. 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 4T- 8FD FR3 K9. M7Z NAPCQ P64 7X8 1XC 5PM ADTOC UNPAY |
| DOI | 10.2967/jnumed.121.262567 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Docstoc Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Biochemistry Abstracts 1 Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic Hyper Article en Ligne (HAL) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Nursing & Allied Health Premium Technology Research Database Docstoc Biochemistry Abstracts 1 ProQuest Health & Medical Complete (Alumni) Engineering Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | Nursing & Allied Health Premium MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 2159-662X 1535-5667 |
| EndPage | 510 |
| ExternalDocumentID | 10.2967/jnumed.121.262567 PMC10949110 oai:HAL:inserm-03441110v1 34740952 10_2967_jnumed_121_262567 |
| Genre | Journal Article |
| GrantInformation_xml | – fundername: NIA NIH HHS grantid: R01 AG072669 – fundername: NIA NIH HHS grantid: R03 AG070750 |
| GroupedDBID | 123 18M 41~ 5VS 96U AAYXX ACGFO AEGXH AIAGR ALMA_UNASSIGNED_HOLDINGS CITATION GX1 N9A RHI TSM U5U W8F --- -~X .55 .GJ 29L 2WC 3O- 3V. 53G 5RE 7RV 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8R4 8R5 8WZ A6W ABEFU ABSQV ABUWG ACGOD ACIWK ACPRK ADDZX ADMOG AENEX AFFNX AFKRA AFOSN AFRAH AHMBA AI. ALIPV ARAPS AZQEC BBNVY BENPR BGLVJ BHPHI BKEYQ BPHCQ BVXVI CCPQU CGR CS3 CUY CVF DIK DU5 DWQXO E3Z EBD EBS ECM EIF EJD EMOBN EX3 F5P F9R FYUFA GNUQQ H13 HCIFZ HMCUK I-F IL9 INIJC J5H KQ8 L7B LK8 M1P M2P M2Q M7P N4W NAPCQ NPM OK1 P2P P62 PQQKQ PROAC PSQYO Q2X R0Z RHF RNS RWL S0X SJN SV3 TAE TR2 TUS UKHRP VH1 WH7 WOQ WOW X7M YHG YQJ ZGI ZXP 4T- 8FD FR3 K9. M7Z P64 7X8 1XC 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c465t-84e55d59da4c619acced1dd2fe77bee34e36e6487a6576549ca52ed20afc7fa3 |
| IEDL.DBID | UNPAY |
| ISSN | 0161-5505 1535-5667 2159-662X |
| IngestDate | Sun Oct 26 04:09:37 EDT 2025 Thu Aug 21 18:34:49 EDT 2025 Tue Oct 14 20:45:36 EDT 2025 Fri Sep 05 09:55:09 EDT 2025 Tue Oct 07 05:13:46 EDT 2025 Wed Feb 19 02:05:11 EST 2025 Tue Jul 01 02:06:59 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | research methods computer/PACS artificial intelligence best practices algorithm statistics Deep learning Machine learning Research Methods Artificial intelligence Statistics Algorithm Best practices Computer/PACS |
| Language | English |
| License | 2022 by the Society of Nuclear Medicine and Molecular Imaging. Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-84e55d59da4c619acced1dd2fe77bee34e36e6487a6576549ca52ed20afc7fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 Published online November 05, 2021. |
| ORCID | 0000-0002-7306-2590 0000-0002-9651-5820 0000-0001-6932-2233 0000-0002-9980-2403 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://jnm.snmjournals.org/content/jnumed/63/4/500.full.pdf |
| PMID | 34740952 |
| PQID | 2651849016 |
| PQPubID | 40808 |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_2967_jnumed_121_262567 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10949110 hal_primary_oai_HAL_inserm_03441110v1 proquest_miscellaneous_2594296546 proquest_journals_2651849016 pubmed_primary_34740952 crossref_citationtrail_10_2967_jnumed_121_262567 crossref_primary_10_2967_jnumed_121_262567 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-04-01 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: 2022-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | Journal of Nuclear Medicine |
| PublicationTitleAlternate | J Nucl Med |
| PublicationYear | 2022 |
| Publisher | Society of Nuclear Medicine |
| Publisher_xml | – name: Society of Nuclear Medicine |
| References | Roberts (2022042908200985000_63.4.500.1) 2021; 3 Hatt (2022042908200985000_63.4.500.49) 2017; 44 Panayides (2022042908200985000_63.4.500.58) 2020; 24 2022042908200985000_63.4.500.9 2022042908200985000_63.4.500.8 DECIDE-AI Steering Group (2022042908200985000_63.4.500.34) 2021; 27 2022042908200985000_63.4.500.39 2022042908200985000_63.4.500.4 2022042908200985000_63.4.500.7 2022042908200985000_63.4.500.6 Weisman (2022042908200985000_63.4.500.43) 2020; 7 2022042908200985000_63.4.500.35 Müller (2022042908200985000_63.4.500.63) 2019; 3 2022042908200985000_63.4.500.3 2022042908200985000_63.4.500.33 2022042908200985000_63.4.500.2 2022042908200985000_63.4.500.54 Arabi (2022042908200985000_63.4.500.61) 2020; 4 2022042908200985000_63.4.500.51 2022042908200985000_63.4.500.52 2022042908200985000_63.4.500.50 Huff (2022042908200985000_63.4.500.26) 2021; 66 Weisman (2022042908200985000_63.4.500.45) 2020; 2 Leung (2022042908200985000_63.4.500.47) 2020; 65 Gong (2022042908200985000_63.4.500.62) 2020; 108 de Almeida (2022042908200985000_63.4.500.64) 2019; 3 Zhao (2022042908200985000_63.4.500.21) 2020; 15 Steinkamp (2022042908200985000_63.4.500.59) 2020; 2 Whiteley (2022042908200985000_63.4.500.38) 2020; 7 Lu (2022042908200985000_63.4.500.41) 2019; 64 Katsari (2022042908200985000_63.4.500.40) 2021; 8 Xue (2022042908200985000_63.4.500.5) 2018; 16 Ståhl (2022042908200985000_63.4.500.67) 2019; 59 Nelson (2022042908200985000_63.4.500.65) 2020; 77 2022042908200985000_63.4.500.48 2022042908200985000_63.4.500.44 2022042908200985000_63.4.500.20 2022042908200985000_63.4.500.60 Reader (2022042908200985000_63.4.500.37) 2021; 5 Li (2022042908200985000_63.4.500.55) 2021; 11 Dirand (2022042908200985000_63.4.500.10) 2019; 9 Cruz Rivera (2022042908200985000_63.4.500.27) 2020; 2 2022042908200985000_63.4.500.19 Weisman (2022042908200985000_63.4.500.46) 2020; 65 2022042908200985000_63.4.500.17 2022042908200985000_63.4.500.15 2022042908200985000_63.4.500.16 Bluemke (2022042908200985000_63.4.500.57) 2020; 294 2022042908200985000_63.4.500.13 2022042908200985000_63.4.500.14 2022042908200985000_63.4.500.11 2022042908200985000_63.4.500.12 2022042908200985000_63.4.500.56 2022042908200985000_63.4.500.31 2022042908200985000_63.4.500.32 2022042908200985000_63.4.500.30 Pfaehler (2022042908200985000_63.4.500.53) 2021; 48 Yu (2022042908200985000_63.4.500.42) 2020; 61 Zhu (2022042908200985000_63.4.500.18) 2020; 64 Li (2022042908200985000_63.4.500.24) 2020; 37 Yang (2022042908200985000_63.4.500.25) 2020; 3 2022042908200985000_63.4.500.28 2022042908200985000_63.4.500.29 Reuzé (2022042908200985000_63.4.500.36) 2017; 8 2022042908200985000_63.4.500.68 2022042908200985000_63.4.500.69 2022042908200985000_63.4.500.22 2022042908200985000_63.4.500.66 2022042908200985000_63.4.500.23 |
| References_xml | – volume: 48 start-page: 1226 year: 2021 ident: 2022042908200985000_63.4.500.53 article-title: Plausibility and redundancy analysis to select FDG-PET textural features in non-small cell lung cancer publication-title: Med Phys. doi: 10.1002/mp.14684 – volume: 3 start-page: 465 year: 2019 ident: 2022042908200985000_63.4.500.63 article-title: A novel DOI positioning algorithm for monolithic scintillator crystals in PET based on gradient tree boosting publication-title: IEEE Trans Radiat Plasma Med Sci. doi: 10.1109/TRPMS.2018.2884320 – ident: 2022042908200985000_63.4.500.44 doi: 10.2967/jnumed.120.242412 – ident: 2022042908200985000_63.4.500.16 doi: 10.1016/j.ophtha.2018.01.034 – volume: 65 start-page: 245032 year: 2020 ident: 2022042908200985000_63.4.500.47 article-title: A physics-guided modular deep-learning based automated framework for tumor segmentation in PET publication-title: Phys Med Biol. doi: 10.1088/1361-6560/ab8535 – volume: 2 start-page: e549 year: 2020 ident: 2022042908200985000_63.4.500.27 article-title: Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI extension publication-title: Lancet Digit Health. doi: 10.1016/S2589-7500(20)30219-3 – ident: 2022042908200985000_63.4.500.19 – volume: 66 start-page: 04TR01 year: 2021 ident: 2022042908200985000_63.4.500.26 article-title: Interpretation and visualization techniques for deep learning models in medical imaging publication-title: Phys Med Biol. doi: 10.1088/1361-6560/abcd17 – volume: 3 start-page: 199 year: 2021 ident: 2022042908200985000_63.4.500.1 article-title: Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans publication-title: Nat Mach Intell. doi: 10.1038/s42256-021-00307-0 – ident: 2022042908200985000_63.4.500.54 doi: 10.1016/j.radonc.2018.10.027 – volume: 3 start-page: 589 year: 2019 ident: 2022042908200985000_63.4.500.64 article-title: Synthetic organic chemistry driven by artificial intelligence publication-title: Nat Rev Chem. doi: 10.1038/s41570-019-0124-0 – ident: 2022042908200985000_63.4.500.50 doi: 10.1117/12.2582765 – volume: 4 start-page: 17 year: 2020 ident: 2022042908200985000_63.4.500.61 article-title: Applications of artificial intelligence and deep learning in molecular imaging and radiotherapy publication-title: Eur J Hybrid Imaging. doi: 10.1186/s41824-020-00086-8 – volume: 24 start-page: 1837 year: 2020 ident: 2022042908200985000_63.4.500.58 article-title: AI in medical imaging informatics: current challenges and future directions publication-title: IEEE J Biomed Health Inform. doi: 10.1109/JBHI.2020.2991043 – ident: 2022042908200985000_63.4.500.30 doi: 10.1016/j.jcmg.2020.07.015 – volume: 15 start-page: e0238455 year: 2020 ident: 2022042908200985000_63.4.500.21 article-title: Study of low-dose PET image recovery using supervised learning with CycleGAN publication-title: PLoS One. doi: 10.1371/journal.pone.0238455 – volume: 2 start-page: e190137 year: 2020 ident: 2022042908200985000_63.4.500.59 article-title: Evaluation of automated public de-identification tools on a corpus of radiology reports publication-title: Radiol Artif Intell. doi: 10.1148/ryai.2020190137 – volume: 37 start-page: 50 year: 2020 ident: 2022042908200985000_63.4.500.24 article-title: Federated learning: challenges, methods, and future directions publication-title: IEEE Signal Process Mag. – ident: 2022042908200985000_63.4.500.33 doi: 10.1016/S0140-6736(19)30037-6 – volume: 65 start-page: 235019 year: 2020 ident: 2022042908200985000_63.4.500.46 article-title: Comparison of 11 automated PET segmentation methods in lymphoma publication-title: Phys Med Biol. doi: 10.1088/1361-6560/abb6bd – ident: 2022042908200985000_63.4.500.22 – volume: 3 start-page: e200137 year: 2020 ident: 2022042908200985000_63.4.500.25 article-title: CT-less direct correction of attenuation and scatter in the image space using deep learning for whole-body FDG PET: potential benefits and pitfalls