Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli
Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport)...
Saved in:
Published in | Frontiers in molecular biosciences Vol. 8; p. 758228 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
22.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2296-889X 2296-889X |
DOI | 10.3389/fmolb.2021.758228 |
Cover
Abstract | Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB
2
CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB
2
CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in
Escherichia coli
, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system. |
---|---|
AbstractList | Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB
2
CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB
2
CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in
Escherichia coli
, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system. Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in , is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system. Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system.Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone-protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system. Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to many toxic molecules, including antibiotics. LPS is assembled at the OM by a dedicated intermembrane transport system, the Lpt (LPS transport) machinery, composed of seven essential proteins located in the inner membrane (IM) (LptB2CFG), periplasm (LptA), and OM (LptDE). Defects in LPS transport compromise LPS insertion and assembly at the OM and result in an overall modification of the cell envelope and its permeability barrier properties. LptA is a key component of the Lpt machine. It connects the IM and OM sub-complexes by interacting with the IM protein LptC and the OM protein LptD, thus enabling the LPS transport across the periplasm. Defects in Lpt system assembly result in LptA degradation whose stability can be considered a marker of an improperly assembled Lpt system. Indeed, LptA recruitment by its IM and OM docking sites requires correct maturation of the LptB2CFG and LptDE sub-complexes, respectively. These quality control checkpoints are crucial to avoid LPS mistargeting. To further dissect the requirements for the complete Lpt transenvelope bridge assembly, we explored the importance of LPS presence by blocking its synthesis using an inhibitor compound. Here, we found that the interruption of LPS synthesis results in the degradation of both LptA and LptD, suggesting that, in the absence of the LPS substrate, the stability of the Lpt complex is compromised. Under these conditions, DegP, a major chaperone–protease in Escherichia coli, is responsible for LptD but not LptA degradation. Importantly, LptD and LptA stability is not affected by stressors disturbing the integrity of LPS or peptidoglycan layers, further supporting the notion that the LPS substrate is fundamental to keeping the Lpt transenvelope complex assembled and that LptA and LptD play a major role in the stability of the Lpt system. |
Author | Martorana, Alessandra M. Liang, Xiaofei Zhou, Pei Sperandeo, Paola Polissi, Alessandra Di Vincenzo, Flavia Toone, Eric Moura, Elisabete C. C. M. |
AuthorAffiliation | 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano , Milan , Italy 3 Department of Biochemistry, Duke University School of Medicine , Durham , NC , United States 2 Department of Chemistry, Duke University , Durham , NC , United States |
AuthorAffiliation_xml | – name: 3 Department of Biochemistry, Duke University School of Medicine , Durham , NC , United States – name: 1 Dipartimento di Scienze Farmacologiche e Biomolecolari, Università Degli Studi di Milano , Milan , Italy – name: 2 Department of Chemistry, Duke University , Durham , NC , United States |
