Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli

Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport)...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in molecular biosciences Vol. 8; p. 758228
Main Authors Martorana, Alessandra M., Moura, Elisabete C. C. M., Sperandeo, Paola, Di Vincenzo, Flavia, Liang, Xiaofei, Toone, Eric, Zhou, Pei, Polissi, Alessandra
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 22.12.2021
Subjects
Online AccessGet full text
ISSN2296-889X
2296-889X
DOI10.3389/fmolb.2021.758228

Cover

Abstract Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB 2 CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB 2 CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli , is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
AbstractList Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB 2 CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB 2 CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli , is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in , is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.
Author Martorana, Alessandra M.
Liang, Xiaofei
Zhou, Pei
Sperandeo, Paola
Polissi, Alessandra
Di Vincenzo, Flavia
Toone, Eric
Moura, Elisabete C. C. M.
AuthorAffiliation 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano , Milan , Italy
3 Department of Biochemistry, Duke University School of Medicine , Durham , NC , United States
2 Department of Chemistry, Duke University , Durham , NC , United States
AuthorAffiliation_xml – name: 3 Department of Biochemistry, Duke University School of Medicine , Durham , NC , United States
– name: 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano , Milan , Italy
– name: 2 Department of Chemistry, Duke University , Durham , NC , United States
Author_xml – sequence: 1
  givenname: Alessandra M.
  surname: Martorana
  fullname: Martorana, Alessandra M.
– sequence: 2
  givenname: Elisabete C. C. M.
  surname: Moura
  fullname: Moura, Elisabete C. C. M.
– sequence: 3
  givenname: Paola
  surname: Sperandeo
  fullname: Sperandeo, Paola
– sequence: 4
  givenname: Flavia
  surname: Di Vincenzo
  fullname: Di Vincenzo, Flavia
– sequence: 5
  givenname: Xiaofei
  surname: Liang
  fullname: Liang, Xiaofei
– sequence: 6
  givenname: Eric
  surname: Toone
  fullname: Toone, Eric
– sequence: 7
  givenname: Pei
  surname: Zhou
  fullname: Zhou, Pei
– sequence: 8
  givenname: Alessandra
  surname: Polissi
  fullname: Polissi, Alessandra
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35004843$$D View this record in MEDLINE/PubMed
BookMark eNp1kktvEzEUhUeoiD7oD2CDvGSTYHv8mg0SSkupFASiRWJn3fHcJK4m9mBPokbixzOTtKhFYuPnPd-xdc9pcRRiwKJ4w-i0LE31frGObT3llLOploZz86I44bxSE2Oqn0dP1sfFec53lFImaamVeFUcl5JSYUR5Uvy-wGWCBnofA4kLMovrbvAJfR53_QrJvOvJbYKQMWyxjR2SL-BWPmDake-4RWgzmX-7mVxgh6EZlHvFyGnxntz0UPvW9zviA7nMboXJD2ogLrb-dfFyMcjx_GE-K358urydfZ7Mv15dzz7OJ04o2U80aIGANVayBl42wknpypJpqJQ0i0ZAyRFFUynBtFNagaOi4QrdMFZVVZ4V1wduE-HOdsmvIe1sBG_3BzEtLaTeuxatrIVQlSgFNY3gIAAkZ4Y7hFqiqMXA-nBgdZt6jY0bPpygfQZ9fhP8yi7j1hrNtTLjY949AFL8tcHc27XPDtsWAsZNtlwxI5nUbCx9-9Trr8lj-4YCfShwKeaccGGd7_e9HKx9axm1Y1bsPit2zIo9ZGVQsn-Uj_D_a_4AxJzE8A
CitedBy_id crossref_primary_10_1021_acs_biochem_4c00379
crossref_primary_10_1038_s41586_023_06709_x
crossref_primary_10_1111_mmi_14952
crossref_primary_10_3390_ijms25179496
crossref_primary_10_1002_pro_4724
crossref_primary_10_1016_j_bbamcr_2022_119406
crossref_primary_10_1128_mbio_02202_22
Cites_doi 10.1128/JB.01126-06
10.1002/cbic.201200276
10.1016/j.ijantimicag.2018.11.016
10.1126/science.1227215
10.1111/j.1365-2958.1992.tb02208.x
10.1073/pnas.1806714115
10.1073/pnas.1015617108
10.1038/nature13464
10.1016/j.resmic.2011.03.007
10.1038/s41586-019-1039-0
10.1074/jbc.M110.144709
10.1128/JB.187.10.3359-3368.2005
10.1073/pnas.1312012110
10.1101/cshperspect.a025304
10.1126/sciadv.aau2634
10.1038/s41467-017-00273-5
10.1126/science.1228984
10.1073/pnas.1007319107
10.1128/JB.00431-13
10.1128/AAC.16.5.533
10.7554/eLife.07118
10.1128/jb.178.20.5853-5859.1996
10.1073/pnas.0801196105
10.1016/j.cell.2017.03.019
10.1016/j.cell.2020.03.030
10.1371/journal.pone.0161354
10.1073/pnas.120163297
10.1128/JB.01037-10
10.1146/annurev-micro-090110-102925
10.1128/jb.00487-17
10.1128/mr.57.3.655-682.1993
10.1074/jbc.m900490200
10.1038/nature13484
10.1128/JB.00270-08
10.1371/journal.pbio.0040002
10.1093/emboj/17.22.6487
10.1128/mmbr.67.4.593-656.2003
10.1038/nprot.2007.521
10.1021/bi300592c
10.1016/j.mib.2013.09.007
10.1038/msb4100050
10.1146/annurev.biochem.71.110601.135414
10.1126/science.1182749
10.1074/jbc.M409259200
10.1101/cshperspect.a000414
10.1073/pnas.2010301117
10.1128/JB.00418-17
10.1046/j.1365-2958.2002.03091.x
10.1021/cb600128v
10.1016/0022-1759(90)90018-q
10.1111/j.1365-2958.2005.04497.x
10.1128/JB.182.19.5620-5623.2000
10.1073/pnas.0903229106
10.1038/nrmicro.2016.25
10.1021/bi00587a024
10.1073/pnas.0604744103
10.1074/jbc.274.26.18503
10.1016/j.str.2016.03.026
10.1046/j.1365-2958.1996.561412.x
10.1016/j.mib.2021.01.009
10.1128/mBio.02729-18
10.1016/S1473-3099(17)30753-3
10.1021/jacs.8b07656
10.1128/AAC.21.6.950
10.1038/s41586-019-1025-6
10.1007/978-3-030-18768-2_2
10.1016/j.jmb.2008.04.045
10.3389/fmicb.2020.00909
10.1128/JB.02057-12
10.1038/ncomms10638
10.1038/nature07004.8
10.1021/acschembio.7b00822
10.1093/jac/dkw210
10.1021/bi100493e
10.1016/j.resmic.2005.11.014
10.1101/gad.1581007
10.1038/nsmb.3399
10.1128/JB.01243-06
ContentType Journal Article
Copyright Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi.
Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi
Copyright_xml – notice: Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi.
– notice: Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fmolb.2021.758228
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList CrossRef
PubMed
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
DocumentTitleAlternate Martorana et al
EISSN 2296-889X
ExternalDocumentID oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4
PMC8727689
35004843
10_3389_fmolb_2021_758228
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
GROUPED_DOAJ
HYE
KQ8
M48
M~E
OK1
PGMZT
RPM
IAO
IEA
IHR
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-7a74eaebe95ba23d4c55c3317a9658fd4a32ee4d96417c676ac04d26ec4d29993
IEDL.DBID M48
ISSN 2296-889X
IngestDate Wed Aug 27 01:31:59 EDT 2025
Thu Aug 21 14:02:55 EDT 2025
Fri Sep 05 13:10:40 EDT 2025
Thu Jan 02 22:56:41 EST 2025
Tue Jul 01 03:28:23 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords outer membrane stability
bacterial cell envelope
lipopolysaccharide
Lpt system
LpxC inhibitor
Language English
License Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-7a74eaebe95ba23d4c55c3317a9658fd4a32ee4d96417c676ac04d26ec4d29993
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Heidi Vitrac, Tosoh Bioscience LLC, United States
Reviewed by: Candice Klug, Medical College of Wisconsin, United States
This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Molecular Biosciences
Denice C. Bay, University of Manitoba, Canada
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2021.758228
PMID 35004843
PQID 2618515719
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8727689
proquest_miscellaneous_2618515719
pubmed_primary_35004843
crossref_citationtrail_10_3389_fmolb_2021_758228
crossref_primary_10_3389_fmolb_2021_758228
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-22
PublicationDateYYYYMMDD 2021-12-22
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-22
