A Comprehensive Analysis of Multilayer Community Detection Algorithms for Application to EEG-Based Brain Networks

Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying th...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in systems neuroscience Vol. 15; p. 624183
Main Authors Puxeddu, Maria Grazia, Petti, Manuela, Astolfi, Laura
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.03.2021
Subjects
Online AccessGet full text
ISSN1662-5137
1662-5137
DOI10.3389/fnsys.2021.624183

Cover

Abstract Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of ad hoc benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
AbstractList Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of ad hoc benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of ad hoc benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of ad hoc benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover, brain networks are intrinsically multilayer since their attributes can vary across time, subjects, frequency, or other domains. Identifying the modular structure in multilayer brain networks represents a gateway toward a deeper understanding of neural processes underlying cognition. Electroencephalographic (EEG) signals, thanks to their high temporal resolution, can give rise to multilayer networks able to follow the dynamics of brain activity. Despite this potential, the community organization has not yet been thoroughly investigated in brain networks estimated from EEG. Furthermore, at the state of the art, there is still no agreement about which algorithm is the most suitable to detect communities in multilayer brain networks, and a way to test and compare them all under a variety of conditions is lacking. In this work, we perform a comprehensive analysis of three algorithms at the state of the art for multilayer community detection (namely, genLouvain, DynMoga, and FacetNet) as compared with an approach based on the application of a single-layer clustering algorithm to each slice of the multilayer network. We test their ability to identify both steady and dynamic modular structures. We statistically evaluate their performances by means of ad hoc benchmark graphs characterized by properties covering a broad range of conditions in terms of graph density, number of clusters, noise level, and number of layers. The results of this simulation study aim to provide guidelines about the choice of the more appropriate algorithm according to the different properties of the brain network under examination. Finally, as a proof of concept, we show an application of the algorithms to real functional brain networks derived from EEG signals collected at rest with closed and open eyes. The test on real data provided results in agreement with the conclusions of the simulation study and confirmed the feasibility of multilayer analysis of EEG-based brain networks in both steady and dynamic conditions.
Author Petti, Manuela
Puxeddu, Maria Grazia
Astolfi, Laura
AuthorAffiliation 1 Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome Sapienza , Rome , Italy
2 IRCCS Fondazione Santa Lucia , Rome , Italy
AuthorAffiliation_xml – name: 2 IRCCS Fondazione Santa Lucia , Rome , Italy
– name: 1 Department of Computer, Control and Management Engineering “Antonio Ruberti”, University of Rome Sapienza , Rome , Italy
Author_xml – sequence: 1
  givenname: Maria Grazia
  surname: Puxeddu
  fullname: Puxeddu, Maria Grazia
– sequence: 2
  givenname: Manuela
  surname: Petti
  fullname: Petti, Manuela
– sequence: 3
  givenname: Laura
  surname: Astolfi
  fullname: Astolfi, Laura
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33732115$$D View this record in MEDLINE/PubMed
BookMark eNqNkctu1DAUhiNURC_wAGyQl2wy9S1OskGaDkOpVGADa8txTmZcHDu1nVZ5ezIzbdWyQKxs-fyXY32n2ZHzDrLsPcELxqr6vHNxiguKKVkIyknFXmUnRAiaF4SVR8_ux9lpjDcYCyqK-k12zFjJKCHFSXa7RCvfDwG24KK5A7R0yk7RROQ79G20yVg1QdiJ-tGZNKHPkEAn4x1a2o0PJm37iDof0HIYrNFqP0oerdeX-YWK0KKLoIxD3yHd-_A7vs1ed8pGePdwnmW_vqx_rr7m1z8ur1bL61xzUaS8ol2NK4FViYlmvOGlYE3VFJSXDHeNULgpuOiA6flLFEqsW8K5KrVihSZasLPs6pDbenUjh2B6FSbplZH7Bx82UoVktAWJMeENUFYo3fAOWqU5CFxRTVpaE1rOWfSQNbpBTffK2qdAguWOhdyzkDsW8sBiNn06mIax6aHV4FJQ9sUmLyfObOXG38myLkQtdq0fHwKCvx0hJtmbqMFa5cCPc1mBaYXnqmqWfnje9VTyCHoWkINABx9jgO6_PlD-5dEm7fnO6xr7D-cfO8bQSw
CitedBy_id crossref_primary_10_1007_s13278_021_00801_8
crossref_primary_10_1088_1741_2552_ace47c
crossref_primary_10_1007_s13278_024_01266_1
crossref_primary_10_1038_s41598_023_30579_y
crossref_primary_10_1016_j_neuroimage_2022_119673
crossref_primary_10_3390_s21248305
crossref_primary_10_1007_s00234_023_03241_7
crossref_primary_10_1088_1741_2552_ad2496
crossref_primary_10_1002_brb3_3316
crossref_primary_10_1371_journal_pbio_3002489
crossref_primary_10_1016_j_neuroimage_2021_118607
crossref_primary_10_1111_jsr_14182
crossref_primary_10_1038_s41598_024_80645_2
crossref_primary_10_1016_j_eswa_2023_120227
crossref_primary_10_1016_j_imu_2022_100941
crossref_primary_10_1038_s41598_023_35232_2
crossref_primary_10_1007_s00234_024_03390_3
Cites_doi 10.1088/1742-5468/2008/10/P10008
10.1016/j.neuroimage.2011.04.070
10.1093/med/9780190497774.001.0001
10.3389/fnins.2010.00200
10.1007/978-3-540-71512-2
10.1080/02664760701593065
10.1103/PhysRevLett.100.118703
10.1016/j.neuroimage.2013.05.079
10.1103/PhysRevE.69.026113
10.1103/PhysRevE.80.056117
10.1155/2016/6243694
10.1146/annurev-psych-122414-033634
10.1145/1150402.1150467
10.1017/nws.2013.19
10.1073/pnas.1510619112
10.1016/j.neuroimage.2020.117674
10.1086/687857
10.1016/j.dib.2018.12.022
10.1159/000117338
10.1142/S0129065717500514
10.1186/1753-4631-4-S1-S8
10.1016/j.compbiomed.2017.07.010
10.3389/fnins.2018.00531
10.1088/1742-5468/2005/09/P09008
10.1016/j.conb.2012.11.015
10.1016/j.dib.2016.03.001
10.1103/PhysRevLett.104.118701
10.1016/j.neulet.2006.04.006
10.1109/EMBC.2012.6346483
10.1109/TBME.2019.2913928
10.1016/S0167-8760(97)00754-X
10.1016/S0165-0173(98)00056-3
10.1093/gigascience/gix004
10.14778/1687627.1687698
10.1038/nn.4502
10.1145/1367497.1367590
10.1007/PL00007990
10.1109/TKDE.2013.131
10.1109/TBME.2016.2621668
10.1162/NETN_a_00002
10.1016/j.physrep.2005.10.009
10.1038/nphys2162
10.1073/pnas.1018985108
10.1038/nature03288
10.1109/EMBC.2017.8037724
10.1002/hbm.20263
10.1145/1514888.1514891
10.1111/ejn.13797
10.1109/TBME.2006.873692
10.1103/PhysRevE.92.012805
10.1073/pnas.122653799
10.1016/j.tics.2017.09.006
10.1126/science.1184819
10.1016/j.neuroscience.2017.12.004
10.1016/j.neuroimage.2016.11.006
10.1016/j.neuroimage.2014.07.067
10.1140/epjb/e2015-60656-5
10.1126/science.1238411
10.1145/2107596.2107613
10.1111/j.1749-6632.2010.05888.x
10.1016/j.neuroimage.2020.116974
10.1137/S003614450342480
10.1093/brain/awp324
10.1103/PhysRevResearch.2.023100
ContentType Journal Article
Copyright Copyright © 2021 Puxeddu, Petti and Astolfi.
Copyright © 2021 Puxeddu, Petti and Astolfi. 2021 Puxeddu, Petti and Astolfi
Copyright_xml – notice: Copyright © 2021 Puxeddu, Petti and Astolfi.
– notice: Copyright © 2021 Puxeddu, Petti and Astolfi. 2021 Puxeddu, Petti and Astolfi
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fnsys.2021.624183
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1662-5137
ExternalDocumentID oai_doaj_org_article_0014be235acb4fedac4e6082c1d29127
10.3389/fnsys.2021.624183
PMC7956967
33732115
10_3389_fnsys_2021_624183
Genre Journal Article
GroupedDBID ---
29H
2WC
53G
5GY
5VS
9T4
AAFWJ
AAYXX
ABIVO
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
CS3
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
RNS
RPM
TR2
ACXDI
C1A
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c465t-82f90860a701c34b4763b8b524730fb6a0b546fe3c6592e70cd144a7ca35c1c63
IEDL.DBID M48
ISSN 1662-5137
IngestDate Fri Oct 03 12:53:38 EDT 2025
Wed Oct 29 11:37:47 EDT 2025
Tue Sep 30 16:57:05 EDT 2025
Thu Sep 04 18:37:34 EDT 2025
Thu Apr 03 06:52:31 EDT 2025
Thu Apr 24 23:04:57 EDT 2025
Wed Oct 01 04:42:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords network neuroscience
electroencephalography
modularity
statistical analysis
community detection
Language English
License Copyright © 2021 Puxeddu, Petti and Astolfi.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-82f90860a701c34b4763b8b524730fb6a0b546fe3c6592e70cd144a7ca35c1c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Sergio E. Lew, University of Buenos Aires, Argentina; Olivier Darbin, University of South Alabama, United States
Edited by: Andrea Duggento, University of Rome Tor Vergata, Italy
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fnsys.2021.624183
PMID 33732115
PQID 2502801838
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_0014be235acb4fedac4e6082c1d29127
unpaywall_primary_10_3389_fnsys_2021_624183
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7956967
proquest_miscellaneous_2502801838
pubmed_primary_33732115
crossref_primary_10_3389_fnsys_2021_624183
crossref_citationtrail_10_3389_fnsys_2021_624183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-01
PublicationDateYYYYMMDD 2021-03-01
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in systems neuroscience
PublicationTitleAlternate Front Syst Neurosci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Micheloyannis (B42) 2006; 402
B24
Blondel (B15) 2008
Mucha (B43) 2010; 328
Fallani (B23) 2010; 4
Karbowski (B34) 1990; 30
Bassett (B6) 2017; 20
Betzel (B14) 2017; 1
Riitta Hari (B56) 2017
Newman (B46) 2012; 8
Astolfi (B4) 2007; 28
Chavez (B18) 2010; 104
van der Meer (B65) 2016; 7
Baccalá (B5) 2001; 84
Wong (B67) 2018; 12
B31
Park (B49) 2013; 342
Betzel (B13) 2013; 1
De Domenico (B21) 2017; 6
Leicht (B38) 2008; 100
Takahashi (B62) 2007; 34
Zahra (B68) 2017; 88
Muldoon (B44) 2016; 83
Petti (B50) 2016; 2016
Danon (B20) 2005
Guimerà (B28) 2005; 433
Ahmadlou (B1) 2011; 58
Boccaletti (B16) 2006; 424
Newman (B47) 2004; 69
Granell (B27) 2015; 92
Puxeddu (B54) 2019
Toppi (B64) 2012
Chakrabarti (B17) 2006
Niedermeyer (B48) 1997; 26
Kim (B35) 2009; 2
Toppi (B63) 2016; 63
Folino (B25) 2014; 26
Silva (B58) 2016; 89
Lin (B40) 2009; 3
Betzel (B11) 2017; 160
Sporns (B60) 2013; 23
Girvan (B26) 2002; 99
Newman (B45) 2003; 45
Wig (B66) 2017; 21
Schmidt (B57) 2018; 28
B52
Artoni (B2) 2019; 22
Bertolero (B9) 2015; 112
B10
Lin (B39) 2008
Jirsa (B32) 2007
He (B29) 2019; 66
Betzel (B12) 2014; 102
Sporns (B59) 2011; 1224
Compston (B19) 2010; 133
Puxeddu (B55) 2017
Bassett (B7) 2011; 108
Klimesch (B36) 1999; 29
Zippo (B69) 2018; 371
Lancichinetti (B37) 2009; 80
Puxeddu (B53) 2020; 218
Hutchison (B30) 2013; 80
Kabbara (B33) 2021; 227
Bazzi (B8) 2020; 2
Meunier (B41) 2010; 4
Sporns (B61) 2016; 67
Dong (B22) 2011
Pichiorri (B51) 2018; 47
Astolfi (B3) 2006; 53
References_xml – year: 2008
  ident: B15
  article-title: Fast unfolding of communities in large networks
  publication-title: J. Stat. Mech. Theory Exp.
  doi: 10.1088/1742-5468/2008/10/P10008
– volume: 58
  start-page: 401
  year: 2011
  ident: B1
  article-title: Functional community analysis of brain: a new approach for EEG-based investigation of the brain pathology
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.04.070
– volume-title: MEG-EEG Primer
  year: 2017
  ident: B56
  doi: 10.1093/med/9780190497774.001.0001
– volume: 4
  start-page: 200
  year: 2010
  ident: B41
  article-title: Modular and hierarchically modular organization of brain networks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2010.00200
– volume-title: Handbook of Brain Connectivity.
  year: 2007
  ident: B32
  doi: 10.1007/978-3-540-71512-2
– volume: 34
  start-page: 1259
  year: 2007
  ident: B62
  article-title: Connectivity inference between neural structures via partial directed coherence
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760701593065
– volume: 100
  start-page: 118703
  year: 2008
  ident: B38
  article-title: Community structure in directed networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.118703
– volume: 80
  start-page: 360
  year: 2013
  ident: B30
  article-title: Dynamic functional connectivity: Promise, issues, and interpretations
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2013.05.079
– volume: 69
  start-page: 026113
  year: 2004
  ident: B47
  article-title: Finding and evaluating community structure in networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.69.026113
– volume: 80
  start-page: 056117
  year: 2009
  ident: B37
  article-title: Community detection algorithms: a comparative analysis
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.80.056117
– ident: B31
– volume: 2016
  start-page: 6243694
  year: 2016
  ident: B50
  article-title: EEG resting-state brain topological reorganization as a function of age
  publication-title: Comput. Intell. Neurosci
  doi: 10.1155/2016/6243694
– volume: 67
  start-page: 613
  year: 2016
  ident: B61
  article-title: Modular brain networks
  publication-title: Annu. Rev. Psychol
  doi: 10.1146/annurev-psych-122414-033634
– start-page: 554
  volume-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
  year: 2006
  ident: B17
  article-title: “Evolutionary clustering,”
  doi: 10.1145/1150402.1150467
– volume: 1
  start-page: 353
  year: 2013
  ident: B13
  article-title: Multi-scale community organization of the human structural connectome and its relationship with resting-state functional connectivity
  publication-title: Netw. Sci.
  doi: 10.1017/nws.2013.19
– volume: 112
  start-page: E6798
  year: 2015
  ident: B9
  article-title: The modular and integrative functional architecture of the human brain
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1510619112
– volume: 227
  start-page: 117674
  year: 2021
  ident: B33
  article-title: The dynamic modular fingerprints of the human brain at rest
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.117674
– volume: 83
  start-page: 710
  year: 2016
  ident: B44
  article-title: Network and multilayer network approaches to understanding human brain dynamics
  publication-title: Philos. Sci.
  doi: 10.1086/687857
– volume: 22
  start-page: 787
  year: 2019
  ident: B2
  article-title: A visual working memory dataset collection with bootstrap independent component analysis for comparison of electroencephalographic preprocessing pipelines
  publication-title: Data Brief
  doi: 10.1016/j.dib.2018.12.022
– volume: 30
  start-page: 170
  year: 1990
  ident: B34
  article-title: Sixty years of clinical electroencephalography
  publication-title: ENE
  doi: 10.1159/000117338
– volume: 28
  start-page: 1750051
  year: 2018
  ident: B57
  article-title: Tracking the reorganization of module structure in time-varying weighted brain functional connectivity networks
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500514
– volume: 4
  start-page: S8
  year: 2010
  ident: B23
  article-title: A graph-theoretical approach in brain functional networks. Possible implications in EEG studies
  publication-title: Nonlinear Biomed. Phys
  doi: 10.1186/1753-4631-4-S1-S8
– ident: B24
– volume: 88
  start-page: 132
  year: 2017
  ident: B68
  article-title: Seizure detection from EEG signals using Multivariate Empirical Mode Decomposition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.07.010
– volume: 12
  start-page: 531
  year: 2018
  ident: B67
  article-title: A comparison of regularization methods in forward and backward models for auditory attention decoding
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00531
– year: 2005
  ident: B20
  article-title: Comparing community structure identification
  publication-title: J. Stat. Mech.
  doi: 10.1088/1742-5468/2005/09/P09008
– volume: 23
  start-page: 162
  year: 2013
  ident: B60
  article-title: Network attributes for segregation and integration in the human brain
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2012.11.015
– volume: 7
  start-page: 990
  year: 2016
  ident: B65
  article-title: “Eyes open–eyes closed” EEG/fMRI data set including dedicated “carbon wire loop” motion detection channels
  publication-title: Data Brief
  doi: 10.1016/j.dib.2016.03.001
– volume: 104
  start-page: 118701
  year: 2010
  ident: B18
  article-title: Functional modularity of background activities in normal and epileptic brain networks
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.104.118701
– volume: 402
  start-page: 273
  year: 2006
  ident: B42
  article-title: Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis
  publication-title: Neurosci. Lett.
  doi: 10.1016/j.neulet.2006.04.006
– start-page: 2547
  volume-title: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
  year: 2012
  ident: B64
  article-title: “Describing relevant indices from the resting state electrophysiological networks,”
  doi: 10.1109/EMBC.2012.6346483
– volume: 66
  start-page: 2115
  year: 2019
  ident: B29
  article-title: Electrophysiological Brain Connectivity: Theory and Implementation
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913928
– start-page: 624
  volume-title: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), lug. 2019
  year: 2019
  ident: B54
  article-title: “The optimal setting for multilayer modularity optimization in multilayer brain networks*,”
– volume: 26
  start-page: 31
  year: 1997
  ident: B48
  article-title: Alpha rhythms as physiological and abnormal phenomena
  publication-title: Int. J. Psychophysiol.
  doi: 10.1016/S0167-8760(97)00754-X
– ident: B10
– volume: 29
  start-page: 169
  year: 1999
  ident: B36
  article-title: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis
  publication-title: Brain Res. Rev.
  doi: 10.1016/S0165-0173(98)00056-3
– volume: 6
  start-page: 1
  year: 2017
  ident: B21
  article-title: Multilayer modeling and analysis of human brain networks
  publication-title: Gigascience
  doi: 10.1093/gigascience/gix004
– volume: 2
  start-page: 622
  year: 2009
  ident: B35
  article-title: A particle-and-density based evolutionary clustering method for dynamic networks
  publication-title: Proc. VLDB Endow.
  doi: 10.14778/1687627.1687698
– volume: 20
  start-page: 353
  year: 2017
  ident: B6
  article-title: Network neuroscience
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.4502
– start-page: 685
  volume-title: Proceeding of the 17th International Conference on World Wide Web–WWW ‘08
  year: 2008
  ident: B39
  article-title: “Facetnet: a framework for analyzing communities and their evolutions in dynamic networks,”
  doi: 10.1145/1367497.1367590
– volume: 84
  start-page: 463
  year: 2001
  ident: B5
  article-title: Partial directed coherence: a new concept in neural structure determination
  publication-title: Biol. Cybern
  doi: 10.1007/PL00007990
– volume: 26
  start-page: 1838
  year: 2014
  ident: B25
  article-title: An evolutionary multiobjective approach for community discovery in dynamic networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2013.131
– volume: 63
  start-page: 2461
  year: 2016
  ident: B63
  article-title: Testing the significance of connectivity networks: comparison of different assessing procedures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2621668
– volume: 1
  start-page: 42
  year: 2017
  ident: B14
  article-title: The modular organization of human anatomical brain networks: accounting for the cost of wiring
  publication-title: Netw. Neurosci.
  doi: 10.1162/NETN_a_00002
– volume: 424
  start-page: 175
  year: 2006
  ident: B16
  article-title: Complex networks: structure and dynamics
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2005.10.009
– volume: 8
  start-page: 25
  year: 2012
  ident: B46
  article-title: Communities, modules, and large-scale structure in networks
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2162
– volume: 108
  start-page: 7641
  year: 2011
  ident: B7
  article-title: Dynamic reconfiguration of human brain networks during learning
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1018985108
– volume: 433
  start-page: 895
  year: 2005
  ident: B28
  article-title: Functional cartography of complex metabolic networks
  publication-title: Nature
  doi: 10.1038/nature03288
– ident: B52
– start-page: 3965
  volume-title: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
  year: 2017
  ident: B55
  article-title: “Community detection: comparison among clustering algorithms and application to EEG-based brain networks,”
  doi: 10.1109/EMBC.2017.8037724
– volume: 28
  start-page: 143
  year: 2007
  ident: B4
  article-title: Comparison of different cortical connectivity estimators for high-resolution EEG recordings
  publication-title: Human Brain Mapp.
