Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study

Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capa...

Full description

Saved in:
Bibliographic Details
Published inPolymers Vol. 14; no. 17; p. 3546
Main Authors Leon-Becerra, Juan, González-Estrada, Octavio Andrés, Sánchez-Acevedo, Heller
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 29.08.2022
MDPI
Subjects
Online AccessGet full text
ISSN2073-4360
2073-4360
DOI10.3390/polym14173546

Cover

Abstract Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.
AbstractList Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.
Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical perfor- mance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical param- eters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens
Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in their mechanical performance and failure mechanisms, this work aims to describe the principal failure mechanisms and compare the prediction capabilities for the mechanical properties, stiffness constants, and strength of cFRAM using two distinct predictive models. This work presents experimental tensile tests of continuous carbon fiber AM composites varying their reinforced fraction, printing direction, and fiber angle. In the first predictive model, a micromechanical-based model for stiffness and strength predicts their macroscopic response. In the second part, data-driven models using different machine learning algorithms for regression are trained to predict stiffness and strength based on critical parameters. Both models are assessed regarding their accuracy, ease of implementation, and generalization capabilities. Moreover, microstructural images are used for a qualitative evaluation of the parameters and their influence on the macroscopic response and failure surface topology. Finally, we conclude that although predicting the mechanical properties of cFRAM is a complex task, it can be carried on a Gaussian process regression and a micromechanical model, with good accuracy generalized onto different process parameters specimens.
Audience Academic
Author Leon-Becerra, Juan
González-Estrada, Octavio Andrés
Sánchez-Acevedo, Heller
AuthorAffiliation Research Group in Energy and Environment GIEMA, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
AuthorAffiliation_xml – name: Research Group in Energy and Environment GIEMA, School of Mechanical Engineering, Universidad Industrial de Santander, Bucaramanga 680002, Colombia
Author_xml – sequence: 1
  givenname: Juan
  surname: Leon-Becerra
  fullname: Leon-Becerra, Juan
– sequence: 2
  givenname: Octavio Andrés
  orcidid: 0000-0002-2778-3389
  surname: González-Estrada
  fullname: González-Estrada, Octavio Andrés
– sequence: 3
  givenname: Heller
  surname: Sánchez-Acevedo
  fullname: Sánchez-Acevedo, Heller
BackLink https://hal.science/hal-03763526$$DView record in HAL
BookMark eNp9kk1v1DAQhi1UREvpkXskLnBI8XeyF6TVqkuRdgXi42w5zmTXVWIH2ynaf4_DVipdCezDWK_nGc-88kt05rwDhF4TfM3YAr8ffX8YCCcVE1w-QxcUV6zkTOKzv87n6CrGO5wXF1KS6gU6z2qNJRUXCFZ-GHWw0bvCd8XWt9DHIvniS4DWmlRswey1s0b3WfIjhGQhzqnrr-VyW8y4jzZlTbu20MU6aJP8Luhx_wf6lqb28Ao973Qf4eohXqIf65vvq9ty8_njp9VyUxouRSqlaTopFrSiwGvJdVvLTlay4dBpw4BRKhpKgVAQFQfQOehuAY2hvMFUd-wSXR_rTm7Uh1-679UY7KDDQRGsZsvUE8sy8OEIjFMzQGvApaAfIa-tenrj7F7t_L1acInJguYC744F9ifY7XKjZg2zSjJB5T3JuW8fHgv-5wQxqcFGA32vHfgpKloRWgtOxNzXm5PUOz8Fl72bswiviBDicdyd7kFZ1_nco8m7hcGa_FU6m_VlxSVntcA4A-wImOBjDNApY5NO1s_D2f6fJpUn1P9N_Q1ENc9R
CitedBy_id crossref_primary_10_1007_s12221_023_00421_3
crossref_primary_10_3390_app14167009
crossref_primary_10_1007_s00170_023_12503_w
crossref_primary_10_3390_inventions9020036
crossref_primary_10_1007_s00170_023_11256_w
crossref_primary_10_3390_biom13081192
crossref_primary_10_1177_07316844241236696
crossref_primary_10_1007_s40964_024_00768_w
crossref_primary_10_1007_s40964_023_00516_6
crossref_primary_10_3390_polym14235288
Cites_doi 10.1016/j.compstruct.2017.08.088
10.1016/j.prostr.2020.04.056
10.4028/www.scientific.net/KEM.774.161
10.18273/revuin.v19n2-2020018
10.3390/ma15051820
10.1080/09243046.2019.1650323
10.1021/acsomega.1c04295
10.3390/polym13203534
10.3390/polym13050753
10.3390/polym12092155
10.1016/j.polymertesting.2018.09.022
10.1016/j.compositesb.2021.108657
10.1007/s00170-018-03269-7
10.1038/srep23058
10.1016/j.jclepro.2016.11.139
10.1201/9781439894132
10.3390/polym14122509
10.1016/0266-3538(87)90016-9
10.1016/j.compscitech.2020.108318
10.1201/9781439847510
10.1115/1.4047477
10.1016/j.compstruct.2016.07.018
10.1016/j.compositesb.2018.04.054
10.3390/polym13101653
10.1016/j.compositesb.2019.03.073
10.1016/j.polymertesting.2018.04.038
10.1016/j.jmatprotec.2016.07.025
10.1002/cem.873
10.1016/j.ceramint.2018.08.083
10.1007/s40430-019-1630-1
10.1108/WJE-09-2018-0329
10.1016/j.ast.2021.106562
10.1177/002199839803200504
10.1016/j.jmapro.2018.07.007
10.1007/s11665-016-2459-8
10.3390/ma12213529
10.3390/polym12102250
10.1016/j.ijfatigue.2019.105275
10.1007/s00542-020-04784-y
10.1016/j.compstruct.2017.11.052
10.3390/ma13071653
10.1201/b16295
10.4236/ojcm.2016.61003
10.1016/S0266-3538(99)00053-6
10.3390/polym14030506
10.1016/j.compstruct.2018.03.051
10.1016/j.compind.2019.01.011
10.1016/j.matdes.2017.10.021
10.1016/j.compositesa.2008.04.016
10.1590/1980-5373-mr-2022-0049
10.1016/j.compositesb.2020.107820
ContentType Journal Article
Copyright COPYRIGHT 2022 MDPI AG
2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Distributed under a Creative Commons Attribution 4.0 International License
2022 by the authors. 2022
Copyright_xml – notice: COPYRIGHT 2022 MDPI AG
– notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
– notice: 2022 by the authors. 2022
DBID AAYXX
CITATION
7SR
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
D1I
DWQXO
HCIFZ
JG9
KB.
PDBOC
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
7X8
1XC
VOOES
5PM
ADTOC
UNPAY
DOI 10.3390/polym14173546
DatabaseName CrossRef
Engineered Materials Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Database (Proquest)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One
ProQuest Materials Science Collection
ProQuest Central
SciTech Premium Collection (Proquest)
Materials Research Database
Materials Science Database (Proquest)
Materials Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Materials Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Engineered Materials Abstracts
ProQuest Central Korea
Materials Science Database
ProQuest Central (New)
ProQuest Materials Science Collection
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList
CrossRef

Publicly Available Content Database

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2073-4360
ExternalDocumentID 10.3390/polym14173546
PMC9460192
oai:HAL:hal-03763526v1
A746438500
10_3390_polym14173546
GrantInformation_xml – fundername: project VIE 2532, Universidad Industrial de Santander
GroupedDBID 53G
5VS
8FE
8FG
A8Z
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ACGFO
ACIWK
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
ESTFP
ESX
F5P
GX1
HCIFZ
HH5
HYE
I-F
IAO
ITC
KB.
KC.
KQ8
ML~
MODMG
M~E
OK1
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RNS
RPM
TR2
TUS
7SR
8FD
ABUWG
AZQEC
DWQXO
JG9
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7X8
1XC
VOOES
5PM
ADTOC
C1A
IPNFZ
RIG
UNPAY
ID FETCH-LOGICAL-c465t-6cbf659272e4864ad86f676b4efac3e3225b22e12e574eeae57af9ebc24b02af3
IEDL.DBID UNPAY
ISSN 2073-4360
IngestDate Sun Oct 26 03:51:22 EDT 2025
Tue Sep 30 15:18:43 EDT 2025
Tue Oct 14 20:44:48 EDT 2025
Fri Sep 05 07:09:53 EDT 2025
Sat Sep 06 14:15:43 EDT 2025
Mon Oct 20 16:50:09 EDT 2025
Thu Oct 16 04:23:37 EDT 2025
Thu Apr 24 23:10:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 17
Keywords fractographic analysis
additive manufacturing
machine learning
thermoplastic composites
micromechanics
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-6cbf659272e4864ad86f676b4efac3e3225b22e12e574eeae57af9ebc24b02af3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2778-3389
0000-0002-1740-3127
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2073-4360/14/17/3546/pdf?version=1661769373
PMID 36080625
PQID 2711471555
PQPubID 2032345
ParticipantIDs unpaywall_primary_10_3390_polym14173546
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9460192
hal_primary_oai_HAL_hal_03763526v1
proquest_miscellaneous_2712854156
proquest_journals_2711471555
gale_infotracacademiconefile_A746438500
crossref_citationtrail_10_3390_polym14173546
crossref_primary_10_3390_polym14173546
PublicationCentury 2000
PublicationDate 20220829
PublicationDateYYYYMMDD 2022-08-29
PublicationDate_xml – month: 8
  year: 2022
  text: 20220829
  day: 29
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Polymers
PublicationYear 2022
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Chadha (ref_29) 2019; 16
Dickson (ref_7) 2017; 16
Valvez (ref_10) 2020; 25
ref_58
ref_57
Thai (ref_4) 2018; 193
Barbero (ref_35) 1998; 32
Tian (ref_44) 2017; 142
ref_51
Goh (ref_49) 2018; 137
Fidan (ref_5) 2019; 102
Fattahi (ref_16) 2014; 52
ref_19
Pyl (ref_39) 2018; 71
ref_17
Hu (ref_2) 2018; 44
Pertuz (ref_9) 2019; 130
ref_15
ref_59
Yanamandra (ref_26) 2020; 198
Caminero (ref_54) 2018; 68
Azarov (ref_48) 2019; 169
Ravindrababu (ref_53) 2018; 34
ref_23
Wisnom (ref_56) 1999; 59
Chabaud (ref_20) 2019; 26
ref_21
Young (ref_28) 2018; 22
Myles (ref_38) 2004; 18
ref_27
Caminero (ref_11) 2018; 148
Justo (ref_14) 2018; 185
Melenka (ref_43) 2016; 153
Papon (ref_31) 2018; 26
Matsuzaki (ref_40) 2016; 6
ref_34
ref_33
ref_30
Li (ref_42) 2016; 238
Quiroga (ref_52) 2021; 6
Todoroki (ref_50) 2019; 29
(ref_13) 2021; 211
Seifans (ref_32) 2021; 111
ref_37
Dutra (ref_47) 2019; 41
Zhang (ref_24) 2019; 107
Koga (ref_41) 2016; 6
Pertuz (ref_8) 2018; 774
Tebeta (ref_18) 2020; 26
Becerra (ref_12) 2020; 19
ref_1
Yurgartis (ref_36) 1987; 30
Potter (ref_55) 2008; 39
Bettini (ref_45) 2016; 26
Iragi (ref_22) 2020; 186
Zhang (ref_25) 2020; 20
Parandoush (ref_3) 2017; 182
Blok (ref_46) 2018; 22
ref_6
References_xml – volume: 182
  start-page: 36
  year: 2017
  ident: ref_3
  article-title: A review on additive manufacturing of polymer-fiber composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.08.088
– volume: 25
  start-page: 394
  year: 2020
  ident: ref_10
  article-title: 3D printed continuous carbon fiber reinforced PLA composites: A short review
  publication-title: Procedia Struct. Integr.
  doi: 10.1016/j.prostr.2020.04.056
– volume: 22
  start-page: 176
  year: 2018
  ident: ref_46
  article-title: An investigation into 3D printing of fibre reinforced thermoplastic composites
  publication-title: Addit. Manuf.
– volume: 774
  start-page: 161
  year: 2018
  ident: ref_8
  article-title: Evaluation of Tensile Properties and Damage of Continuous Fibre Reinforced 3D-Printed Parts
  publication-title: Key Eng. Mater.
  doi: 10.4028/www.scientific.net/KEM.774.161
– volume: 19
  start-page: 161
  year: 2020
  ident: ref_12
  article-title: Daño en partes de manufactura aditiva reforzadas por fibras continuas
  publication-title: Rev. UIS Ing.
  doi: 10.18273/revuin.v19n2-2020018
– ident: ref_30
  doi: 10.3390/ma15051820
– ident: ref_51
– volume: 29
  start-page: 147
  year: 2019
  ident: ref_50
  article-title: Tensile property evaluations of 3D printed continuous carbon fiber reinforced thermoplastic composites
  publication-title: Adv. Compos. Mater.
  doi: 10.1080/09243046.2019.1650323
– volume: 6
  start-page: 29830
  year: 2021
  ident: ref_52
  article-title: Effect of Relative Density in In-Plane Mechanical Properties of Common 3D-Printed Polylactic Acid Lattice Structures
  publication-title: ACS Omega
  doi: 10.1021/acsomega.1c04295
– ident: ref_17
  doi: 10.3390/polym13203534
– volume: 26
  start-page: 41
  year: 2018
  ident: ref_31
  article-title: Fracture toughness of additively manufactured carbon fiber reinforced composites
  publication-title: Addit. Manuf.
– ident: ref_1
  doi: 10.3390/polym13050753
– ident: ref_15
  doi: 10.3390/polym12092155
– volume: 71
  start-page: 318
  year: 2018
  ident: ref_39
  article-title: Exploration of specimens’ geometry and tab configuration for tensile testing exploiting the potential of 3D printing freeform shape continuous carbon fibre-reinforced nylon matrix composites
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.09.022
– volume: 211
  start-page: 108657
  year: 2021
  ident: ref_13
  article-title: Mechanical properties for long fibre reinforced fused deposition manufactured composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2021.108657
– volume: 102
  start-page: 1801
  year: 2019
  ident: ref_5
  article-title: The trends and challenges of fiber reinforced additive manufacturing
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-018-03269-7
– volume: 6
  start-page: 23058
  year: 2016
  ident: ref_40
  article-title: Three-dimensional printing of continuous-fiber composites by in-nozzle impregnation
  publication-title: Sci. Rep.
  doi: 10.1038/srep23058
– volume: 22
  start-page: 883
  year: 2018
  ident: ref_28
  article-title: Interlayer fracture toughness of additively manufactured unreinforced and carbon-fiber-reinforced acrylonitrile butadiene styrene
  publication-title: Addit. Manuf.
– volume: 142
  start-page: 1609
  year: 2017
  ident: ref_44
  article-title: Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2016.11.139
– ident: ref_34
  doi: 10.1201/9781439894132
– ident: ref_19
  doi: 10.3390/polym14122509
– volume: 30
  start-page: 279
  year: 1987
  ident: ref_36
  article-title: Measurement of small angle fiber misalignments in continuous fiber composites
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/0266-3538(87)90016-9
– volume: 198
  start-page: 108318
  year: 2020
  ident: ref_26
  article-title: Reverse engineering of additive manufactured composite part by toolpath reconstruction using imaging and machine learning
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/j.compscitech.2020.108318
– ident: ref_57
  doi: 10.1201/9781439847510
– volume: 20
  start-page: 061015
  year: 2020
  ident: ref_25
  article-title: Predicting Flexural Strength of Additively Manufactured Continuous Carbon Fiber-Reinforced Polymer Composites Using Machine Learning
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4047477
– volume: 153
  start-page: 866
  year: 2016
  ident: ref_43
  article-title: Evaluation and prediction of the tensile properties of continuous fiber-reinforced 3D printed structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2016.07.018
– volume: 148
  start-page: 93
  year: 2018
  ident: ref_11
  article-title: Impact damage resistance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2018.04.054
– ident: ref_58
  doi: 10.3390/polym13101653
– volume: 169
  start-page: 157
  year: 2019
  ident: ref_48
  article-title: Composite 3D printing for the small size unmanned aerial vehicle structure
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2019.03.073
– volume: 68
  start-page: 415
  year: 2018
  ident: ref_54
  article-title: Interlaminar bonding performance of 3D printed continuous fibre reinforced thermoplastic composites using fused deposition modelling
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2018.04.038
– volume: 238
  start-page: 218
  year: 2016
  ident: ref_42
  article-title: Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing
  publication-title: J. Mater. Process. Technol.
  doi: 10.1016/j.jmatprotec.2016.07.025
– volume: 18
  start-page: 275
  year: 2004
  ident: ref_38
  article-title: An introduction to decision tree modeling
  publication-title: J. Chemom.
  doi: 10.1002/cem.873
– volume: 44
  start-page: 20599
  year: 2018
  ident: ref_2
  article-title: A review on laser deposition-additive manufacturing of ceramics and ceramic reinforced metal matrix composites
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.08.083
– ident: ref_37
– volume: 41
  start-page: 133
  year: 2019
  ident: ref_47
  article-title: Mechanical characterization and asymptotic homogenization of 3D-printed continuous carbon fiber-reinforced thermoplastic
  publication-title: J. Braz. Soc. Mech. Sci. Eng.
  doi: 10.1007/s40430-019-1630-1
– volume: 16
  start-page: 550
  year: 2019
  ident: ref_29
  article-title: Effect of fused deposition modelling process parameters on mechanical properties of 3D printed parts
  publication-title: World J. Eng.
  doi: 10.1108/WJE-09-2018-0329
– volume: 111
  start-page: 106562
  year: 2021
  ident: ref_32
  article-title: Elastic/viscoplastic characterization of additively manufactured composite based on continuous carbon fibers
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2021.106562
– volume: 32
  start-page: 483
  year: 1998
  ident: ref_35
  article-title: Prediction of Compression Strength of Unidirectional Polymer Matrix Composites
  publication-title: J. Compos. Mater.
  doi: 10.1177/002199839803200504
– volume: 34
  start-page: 659
  year: 2018
  ident: ref_53
  article-title: Evaluation of the influence of build and print orientations of unmanned aerial vehicle parts fabricated using fused deposition modeling process
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2018.07.007
– volume: 26
  start-page: 843
  year: 2016
  ident: ref_45
  article-title: Fused Deposition Technique for Continuous Fiber Reinforced Thermoplastic
  publication-title: J. Mater. Eng. Perform.
  doi: 10.1007/s11665-016-2459-8
– ident: ref_6
  doi: 10.3390/ma12213529
– ident: ref_27
  doi: 10.3390/polym12102250
– volume: 130
  start-page: 105275
  year: 2019
  ident: ref_9
  article-title: Static and fatigue behaviour of continuous fibre reinforced thermoplastic composites manufactured by fused deposition modelling technique
  publication-title: Int. J. Fatigue
  doi: 10.1016/j.ijfatigue.2019.105275
– volume: 26
  start-page: 2423
  year: 2020
  ident: ref_18
  article-title: Experimental and numerical study on HDPE/SWCNT nanocomposite elastic properties considering the processing techniques effect
  publication-title: Microsyst. Technol.
  doi: 10.1007/s00542-020-04784-y
– volume: 185
  start-page: 537
  year: 2018
  ident: ref_14
  article-title: Characterization of 3D printed long fibre reinforced composites
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2017.11.052
– ident: ref_23
  doi: 10.3390/ma13071653
– ident: ref_33
  doi: 10.1201/b16295
– volume: 26
  start-page: 94
  year: 2019
  ident: ref_20
  article-title: Hygromechanical properties of 3D printed continuous carbon and glass fibre reinforced polyamide composite for outdoor structural applications
  publication-title: Addit. Manuf.
– volume: 6
  start-page: 18
  year: 2016
  ident: ref_41
  article-title: 3D Printing of Continuous Carbon Fibre Reinforced Thermo-Plastic (CFRTP) Tensile Test Specimens
  publication-title: Open J. Compos. Mater.
  doi: 10.4236/ojcm.2016.61003
– volume: 59
  start-page: 1937
  year: 1999
  ident: ref_56
  article-title: Size effects in the testing of fibre-composite materials
  publication-title: Compos. Sci. Technol.
  doi: 10.1016/S0266-3538(99)00053-6
– ident: ref_59
  doi: 10.3390/polym14030506
– volume: 193
  start-page: 8
  year: 2018
  ident: ref_4
  article-title: Elastic properties of 3D printed fibre-reinforced structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2018.03.051
– volume: 107
  start-page: 11
  year: 2019
  ident: ref_24
  article-title: Deep learning-based tensile strength prediction in fused deposition modeling
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.01.011
– volume: 137
  start-page: 79
  year: 2018
  ident: ref_49
  article-title: Characterization of mechanical properties and fracture mode of additively manufactured carbon fiber and glass fiber reinforced thermoplastics
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2017.10.021
– volume: 39
  start-page: 1343
  year: 2008
  ident: ref_55
  article-title: Variability, fibre waviness and misalignment in the determination of the properties of composite materials and structures
  publication-title: Compos. Part A Appl. Sci. Manuf.
  doi: 10.1016/j.compositesa.2008.04.016
– ident: ref_21
  doi: 10.1590/1980-5373-mr-2022-0049
– volume: 186
  start-page: 107820
  year: 2020
  ident: ref_22
  article-title: An approach to analyse the factors behind the micromechanical response of 3D-printed composites
  publication-title: Compos. Part B Eng.
  doi: 10.1016/j.compositesb.2020.107820
– volume: 16
  start-page: 146
  year: 2017
  ident: ref_7
  article-title: Fabrication of continuous carbon, glass and Kevlar fibre reinforced polymer composites using additive manufacturing
  publication-title: Addit. Manuf.
– volume: 52
  start-page: 3
  year: 2014
  ident: ref_16
  article-title: Theoretical study of stress transfer in platelet reinforced composites
  publication-title: J. Theor. Appl. Mech.
SSID ssj0000456617
Score 2.3864346
Snippet Continuous fiber-reinforced additive manufacturing (cFRAM) composites improve the mechanical properties of polymer components. Given the recent interest in...
SourceID unpaywall
pubmedcentral
hal
proquest
gale
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 3546
SubjectTerms 3D printing
Additive manufacturing
Algorithms
Artificial intelligence
Carbon fibers
Composite materials
Continuous fiber composites
Data mining
Deep learning
Engineering Sciences
Experiments
Failure mechanisms
Failure surface
Fiber reinforced polymers
Gaussian process
Machine learning
Mechanical properties
Mechanics
Model accuracy
Neural networks
Polymers
Prediction models
Process parameters
Regression models
Stiffness
Structural mechanics
Tensile tests
Topology
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB616aFcEE9hKGhBCC5Y9WMfzgGhUDWKEImqikq9WbvrtYpkbNM4oPx7ZvwiQaKnSOu1Y3tmd7_xznwfwFvrlMp4LP2MT62P8ZfyjdWWiJCTzAgtdFsevVzJxRX_ci2uD2A11MJQWuUwJ7YTdVZZ-kZ-GilE7gpXP_Gp_umTahTtrg4SGrqXVsg-thRjh3AUETPWBI4-n68uLsevLgRgcM3uyDZjjPdP66rY_gh5qGJBIHhnceqn6MMbypDcgZ__Jk8eb8pab3_rothZmeYP4H4PKdms84GHcODKR3B8Nii5PYZWuqETG2RVzkj-rFizpmIXt7RN07Clo_pfMhc2VTWlWrs1dZ1f-rMlo9MptwvbdJkxzeZUWtVxXbcnUTLi9glczc-_nS38Xl7Bt1yKxpfW5LSpqiLHE8l1lshcKmm4y7WNHY10E0UujJxQ3DmNPzqfOmMjboJI5_FTmJRV6Z4Bc8IkUiP2UYhwELObwNosDIKcAppEWA8-DO81tT33OElgFCnGIGSGdM8MHrwbu9cd6cb_Or4nI6U0GPF66GRdTQHeFdFapTPFEXElIgg8eIN2HK9GpNqL2deU2gKaY0Ukf4UenAxmTvuhvE7_Op4Hr8fDaEHaWdGlqzZtH6pExVjYA7XnHnv_uH-k_H7T0nlPuSScjc8yOtLdT_387tt8AfciqtEIqLzmBCbN7ca9ROTUmFf9cPgDE-ka4w
  priority: 102
  providerName: ProQuest
Title Comparison of Models to Predict Mechanical Properties of FR-AM Composites and a Fractographical Study
URI https://www.proquest.com/docview/2711471555
https://www.proquest.com/docview/2712854156
https://hal.science/hal-03763526
https://pubmed.ncbi.nlm.nih.gov/PMC9460192
https://www.mdpi.com/2073-4360/14/17/3546/pdf?version=1661769373
UnpaywallVersion publishedVersion
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: HH5
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: Academic Search Ultimate - eBooks
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: ABDBF
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Food Science Source
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: A8Z
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/login.aspx?authtype=ip,uid&profile=ehost&defaultdb=fsr
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: ADMLS
  dateStart: 20100901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: GX1
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: M~E
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: RPM
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: BENPR
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2073-4360
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000456617
  issn: 2073-4360
  databaseCode: 8FG
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3di9NAEB9s-3C--C0XPUsU0Rdzzcd-pE9Sj-sVsaUcFupT2N1suMOalGt6Uv96Z5K0tAeK4FPIZnbTZSezv-nO_AbgrbFSpiwSXsr6xkP_S3raKENEyHGqueKqSo8eT8Roxj7P-Xwvi5_CKtEVv66MdIj65-FAfi9gvUD2Is5Eb5lmH2-b_5IC3F2omJ-MWtARHNF4GzqzyXTwjWrKbXvX1JoReve9ZbHY_AhYIGmog62oMcitK4qH3AObd0Mlj9b5Um1-qsVibx8aPgS1nUEdfvL9dF3qU_PrDrnj_0zxETxoQKo7qLXqMdyz-RM4OtvWhnsKVTGIunyhW2QuFVRbrNyycKc3dPBTumNLGcWkANhULCl4265IdHjpDcYudadoMWxTeeoqd0jJWjV7dtWJwhs3z2A2PP96NvKagg2eYYKXnjA6o2NaGVoWC6bSWGRCCs1spkxkyXboMLRBaLlk1iq8qKxvtQmZ9kOVRc-hnRe5PQbXch0LhWhKImZCL0D7xqSB72fkIsXcOPBhu3aJadjMqajGIkGvhpY6OVhqB97txJc1jcefBN-TIiT0eeN4qLZ1lgL-KiLKSgaSIYaLue878AZ1ZTca0XSPBl8SavPJavNQ3AYOnGxVKWmMwyoJJTqhEoEcd-D17jGuIJ3VqNwW60qGclvRu3ZAHqjgwRsPn-TXVxVBeJ8JQu44l52y_n3WL_5Z8iXcDykBxKfcnRNolzdr-wphWam70IqHF13ofDqfTC_x7mIedJuv8TcgNDcy
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswEB1kObiXoiuqJm3ZosulQmSKi3wICjeN4TS2EQQJkJtCURRSwJWc2G7gn-u3dUaLaxdobjkJoChK5AzJN-LMG4D31mmdilD5qehYH-0v7SfWWCJCjtJEGmnK8OjhSPXPxfcLebEBv5tYGHKrbNbEcqFOC0v_yPe4RuSucfeTXybXPmWNotPVJoWGqVMrpPslxVgd2HHsFrdowk33j76hvD9w3js8O-j7dZYB3wolZ76ySUZni5o7ESlh0khlSqtEuMzY0JHCJ5y7NndSC-cMXkzWcYnlIgm4yUJsdxO2RSg6aPxtfz0cnZwu__IQYEKMUJF7hmEn2JsU48XPtmjrUBLoXtkM6y1h84o8Mlfg7r_Omq15PjGLWzMer-yEvUfwsIawrFvp3GPYcPkTaB00meOeQpkqokpuyIqMUbq18ZTNCnZyQ8dCMzZ0FG9M6oFFxYRcu92UqvZO_e6Q0ePkS4ZlJk-ZYT0K5aq4tcuHyPlx8QzO72Wgn8NWXuTuBTAnk0gZxFoaERXaCElgbdoOgowMqEhaDz434xrbmuucUm6MY7R5SAzxmhg8-LisPqlIPv5X8RMJKabJj-2hUlcxDPhVRKMVd7VAhBfJIPDgHcpx2RqRePe7g5jKAlrTJVe_2h7sNmKO66VjGv9VdA_eLm-jBOkkx-SumJd1KPIVbW8P9Jp6rL1x_U7-46qkD-8IRbge-7JUpLt7_fLuz3wDrf7ZcBAPjkbHO_CAU3xIQKE9u7A1u5m7V4jaZsnremowuLzv2fgH8UNZMQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB61RaJcEE-RUsAgHheiTRw_sgeEVi1hS7tVhajUW3AcR0XaJkt3l2r_Gr-OmTyWXSR66ymS4zixZ2x_E898A_DaOq1zESk_F33ro_2l_cwaS0TIcZ5JI00dHj06VsNT8eVMnm3A7y4WhtwquzWxXqjzytI_8h7XiNw17n6yV7RuESf7ycfJT58ySNFJa5dOo1GRQ7e4QvNt-uFgH2X9hvPk07e9od9mGPCtUHLmK5sVdK6ouROxEiaPVaG0yoQrjI0cKXvGuQu5k1o4Z_Biir7LLBdZwE0RYbubcEsTiztFqSefl_93CCohOmhoPaOoH_Qm1XhxEYpQR5Lg9so22G4Gm-fki7kCdP9109yelxOzuDLj8coemNyDuy14ZYNG2-7DhisfwPZelzPuIdRJIpq0hqwqGCVaG0_ZrGInl3QgNGMjR5HGpBhYVE3IqdtNqWry1R-MGD1OXmRYZsqcGZZQEFfDql0_RG6Pi0dweiPD_Bi2yqp0T4A5mcXKIMrSiKXQOsgCa_MwCAoynWJpPXjfjWtqW5ZzSrYxTtHaITGka2Lw4O2y-qSh9_hfxXckpJSmPbaH6txEL-BXEYFWOtACsV0sg8CDVyjHZWtE3z0cHKVUFtBqLrn6FXqw24k5bReNafpXxT14ubyNEqQzHFO6al7XoZhXtLo90GvqsfbG9Tvlj_OaOLwvFCF67MtSka7v9c71n_kCbuMcTI8Ojg-fwh1OgSEBxfTswtbscu6eIVybZc_recHg-01PxD-SaFbL
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9RAEF_s9aG-1G-aWmUV0RfTfO1H7klC8TjEK0U8qE9hd7OhxZiEXq5y_vXO5OO4FBTBp8BmdpNlJ7O_yc78hpA3xkqZsUi4GZsaF_wv6WqjDBIhx5nmiqs2PXpxLuZL9umSX-5k8WNYJbji162RDkH_XBjI9wLmBdKLOBNeneUfbvt_SQHsLljMT0Z7ZF9wQOMTsr88v0i-YU25oXdHrRmBd-_VVbH5EbBA4lCjrag3yHtXGA-5AzbvhkoerMtabX6qotjZh2YPiBpm0IWffD9dN_rU_LpD7vg_U3xIDnuQSpNOqx6Re7Z8TA7OhtpwT0hbDKIrX0irnGJBtWJFm4pe3ODBT0MXFjOKUQGgqaoxeNuuUHT2xU0WFLtjtBi0qTKjis4wWatjz247YXjj5ilZzj5-PZu7fcEG1zDBG1cYneMxrQwtiwVTWSxyIYVmNlcmsmg7dBjaILRcMmsVXFQ-tdqETPuhyqNnZFJWpT0i1HIdCwVoSgJmAi9A-8Zkge_n6CLF3Djk_bB2qenZzLGoRpGCV4NLnY6W2iFvt-J1R-PxJ8F3qAgpft4wHqhtl6UAb4VEWWkiGWC4mPu-Q16DrmxHQ5ruefI5xTYfrTYPxW3gkJNBldLeOKzSUIITKgHIcYe82t6GFcSzGlXaat3KYG4reNcOkSMVHD1xfKe8vmoJwqdMIHKHuWyV9e-zPv5nyefkfogJID7m7pyQSXOzti8AljX6Zf_l_Qb65DPB
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparison+of+Models+to+Predict+Mechanical+Properties+of+FR-AM+Composites+and+a+Fractographical+Study&rft.jtitle=Polymers&rft.au=Le%C3%B3n-Becerra%2C+J.&rft.au=Gonz%C3%A1lez+Estrada%2C+Octavio+Andr%C3%A9s&rft.au=S%C3%A1nchez+Acevedo%2C+Heller&rft.date=2022-08-29&rft.pub=MDPI&rft.issn=2073-4360&rft.eissn=2073-4360&rft_id=info:doi/10.3390%2Fpolym14173546&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03763526v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-4360&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-4360&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-4360&client=summon