  day: 22
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in molecular biosciences
PublicationTitleAlternate Front Mol Biosci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tam (B60) 2005; 55
Tran (B65) 2010; 285
Owens (B38) 2019; 567
Chng (B7) 2012; 337
Ekiert (B12) 2017; 169
Lesse (B25) 1990; 126
Erwin (B13) 2016; 6
Nikaido (B35) 1996; 178
Qiao (B40) 2014; 511
Chng (B6) 2010; 49
Tomasek (B64) 2021; 60
Silhavy (B49) 2010; 2
Botos (B4) 2016; 24
Li (B26) 2019; 567
Dong (B10) 2014; 511
Martorana (B28) 2011; 162
Daimon (B79) 2020; 117
Vinés (B77) 2005; 187
Tacconelli (B59) 2018; 18
Vetterli (B66) 2018; 4
Missiakas (B30) 1996; 21
Guisbert (B20) 2007; 189
Merdanovic (B29) 2011; 65
Schnaitman (B46) 1993; 57
Schwalm (B47) 2013; 195
Silhavy (B48) 1984
Tefsen (B61) 2005; 280
Lee (B24) 2016; 7
Georgopapadakou (B17) 1982; 21
Okuda (B37) 2016; 14
Werneburg (B68) 2012; 13
Falchi (B14) 2018; 200
Dong (B11) 2017; 8
Villa (B67) 2013; 195
Baba (B2) 2006; 2
Isom (B21) 2020; 181
Luo (B27) 2017; 24
Suits (B58) 2008; 380
Ruiz (B43) 2010; 107
Powers (B39) 2018; 115
Zhou (B75) 1999; 274
Ghisotti (B18) 1992; 6
Sperandeo (B56) 2011; 193
Zhang (B73) 2013; 16
Benedet (B3) 2006; 11
Raetz (B41) 2002; 71
Srinivas (B57) 2010; 327
Malinverni (B78) 2009; 106
Soltes (B51) 2017; 199
Schindler (B45) 1979; 18
Titecat (B63) 2016; 71
Klein (B22) 2009; 284
Okuda (B36) 2012; 338
Curtis (B8) 1979; 16
Rhodius (B42) 2006; 4
Freinkman (B16) 2012; 51
Thanabalu (B62) 1998; 17
Tran (B76) 2008; 283
Wiegand (B69) 2008; 3
Freinkman (B15) 2011; 108
Sklar (B50) 2007; 21
Braun (B5) 2002; 45
Sperandeo (B52) 2007; 189
Sperandeo (B55) 2006; 157
Datsenko (B9) 2000; 97
Narita (B33) 2013; 110
Nikaido (B34) 2003; 67
Gray (B19) 2015; 4
Morè (B31) 2019; 10
Yethon (B72) 2000; 182
Zhang (B74) 2019; 53
Andolina (B1) 2018; 13
Ruiz (B80) 2006; 1
Xie (B71) 2018; 140
Krojer (B23) 2008; 453
Moura (B32) 2020; 11
Sperandeo (B53) 2008; 190
Sperandeo (B54) 2019; 92
Ruiz (B44) 2008; 105
Wu (B70) 2006; 103
References_xml – volume: 189
  start-page: 244
  year: 2007
  ident: B52
  article-title: Characterization of lptA and lptB , Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01126-06
– volume: 13
  start-page: 1767
  year: 2012
  ident: B68
  article-title: Inhibition of Lipopolysaccharide Transport to the Outer Membrane in Pseudomonas aeruginosa by Peptidomimetic Antibiotics
  publication-title: Chembiochem
  doi: 10.1002/cbic.201200276
– volume: 53
  start-page: 442
  year: 2019
  ident: B74
  article-title: Identification of an Anti-gram-negative Bacteria Agent Disrupting the Interaction between Lipopolysaccharide Transporters LptA and LptC
  publication-title: Int. J. Antimicrob. Agents
  doi: 10.1016/j.ijantimicag.2018.11.016
– volume: 337
  start-page: 1665
  year: 2012
  ident: B7
  article-title: Disulfide Rearrangement Triggered by Translocon Assembly Controls Lipopolysaccharide export
  publication-title: Science
  doi: 10.1126/science.1227215
– volume: 6
  start-page: 3405
  year: 1992
  ident: B18
  article-title: Genetic Analysis of the Immunity Region of Phage-Plasmid P4
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.1992.tb02208.x
– volume: 115
  start-page: E8518
  year: 2018
  ident: B39
  article-title: Phospholipid Retention in the Absence of Asymmetry Strengthens the Outer Membrane Permeability Barrier to Last-Resort Antibiotics
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1806714115
– volume: 108
  start-page: 2486
  year: 2011
  ident: B15
  article-title: The Complex that Inserts Lipopolysaccharide into the Bacterial Outer Membrane Forms a Two-Protein Plug-And-Barrel
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1015617108
– volume: 511
  start-page: 52
  year: 2014
  ident: B10