Author_xml | – sequence: 1 givenname: Alessandra M. surname: Martorana fullname: Martorana, Alessandra M. – sequence: 2 givenname: Elisabete C. C. M. surname: Moura fullname: Moura, Elisabete C. C. M. – sequence: 3 givenname: Paola surname: Sperandeo fullname: Sperandeo, Paola – sequence: 4 givenname: Flavia surname: Di Vincenzo fullname: Di Vincenzo, Flavia – sequence: 5 givenname: Xiaofei surname: Liang fullname: Liang, Xiaofei – sequence: 6 givenname: Eric surname: Toone fullname: Toone, Eric – sequence: 7 givenname: Pei surname: Zhou fullname: Zhou, Pei – sequence: 8 givenname: Alessandra surname: Polissi fullname: Polissi, Alessandra |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35004843$$D View this record in MEDLINE/PubMed |
BookMark | eNp1kktvEzEUhUeoiD7oD2CDvGSTYHv8mg0SSkupFASiRWJn3fHcJK4m9mBPokbixzOTtKhFYuPnPd-xdc9pcRRiwKJ4w-i0LE31frGObT3llLOploZz86I44bxSE2Oqn0dP1sfFec53lFImaamVeFUcl5JSYUR5Uvy-wGWCBnofA4kLMovrbvAJfR53_QrJvOvJbYKQMWyxjR2SL-BWPmDake-4RWgzmX-7mVxgh6EZlHvFyGnxntz0UPvW9zviA7nMboXJD2ogLrb-dfFyMcjx_GE-K358urydfZ7Mv15dzz7OJ04o2U80aIGANVayBl42wknpypJpqJQ0i0ZAyRFFUynBtFNagaOi4QrdMFZVVZ4V1wduE-HOdsmvIe1sBG_3BzEtLaTeuxatrIVQlSgFNY3gIAAkZ4Y7hFqiqMXA-nBgdZt6jY0bPpygfQZ9fhP8yi7j1hrNtTLjY949AFL8tcHc27XPDtsWAsZNtlwxI5nUbCx9-9Trr8lj-4YCfShwKeaccGGd7_e9HKx9axm1Y1bsPit2zIo9ZGVQsn-Uj_D_a_4AxJzE8A |
CitedBy_id | crossref_primary_10_1021_acs_biochem_4c00379 crossref_primary_10_1038_s41586_023_06709_x crossref_primary_10_1111_mmi_14952 crossref_primary_10_3390_ijms25179496 crossref_primary_10_1002_pro_4724 crossref_primary_10_1016_j_bbamcr_2022_119406 crossref_primary_10_1128_mbio_02202_22 |
Cites_doi | 10.1128/JB.01126-06 10.1002/cbic.201200276 10.1016/j.ijantimicag.2018.11.016 10.1126/science.1227215 10.1111/j.1365-2958.1992.tb02208.x 10.1073/pnas.1806714115 10.1073/pnas.1015617108 10.1038/nature13464 10.1016/j.resmic.2011.03.007 10.1038/s41586-019-1039-0 10.1074/jbc.M110.144709 10.1128/JB.187.10.3359-3368.2005 10.1073/pnas.1312012110 10.1101/cshperspect.a025304 10.1126/sciadv.aau2634 10.1038/s41467-017-00273-5 10.1126/science.1228984 10.1073/pnas.1007319107 10.1128/JB.00431-13 10.1128/AAC.16.5.533 10.7554/eLife.07118 10.1128/jb.178.20.5853-5859.1996 10.1073/pnas.0801196105 10.1016/j.cell.2017.03.019 10.1016/j.cell.2020.03.030 10.1371/journal.pone.0161354 10.1073/pnas.120163297 10.1128/JB.01037-10 10.1146/annurev-micro-090110-102925 10.1128/jb.00487-17 10.1128/mr.57.3.655-682.1993 10.1074/jbc.m900490200 10.1038/nature13484 10.1128/JB.00270-08 10.1371/journal.pbio.0040002 10.1093/emboj/17.22.6487 10.1128/mmbr.67.4.593-656.2003 10.1038/nprot.2007.521 10.1021/bi300592c 10.1016/j.mib.2013.09.007 10.1038/msb4100050 10.1146/annurev.biochem.71.110601.135414 10.1126/science.1182749 10.1074/jbc.M409259200 10.1101/cshperspect.a000414 10.1073/pnas.2010301117 10.1128/JB.00418-17 10.1046/j.1365-2958.2002.03091.x 10.1021/cb600128v 10.1016/0022-1759(90)90018-q 10.1111/j.1365-2958.2005.04497.x 10.1128/JB.182.19.5620-5623.2000 10.1073/pnas.0903229106 10.1038/nrmicro.2016.25 10.1021/bi00587a024 10.1073/pnas.0604744103 10.1074/jbc.274.26.18503 10.1016/j.str.2016.03.026 10.1046/j.1365-2958.1996.561412.x 10.1016/j.mib.2021.01.009 10.1128/mBio.02729-18 10.1016/S1473-3099(17)30753-3 10.1021/jacs.8b07656 10.1128/AAC.21.6.950 10.1038/s41586-019-1025-6 10.1007/978-3-030-18768-2_2 10.1016/j.jmb.2008.04.045 10.3389/fmicb.2020.00909 10.1128/JB.02057-12 10.1038/ncomms10638 10.1038/nature07004.8 10.1021/acschembio.7b00822 10.1093/jac/dkw210 10.1021/bi100493e 10.1016/j.resmic.2005.11.014 10.1101/gad.1581007 10.1038/nsmb.3399 10.1128/JB.01243-06 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi |
Copyright_xml | – notice: Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. – notice: Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fmolb.2021.758228 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | CrossRef PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
DocumentTitleAlternate | Martorana et al |
EISSN | 2296-889X |
ExternalDocumentID | oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4 PMC8727689 35004843 10_3389_fmolb_2021_758228 |
Genre | Journal Article |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAYXX ACGFS ACXDI ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION GROUPED_DOAJ HYE KQ8 M48 M~E OK1 PGMZT RPM IAO IEA IHR IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c465t-7a74eaebe95ba23d4c55c3317a9658fd4a32ee4d96417c676ac04d26ec4d29993 |
IEDL.DBID | M48 |
ISSN | 2296-889X |
IngestDate | Wed Aug 27 01:31:59 EDT 2025 Thu Aug 21 14:02:55 EDT 2025 Fri Sep 05 13:10:40 EDT 2025 Thu Jan 02 22:56:41 EST 2025 Tue Jul 01 03:28:23 EDT 2025 Thu Apr 24 23:02:43 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | outer membrane stability bacterial cell envelope lipopolysaccharide Lpt system LpxC inhibitor |
Language | English |
License | Copyright © 2021 Martorana, Moura, Sperandeo, Di Vincenzo, Liang, Toone, Zhou and Polissi. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-7a74eaebe95ba23d4c55c3317a9658fd4a32ee4d96417c676ac04d26ec4d29993 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Heidi Vitrac, Tosoh Bioscience LLC, United States Reviewed by: Candice Klug, Medical College of Wisconsin, United States This article was submitted to Cellular Biochemistry, a section of the journal Frontiers in Molecular Biosciences Denice C. Bay, University of Manitoba, Canada |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fmolb.2021.758228 |
PMID | 35004843 |
PQID | 2618515719 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8727689 proquest_miscellaneous_2618515719 pubmed_primary_35004843 crossref_citationtrail_10_3389_fmolb_2021_758228 crossref_primary_10_3389_fmolb_2021_758228 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-22 |
PublicationDateYYYYMMDD | 2021-12-22 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-22 day: 22 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in molecular biosciences |
PublicationTitleAlternate | Front Mol Biosci |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Tam (B60) 2005; 55 Tran (B65) 2010; 285 Owens (B38) 2019; 567 Chng (B7) 2012; 337 Ekiert (B12) 2017; 169 Lesse (B25) 1990; 126 Erwin (B13) 2016; 6 Nikaido (B35) 1996; 178 Qiao (B40) 2014; 511 Chng (B6) 2010; 49 Tomasek (B64) 2021; 60 Silhavy (B49) 2010; 2 Botos (B4) 2016; 24 Li (B26) 2019; 567 Dong (B10) 2014; 511 Martorana (B28) 2011; 162 Daimon (B79) 2020; 117 Vinés (B77) 2005; 187 Tacconelli (B59) 2018; 18 Vetterli (B66) 2018; 4 Missiakas (B30) 1996; 21 Guisbert (B20) 2007; 189 Merdanovic (B29) 2011; 65 Schnaitman (B46) 1993; 57 Schwalm (B47) 2013; 195 Silhavy (B48) 1984 Tefsen (B61) 2005; 280 Lee (B24) 2016; 7 Georgopapadakou (B17) 1982; 21 Okuda (B37) 2016; 14 Werneburg (B68) 2012; 13 Falchi (B14) 2018; 200 Dong (B11) 2017; 8 Villa (B67) 2013; 195 Baba (B2) 2006; 2 Isom (B21) 2020; 181 Luo (B27) 2017; 24 Suits (B58) 2008; 380 Ruiz (B43) 2010; 107 Powers (B39) 2018; 115 Zhou (B75) 1999; 274 Ghisotti (B18) 1992; 6 Sperandeo (B56) 2011; 193 Zhang (B73) 2013; 16 Benedet (B3) 2006; 11 Raetz (B41) 2002; 71 Srinivas (B57) 2010; 327 Malinverni (B78) 2009; 106 Soltes (B51) 2017; 199 Schindler (B45) 1979; 18 Titecat (B63) 2016; 71 Klein (B22) 2009; 284 Okuda (B36) 2012; 338 Curtis (B8) 1979; 16 Rhodius (B42) 2006; 4 Freinkman (B16) 2012; 51 Thanabalu (B62) 1998; 17 Tran (B76) 2008; 283 Wiegand (B69) 2008; 3 Freinkman (B15) 2011; 108 Sklar (B50) 2007; 21 Braun (B5) 2002; 45 Sperandeo (B52) 2007; 189 Sperandeo (B55) 2006; 157 Datsenko (B9) 2000; 97 Narita (B33) 2013; 110 Nikaido (B34) 2003; 67 Gray (B19) 2015; 4 Morè (B31) 2019; 10 Yethon (B72) 2000; 182 Zhang (B74) 2019; 53 Andolina (B1) 2018; 13 Ruiz (B80) 2006; 1 Xie (B71) 2018; 140 Krojer (B23) 2008; 453 Moura (B32) 2020; 11 Sperandeo (B53) 2008; 190 Sperandeo (B54) 2019; 92 Ruiz (B44) 2008; 105 Wu (B70) 2006; 103 |
References_xml | – volume: 189 start-page: 244 year: 2007 ident: B52 article-title: Characterization of lptA and lptB , Two Essential Genes Implicated in Lipopolysaccharide Transport to the Outer Membrane of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.01126-06 – volume: 13 start-page: 1767 year: 2012 ident: B68 article-title: Inhibition of Lipopolysaccharide Transport to the Outer Membrane in Pseudomonas aeruginosa by Peptidomimetic Antibiotics publication-title: Chembiochem doi: 10.1002/cbic.201200276 – volume: 53 start-page: 442 year: 2019 ident: B74 article-title: Identification of an Anti-gram-negative Bacteria Agent Disrupting the Interaction between Lipopolysaccharide Transporters LptA and LptC publication-title: Int. J. Antimicrob. Agents doi: 10.1016/j.ijantimicag.2018.11.016 – volume: 337 start-page: 1665 year: 2012 ident: B7 article-title: Disulfide Rearrangement Triggered by Translocon Assembly Controls Lipopolysaccharide export publication-title: Science doi: 10.1126/science.1227215 – volume: 6 start-page: 3405 year: 1992 ident: B18 article-title: Genetic Analysis of the Immunity Region of Phage-Plasmid P4 publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.1992.tb02208.x – volume: 115 start-page: E8518 year: 2018 ident: B39 article-title: Phospholipid Retention in the Absence of Asymmetry Strengthens the Outer Membrane Permeability Barrier to Last-Resort Antibiotics publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1806714115 – volume: 108 start-page: 2486 year: 2011 ident: B15 article-title: The Complex that Inserts Lipopolysaccharide into the Bacterial Outer Membrane Forms a Two-Protein Plug-And-Barrel publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1015617108 – volume: 511 start-page: 52 year: 2014 ident: B10 article-title: Structural Basis for Outer Membrane Lipopolysaccharide Insertion publication-title: Nature doi: 10.1038/nature13464 – volume: 162 start-page: 470 year: 2011 ident: B28 article-title: Complex Transcriptional Organization Regulates an Escherichia coli Locus Implicated in Lipopolysaccharide Biogenesis publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2011.03.007 – volume: 567 start-page: 550 year: 2019 ident: B38 article-title: Structural Basis of Unidirectional export of Lipopolysaccharide to the Cell Surface publication-title: Nature doi: 10.1038/s41586-019-1039-0 – volume: 285 start-page: 33529 year: 2010 ident: B65 article-title: Structure and Functional Analysis of LptC, a Conserved Membrane Protein Involved in the Lipopolysaccharide Export Pathway in Escherichia coli* publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.144709 – volume: 187 start-page: 3359 year: 2005 ident: B77 article-title: Defective O-antigen polymerization in tolA and pal mutants of Escherichia coli in response to extracytoplasmic stress publication-title: J Bacteriol. doi: 10.1128/JB.187.10.3359-3368.2005 – volume: 110 start-page: E3612 year: 2013 ident: B33 article-title: Protease Homolog BepA (YfgC) Promotes Assembly and Degradation of -barrel Membrane Proteins in Escherichia coli publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1312012110 – volume: 6 start-page: a025304 year: 2016 ident: B13 article-title: Antibacterial Drug Discovery Targeting the Lipopolysaccharide Biosynthetic Enzyme LpxC publication-title: Cold Spring Harb Perspect. Med. doi: 10.1101/cshperspect.a025304 – volume: 4 start-page: eaau2634 year: 2018 ident: B66 article-title: Thanatin Targets the Intermembrane Protein Complex Required for Lipopolysaccharide Transport in Escherichia coli publication-title: Sci. Adv. doi: 10.1126/sciadv.aau2634 – volume: 8 start-page: 222 year: 2017 ident: B11 article-title: Structural and Functional Insights into the Lipopolysaccharide ABC Transporter LptB2FG publication-title: Nat. Commun. doi: 10.1038/s41467-017-00273-5 – volume: 338 start-page: 1214 year: 2012 ident: B36 article-title: Cytoplasmic ATP Hydrolysis powers Transport of Lipopolysaccharide across the Periplasm in E. coli publication-title: Science doi: 10.1126/science.1228984 – volume: 107 start-page: 12245 year: 2010 ident: B43 article-title: Nonconsecutive Disulfide Bond Formation in an Essential Integral Outer Membrane Protein publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1007319107 – volume: 195 start-page: 3734 year: 2013 ident: B47 article-title: Role for Skp in LptD Assembly in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00431-13 – volume: 16 start-page: 533 year: 1979 ident: B8 article-title: Affinities of Penicillins and Cephalosporins for the Penicillin-Binding Proteins of Escherichia coli K-12 and Their Antibacterial Activity publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.16.5.533 – volume: 4 start-page: e07118 year: 2015 ident: B19 article-title: Coordination of Peptidoglycan Synthesis and Outer Membrane Constriction during Escherichia coli Cell Division publication-title: Elife doi: 10.7554/eLife.07118 – volume: 178 start-page: 5853 year: 1996 ident: B35 article-title: Multidrug Efflux Pumps of Gram-Negative Bacteria publication-title: J. Bacteriol. doi: 10.1128/jb.178.20.5853-5859.1996 – volume: 105 start-page: 5537 year: 2008 ident: B44 article-title: Identification of Two Inner-Membrane Proteins Required for the Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0801196105 – volume: 169 start-page: 273 year: 2017 ident: B12 article-title: Architectures of Lipid Transport Systems for the Bacterial Outer Membrane publication-title: Cell doi: 10.1016/j.cell.2017.03.019 – volume: 181 start-page: 653 year: 2020 ident: B21 article-title: LetB Structure Reveals a Tunnel for Lipid Transport across the Bacterial Envelope publication-title: Cell doi: 10.1016/j.cell.2020.03.030 – volume: 11 start-page: e0161354 year: 2006 ident: B3 article-title: The Lack of the Essential LptC Protein in the Trans-envelope Lipopolysaccharide Transport Machine Is Circumvented by Suppressor Mutations in LptF, an Inner Membrane Component of the Escherichia coli Transporter publication-title: PLoS One doi: 10.1371/journal.pone.0161354 – volume: 97 start-page: 6640 year: 2000 ident: B9 article-title: One-step Inactivation of Chromosomal Genes in Escherichia coli K-12 Using PCR Products publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.120163297 – volume: 193 start-page: 1042 year: 2011 ident: B56 article-title: New Insights into the Lpt Machinery for Lipopolysaccharide Transport to the Cell Surface: LptA-LptC Interaction and LptA Stability as Sensors of a Properly Assembled Transenvelope Complex publication-title: J. Bacteriol. doi: 10.1128/JB.01037-10 – volume: 65 start-page: 149 year: 2011 ident: B29 article-title: Protein Quality Control in the Bacterial Periplasm publication-title: Annu. Rev. Microbiol. doi: 10.1146/annurev-micro-090110-102925 – volume-title: Experiments with Gene Fusions year: 1984 ident: B48 – volume: 200 start-page: e487 year: 2018 ident: B14 article-title: Mutation and Suppressor Analysis of the Essential Lipopolysaccharide Transport Protein LptA Reveals Strategies to Overcome Severe Outer Membrane Permeability Defects in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/jb.00487-17 – volume: 57 start-page: 655 year: 1993 ident: B46 article-title: Genetics of Lipopolysaccharide Biosynthesis in Enteric Bacteria publication-title: Microbiol. Rev. doi: 10.1128/mr.57.3.655-682.1993 – volume: 284 start-page: 15369 year: 2009 ident: B22 article-title: Escherichia coli K-12 Suppressor-free Mutants Lacking Early Glycosyltransferases and Late Acyltransferases publication-title: J. Biol. Chem. doi: 10.1074/jbc.m900490200 – volume: 511 start-page: 108 year: 2014 ident: B40 article-title: Structural Basis for Lipopolysaccharide Insertion in the Bacterial Outer Membrane publication-title: Nature doi: 10.1038/nature13484 – volume: 190 start-page: 4460 year: 2008 ident: B53 article-title: Functional Analysis of the Protein Machinery Required for Transport of Lipopolysaccharide to the Outer Membrane of Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.00270-08 – volume: 4 start-page: e2 year: 2006 ident: B42 article-title: Conserved and Variable Functions of the σE Stress Response in Related Genomes publication-title: Plos Biol. doi: 10.1371/journal.pbio.0040002 – volume: 17 start-page: 6487 year: 1998 ident: B62 article-title: Substrate-induced Assembly of a Contiguous Channel for Protein export from E.Coli: Reversible Bridging of an Inner-Membrane Translocase to an Outer Membrane Exit Pore publication-title: EMBO J. doi: 10.1093/emboj/17.22.6487 – volume: 67 start-page: 593 year: 2003 ident: B34 article-title: Molecular Basis of Bacterial Outer Membrane Permeability Revisited publication-title: Microbiol. Mol. Biol. Rev. doi: 10.1128/mmbr.67.4.593-656.2003 – volume: 3 start-page: 163 year: 2008 ident: B69 article-title: Agar and Broth Dilution Methods to Determine the Minimal Inhibitory Concentration (MIC) of Antimicrobial Substances publication-title: Nat. Protoc. doi: 10.1038/nprot.2007.521 – volume: 51 start-page: 4800 year: 2012 ident: B16 article-title: Regulated Assembly of the Transenvelope Protein Complex Required for Lipopolysaccharide export publication-title: Biochemistry doi: 10.1021/bi300592c – volume: 16 start-page: 779 year: 2013 ident: B73 article-title: On the Essentiality of Lipopolysaccharide to Gram-Negative Bacteria publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2013.09.007 – volume: 2 start-page: 2006 year: 2006 ident: B2 article-title: Construction of Escherichia coli K-12 In-Frame, Single-Gene Knockout Mutants: The Keio Collection publication-title: Mol. Syst. Biol. doi: 10.1038/msb4100050 – volume: 71 start-page: 635 year: 2002 ident: B41 article-title: Lipopolysaccharide Endotoxins publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.71.110601.135414 – volume: 327 start-page: 1010 year: 2010 ident: B57 article-title: Peptidomimetic Antibiotics Target Outer-Membrane Biogenesis in Pseudomonas aeruginosa publication-title: Science doi: 10.1126/science.1182749 – volume: 283 start-page: 20342 year: 2008 ident: B76 article-title: The LptA protein of Escherichia coli is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.144709 – volume: 280 start-page: 4504 year: 2005 ident: B61 article-title: Lipopolysaccharide Transport to the Bacterial Outer Membrane in Spheroplasts publication-title: J. Biol. Chem. doi: 10.1074/jbc.M409259200 – volume: 2 start-page: a000414 year: 2010 ident: B49 article-title: The Bacterial Cell Envelope publication-title: Cold Spring Harbor Perspect. Biol. doi: 10.1101/cshperspect.a000414 – volume: 117 start-page: 27989 year: 2020 ident: B79 article-title: Reversible autoinhibitory regulation of Escherichia coli metallopeptidase BepA for selective β-barrel protein degradation publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.2010301117 – volume: 199 start-page: e00418 year: 2017 ident: B51 article-title: Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly publication-title: J. Bacteriol. doi: 10.1128/JB.00418-17 – volume: 45 start-page: 1289 year: 2002 ident: B5 article-title: Imp/OstA Is Required for Cell Envelope Biogenesis in Escherichia coli publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.2002.03091.x – volume: 1 start-page: 385 year: 2006 ident: B80 article-title: Probing the barrier function of the outer membrane with chemical conditionality publication-title: ACS Chem Biol. doi: 10.1021/cb600128v – volume: 126 start-page: 109 year: 1990 ident: B25 article-title: Increased Resolution of Lipopolysaccharides and Lipooligosaccharides Utilizing Tricine-Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis publication-title: J. Immunological Methods doi: 10.1016/0022-1759(90)90018-q – volume: 55 start-page: 1403 year: 2005 ident: B60 article-title: Changes in Lipopolysaccharide Structure Induce the σE-dependent Response of Escherichia coli publication-title: Mol. Microbiol. doi: 10.1111/j.1365-2958.2005.04497.x – volume: 182 start-page: 5620 year: 2000 ident: B72 article-title: Mutation of the Lipopolysaccharide Core Glycosyltransferase Encoded by waaG Destabilizes the Outer Membrane of Escherichia coli by Interfering with Core Phosphorylation publication-title: J. Bacteriol. doi: 10.1128/JB.182.19.5620-5623.2000 – volume: 106 start-page: 8009 year: 2009 ident: B78 article-title: An ABC transport system that maintains lipid asymmetry in the Gram-negative outer membrane publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.0903229106 – volume: 14 start-page: 337 year: 2016 ident: B37 article-title: Lipopolysaccharide Transport and Assembly at the Outer Membrane: the PEZ Model publication-title: Nat. Rev. Microbiol. doi: 10.1038/nrmicro.2016.25 – volume: 18 start-page: 4425 year: 1979 ident: B45 article-title: Interaction of Divalent Cations and Polymyxin B with Lipopolysaccharide publication-title: Biochemistry doi: 10.1021/bi00587a024 – volume: 103 start-page: 11754 year: 2006 ident: B70 article-title: Identification of a Protein Complex that Assembles Lipopolysaccharide in the Outer Membrane of Escherichia coli publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.0604744103 – volume: 274 start-page: 18503 year: 1999 ident: B75 article-title: Lipid A Modifications Characteristic of Salmonella typhimurium Are Induced by NH4VO3 in Escherichia coli K12. Detection of 4-Amino-4-Deoxy-L-Arabinose, Phosphoethanolamine and Palmitate publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.26.18503 – volume: 24 start-page: 965 year: 2016 ident: B4 article-title: Structural and Functional Characterization of the LPS Transporter LptDE from Gram-Negative Pathogens publication-title: Structure doi: 10.1016/j.str.2016.03.026 – volume: 21 start-page: 871 year: 1996 ident: B30 article-title: New Components of Protein Folding in Extracytoplasmic Compartments ofEscherichia coliSurA, FkpA and Skp/OmpH publication-title: Mol. Microbiol. doi: 10.1046/j.1365-2958.1996.561412.x – volume: 60 start-page: 16 year: 2021 ident: B64 article-title: The Assembly of β-barrel Outer Membrane Proteins publication-title: Curr. Opin. Microbiol. doi: 10.1016/j.mib.2021.01.009 – volume: 10 start-page: e02729 year: 2019 ident: B31 article-title: Peptidoglycan Remodeling Enables Escherichia coli to Survive Severe Outer Membrane Assembly Defect publication-title: mBio doi: 10.1128/mBio.02729-18 – volume: 18 start-page: 318 year: 2018 ident: B59 article-title: Discovery, Research, and Development of New Antibiotics: the WHO Priority List of Antibiotic-Resistant Bacteria and Tuberculosis publication-title: Lancet Infect. Dis. doi: 10.1016/S1473-3099(17)30753-3 – volume: 140 start-page: 12691 year: 2018 ident: B71 article-title: Outer Membrane Translocon Communicates with Inner Membrane ATPase to Stop Lipopolysaccharide Transport publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b07656 – volume: 21 start-page: 950 year: 1982 ident: B17 article-title: Mode of Action of Azthreonam publication-title: Antimicrob. Agents Chemother. doi: 10.1128/AAC.21.6.950 – volume: 567 start-page: 486 year: 2019 ident: B26 article-title: Structural Basis of Lipopolysaccharide Extraction by the LptB2FGC Complex publication-title: Nature doi: 10.1038/s41586-019-1025-6 – volume: 92 start-page: 9 year: 2019 ident: B54 article-title: Lipopolysaccharide Biosynthesis and Transport to the Outer Membrane of Gram-Negative Bacteria publication-title: Subcell Biochem. doi: 10.1007/978-3-030-18768-2_2 – volume: 380 start-page: 476 year: 2008 ident: B58 article-title: Novel Structure of the Conserved Gram-Negative Lipopolysaccharide Transport Protein A and Mutagenesis Analysis publication-title: J. Mol. Biol. doi: 10.1016/j.jmb.2008.04.045 – volume: 11 start-page: 909 year: 2020 ident: B32 article-title: Thanatin Impairs Lipopolysaccharide Transport Complex Assembly by Targeting LptC-LptA Interaction and Decreasing LptA Stability publication-title: Front. Microbiol. doi: 10.3389/fmicb.2020.00909 – volume: 195 start-page: 1100 year: 2013 ident: B67 article-title: The Escherichia coli Lpt Transenvelope Protein Complex for Lipopolysaccharide export Is Assembled via Conserved Structurally Homologous Domains publication-title: J. Bacteriol. doi: 10.1128/JB.02057-12 – volume: 7 start-page: 10638 year: 2016 ident: B24 article-title: Drug Design from the Cryptic Inhibitor Envelope publication-title: Nat. Commun. doi: 10.1038/ncomms10638 – volume: 453 start-page: 885 year: 2008 ident: B23 article-title: Structural Basis for the Regulated Protease and Chaperone Function of DegP publication-title: Nature doi: 10.1038/nature07004.8 – volume: 13 start-page: 666 year: 2018 ident: B1 article-title: A Peptidomimetic Antibiotic Interacts with the Periplasmic Domain of LptD from Pseudomonas aeruginosa publication-title: ACS Chem. Biol. doi: 10.1021/acschembio.7b00822 – volume: 71 start-page: 2874 year: 2016 ident: B63 article-title: High Susceptibility of MDR and XDR Gram-Negative Pathogens to Biphenyl-Diacetylene-Based Difluoromethyl-Allo-Threonyl-Hydroxamate LpxC Inhibitors publication-title: J. Antimicrob. Chemother. doi: 10.1093/jac/dkw210 – volume: 49 start-page: 4565 year: 2010 ident: B6 article-title: Proteins Required for Lipopolysaccharide Assembly in Escherichia coli Form a Transenvelope Complex publication-title: Biochemistry doi: 10.1021/bi100493e – volume: 157 start-page: 547 year: 2006 ident: B55 article-title: Non-essential KDO Biosynthesis and New Essential Cell Envelope Biogenesis Genes in the Escherichia coli yrbG-yhbG Locus publication-title: Res. Microbiol. doi: 10.1016/j.resmic.2005.11.014 – volume: 21 start-page: 2473 year: 2007 ident: B50 article-title: Defining the Roles of the Periplasmic Chaperones SurA, Skp, and DegP in Escherichia coli publication-title: Genes Dev. doi: 10.1101/gad.1581007 – volume: 24 start-page: 469 year: 2017 ident: B27 article-title: Structural Basis for Lipopolysaccharide Extraction by ABC Transporter LptB2FG publication-title: Nat. Struct. Mol. Biol. doi: 10.1038/nsmb.3399 – volume: 189 start-page: 1963 year: 2007 ident: B20 article-title: Hfq Modulates the σ E -Mediated Envelope Stress Response and the σ 32 -Mediated Cytoplasmic Stress Response in Escherichia coli publication-title: J. Bacteriol. doi: 10.1128/JB.01243-06 |
SSID | ssj0001503764 |
Score | 2.2232625 |
Snippet | Lipopolysaccharide (LPS) is a peculiar component of the outer membrane (OM) of many Gram-negative bacteria that renders these bacteria highly impermeable to... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 758228 |
SubjectTerms | bacterial cell envelope lipopolysaccharide Lpt system LpxC inhibitor Molecular Biosciences outer membrane stability |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9QwEA5yIPgi_rbnDyL4JFS76SRtHtW745A7EfXg3kKSTnFh6R63PXHBP96ZpLfsiuiLL4W0SZvmmzTfkOk3QrxMEi9Kd6WpVV9CHaC0yiMVfaD10voY2VE8_WiOz-DDuT7fSvXFMWFZHjgP3BsdyGFhEbOq7UB58F6z6HhEHzRCSEqgla22nKn8f3BFMwfyNiZ5YZZgWi4C-YNq9poosuLs61sLUdLr_xPJ_D1WcmvxObojbk-sUb7Nvb0rbuBwT9zMeSTX98XPA5Z8yNmR5LKXPMmXA4dIcIkonjy5GGValnBIQUIoT1MUJV6u5Wf8TmxxJU8-fSkPppy4Y2rB91ngD0mMNMXQruV8kIcrxnnOMdKSrGj-QJwdHX59f1xOaRXKCEaPZeMbQE_gWR28qjuIWseaeIRnIZi-A18rROisgVkTTWN8rKBTBiMdiU_WD8XeQC_xWEhtQoWmRx2TZ4ihgVZHbHoMYNsqFqK6HmMXJ81xTn2xcOR7MCwuweIYFpdhKcSrTZOLLLjxt8rvGLhNRdbKTifIgtxkQe5fFlSIF9ewO5pbvGHiB1xerRx5l0RIdTOzhXiUzWDzqFrzxw_qQjQ7BrLTl90rw_xb0u9uiTOa1u7_j84_Ebd4PDjARqmnYm-8vMJnRJPG8DzNiF9qwxGx priority: 102 providerName: Directory of Open Access Journals |
Title | Degradation of Components of the Lpt Transenvelope Machinery Reveals LPS-Dependent Lpt Complex Stability in Escherichia coli |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35004843 https://www.proquest.com/docview/2618515719 https://pubmed.ncbi.nlm.nih.gov/PMC8727689 https://doaj.org/article/5b446943408d42a4aa52182ceab5e4b4 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3fi9NAEF7OE8EX8bfx9FjBJyFHupndJA-HeL845CqiFu4t7G4mZ6EkZ5uTK_jHO7NJi5Xiky-FtNkm2W-n833N5Bsh3gaLF6Wr2KSqjiF1EBfKIm1aR_mysN6zUBx_MucT-HipL3fEqr3VMIGLrdKO-0lN5rOD2x_L9xTwh6w4Kd8SAu3MkdRTowNiv0rld8RdSkyGtdh4YPv9Q8MJhRP09za3j9zITsHEfxvz_LuA8o-MdPZQPBiopPzQY_9I7GDzWNzrm0sun4hfJ-wD0bdMkm0tOfLbhusmeIt4n7y47mTIVdiEyiGU41BaifOl_II_iUIu5MXnr_HJ0Ci3CyP4e2Z4K4mmhsLapZw28nTB4E-5cFrS0po-FZOz02_H5_HQayH2YHQXZzYDtIRooZ1VaQVea58SubDsDlNXYFOFCFVhYJR5kxnrE6iUQU-vRDLTZ2K3oYt4IaQ2LkFTo_ZBLqLLINcesxodFHniI5Gs5rj0gxE598OYlSRIGJYywFIyLGUPSyTerYdc9y4c_9r5iIFb78gG2uGNdn5VDvFYakc6mL3xkrwCZcFazV72Hq3TCA4i8WYFe0kBx3dRbIPtzaIkyUksVWejIhLP-2WwPlSq-RcR0khkGwtk41w2P2mm34Opd05E0uTFy_9x8nviPs8HV90o9UrsdvMbfE3cqXP74T-H_RAXvwGI3xs7 |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Degradation+of+Components+of+the+Lpt+Transenvelope+Machinery+Reveals+LPS-Dependent+Lpt+Complex+Stability+in+Escherichia+coli&rft.jtitle=Frontiers+in+molecular+biosciences&rft.au=Alessandra+M.+Martorana&rft.au=Elisabete+C.+C.+M.+Moura&rft.au=Paola+Sperandeo&rft.au=Flavia+Di+Vincenzo&rft.date=2021-12-22&rft.pub=Frontiers+Media+S.A&rft.eissn=2296-889X&rft.volume=8&rft_id=info:doi/10.3389%2Ffmolb.2021.758228&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_5b446943408d42a4aa52182ceab5e4b4 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2296-889X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2296-889X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2296-889X&client=summon |