publication-title: Radiol Artif Intell. doi: 10.1148/ryai.2020200137 – ident: 2022042908200985000_63.4.500.39 doi: 10.1117/12.2582350 – volume: 9 start-page: 17869 year: 2019 ident: 2022042908200985000_63.4.500.10 article-title: A downsampling strategy to assess the predictive value of radiomic features publication-title: Sci Rep. doi: 10.1038/s41598-019-54190-2 – volume: 7 start-page: 032503 year: 2020 ident: 2022042908200985000_63.4.500.38 article-title: DirectPET: full-size neural network PET reconstruction from sinogram data publication-title: J Med Imaging (Bellingham). – volume: 8 start-page: 25 year: 2021 ident: 2022042908200985000_63.4.500.40 article-title: Artificial intelligence for reduced dose 18F-FDG PET examinations: a real-world deployment through a standardized framework and business case assessment publication-title: EJNMMI Phys. doi: 10.1186/s40658-021-00374-7 – ident: 2022042908200985000_63.4.500.2 doi: 10.1038/s41586-020-2766-y – volume: 108 start-page: 51 year: 2020 ident: 2022042908200985000_63.4.500.62 article-title: Machine learning in PET: from photon detection to quantitative image reconstruction publication-title: Proc IEEE. doi: 10.1109/JPROC.2019.2936809 – ident: 2022042908200985000_63.4.500.20 doi: 10.1016/j.jclinepi.2019.02.004 – ident: 2022042908200985000_63.4.500.68 – ident: 2022042908200985000_63.4.500.48 doi: 10.1109/TMI.2004.828354 – ident: 2022042908200985000_63.4.500.11 doi: 10.1136/bmj.m441 – ident: 2022042908200985000_63.4.500.52 – ident: 2022042908200985000_63.4.500.12 doi: 10.1016/j.neuron.2017.12.018 – ident: 2022042908200985000_63.4.500.7 doi: 10.1007/978-3-030-67194-5_1 – ident: 2022042908200985000_63.4.500.28 doi: 10.1038/s41591-020-1034-x – volume: 77 start-page: 1556 year: 2020 ident: 2022042908200985000_63.4.500.65 article-title: Demystifying artificial intelligence in pharmacy publication-title: Am J Health Syst Pharm. doi: 10.1093/ajhp/zxaa218 – ident: 2022042908200985000_63.4.500.56 doi: 10.2967/jnumed.118.213538 – volume: 16 start-page: 383 year: 2018 ident: 2022042908200985000_63.4.500.5 article-title: Segan: adversarial network with multi-scale L1 loss for medical image segmentation publication-title: Neuroinformatics. doi: 10.1007/s12021-018-9377-x – ident: 2022042908200985000_63.4.500.9 doi: 10.1073/pnas.1708274114 – ident: 2022042908200985000_63.4.500.31 doi: 10.1093/jamia/ocaa088 – volume: 2 start-page: e200016 year: 2020 ident: 2022042908200985000_63.4.500.45 article-title: Convolutional neural networks for automated PET/CT detection of diseased lymph node burden in patients with lymphoma publication-title: Radiol Artif Intell. doi: 10.1148/ryai.2020200016 – ident: 2022042908200985000_63.4.500.51 doi: 10.1038/s41591-020-01192-7 – volume: 5 start-page: 1 year: 2021 ident: 2022042908200985000_63.4.500.37 article-title: D, Costa-Luis C, Ellis S, Schnabel JA. Deep learning for PET image reconstruction publication-title: IEEE Trans Radiat Plasma Med Sci. doi: 10.1109/TRPMS.2020.3014786 – ident: 2022042908200985000_63.4.500.60 doi: 10.2967/jnumed.121.262283 – volume: 64 start-page: 165019 year: 2019 ident: 2022042908200985000_63.4.500.41 article-title: An investigation of quantitative accuracy for deep learning based denoising in oncological PET publication-title: Phys Med Biol. doi: 10.1088/1361-6560/ab3242 – volume: 11 start-page: 10 year: 2021 ident: 2022042908200985000_63.4.500.55 article-title: Preliminary study of AI-assisted diagnosis using FDG-PET/CT for axillary lymph node metastasis in patients with breast cancer publication-title: EJNMMI Res. doi: 10.1186/s13550-021-00751-4 – ident: 2022042908200985000_63.4.500.29 doi: 10.1038/s41591-020-1041-y – ident: 2022042908200985000_63.4.500.13 doi: 10.2967/jnumed.117.202317 – ident: 2022042908200985000_63.4.500.69 – volume: 7 start-page: 76 year: 2020 ident: 2022042908200985000_63.4.500.43 article-title: Automated quantification of baseline imaging PET metrics on FDG PET/CT images of pediatric Hodgkin lymphoma patients publication-title: EJNMMI Phys. doi: 10.1186/s40658-020-00346-3 – volume: 64 start-page: 101746 year: 2020 ident: 2022042908200985000_63.4.500.18 article-title: Rubik’s Cube+: a self-supervised feature learning framework for 3D medical image analysis publication-title: Med Image Anal. doi: 10.1016/j.media.2020.101746 – ident: 2022042908200985000_63.4.500.4 doi: 10.2967/jnumed.120.261586 – volume: 61 start-page: 575 year: 2020 ident: 2022042908200985000_63.4.500.42 article-title: AI-based methods for nuclear-medicine imaging: need for objective task-specific evaluation [abstract] publication-title: J Nucl Med. – ident: 2022042908200985000_63.4.500.32 doi: 10.1038/s41591-020-0941-1 – ident: 2022042908200985000_63.4.500.6 doi: 10.1038/s41598-017-10371-5 – ident: 2022042908200985000_63.4.500.23 doi: 10.1214/09-SS054 – volume: 59 start-page: 3166 year: 2019 ident: 2022042908200985000_63.4.500.67 article-title: Deep reinforcement learning for multiparameter optimization in de novo drug design publication-title: J Chem Inf Model. doi: 10.1021/acs.jcim.9b00325 – ident: 2022042908200985000_63.4.500.15 doi: 10.1001/jama.2016.17216 – volume: 294 start-page: 487 year: 2020 ident: 2022042908200985000_63.4.500.57 article-title: Assessing radiology research on artificial intelligence: a brief guide for authors, reviewers, and readers—from the Radiology editorial board publication-title: Radiology. doi: 10.1148/radiol.2019192515 – ident: 2022042908200985000_63.4.500.66 doi: 10.1021/acs.jproteome.6b00618 – ident: 2022042908200985000_63.4.500.17 doi: 10.1016/j.media.2019.03.009 – ident: 2022042908200985000_63.4.500.35 – volume: 27 start-page: 186 year: 2021 ident: 2022042908200985000_63.4.500.34 article-title: DECIDE-AI: new reporting guidelines to bridge the development-to-implementation gap in clinical artificial intelligence publication-title: Nat Med. doi: 10.1038/s41591-021-01229-5 – ident: 2022042908200985000_63.4.500.14 – volume: 8 start-page: 43169 year: 2017 ident: 2022042908200985000_63.4.500.36 article-title: Prediction of cervical cancer recurrence using textural features extracted from 18F-FDG PET images acquired with different scanners publication-title: Oncotarget. doi: 10.18632/oncotarget.17856 – ident: 2022042908200985000_63.4.500.3 doi: 10.1371/journal.pmed.1002683 – ident: 2022042908200985000_63.4.500.8 – volume: 44 start-page: e1 year: 2017 ident: 2022042908200985000_63.4.500.49 article-title: Classification and evaluation strategies of auto-segmentation approaches for PET: report of AAPM task group no. 211 publication-title: Med Phys. doi: 10.1002/mp.12124 |
| SSID | ssj0006888 ssj0062072 |
| Score | 2.6002262 |
| Snippet | The nuclear medicine field has seen a rapid expansion of academic and commercial interest in developing artificial intelligence (AI) algorithms. Users and... The nuclear medicine field has seen a rapid expansion of academic and commercial interests in developing artificial intelligence (AI) algorithms. Users and... |
| SourceID | unpaywall pubmedcentral hal proquest pubmed crossref |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 500 |
| SubjectTerms | Algorithms Artificial Intelligence Best practice Life Sciences Molecular Imaging Nuclear Medicine Radionuclide Imaging The State of The Art |
| Title | Nuclear Medicine and Artificial Intelligence: Best Practices for Algorithm Development |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/34740952 https://www.proquest.com/docview/2651849016 https://www.proquest.com/docview/2594296546 https://inserm.hal.science/inserm-03441110 https://pubmed.ncbi.nlm.nih.gov/PMC10949110 https://jnm.snmjournals.org/content/jnumed/63/4/500.full.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 63 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2159-662X dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0006888 issn: 0161-5505 databaseCode: KQ8 dateStart: 19640101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 2159-662X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0006888 issn: 0161-5505 databaseCode: DIK dateStart: 19640101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2159-662X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0062072 issn: 0161-5505 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QEuPMTLUCojwQVkx17vrhPEJSCqFGjUQ4vCAVn7MgkkmyhxQPDrmfWLhEogOFo7fqxnxjOfd-ZbgMdpHGsuqQliEcuA5okKZCLSQBn0LqZiKqlrTj4d8eEFfTNm4z140fTCfLbzcG3n9Ytcl2v5rmgbv8A4hu6quzzp0i6LotD9oA6XOt-HA84wE-_AwcXobPDB7SeHUTrgnIyrhUzS52l9uqNTCAlm_eXO8r9C0f7EFUJezjIvF0te2dil-P5NzGZbkej4Onxs5lAVoHwJN4UM1Y_f6B3_d5I34FqdovqDyqZuwp6xt-D9yBEfi5V_Wi_G-8LqUqaioPBPtrg9n_svcXL-Wd2BtfYxM_YHs0-L1bSYzP2tQqXbcH78-vzVMKj3ZAgU5awIetQwpllfC6oQewmljI61JrlJU2lMQk3CDUcUJDgiGQSfSjBiNIlErtJcJHegYxfW3AOfxz3ZdwRhIkdQR7Q0Ok806Uk8zlMhPYga7WSq5it322bMMsQtTqFZ9aoyVGhWKdSDp-0py4qs40_CT1DlrZyj2R4O3mVTi64_zxwTIoaB6GvswWFjFFmjMbwEQ2iMuRT34FE7jJ7plluENYsNyrA-BnvXLObB3cqG2rslNEVgzYgHvR3r2nmc3RE7nZTs3zECcoxQkQfPWkP8-2zv_5P0A7hKXJtHWaF0CJ1itTEPMfkq5BHCjpO3R7Wn_QR0LjVh |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB616QEuPMSjbgtaJLiA7Pixu04Ql4CoAqJRDy0KB2TtyySQbKLEAcGvZ9YvEiqB4Gjt-LGeGc983plvAR6nUaS5pMaPRCR9mifKl4lIfWXQu5iKqKSuOflsxIeX9O2YjffgRdML89nOg7Wd1y9yXa7lu6Jt_ALjGLqr7vKkS7ssDAP3gzpY6nwfDjjDTLwDB5ej88EHt58cRmmf83hcLWTGfZ7Wpzs6hSDGrL_cWf5XKNqfuELIq1nm1WLJaxu7FN-_idlsKxKd3oSPzRyqApQvwaaQgfrxG73j_07yFtyoU1QyqGzqNuwZewfejxzxsViRs3oxngirS5mKgoK82eL2fE5e4uTIed2BtSaYGZPB7NNiNS0mc7JVqHQXLk5fX7wa-vWeDL6inBV-jxrGNOtrQRViL6GU0ZHWcW7SVBqTUJNwwxEFCY5IBsGnEiw2Og5FrtJcJPegYxfWHALhUU_2HUGYyBHUxVoanSc67kk8zlMhPQgb7WSq5it322bMMsQtTqFZ9aoyVGhWKdSDp-0py4qs40_CT1DlrZyj2R4O3mVTi64_zxwTIoaB8GvkwUljFFmjMbwEQ2iMuRT34FE7jJ7plluENYsNyrA-BnvXLObB_cqG2rslNEVgzWIPejvWtfM4uyN2OinZvyME5BihQg-etYb499ke_ZP0MVyPXZtHWaF0Ap1itTEPMPkq5MPax34COZ40aA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nuclear+Medicine+and+Artificial+Intelligence%3A+Best+Practices+for+Algorithm+Development&rft.jtitle=The+Journal+of+nuclear+medicine+%281978%29&rft.au=Bradshaw%2C+Tyler+J&rft.au=Boellaard%2C+Ronald&rft.au=Dutta%2C+Joyita&rft.au=Jha%2C+Abhinav+K&rft.date=2022-04-01&rft.issn=1535-5667&rft.eissn=1535-5667&rft.volume=63&rft.issue=4&rft.spage=500&rft_id=info:doi/10.2967%2Fjnumed.121.262567&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0161-5505&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0161-5505&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0161-5505&client=summon |