  doi: 10.1002/hbm.20263
– volume: 3
  start-page: 8.1
  year: 2009
  ident: B40
  article-title: Analyzing communities and their evolutions in dynamic social networks
  publication-title: ACM Trans. Knowl. Discov. Data
  doi: 10.1145/1514888.1514891
– volume: 47
  start-page: 158
  year: 2018
  ident: B51
  article-title: An EEG index of sensorimotor interhemispheric coupling after unilateral stroke: clinical and neurophysiological study
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/ejn.13797
– volume: 53
  start-page: 1802
  year: 2006
  ident: B3
  article-title: Assessing cortical functional connectivity by partial directed coherence: simulations and application to real data
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.873692
– volume: 92
  start-page: 012805
  year: 2015
  ident: B27
  article-title: Benchmark model to assess community structure in evolving networks
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.92.012805
– volume: 99
  start-page: 7821
  year: 2002
  ident: B26
  article-title: Community structure in social and biological networks
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.122653799
– volume: 21
  start-page: 981
  year: 2017
  ident: B66
  article-title: Segregated systems of human brain networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2017.09.006
– volume: 328
  start-page: 876
  year: 2010
  ident: B43
  article-title: Community structure in time-dependent, multiscale, and multiplex networks
  publication-title: Science
  doi: 10.1126/science.1184819
– volume: 371
  start-page: 191
  year: 2018
  ident: B69
  article-title: Alternating dynamics of segregation and integration in human EEG functional networks during working-memory task
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2017.12.004
– volume: 160
  start-page: 73
  year: 2017
  ident: B11
  article-title: Multi-scale brain networks
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2016.11.006
– volume: 102
  start-page: 345
  year: 2014
  ident: B12
  article-title: Changes in structural and functional connectivity among resting-state networks across the human lifespan
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2014.07.067
– volume: 89
  start-page: 39
  year: 2016
  ident: B58
  article-title: A mathematical programming approach for sequential clustering of dynamic networks
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2015-60656-5
– volume: 342
  start-page: 1238411
  year: 2013
  ident: B49
  article-title: Structural and functional brain networks: from connections to cognition
  publication-title: Science
  doi: 10.1126/science.1238411
– start-page: 134
  volume-title: Proceedings of the 10th International Conference on Mobile and Ubiquitous Multimedia
  year: 2011
  ident: B22
  article-title: “Modeling the co-evolution of behaviors and social relationships using mobile phone data,”
  doi: 10.1145/2107596.2107613
– volume: 1224
  start-page: 109
  year: 2011
  ident: B59
  article-title: The human connectome: a complex network
  publication-title: Ann. N. Y. Acad. Sci
  doi: 10.1111/j.1749-6632.2010.05888.x
– volume: 218
  start-page: 116974
  year: 2020
  ident: B53
  article-title: The modular organization of brain cortical connectivity across the human lifespan
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2020.116974
– volume: 45
  start-page: 167
  year: 2003
  ident: B45
  article-title: The structure and function of complex networks
  publication-title: SIAM Rev
  doi: 10.1137/S003614450342480
– volume: 133
  start-page: 3
  year: 2010
  ident: B19
  article-title: The Berger rhythm: potential changes from the occipital lobes in man
  publication-title: Brain
  doi: 10.1093/brain/awp324
– volume: 2
  start-page: 023100
  year: 2020
  ident: B8
  article-title: A framework for the construction of generative models for mesoscale structure in multilayer networks
  publication-title: Phys. Rev. Res.
  doi: 10.1103/PhysRevResearch.2.023100
SSID ssj0062659
Score 2.4099731
Snippet Modular organization is an emergent property of brain networks, responsible for shaping communication processes and underpinning brain functioning. Moreover,...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 624183
SubjectTerms community detection
electroencephalography
modularity
network neuroscience
Neuroscience
statistical analysis
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQL3BBQHmkPGQkxAEUmvidYxa2VEj0RKXeItux2UppUnazQvvvGdvZpSsQvXBNnPgxM55vPOMZhN5IwNBOCpZLqknOVMFyYwqTO869AhZzlQ_nkF_PxOk5-3LBL26U-goxYSk9cFq444DhjSOUa2uYd622zAnQW7ZsSVWSeI-8UNXWmEp7MKB0XiUfJphg1bHvV5uQm5uUHwSoLEX3tFBM1v83hPlnoOTddX-tNz91193QQicP0P0JPuI6DfshuuP6R-iw7sF0vtrgtzgGdMaT8kP0o8ZB2pdukYLU8TYBCR48jhdvOw2AG093RMYN_uTGGJnV47r7Piwvx8XVCgOqxfVvNzceBzyff85noP5aPAsVJvBZiiVfPUbnJ_NvH0_zqcJCbpngY66Ir8CmKbQsSkuZYbDbGGU4YSD43ghdGM6Ed9QG76uThW3BANPSasptaQV9gg76oXfPECacCC24JkQ5ppWtuOfUlgYQnmLOtBkqtive2Cn9eKiC0TVghgQiNZFITSBSk4iUoXe7T65T7o1_NZ4FMu4ahrTZ8QEwUzMxU3MbM2Xo9ZYJGhCz4DvRvRvW0BMPPmjoR2XoaWKKXVeUSgp2NM-Q3GOXvbHsv-kvFzGVtwTztBLQ7_sdY90-1aP_MdXn6F74ZQqne4EOxuXavQR8NZpXUZR-AdVaJJY
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgs4DN8Bge4SUjIRagdBI_k2UKHUZIVCyoNKwi27FpRSbptKlQ-Xquk7RMYQRCLJPYcmxf2-f6Hh8j9EIChrZSsFBSRUKWRCzUOtKh5dwlYGI2dX4f8sNEnE7Z-zN-duksjKdVOn90318EPa86peCeIuZHOHhU6bGrVhsvtU3ioYAVKKHHi8JdRweCAx4foIPp5GP22XtaQoCnFVPZhTOvzru3ILW6_VeBzd85kzfW1UJtvqmyvLQgndxCZluVjofydbhu9NB8_0Xl8f_qehsd9ngVZ12GO-iare6io6wCX_18g1_ilkHabs0foYsM--llaWcdKx5vFU9w7XB70rdUgPBxfyil2eC3tmmpYBXOyi_1ct7MzlcYYDTOfsbVcVPj8fhdOIL1tsAjf6UFnnTk9dU9ND0Zf3pzGvZXOoSGCd6ECXEpOFGRklFsKNMMpjedaE4YzDROCxVpzoSz1Phwr5WRKcDjU9Ioyk1sBL2PBlVd2YcIE06EElwRklimEpNyx6mJNUDKhFldBCja9mtuer1zf-1GmYPf45s2b5s2902bd00boFe7LItO7ONPiUfeWHYJvU53-wK6Me-70TMGmbaEcmU0c7ZQhlkBqMvEBUljIgP0fGtqOYxrH6xRla3XUBL3QW8oJwnQg870dkVRKik47jxAcs8o9_5l_0s1n7Xa4RL84VRAua935vv3qj76p9SP0U3_1BH1nqBBs1zbp4DcGv2sH5o_AAbiQ1c
  priority: 102
  providerName: Unpaywall
Title A Comprehensive Analysis of Multilayer Community Detection Algorithms for Application to EEG-Based Brain Networks
URI https://www.ncbi.nlm.nih.gov/pubmed/33732115
https://www.proquest.com/docview/2502801838
https://pubmed.ncbi.nlm.nih.gov/PMC7956967
https://www.frontiersin.org/articles/10.3389/fnsys.2021.624183/pdf
https://doaj.org/article/0014be235acb4fedac4e6082c1d29127
UnpaywallVersion publishedVersion
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: KQ8
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: DIK
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: GX1
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: RPM
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1662-5137
  dateEnd: 20250228
  omitProxy: true
  ssIdentifier: ssj0062659
  issn: 1662-5137
  databaseCode: M48
  dateStart: 20080301
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJsFeEDA-wkdlJMQDKCPxZ_KAUArdJqRVPFCpPEW266yTsmRrU0H-e85OWqgo8JKHxImd3Nn3-_kudwi9koChrRQslFSRkCURC7WOdGg5LxJQMZsWbh_yfCzOJuzzlE_30Lq8Vf8BlzupnasnNVmUxz9u2g8w4d87xgn29l1RLVuXeZvExwIMUkJvoQMwVKmr5HDONk4FgO6-dlosBPCvmMrOybn7EYfoNqWSAj3iWxbLJ_bfhUb_DKq8s6quVftdleVvFuvkHrrbQ02cdbpxH-3Z6gE6yiqg2Vctfo198KffVT9CNxl2K8PCzruAdrxOVoLrAvufdEsF4Bz3_5M0Lf5kGx_FVeGsvKgXl838aokBAePsl0scNzUejU7DIZjKGR66ahR43MWdLx-iycno68ezsK_GEBomeBMmpEiB_0RKRrGhTDNYmXSiOWGwSBRaqEhzJgpLjfPUWhmZGZA1JY2i3MRG0Edov6or-wRhwolQgitCEstUYlJecGpiDWgwYVbPAhStv3hu-lTlrmJGmQNlcfLKvbxyJ6-8k1eA3mxuue7ydPyr8dCJcdPQpdj2J-rFRd7PWBfsx7QllCujWWFnyjArADCZeEbSmMgAvVwrQQ5T0vlZVGXrFfTEnb8a-kkC9LhTik1Xa6UKkNxSl62xbF-pLuc-7bcEKpsK6PftRrH-_6pP_zqCZ-jQtevi6Z6j_Waxsi8AYDV64Dcm4Hg6jQd-Cg3QwWT8Jfv2E4E6JPQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LjtMwFLWgs4DN8Bge4SUjIRagdBI_k2UKHUZIVCyoNKwi27FpRSbptKlQ-Xquk7RMYQRCLJPYcmxf2-f6Hh8j9EIChrZSsFBSRUKWRCzUOtKh5dwlYGI2dX4f8sNEnE7Z-zN-duksjKdVOn90318EPa86peCeIuZHOHhU6bGrVhsvtU3ioYAVKKHHi8JdRweCAx4foIPp5GP22XtaQoCnFVPZhTOvzru3ILW6_VeBzd85kzfW1UJtvqmyvLQgndxCZluVjofydbhu9NB8_0Xl8f_qehsd9ngVZ12GO-iare6io6wCX_18g1_ilkHabs0foYsM--llaWcdKx5vFU9w7XB70rdUgPBxfyil2eC3tmmpYBXOyi_1ct7MzlcYYDTOfsbVcVPj8fhdOIL1tsAjf6UFnnTk9dU9ND0Zf3pzGvZXOoSGCd6ECXEpOFGRklFsKNMMpjedaE4YzDROCxVpzoSz1Phwr5WRKcDjU9Ioyk1sBL2PBlVd2YcIE06EElwRklimEpNyx6mJNUDKhFldBCja9mtuer1zf-1GmYPf45s2b5s2902bd00boFe7LItO7ONPiUfeWHYJvU53-wK6Me-70TMGmbaEcmU0c7ZQhlkBqMvEBUljIgP0fGtqOYxrH6xRla3XUBL3QW8oJwnQg870dkVRKik47jxAcs8o9_5l_0s1n7Xa4RL84VRAua935vv3qj76p9SP0U3_1BH1nqBBs1zbp4DcGv2sH5o_AAbiQ1c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Analysis+of+Multilayer+Community+Detection+Algorithms+for+Application+to+EEG-Based+Brain+Networks&rft.jtitle=Frontiers+in+systems+neuroscience&rft.au=Puxeddu%2C+Maria+Grazia&rft.au=Petti%2C+Manuela&rft.au=Astolfi%2C+Laura&rft.date=2021-03-01&rft.issn=1662-5137&rft.eissn=1662-5137&rft.volume=15&rft.spage=624183&rft_id=info:doi/10.3389%2Ffnsys.2021.624183&rft_id=info%3Apmid%2F33732115&rft.externalDocID=33732115
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1662-5137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1662-5137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1662-5137&client=summon