  article-title: Structural Basis for Outer Membrane Lipopolysaccharide Insertion
  publication-title: Nature
  doi: 10.1038/nature13464
– volume: 162
  start-page: 470
  year: 2011
  ident: B28
  article-title: Complex Transcriptional Organization Regulates an Escherichia coli Locus Implicated in Lipopolysaccharide Biogenesis
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2011.03.007
– volume: 567
  start-page: 550
  year: 2019
  ident: B38
  article-title: Structural Basis of Unidirectional export of Lipopolysaccharide to the Cell Surface
  publication-title: Nature
  doi: 10.1038/s41586-019-1039-0
– volume: 285
  start-page: 33529
  year: 2010
  ident: B65
  article-title: Structure and Functional Analysis of LptC, a Conserved Membrane Protein Involved in the Lipopolysaccharide Export Pathway in Escherichia coli*
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.144709
– volume: 187
  start-page: 3359
  year: 2005
  ident: B77
  article-title: Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress
  publication-title: J Bacteriol.
  doi: 10.1128/JB.187.10.3359-3368.2005
– volume: 110
  start-page: E3612
  year: 2013
  ident: B33
  article-title: Protease Homolog BepA (YfgC) Promotes Assembly and Degradation of -barrel Membrane Proteins in Escherichia coli
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1312012110
– volume: 6
  start-page: a025304
  year: 2016
  ident: B13
  article-title: Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC
  publication-title: Cold Spring Harb Perspect. Med.
  doi: 10.1101/cshperspect.a025304
– volume: 4
  start-page: eaau2634
  year: 2018
  ident: B66
  article-title: Thanatin Targets the Intermembrane Protein Complex Required for Lipopolysaccharide Transport in Escherichia coli
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aau2634
– volume: 8
  start-page: 222
  year: 2017
  ident: B11
  article-title: Structural and Functional Insights into the Lipopolysaccharide ABC Transporter LptB2FG
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00273-5
– volume: 338
  start-page: 1214
  year: 2012
  ident: B36
  article-title: Cytoplasmic ATP Hydrolysis powers Transport of Lipopolysaccharide across the Periplasm in E. coli
  publication-title: Science
  doi: 10.1126/science.1228984
– volume: 107
  start-page: 12245
  year: 2010
  ident: B43
  article-title: Nonconsecutive Disulfide Bond Formation in an Essential Integral Outer Membrane Protein
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1007319107
– volume: 195
  start-page: 3734
  year: 2013
  ident: B47
  article-title: Role for Skp in LptD Assembly in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00431-13
– volume: 16
  start-page: 533
  year: 1979
  ident: B8
  article-title: Affinities of Penicillins and Cephalosporins for the Penicillin-Binding Proteins of Escherichia coli K-12 and Their Antibacterial Activity
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.16.5.533
– volume: 4
  start-page: e07118
  year: 2015
  ident: B19
  article-title: Coordination of Peptidoglycan Synthesis and Outer Membrane Constriction during Escherichia coli Cell Division
  publication-title: Elife
  doi: 10.7554/eLife.07118
– volume: 178
  start-page: 5853
  year: 1996
  ident: B35
  article-title: Multidrug Efflux Pumps of Gram-Negative Bacteria
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.178.20.5853-5859.1996
– volume: 105
  start-page: 5537
  year: 2008
  ident: B44
  article-title: Identification of Two Inner-Membrane Proteins Required for the Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0801196105
– volume: 169
  start-page: 273
  year: 2017
  ident: B12
  article-title: Architectures of Lipid Transport Systems for the Bacterial Outer Membrane
  publication-title: Cell
  doi: 10.1016/j.cell.2017.03.019
– volume: 181
  start-page: 653
  year: 2020
  ident: B21
  article-title: LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope
  publication-title: Cell
  doi: 10.1016/j.cell.2020.03.030
– volume: 11
  start-page: e0161354
  year: 2006
  ident: B3
  article-title: The Lack of the Essential LptC Protein in the Trans-envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0161354
– volume: 97
  start-page: 6640
  year: 2000
  ident: B9
  article-title: One-step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.120163297
– volume: 193
  start-page: 1042
  year: 2011
  ident: B56
  article-title: New Insights into the Lpt Machinery for Lipopolysaccharide Transport to the Cell Surface: LptA-LptC Interaction and LptA Stability as Sensors of a Properly Assembled Transenvelope Complex
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01037-10
– volume: 65
  start-page: 149
  year: 2011
  ident: B29
  article-title: Protein Quality Control in the Bacterial Periplasm
  publication-title: Annu. Rev. Microbiol.
  doi: 10.1146/annurev-micro-090110-102925
– volume-title: Experiments with Gene Fusions
  year: 1984
  ident: B48
– volume: 200
  start-page: e487
  year: 2018
  ident: B14
  article-title: Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies to Overcome Severe Outer Membrane Permeability Defects in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/jb.00487-17
– volume: 57
  start-page: 655
  year: 1993
  ident: B46
  article-title: Genetics of Lipopolysaccharide Biosynthesis in Enteric Bacteria
  publication-title: Microbiol. Rev.
  doi: 10.1128/mr.57.3.655-682.1993
– volume: 284
  start-page: 15369
  year: 2009
  ident: B22
  article-title: Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.m900490200
– volume: 511
  start-page: 108
  year: 2014
  ident: B40
  article-title: Structural Basis for Lipopolysaccharide Insertion in the Bacterial Outer Membrane
  publication-title: Nature
  doi: 10.1038/nature13484
– volume: 190
  start-page: 4460
  year: 2008
  ident: B53
  article-title: Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00270-08
– volume: 4
  start-page: e2
  year: 2006
  ident: B42
  article-title: Conserved and Variable Functions of the σE Stress Response in Related Genomes
  publication-title: Plos Biol.
  doi: 10.1371/journal.pbio.0040002
– volume: 17
  start-page: 6487
  year: 1998
  ident: B62
  article-title: Substrate-induced Assembly of a Contiguous Channel for Protein export from E.Coli: Reversible Bridging of an Inner-Membrane Translocase to an Outer Membrane Exit Pore
  publication-title: EMBO J.
  doi: 10.1093/emboj/17.22.6487
– volume: 67
  start-page: 593
  year: 2003
  ident: B34
  article-title: Molecular Basis of Bacterial Outer Membrane Permeability Revisited
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/mmbr.67.4.593-656.2003
– volume: 3
  start-page: 163
  year: 2008
  ident: B69
  article-title: Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances
  publication-title: Nat. Protoc.
  doi: 10.1038/nprot.2007.521
– volume: 51
  start-page: 4800
  year: 2012
  ident: B16
  article-title: Regulated Assembly of the Transenvelope Protein Complex Required for Lipopolysaccharide export
  publication-title: Biochemistry
  doi: 10.1021/bi300592c
– volume: 16
  start-page: 779
  year: 2013
  ident: B73
  article-title: On the Essentiality of Lipopolysaccharide to Gram-Negative Bacteria
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2013.09.007
– volume: 2
  start-page: 2006
  year: 2006
  ident: B2
  article-title: Construction of Escherichia coli K-12 In-Frame, Single-Gene Knockout Mutants: The Keio Collection
  publication-title: Mol. Syst. Biol.
  doi: 10.1038/msb4100050
– volume: 71
  start-page: 635
  year: 2002
  ident: B41
  article-title: Lipopolysaccharide Endotoxins
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.71.110601.135414
– volume: 327
  start-page: 1010
  year: 2010
  ident: B57
  article-title: Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa
  publication-title: Science
  doi: 10.1126/science.1182749
– volume: 283
  start-page: 20342
  year: 2008
  ident: B76
  article-title: The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.144709
– volume: 280
  start-page: 4504
  year: 2005
  ident: B61
  article-title: Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M409259200
– volume: 2
  start-page: a000414
  year: 2010
  ident: B49
  article-title: The Bacterial Cell Envelope
  publication-title: Cold Spring Harbor Perspect. Biol.
  doi: 10.1101/cshperspect.a000414
– volume: 117
  start-page: 27989
  year: 2020
  ident: B79
  article-title: Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.2010301117
– volume: 199
  start-page: e00418
  year: 2017
  ident: B51
  article-title: Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.00418-17
– volume: 45
  start-page: 1289
  year: 2002
  ident: B5
  article-title: Imp/OstA Is Required for Cell Envelope Biogenesis in Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.2002.03091.x
– volume: 1
  start-page: 385
  year: 2006
  ident: B80
  article-title: Probing the barrier function of the outer membrane with chemical conditionality
  publication-title: ACS Chem Biol.
  doi: 10.1021/cb600128v
– volume: 126
  start-page: 109
  year: 1990
  ident: B25
  article-title: Increased Resolution of Lipopolysaccharides and Lipooligosaccharides Utilizing Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis
  publication-title: J. Immunological Methods
  doi: 10.1016/0022-1759(90)90018-q
– volume: 55
  start-page: 1403
  year: 2005
  ident: B60
  article-title: Changes in Lipopolysaccharide Structure Induce the σE-dependent Response of Escherichia coli
  publication-title: Mol. Microbiol.
  doi: 10.1111/j.1365-2958.2005.04497.x
– volume: 182
  start-page: 5620
  year: 2000
  ident: B72
  article-title: Mutation of the Lipopolysaccharide Core Glycosyltransferase Encoded by waaG Destabilizes the Outer Membrane of Escherichia coli by Interfering with Core Phosphorylation
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.182.19.5620-5623.2000
– volume: 106
  start-page: 8009
  year: 2009
  ident: B78
  article-title: An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.0903229106
– volume: 14
  start-page: 337
  year: 2016
  ident: B37
  article-title: Lipopolysaccharide Transport and Assembly at the Outer Membrane: the PEZ Model
  publication-title: Nat. Rev. Microbiol.
  doi: 10.1038/nrmicro.2016.25
– volume: 18
  start-page: 4425
  year: 1979
  ident: B45
  article-title: Interaction of Divalent Cations and Polymyxin B with Lipopolysaccharide
  publication-title: Biochemistry
  doi: 10.1021/bi00587a024
– volume: 103
  start-page: 11754
  year: 2006
  ident: B70
  article-title: Identification of a Protein Complex that Assembles Lipopolysaccharide in the Outer Membrane of Escherichia coli
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.0604744103
– volume: 274
  start-page: 18503
  year: 1999
  ident: B75
  article-title: Lipid A Modifications Characteristic of Salmonella typhimurium Are Induced by NH4VO3 in Escherichia coli K12. Detection of 4-Amino-4-Deoxy-L-Arabinose, Phosphoethanolamine and Palmitate
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.26.18503
– volume: 24
  start-page: 965
  year: 2016
  ident: B4
  article-title: Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens
  publication-title: Structure
  doi: 10.1016/j.str.2016.03.026
– volume: 21
  start-page: 871
  year: 1996
  ident: B30
  article-title: New Components of Protein Folding in Extracytoplasmic Compartments ofEscherichia coliSurA, FkpA and Skp/OmpH
  publication-title: Mol. Microbiol.
  doi: 10.1046/j.1365-2958.1996.561412.x
– volume: 60
  start-page: 16
  year: 2021
  ident: B64
  article-title: The Assembly of β-barrel Outer Membrane Proteins
  publication-title: Curr. Opin. Microbiol.
  doi: 10.1016/j.mib.2021.01.009
– volume: 10
  start-page: e02729
  year: 2019
  ident: B31
  article-title: Peptidoglycan Remodeling Enables Escherichia coli to Survive Severe Outer Membrane Assembly Defect
  publication-title: mBio
  doi: 10.1128/mBio.02729-18
– volume: 18
  start-page: 318
  year: 2018
  ident: B59
  article-title: Discovery, Research, and Development of New Antibiotics: the WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis
  publication-title: Lancet Infect. Dis.
  doi: 10.1016/S1473-3099(17)30753-3
– volume: 140
  start-page: 12691
  year: 2018
  ident: B71
  article-title: Outer Membrane Translocon Communicates with Inner Membrane ATPase to Stop Lipopolysaccharide Transport
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b07656
– volume: 21
  start-page: 950
  year: 1982
  ident: B17
  article-title: Mode of Action of Azthreonam
  publication-title: Antimicrob. Agents Chemother.
  doi: 10.1128/AAC.21.6.950
– volume: 567
  start-page: 486
  year: 2019
  ident: B26
  article-title: Structural Basis of Lipopolysaccharide Extraction by the LptB2FGC Complex
  publication-title: Nature
  doi: 10.1038/s41586-019-1025-6
– volume: 92
  start-page: 9
  year: 2019
  ident: B54
  article-title: Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria
  publication-title: Subcell Biochem.
  doi: 10.1007/978-3-030-18768-2_2
– volume: 380
  start-page: 476
  year: 2008
  ident: B58
  article-title: Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and Mutagenesis Analysis
  publication-title: J. Mol. Biol.
  doi: 10.1016/j.jmb.2008.04.045
– volume: 11
  start-page: 909
  year: 2020
  ident: B32
  article-title: Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC-LptA Interaction and Decreasing LptA Stability
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2020.00909
– volume: 195
  start-page: 1100
  year: 2013
  ident: B67
  article-title: The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide export Is Assembled via Conserved Structurally Homologous Domains
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.02057-12
– volume: 7
  start-page: 10638
  year: 2016
  ident: B24
  article-title: Drug Design from the Cryptic Inhibitor Envelope
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10638
– volume: 453
  start-page: 885
  year: 2008
  ident: B23
  article-title: Structural Basis for the Regulated Protease and Chaperone Function of DegP
  publication-title: Nature
  doi: 10.1038/nature07004.8
– volume: 13
  start-page: 666
  year: 2018
  ident: B1
  article-title: A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from Pseudomonas aeruginosa
  publication-title: ACS Chem. Biol.
  doi: 10.1021/acschembio.7b00822
– volume: 71
  start-page: 2874
  year: 2016
  ident: B63
  article-title: High Susceptibility of MDR and XDR Gram-Negative Pathogens to Biphenyl-Diacetylene-Based Difluoromethyl-Allo-Threonyl-Hydroxamate LpxC Inhibitors
  publication-title: J. Antimicrob. Chemother.
  doi: 10.1093/jac/dkw210
– volume: 49
  start-page: 4565
  year: 2010
  ident: B6
  article-title: Proteins Required for Lipopolysaccharide Assembly in Escherichia coli Form a Transenvelope Complex
  publication-title: Biochemistry
  doi: 10.1021/bi100493e
– volume: 157
  start-page: 547
  year: 2006
  ident: B55
  article-title: Non-essential KDO Biosynthesis and New Essential Cell Envelope Biogenesis Genes in the Escherichia coli yrbG-yhbG Locus
  publication-title: Res. Microbiol.
  doi: 10.1016/j.resmic.2005.11.014
– volume: 21
  start-page: 2473
  year: 2007
  ident: B50
  article-title: Defining the Roles of the Periplasmic Chaperones SurA, Skp, and DegP in Escherichia coli
  publication-title: Genes Dev.
  doi: 10.1101/gad.1581007
– volume: 24
  start-page: 469
  year: 2017
  ident: B27
  article-title: Structural Basis for Lipopolysaccharide Extraction by ABC Transporter LptB2FG
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.3399
– volume: 189
  start-page: 1963
  year: 2007
  ident: B20
  article-title: Hfq Modulates the σ E -Mediated Envelope Stress Response and the σ 32 -Mediated Cytoplasmic Stress Response in Escherichia coli
  publication-title: J. Bacteriol.
  doi: 10.1128/JB.01243-06
SSID ssj0001503764
Score 2.2232625
Snippet Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 758228
SubjectTerms bacterial cell envelope
lipopolysaccharide
Lpt system
LpxC inhibitor
Molecular Biosciences
outer membrane stability
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rbnDyL4JFS76SRtHtW745A7EfXg3kKSTnFh6R63PXHBP96ZpLfsiuiLL4W0SZvmmzTfkOk3QrxMEi9Kd6WpVV9CHaC0yiMVfaD10voY2VE8_WiOz-DDuT7fSvXFMWFZHjgP3BsdyGFhEbOq7UB58F6z6HhEHzRCSEqgla22nKn8f3BFMwfyNiZ5YZZgWi4C-YNq9poosuLs61sLUdLr_xPJ_D1WcmvxObojbk-sUb7Nvb0rbuBwT9zMeSTX98XPA5Z8yNmR5LKXPMmXA4dIcIkonjy5GGValnBIQUIoT1MUJV6u5Wf8TmxxJU8-fSkPppy4Y2rB91ngD0mMNMXQruV8kIcrxnnOMdKSrGj-QJwdHX59f1xOaRXKCEaPZeMbQE_gWR28qjuIWseaeIRnIZi-A18rROisgVkTTWN8rKBTBiMdiU_WD8XeQC_xWEhtQoWmRx2TZ4ihgVZHbHoMYNsqFqK6HmMXJ81xTn2xcOR7MCwuweIYFpdhKcSrTZOLLLjxt8rvGLhNRdbKTifIgtxkQe5fFlSIF9ewO5pbvGHiB1xerRx5l0RIdTOzhXiUzWDzqFrzxw_qQjQ7BrLTl90rw_xb0u9uiTOa1u7_j84_Ebd4PDjARqmnYm-8vMJnRJPG8DzNiF9qwxGx
  priority: 102
  providerName: Directory of Open Access Journals
Title Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli
URI https://www.ncbi.nlm.nih.gov/pubmed/35004843
https://www.proquest.com/docview/2618515719
https://pubmed.ncbi.nlm.nih.gov/PMC8727689
https://doaj.org/article/5b446943408d42a4aa52182ceab5e4b4
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9NAEF7OE8EX8bfx9FjBJyFHupndJA-HeL845CqiFu4t7G4mZ6EkZ5uTK_jHO7NJi5Xiky-FtNkm2W-n833N5Bsh3gaLF6Wr2KSqjiF1EBfKIm1aR_mysN6zUBx_MucT-HipL3fEqr3VMIGLrdKO-0lN5rOD2x_L9xTwh6w4Kd8SAu3MkdRTowNiv0rld8RdSkyGtdh4YPv9Q8MJhRP09za3j9zITsHEfxvz_LuA8o-MdPZQPBiopPzQY_9I7GDzWNzrm0sun4hfJ-wD0bdMkm0tOfLbhusmeIt4n7y47mTIVdiEyiGU41BaifOl_II_iUIu5MXnr_HJ0Ci3CyP4e2Z4K4mmhsLapZw28nTB4E-5cFrS0po-FZOz02_H5_HQayH2YHQXZzYDtIRooZ1VaQVea58SubDsDlNXYFOFCFVhYJR5kxnrE6iUQU-vRDLTZ2K3oYt4IaQ2LkFTo_ZBLqLLINcesxodFHniI5Gs5rj0gxE598OYlSRIGJYywFIyLGUPSyTerYdc9y4c_9r5iIFb78gG2uGNdn5VDvFYakc6mL3xkrwCZcFazV72Hq3TCA4i8WYFe0kBx3dRbIPtzaIkyUksVWejIhLP-2WwPlSq-RcR0khkGwtk41w2P2mm34Opd05E0uTFy_9x8nviPs8HV90o9UrsdvMbfE3cqXP74T-H_RAXvwGI3xs7
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+Components+of+the+Lpt+Transenvelope+Machinery+Reveals+LPS-Dependent+Lpt+Complex+Stability+in+Escherichia+coli&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Alessandra+M.+Martorana&rft.au=Elisabete+C.+C.+M.+Moura&rft.au=Paola+Sperandeo&rft.au=Flavia+Di+Vincenzo&rft.date=2021-12-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-889X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmolb.2021.758228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon