Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study
Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capa...
Saved in:
| Published in | Polymers Vol. 14; no. 17; p. 3546 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
29.08.2022
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2073-4360 2073-4360 |
| DOI | 10.3390/polym14173546 |
Cover
| Abstract | Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens. |
|---|---|
| AbstractList | Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens. Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical perfor- mance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical param- eters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens. |
| Audience | Academic |
| Author | Leon-Becerra, Juan González-Estrada, Octavio Andrés Sánchez-Acevedo, Heller |
| AuthorAffiliation | Research Group in Energy and Environment GIEMA, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia |
| AuthorAffiliation_xml | – name: Research Group in Energy and Environment GIEMA, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia |
| Author_xml | – sequence: 1 givenname: Juan surname: Leon-Becerra fullname: Leon-Becerra, Juan – sequence: 2 givenname: Octavio Andrés orcidid: 0000-0002-2778-3389 surname: González-Estrada fullname: González-Estrada, Octavio Andrés – sequence: 3 givenname: Heller surname: Sánchez-Acevedo fullname: Sánchez-Acevedo, Heller |
| BackLink | https://hal.science/hal-03763526$$DView record in HAL |
| BookMark | eNp9kk1v1DAQhi1UREvpkXskLnBI8XeyF6TVqkuRdgXi42w5zmTXVWIH2ynaf4_DVipdCezDWK_nGc-88kt05rwDhF4TfM3YAr8ffX8YCCcVE1w-QxcUV6zkTOKzv87n6CrGO5wXF1KS6gU6z2qNJRUXCFZ-GHWw0bvCd8XWt9DHIvniS4DWmlRswey1s0b3WfIjhGQhzqnrr-VyW8y4jzZlTbu20MU6aJP8Luhx_wf6lqb28Ao973Qf4eohXqIf65vvq9ty8_njp9VyUxouRSqlaTopFrSiwGvJdVvLTlay4dBpw4BRKhpKgVAQFQfQOehuAY2hvMFUd-wSXR_rTm7Uh1-679UY7KDDQRGsZsvUE8sy8OEIjFMzQGvApaAfIa-tenrj7F7t_L1acInJguYC744F9ifY7XKjZg2zSjJB5T3JuW8fHgv-5wQxqcFGA32vHfgpKloRWgtOxNzXm5PUOz8Fl72bswiviBDicdyd7kFZ1_nco8m7hcGa_FU6m_VlxSVntcA4A-wImOBjDNApY5NO1s_D2f6fJpUn1P9N_Q1ENc9R |
| CitedBy_id | crossref_primary_10_1007_s12221_023_00421_3 crossref_primary_10_3390_app14167009 crossref_primary_10_1007_s00170_023_12503_w crossref_primary_10_3390_inventions9020036 crossref_primary_10_1007_s00170_023_11256_w crossref_primary_10_3390_biom13081192 crossref_primary_10_1177_07316844241236696 crossref_primary_10_1007_s40964_024_00768_w crossref_primary_10_1007_s40964_023_00516_6 crossref_primary_10_3390_polym14235288 |
| Cites_doi | 10.1016/j.compstruct.2017.08.088 10.1016/j.prostr.2020.04.056 10.4028/www.scientific.net/KEM.774.161 10.18273/revuin.v19n2-2020018 10.3390/ma15051820 10.1080/09243046.2019.1650323 10.1021/acsomega.1c04295 10.3390/polym13203534 10.3390/polym13050753 10.3390/polym12092155 10.1016/j.polymertesting.2018.09.022 10.1016/j.compositesb.2021.108657 10.1007/s00170-018-03269-7 10.1038/srep23058 10.1016/j.jclepro.2016.11.139 10.1201/9781439894132 10.3390/polym14122509 10.1016/0266-3538(87)90016-9 10.1016/j.compscitech.2020.108318 10.1201/9781439847510 10.1115/1.4047477 10.1016/j.compstruct.2016.07.018 10.1016/j.compositesb.2018.04.054 10.3390/polym13101653 10.1016/j.compositesb.2019.03.073 10.1016/j.polymertesting.2018.04.038 10.1016/j.jmatprotec.2016.07.025 10.1002/cem.873 10.1016/j.ceramint.2018.08.083 10.1007/s40430-019-1630-1 10.1108/WJE-09-2018-0329 10.1016/j.ast.2021.106562 10.1177/002199839803200504 10.1016/j.jmapro.2018.07.007 10.1007/s11665-016-2459-8 10.3390/ma12213529 10.3390/polym12102250 10.1016/j.ijfatigue.2019.105275 10.1007/s00542-020-04784-y 10.1016/j.compstruct.2017.11.052 10.3390/ma13071653 10.1201/b16295 10.4236/ojcm.2016.61003 10.1016/S0266-3538(99)00053-6 10.3390/polym14030506 10.1016/j.compstruct.2018.03.051 10.1016/j.compind.2019.01.011 10.1016/j.matdes.2017.10.021 10.1016/j.compositesa.2008.04.016 10.1590/1980-5373-mr-2022-0049 10.1016/j.compositesb.2020.107820 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2022 MDPI AG 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Distributed under a Creative Commons Attribution 4.0 International License 2022 by the authors. 2022 |
| Copyright_xml | – notice: COPYRIGHT 2022 MDPI AG – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Distributed under a Creative Commons Attribution 4.0 International License – notice: 2022 by the authors. 2022 |
| DBID | AAYXX CITATION 7SR 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ JG9 KB. PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS 7X8 1XC VOOES 5PM ADTOC UNPAY |
| DOI | 10.3390/polym14173546 |
| DatabaseName | CrossRef Engineered Materials Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Database (Proquest) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central SciTech Premium Collection (Proquest) Materials Research Database Materials Science Database (Proquest) Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Engineered Materials Abstracts ProQuest Central Korea Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | CrossRef Publicly Available Content Database MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 2073-4360 |
| ExternalDocumentID | 10.3390/polym14173546 PMC9460192 oai:HAL:hal-03763526v1 A746438500 10_3390_polym14173546 |
| GrantInformation_xml | – fundername: project VIE 2532, Universidad Industrial de Santander |
| GroupedDBID | 53G 5VS 8FE 8FG A8Z AADQD AAFWJ AAYXX ABDBF ABJCF ACGFO ACIWK ACUHS ADBBV ADMLS AENEX AFKRA AFZYC AIAGR ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I ESTFP ESX F5P GX1 HCIFZ HH5 HYE I-F IAO ITC KB. KC. KQ8 ML~ MODMG M~E OK1 PDBOC PGMZT PHGZM PHGZT PIMPY PQGLB PROAC RNS RPM TR2 TUS 7SR 8FD ABUWG AZQEC DWQXO JG9 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7X8 1XC VOOES 5PM ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c465t-6cbf659272e4864ad86f676b4efac3e3225b22e12e574eeae57af9ebc24b02af3 |
| IEDL.DBID | UNPAY |
| ISSN | 2073-4360 |
| IngestDate | Sun Oct 26 03:51:22 EDT 2025 Tue Sep 30 15:18:43 EDT 2025 Tue Oct 14 20:44:48 EDT 2025 Fri Sep 05 07:09:53 EDT 2025 Sat Sep 06 14:15:43 EDT 2025 Mon Oct 20 16:50:09 EDT 2025 Thu Oct 16 04:23:37 EDT 2025 Thu Apr 24 23:10:38 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 17 |
| Keywords | fractographic analysis additive manufacturing machine learning thermoplastic composites micromechanics |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-6cbf659272e4864ad86f676b4efac3e3225b22e12e574eeae57af9ebc24b02af3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2778-3389 0000-0002-1740-3127 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-4360/14/17/3546/pdf?version=1661769373 |
| PMID | 36080625 |
| PQID | 2711471555 |
| PQPubID | 2032345 |
| ParticipantIDs | unpaywall_primary_10_3390_polym14173546 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460192 hal_primary_oai_HAL_hal_03763526v1 proquest_miscellaneous_2712854156 proquest_journals_2711471555 gale_infotracacademiconefile_A746438500 crossref_citationtrail_10_3390_polym14173546 crossref_primary_10_3390_polym14173546 |
| PublicationCentury | 2000 |
| PublicationDate | 20220829 |
| PublicationDateYYYYMMDD | 2022-08-29 |
| PublicationDate_xml | – month: 8 year: 2022 text: 20220829 day: 29 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Polymers |
| PublicationYear | 2022 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Chadha (ref_29) 2019; 16 Dickson (ref_7) 2017; 16 Valvez (ref_10) 2020; 25 ref_58 ref_57 Thai (ref_4) 2018; 193 Barbero (ref_35) 1998; 32 Tian (ref_44) 2017; 142 ref_51 Goh (ref_49) 2018; 137 Fidan (ref_5) 2019; 102 Fattahi (ref_16) 2014; 52 ref_19 Pyl (ref_39) 2018; 71 ref_17 Hu (ref_2) 2018; 44 Pertuz (ref_9) 2019; 130 ref_15 ref_59 Yanamandra (ref_26) 2020; 198 Caminero (ref_54) 2018; 68 Azarov (ref_48) 2019; 169 Ravindrababu (ref_53) 2018; 34 ref_23 Wisnom (ref_56) 1999; 59 Chabaud (ref_20) 2019; 26 ref_21 Young (ref_28) 2018; 22 Myles (ref_38) 2004; 18 ref_27 Caminero (ref_11) 2018; 148 Justo (ref_14) 2018; 185 Melenka (ref_43) 2016; 153 Papon (ref_31) 2018; 26 Matsuzaki (ref_40) 2016; 6 ref_34 ref_33 ref_30 Li (ref_42) 2016; 238 Quiroga (ref_52) 2021; 6 Todoroki (ref_50) 2019; 29 (ref_13) 2021; 211 Seifans (ref_32) 2021; 111 ref_37 Dutra (ref_47) 2019; 41 Zhang (ref_24) 2019; 107 Koga (ref_41) 2016; 6 Pertuz (ref_8) 2018; 774 Tebeta (ref_18) 2020; 26 Becerra (ref_12) 2020; 19 ref_1 Yurgartis (ref_36) 1987; 30 Potter (ref_55) 2008; 39 Bettini (ref_45) 2016; 26 Iragi (ref_22) 2020; 186 Zhang (ref_25) 2020; 20 Parandoush (ref_3) 2017; 182 Blok (ref_46) 2018; 22 ref_6 |
| References_xml | – volume: 182 start-page: 36 year: 2017 ident: ref_3 article-title: A review on additive manufacturing of polymer-fiber composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.08.088 – volume: 25 start-page: 394 year: 2020 ident: ref_10 article-title: 3D printed continuous carbon fiber reinforced PLA composites: A short review publication-title: Procedia Struct. Integr. doi: 10.1016/j.prostr.2020.04.056 – volume: 22 start-page: 176 year: 2018 ident: ref_46 article-title: An investigation into 3D printing of fibre reinforced thermoplastic composites publication-title: Addit. Manuf. – volume: 774 start-page: 161 year: 2018 ident: ref_8 article-title: Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts publication-title: Key Eng. Mater. doi: 10.4028/www.scientific.net/KEM.774.161 – volume: 19 start-page: 161 year: 2020 ident: ref_12 article-title: Daño en partes de manufactura aditiva reforzadas por fibras continuas publication-title: Rev. UIS Ing. doi: 10.18273/revuin.v19n2-2020018 – ident: ref_30 doi: 10.3390/ma15051820 – ident: ref_51 – volume: 29 start-page: 147 year: 2019 ident: ref_50 article-title: Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites publication-title: Adv. Compos. Mater. doi: 10.1080/09243046.2019.1650323 – volume: 6 start-page: 29830 year: 2021 ident: ref_52 article-title: Effect of Relative Density in In-Plane Mechanical Properties of Common 3D-Printed Polylactic Acid Lattice Structures publication-title: ACS Omega doi: 10.1021/acsomega.1c04295 – ident: ref_17 doi: 10.3390/polym13203534 – volume: 26 start-page: 41 year: 2018 ident: ref_31 article-title: Fracture toughness of additively manufactured carbon fiber reinforced composites publication-title: Addit. Manuf. – ident: ref_1 doi: 10.3390/polym13050753 – ident: ref_15 doi: 10.3390/polym12092155 – volume: 71 start-page: 318 year: 2018 ident: ref_39 article-title: Exploration of specimens’ geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.09.022 – volume: 211 start-page: 108657 year: 2021 ident: ref_13 article-title: Mechanical properties for long fibre reinforced fused deposition manufactured composites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2021.108657 – volume: 102 start-page: 1801 year: 2019 ident: ref_5 article-title: The trends and challenges of fiber reinforced additive manufacturing publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-018-03269-7 – volume: 6 start-page: 23058 year: 2016 ident: ref_40 article-title: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation publication-title: Sci. Rep. doi: 10.1038/srep23058 – volume: 22 start-page: 883 year: 2018 ident: ref_28 article-title: Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene publication-title: Addit. Manuf. – volume: 142 start-page: 1609 year: 2017 ident: ref_44 article-title: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2016.11.139 – ident: ref_34 doi: 10.1201/9781439894132 – ident: ref_19 doi: 10.3390/polym14122509 – volume: 30 start-page: 279 year: 1987 ident: ref_36 article-title: Measurement of small angle fiber misalignments in continuous fiber composites publication-title: Compos. Sci. Technol. doi: 10.1016/0266-3538(87)90016-9 – volume: 198 start-page: 108318 year: 2020 ident: ref_26 article-title: Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning publication-title: Compos. Sci. Technol. doi: 10.1016/j.compscitech.2020.108318 – ident: ref_57 doi: 10.1201/9781439847510 – volume: 20 start-page: 061015 year: 2020 ident: ref_25 article-title: Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4047477 – volume: 153 start-page: 866 year: 2016 ident: ref_43 article-title: Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2016.07.018 – volume: 148 start-page: 93 year: 2018 ident: ref_11 article-title: Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2018.04.054 – ident: ref_58 doi: 10.3390/polym13101653 – volume: 169 start-page: 157 year: 2019 ident: ref_48 article-title: Composite 3D printing for the small size unmanned aerial vehicle structure publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2019.03.073 – volume: 68 start-page: 415 year: 2018 ident: ref_54 article-title: Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2018.04.038 – volume: 238 start-page: 218 year: 2016 ident: ref_42 article-title: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing publication-title: J. Mater. Process. Technol. doi: 10.1016/j.jmatprotec.2016.07.025 – volume: 18 start-page: 275 year: 2004 ident: ref_38 article-title: An introduction to decision tree modeling publication-title: J. Chemom. doi: 10.1002/cem.873 – volume: 44 start-page: 20599 year: 2018 ident: ref_2 article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.08.083 – ident: ref_37 – volume: 41 start-page: 133 year: 2019 ident: ref_47 article-title: Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic publication-title: J. Braz. Soc. Mech. Sci. Eng. doi: 10.1007/s40430-019-1630-1 – volume: 16 start-page: 550 year: 2019 ident: ref_29 article-title: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts publication-title: World J. Eng. doi: 10.1108/WJE-09-2018-0329 – volume: 111 start-page: 106562 year: 2021 ident: ref_32 article-title: Elastic/viscoplastic characterization of additively manufactured composite based on continuous carbon fibers publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2021.106562 – volume: 32 start-page: 483 year: 1998 ident: ref_35 article-title: Prediction of Compression Strength of Unidirectional Polymer Matrix Composites publication-title: J. Compos. Mater. doi: 10.1177/002199839803200504 – volume: 34 start-page: 659 year: 2018 ident: ref_53 article-title: Evaluation of the influence of build and print orientations of unmanned aerial vehicle parts fabricated using fused deposition modeling process publication-title: J. Manuf. Process. doi: 10.1016/j.jmapro.2018.07.007 – volume: 26 start-page: 843 year: 2016 ident: ref_45 article-title: Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic publication-title: J. Mater. Eng. Perform. doi: 10.1007/s11665-016-2459-8 – ident: ref_6 doi: 10.3390/ma12213529 – ident: ref_27 doi: 10.3390/polym12102250 – volume: 130 start-page: 105275 year: 2019 ident: ref_9 article-title: Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique publication-title: Int. J. Fatigue doi: 10.1016/j.ijfatigue.2019.105275 – volume: 26 start-page: 2423 year: 2020 ident: ref_18 article-title: Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect publication-title: Microsyst. Technol. doi: 10.1007/s00542-020-04784-y – volume: 185 start-page: 537 year: 2018 ident: ref_14 article-title: Characterization of 3D printed long fibre reinforced composites publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2017.11.052 – ident: ref_23 doi: 10.3390/ma13071653 – ident: ref_33 doi: 10.1201/b16295 – volume: 26 start-page: 94 year: 2019 ident: ref_20 article-title: Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications publication-title: Addit. Manuf. – volume: 6 start-page: 18 year: 2016 ident: ref_41 article-title: 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens publication-title: Open J. Compos. Mater. doi: 10.4236/ojcm.2016.61003 – volume: 59 start-page: 1937 year: 1999 ident: ref_56 article-title: Size effects in the testing of fibre-composite materials publication-title: Compos. Sci. Technol. doi: 10.1016/S0266-3538(99)00053-6 – ident: ref_59 doi: 10.3390/polym14030506 – volume: 193 start-page: 8 year: 2018 ident: ref_4 article-title: Elastic properties of 3D printed fibre-reinforced structures publication-title: Compos. Struct. doi: 10.1016/j.compstruct.2018.03.051 – volume: 107 start-page: 11 year: 2019 ident: ref_24 article-title: Deep learning-based tensile strength prediction in fused deposition modeling publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.01.011 – volume: 137 start-page: 79 year: 2018 ident: ref_49 article-title: Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics publication-title: Mater. Des. doi: 10.1016/j.matdes.2017.10.021 – volume: 39 start-page: 1343 year: 2008 ident: ref_55 article-title: Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures publication-title: Compos. Part A Appl. Sci. Manuf. doi: 10.1016/j.compositesa.2008.04.016 – ident: ref_21 doi: 10.1590/1980-5373-mr-2022-0049 – volume: 186 start-page: 107820 year: 2020 ident: ref_22 article-title: An approach to analyse the factors behind the micromechanical response of 3D-printed composites publication-title: Compos. Part B Eng. doi: 10.1016/j.compositesb.2020.107820 – volume: 16 start-page: 146 year: 2017 ident: ref_7 article-title: Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing publication-title: Addit. Manuf. – volume: 52 start-page: 3 year: 2014 ident: ref_16 article-title: Theoretical study of stress transfer in platelet reinforced composites publication-title: J. Theor. Appl. Mech. |
| SSID | ssj0000456617 |
| Score | 2.3864346 |
| Snippet | Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in... |
| SourceID | unpaywall pubmedcentral hal proquest gale crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 3546 |
| SubjectTerms | 3D printing Additive manufacturing Algorithms Artificial intelligence Carbon fibers Composite materials Continuous fiber composites Data mining Deep learning Engineering Sciences Experiments Failure mechanisms Failure surface Fiber reinforced polymers Gaussian process Machine learning Mechanical properties Mechanics Model accuracy Neural networks Polymers Prediction models Process parameters Regression models Stiffness Structural mechanics Tensile tests Topology |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616aFcEE9hKGhBCC5Y9WMfzgGhUDWKEImqikq9WbvrtYpkbNM4oPx7ZvwiQaKnSOu1Y3tmd7_xznwfwFvrlMp4LP2MT62P8ZfyjdWWiJCTzAgtdFsevVzJxRX_ci2uD2A11MJQWuUwJ7YTdVZZ-kZ-GilE7gpXP_Gp_umTahTtrg4SGrqXVsg-thRjh3AUETPWBI4-n68uLsevLgRgcM3uyDZjjPdP66rY_gh5qGJBIHhnceqn6MMbypDcgZ__Jk8eb8pab3_rothZmeYP4H4PKdms84GHcODKR3B8Nii5PYZWuqETG2RVzkj-rFizpmIXt7RN07Clo_pfMhc2VTWlWrs1dZ1f-rMlo9MptwvbdJkxzeZUWtVxXbcnUTLi9glczc-_nS38Xl7Bt1yKxpfW5LSpqiLHE8l1lshcKmm4y7WNHY10E0UujJxQ3DmNPzqfOmMjboJI5_FTmJRV6Z4Bc8IkUiP2UYhwELObwNosDIKcAppEWA8-DO81tT33OElgFCnGIGSGdM8MHrwbu9cd6cb_Or4nI6U0GPF66GRdTQHeFdFapTPFEXElIgg8eIN2HK9GpNqL2deU2gKaY0Ukf4UenAxmTvuhvE7_Op4Hr8fDaEHaWdGlqzZtH6pExVjYA7XnHnv_uH-k_H7T0nlPuSScjc8yOtLdT_387tt8AfciqtEIqLzmBCbN7ca9ROTUmFf9cPgDE-ka4w priority: 102 providerName: ProQuest |
| Title | Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study |
| URI | https://www.proquest.com/docview/2711471555 https://www.proquest.com/docview/2712854156 https://hal.science/hal-03763526 https://pubmed.ncbi.nlm.nih.gov/PMC9460192 https://www.mdpi.com/2073-4360/14/17/3546/pdf?version=1661769373 |
| UnpaywallVersion | publishedVersion |
| Volume | 14 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: HH5 dateStart: 20090101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: ABDBF dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: EBSCOhost Food Science Source customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: A8Z dateStart: 20100901 isFulltext: true titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: ADMLS dateStart: 20100901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: GX1 dateStart: 20090101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: M~E dateStart: 20090101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: RPM dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: BENPR dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2073-4360 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000456617 issn: 2073-4360 databaseCode: 8FG dateStart: 20090101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB9s-3C--C0XPUsU0Rdzzcd-pE9Sj-sVsaUcFupT2N1suMOalGt6Uv96Z5K0tAeK4FPIZnbTZSezv-nO_AbgrbFSpiwSXsr6xkP_S3raKENEyHGqueKqSo8eT8Roxj7P-Xwvi5_CKtEVv66MdIj65-FAfi9gvUD2Is5Eb5lmH2-b_5IC3F2omJ-MWtARHNF4GzqzyXTwjWrKbXvX1JoReve9ZbHY_AhYIGmog62oMcitK4qH3AObd0Mlj9b5Um1-qsVibx8aPgS1nUEdfvL9dF3qU_PrDrnj_0zxETxoQKo7qLXqMdyz-RM4OtvWhnsKVTGIunyhW2QuFVRbrNyycKc3dPBTumNLGcWkANhULCl4265IdHjpDcYudadoMWxTeeoqd0jJWjV7dtWJwhs3z2A2PP96NvKagg2eYYKXnjA6o2NaGVoWC6bSWGRCCs1spkxkyXboMLRBaLlk1iq8qKxvtQmZ9kOVRc-hnRe5PQbXch0LhWhKImZCL0D7xqSB72fkIsXcOPBhu3aJadjMqajGIkGvhpY6OVhqB97txJc1jcefBN-TIiT0eeN4qLZ1lgL-KiLKSgaSIYaLue878AZ1ZTca0XSPBl8SavPJavNQ3AYOnGxVKWmMwyoJJTqhEoEcd-D17jGuIJ3VqNwW60qGclvRu3ZAHqjgwRsPn-TXVxVBeJ8JQu44l52y_n3WL_5Z8iXcDykBxKfcnRNolzdr-wphWam70IqHF13ofDqfTC_x7mIedJuv8TcgNDcy |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswEB1kObiXoiuqJm3ZosulQmSKi3wICjeN4TS2EQQJkJtCURRSwJWc2G7gn-u3dUaLaxdobjkJoChK5AzJN-LMG4D31mmdilD5qehYH-0v7SfWWCJCjtJEGmnK8OjhSPXPxfcLebEBv5tYGHKrbNbEcqFOC0v_yPe4RuSucfeTXybXPmWNotPVJoWGqVMrpPslxVgd2HHsFrdowk33j76hvD9w3js8O-j7dZYB3wolZ76ySUZni5o7ESlh0khlSqtEuMzY0JHCJ5y7NndSC-cMXkzWcYnlIgm4yUJsdxO2RSg6aPxtfz0cnZwu__IQYEKMUJF7hmEn2JsU48XPtmjrUBLoXtkM6y1h84o8Mlfg7r_Omq15PjGLWzMer-yEvUfwsIawrFvp3GPYcPkTaB00meOeQpkqokpuyIqMUbq18ZTNCnZyQ8dCMzZ0FG9M6oFFxYRcu92UqvZO_e6Q0ePkS4ZlJk-ZYT0K5aq4tcuHyPlx8QzO72Wgn8NWXuTuBTAnk0gZxFoaERXaCElgbdoOgowMqEhaDz434xrbmuucUm6MY7R5SAzxmhg8-LisPqlIPv5X8RMJKabJj-2hUlcxDPhVRKMVd7VAhBfJIPDgHcpx2RqRePe7g5jKAlrTJVe_2h7sNmKO66VjGv9VdA_eLm-jBOkkx-SumJd1KPIVbW8P9Jp6rL1x_U7-46qkD-8IRbge-7JUpLt7_fLuz3wDrf7ZcBAPjkbHO_CAU3xIQKE9u7A1u5m7V4jaZsnremowuLzv2fgH8UNZMQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RaJcEE-RUsAgHheiTRw_sgeEVi1hS7tVhajUW3AcR0XaJkt3l2r_Gr-OmTyWXSR66ymS4zixZ2x_E898A_DaOq1zESk_F33ro_2l_cwaS0TIcZ5JI00dHj06VsNT8eVMnm3A7y4WhtwquzWxXqjzytI_8h7XiNw17n6yV7RuESf7ycfJT58ySNFJa5dOo1GRQ7e4QvNt-uFgH2X9hvPk07e9od9mGPCtUHLmK5sVdK6ouROxEiaPVaG0yoQrjI0cKXvGuQu5k1o4Z_Biir7LLBdZwE0RYbubcEsTiztFqSefl_93CCohOmhoPaOoH_Qm1XhxEYpQR5Lg9so22G4Gm-fki7kCdP9109yelxOzuDLj8coemNyDuy14ZYNG2-7DhisfwPZelzPuIdRJIpq0hqwqGCVaG0_ZrGInl3QgNGMjR5HGpBhYVE3IqdtNqWry1R-MGD1OXmRYZsqcGZZQEFfDql0_RG6Pi0dweiPD_Bi2yqp0T4A5mcXKIMrSiKXQOsgCa_MwCAoynWJpPXjfjWtqW5ZzSrYxTtHaITGka2Lw4O2y-qSh9_hfxXckpJSmPbaH6txEL-BXEYFWOtACsV0sg8CDVyjHZWtE3z0cHKVUFtBqLrn6FXqw24k5bReNafpXxT14ubyNEqQzHFO6al7XoZhXtLo90GvqsfbG9Tvlj_OaOLwvFCF67MtSka7v9c71n_kCbuMcTI8Ojg-fwh1OgSEBxfTswtbscu6eIVybZc_recHg-01PxD-SaFbL |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_s9aG-1G-aWmUV0RfTfO1H7klC8TjEK0U8qE9hd7OhxZiEXq5y_vXO5OO4FBTBp8BmdpNlJ7O_yc78hpA3xkqZsUi4GZsaF_wv6WqjDBIhx5nmiqs2PXpxLuZL9umSX-5k8WNYJbji162RDkH_XBjI9wLmBdKLOBNeneUfbvt_SQHsLljMT0Z7ZF9wQOMTsr88v0i-YU25oXdHrRmBd-_VVbH5EbBA4lCjrag3yHtXGA-5AzbvhkoerMtabX6qotjZh2YPiBpm0IWffD9dN_rU_LpD7vg_U3xIDnuQSpNOqx6Re7Z8TA7OhtpwT0hbDKIrX0irnGJBtWJFm4pe3ODBT0MXFjOKUQGgqaoxeNuuUHT2xU0WFLtjtBi0qTKjis4wWatjz247YXjj5ilZzj5-PZu7fcEG1zDBG1cYneMxrQwtiwVTWSxyIYVmNlcmsmg7dBjaILRcMmsVXFQ-tdqETPuhyqNnZFJWpT0i1HIdCwVoSgJmAi9A-8Zkge_n6CLF3Djk_bB2qenZzLGoRpGCV4NLnY6W2iFvt-J1R-PxJ8F3qAgpft4wHqhtl6UAb4VEWWkiGWC4mPu-Q16DrmxHQ5ruefI5xTYfrTYPxW3gkJNBldLeOKzSUIITKgHIcYe82t6GFcSzGlXaat3KYG4reNcOkSMVHD1xfKe8vmoJwqdMIHKHuWyV9e-zPv5nyefkfogJID7m7pyQSXOzti8AljX6Zf_l_Qb65DPB |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Models+to+Predict+Mechanical+Properties+of+FR-AM+Composites+and+a+Fractographical+Study&rft.jtitle=Polymers&rft.au=Le%C3%B3n-Becerra%2C+J.&rft.au=Gonz%C3%A1lez+Estrada%2C+Octavio+Andr%C3%A9s&rft.au=S%C3%A1nchez+Acevedo%2C+Heller&rft.date=2022-08-29&rft.pub=MDPI&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390%2Fpolym14173546&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03763526v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon |