A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers
Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic...
Saved in:
| Published in | Complexity (New York, N.Y.) Vol. 2018; no. 2018; pp. 1 - 11 |
|---|---|
| Main Authors | , , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Cairo, Egypt
Hindawi Publishing Corporation
01.01.2018
Hindawi John Wiley & Sons, Inc Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1076-2787 1099-0526 1099-0526 |
| DOI | 10.1155/2018/8241342 |
Cover
| Abstract | Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients R2 over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river. |
|---|---|
| AbstractList | Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self‐adapted fuzzy
c
‐means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self‐adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients
R
2
over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river. Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients R2 over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river. Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients [R.sup.2] over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river. |
| Audience | Academic |
| Author | Ying, Guangguo Cai, Jiannan Tian, Di Huang, Mingzhi Zhang, Chao Liu, Hongbin Ruan, Jujun Yi, XiaoHui Kong, Shaofei Zhang, Tao |
| Author_xml | – sequence: 1 fullname: Ying, Guangguo – sequence: 2 fullname: Kong, Shaofei – sequence: 3 fullname: Ruan, Jujun – sequence: 4 fullname: Cai, Jiannan – sequence: 5 fullname: Yi, XiaoHui – sequence: 6 fullname: Zhang, Chao – sequence: 7 fullname: Liu, Hongbin – sequence: 8 fullname: Tian, Di – sequence: 9 fullname: Huang, Mingzhi – sequence: 10 fullname: Zhang, Tao |
| BookMark | eNqFkV1rFDEUhgepYFu981oCXuq0-ZhkkstlsR_Q-i1eDtnJyTZrNlkzmS7bv-EfNutUBUFKCCccnvc95-QcVQchBqiq5wSfEML5KcVEnkraENbQR9UhwUrVmFNxsH-3oqatbJ9UR8OwwhgrwdrD6scMXewWyRl0Nt7d7dBXfQseMnoLY9K-hLyN6Ru6jgY82rp8gz6Bt_XM6E2G36K-vgYdBjT345AhubBEOhh0DgGy69HML2Mq0jWyMZUKBUEfRu1d3qH3CYzrs4sBuYA-ultIw9PqsdV-gGf38bj6cvbm8_yivnp3fjmfXdV9I3iuueKyaaW1GBO84KyxnFKsiWSSUS2hXGxZa1tpBDBjmMFNLxkYS7m0CthxdTn5mqhX3Sa5tU67LmrX_UrEtOx0KgN46KAxFHrD8QJMI1qlqWo1wQKafQG1KF715DWGjd5ttfd_DAnu9tvp9tvp7rdT-JcTv0nx-whD7lZxTKGM21HClRKizFaok4la6tKECzbmpPtyDKxdX5ZvXcnPBFZSqrbhRUAnQZ_iMCSwXe-y3n9vETr_v15e_yN6oPVXE37jgtFb9xD9YqKhMGD1X5owgYVgPwH_HdUm |
| CitedBy_id | crossref_primary_10_1016_j_jhazmat_2021_127029 crossref_primary_10_1007_s11356_021_13875_w crossref_primary_10_1016_j_jwpe_2019_101046 crossref_primary_10_1007_s11356_024_32061_2 crossref_primary_10_3233_JIFS_191707 crossref_primary_10_1038_s41598_022_08875_w crossref_primary_10_1007_s12083_024_01659_1 crossref_primary_10_1007_s11831_023_09947_4 crossref_primary_10_1080_21622515_2022_2118084 crossref_primary_10_1111_exsy_13155 crossref_primary_10_1016_j_watres_2022_118040 crossref_primary_10_1155_2019_2468189 crossref_primary_10_3934_mbe_2022595 crossref_primary_10_1115_1_4045282 crossref_primary_10_1007_s10661_023_11489_y crossref_primary_10_3390_s20061641 crossref_primary_10_1007_s11831_023_10017_y crossref_primary_10_3233_JIFS_190129 crossref_primary_10_1002_int_22540 crossref_primary_10_1155_2020_3849053 crossref_primary_10_3390_rs17060988 crossref_primary_10_1007_s00477_020_01776_2 crossref_primary_10_1016_j_jhydrol_2020_124670 crossref_primary_10_1155_2020_3432409 crossref_primary_10_3390_ijerph18020556 crossref_primary_10_1021_acsami_9b01551 crossref_primary_10_1371_journal_pone_0224075 crossref_primary_10_32604_cmc_2021_018752 crossref_primary_10_3390_environments9070085 crossref_primary_10_1088_1361_6501_ad66f5 crossref_primary_10_1016_j_simpat_2020_102215 crossref_primary_10_2166_wqrj_2023_031 crossref_primary_10_3390_su17020579 |
| Cites_doi | 10.1016/j.jenvman.2012.07.007 10.1016/j.biortech.2009.08.111 10.1016/j.jhydrol.2016.03.062 10.1007/s11269-012-9992-5 10.1016/j.asoc.2014.02.025 10.1021/acssuschemeng.6b01168 10.1016/j.engappai.2009.09.015 10.1016/j.asoc.2014.12.021 10.1109/GIWRM.2012.6349563 10.1016/j.jher.2014.09.006 10.1155/2017/4967870 10.1029/2007wr006737 10.1002/cplx.21606 10.1016/j.ijhydene.2012.12.109 10.1016/j.envsoft.2010.02.003 10.1016/j.jksues.2014.05.001 10.1007/s10295-013-1334-y 10.1016/j.marpolbul.2012.08.005 10.1007/s10661-013-3476-9 10.1016/j.asoc.2011.05.027 10.1038/srep41239 10.1021/ie201296p 10.4314/wsa.v33i1.47882 10.1016/j.jhydrol.2011.05.024 10.1504/IJEP.2006.011227 10.1016/j.asoc.2014.10.034 10.1109/FUZZY.2010.5584172 10.1016/j.cnsns.2015.08.010 10.1016/j.marpolbul.2015.06.052 10.1007/s11356-013-1874-8 10.1016/j.jenvman.2016.10.056 10.1007/s11269-015-1095-7 |
| ContentType | Journal Article |
| Copyright | Copyright © 2018 Mingzhi Huang et al. COPYRIGHT 2018 John Wiley & Sons, Inc. Copyright © 2018 Mingzhi Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2018 Mingzhi Huang et al. – notice: COPYRIGHT 2018 John Wiley & Sons, Inc. – notice: Copyright © 2018 Mingzhi Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0 |
| DBID | ADJCN AHFXO AHMDM RHU RHW RHX AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.1155/2018/8241342 |
| DatabaseName | الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete قاعدة العلوم الإنسانية - e-Marefa Humanities Hindawi Publishing Complete Hindawi Publishing Subscription Journals Hindawi Publishing Open Access CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Collection (ProQuest) ProQuest Computer Science Collection Computer Science Database Research Library (ProQuest) Research Library (Corporate) Advanced Technologies & Aerospace Collection ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: RHX name: Hindawi Publishing Open Access url: http://www.hindawi.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1099-0526 |
| Editor | Zargarzadeh, Hassan |
| Editor_xml | – sequence: 1 givenname: Hassan surname: Zargarzadeh fullname: Zargarzadeh, Hassan |
| EndPage | 11 |
| ExternalDocumentID | oai_doaj_org_article_e4d2ecd50bed4679a297a106e437f79b 10.1155/2018/8241342 A609889745 10_1155_2018_8241342 1136066 |
| GeographicLocations | South China Sea China Pearl River |
| GeographicLocations_xml | – name: China – name: South China Sea – name: Pearl River |
| GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities grantid: 310829161005 – fundername: National Natural Science Foundation of China grantid: 51210013; 51208206 – fundername: Guangdong Provincial Science and Technology Plan Project Foundation grantid: 2014A020216007 – fundername: Technological Innovation Young Talents of Guangdong Special Support Plan grantid: 2014TQ01Z530 – fundername: Natural Science Foundation of Guangdong Province grantid: 2016A030306033 – fundername: Pearl River S and T Nova Program of Guangzhou grantid: 201506010058 |
| GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 24P 31~ 3R3 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8FE 8FG 8G5 8UM 930 A03 AAESR AAEVG AAFWJ AAMMB AANHP AAONW ABCQN ABEML ABIJN ABPVW ABUWG ACBWZ ACCMX ACRPL ACSCC ACXQS ACYXJ ADBBV ADIZJ ADJCN ADNMO AEFGJ AEIMD AENEX AFBPY AFKRA AFPKN AFZJQ AGQPQ AGXDD AHFXO AHMDM AIDQK AIDYY AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS AMBMR AMVHM ARAPS ASPBG ATUGU AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BCNDV BDRZF BENPR BFHJK BGLVJ BHBCM BNHUX BPHCQ BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 DWQXO EBD EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GNUQQ GODZA GROUPED_DOAJ GUQSH H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ IAO ICD ITC IX1 J0M JPC K6V K7- KQQ LAW LC2 LC3 LH4 LP6 LP7 LW6 M2O MK4 N04 N05 N9A NF~ NNB O9- OIG OK1 P2P P2X P4D P62 PHGZM PHGZT PQGLB PQQKQ PROAC PUEGO Q.N Q11 QB0 QRW R.K ROL RX1 RYL SUPJJ TUS V2E W8V W99 WBKPD WQJ WYUIH XG1 XPP XSW XV2 ~IA ~WT 1OC 33P 3V. AAJEY O66 P2W RHU RHW RHX RWI WIH WRC XBAML AAYXX CITATION 7XB 8FK JQ2 MBDVC PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c465t-5958478ff0010b534f5220a183832a8e2a80f37f78d6e3dd3d04c83edf258f9e3 |
| IEDL.DBID | UNPAY |
| ISSN | 1076-2787 1099-0526 |
| IngestDate | Tue Oct 14 19:00:23 EDT 2025 Tue Aug 19 22:40:10 EDT 2025 Fri Jul 25 21:02:57 EDT 2025 Mon Oct 20 16:58:37 EDT 2025 Thu Apr 24 23:05:33 EDT 2025 Wed Oct 01 02:43:54 EDT 2025 Sun Jun 02 18:53:46 EDT 2024 Thu Sep 25 15:09:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2018 |
| Language | English |
| License | This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c465t-5958478ff0010b534f5220a183832a8e2a80f37f78d6e3dd3d04c83edf258f9e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8194-2988 0000-0002-4424-0423 0000-0002-2592-3544 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://downloads.hindawi.com/journals/complexity/2018/8241342.pdf |
| PQID | 2159966847 |
| PQPubID | 2029978 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e4d2ecd50bed4679a297a106e437f79b unpaywall_primary_10_1155_2018_8241342 proquest_journals_2159966847 gale_infotracacademiconefile_A609889745 crossref_citationtrail_10_1155_2018_8241342 crossref_primary_10_1155_2018_8241342 hindawi_primary_10_1155_2018_8241342 emarefa_primary_1136066 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-01 |
| PublicationDateYYYYMMDD | 2018-01-01 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cairo, Egypt |
| PublicationPlace_xml | – name: Cairo, Egypt – name: Hoboken |
| PublicationTitle | Complexity (New York, N.Y.) |
| PublicationYear | 2018 |
| Publisher | Hindawi Publishing Corporation Hindawi John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: Hindawi Publishing Corporation – name: Hindawi – name: John Wiley & Sons, Inc – name: Wiley |
| References | e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_29_2 e_1_2_8_23_2 e_1_2_8_24_2 e_1_2_8_25_2 e_1_2_8_26_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_1_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_20_2 e_1_2_8_21_2 e_1_2_8_22_2 e_1_2_8_16_2 e_1_2_8_17_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_14_2 e_1_2_8_15_2 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_11_2 e_1_2_8_32_2 |
| References_xml | – ident: e_1_2_8_26_2 doi: 10.1016/j.jenvman.2012.07.007 – ident: e_1_2_8_4_2 doi: 10.1016/j.biortech.2009.08.111 – ident: e_1_2_8_25_2 doi: 10.1016/j.jhydrol.2016.03.062 – ident: e_1_2_8_17_2 doi: 10.1007/s11269-012-9992-5 – ident: e_1_2_8_20_2 doi: 10.1016/j.asoc.2014.02.025 – ident: e_1_2_8_1_2 doi: 10.1021/acssuschemeng.6b01168 – ident: e_1_2_8_15_2 doi: 10.1016/j.engappai.2009.09.015 – ident: e_1_2_8_21_2 doi: 10.1016/j.asoc.2014.12.021 – ident: e_1_2_8_7_2 doi: 10.1109/GIWRM.2012.6349563 – ident: e_1_2_8_12_2 doi: 10.1016/j.jher.2014.09.006 – ident: e_1_2_8_18_2 doi: 10.1155/2017/4967870 – ident: e_1_2_8_9_2 doi: 10.1029/2007wr006737 – ident: e_1_2_8_22_2 doi: 10.1002/cplx.21606 – ident: e_1_2_8_14_2 doi: 10.1016/j.ijhydene.2012.12.109 – ident: e_1_2_8_10_2 doi: 10.1016/j.envsoft.2010.02.003 – ident: e_1_2_8_16_2 doi: 10.1016/j.jksues.2014.05.001 – ident: e_1_2_8_32_2 doi: 10.1007/s10295-013-1334-y – ident: e_1_2_8_3_2 doi: 10.1016/j.marpolbul.2012.08.005 – ident: e_1_2_8_23_2 doi: 10.1007/s10661-013-3476-9 – ident: e_1_2_8_29_2 doi: 10.1016/j.asoc.2011.05.027 – ident: e_1_2_8_30_2 doi: 10.1038/srep41239 – ident: e_1_2_8_31_2 doi: 10.1021/ie201296p – ident: e_1_2_8_5_2 doi: 10.4314/wsa.v33i1.47882 – ident: e_1_2_8_8_2 doi: 10.1016/j.jhydrol.2011.05.024 – ident: e_1_2_8_6_2 doi: 10.1504/IJEP.2006.011227 – ident: e_1_2_8_2_2 doi: 10.1016/j.asoc.2014.10.034 – ident: e_1_2_8_27_2 doi: 10.1109/FUZZY.2010.5584172 – ident: e_1_2_8_28_2 doi: 10.1016/j.cnsns.2015.08.010 – ident: e_1_2_8_13_2 doi: 10.1016/j.marpolbul.2015.06.052 – ident: e_1_2_8_11_2 doi: 10.1007/s11356-013-1874-8 – ident: e_1_2_8_19_2 doi: 10.1016/j.jenvman.2016.10.056 – ident: e_1_2_8_24_2 doi: 10.1007/s11269-015-1095-7 |
| SSID | ssj0009637 |
| Score | 2.3055065 |
| Snippet | Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on... |
| SourceID | doaj unpaywall proquest gale crossref hindawi emarefa |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1 |
| SubjectTerms | Algorithms Analysis Artificial neural networks Chemical oxygen demand Clustering Computer simulation Data mining Environmental management Fuzzy logic Genetic algorithms Localization Machine learning Management Mathematical models Methods Neural networks Parameters Performance prediction Rain Rivers Sensors Software Variations Water Water quality Water temperature Wavelet transforms |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEC2vtAX5UF5CUbOxndjHULFaIW2FgIreLMePUimkq32o2v4N_jAziTe0B-iFwx525djOzufxfH58Q8hBFvC2pbBpLU1IubEsNaUapUUZYLoK3ucWF_Snx8XkhH86FafXUn3hmbBeHrj_4w49d7m3TmS1dzColclVaYDHeM7KUKoavW8m1YZMbeR2i04tE7hNkeaAyc2RdyGA7Y_kocTtJJ7fmIw6zf7uYq6B72bw0Xd_IDu-PL8Rg95btTOzvjRNc206Gj8iD2McSau-_9vkjm93yIPpIMK62CHbcdwu6NsoLv3uMflV0ckab2nR8erqak2_G8w8saQo0gH1HfenwimmSGsoLtLSr74JaeXMDGLT-JBNpx6mOHrUrFBnAWY_alpHsRVomlbN2cUcHv1JISKGFqAI7bU61vTzHHeGEA30vKVfulMhT8jJ-OO3o0kaEzOklhdimQqFm6syBGSUtWA8QBSXGfAO4B-M9PABDIB5pCs8c465jFvJvAu5kEF59pRstRetf04od9w75TJVWwXcCaK1knuTMW9QjEuxhLzfWEjbqFqOyTMa3bEXITTaU0d7JuTVUHrWq3X8pdwHNPZQBjW2ux8AeToiT9-GvIQ8i1D509aIISFMyBuEjkYfAZ21Jl51gFdGtS1dFZmSEpicSMhBRNct_d3fQE9HH7PQEKwhWQVLJOT1AMd_1rP7P957j9zHOvt1qH2ytZyv_AuIzJb1y24Q_ga0Wy7w priority: 102 providerName: Directory of Open Access Journals – databaseName: Hindawi Publishing Open Access dbid: RHX link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagEoI-IFqOBgryQ7mELLKJndiPS8VqhbQVKlTsm-X4KJVCutpD1fZv8IeZSbwpBXE85MGR7Uk045n5fHwm5CANeNpSWFZJExg3NmemVANWlAHCVfA-szihPzkqxif8w1RMI0nS4vclfIh2AM8H8q3E9R8OvvamLHDn1vF4esWtW7TUmABkCpaBAW72t__S9lrkaQn621O4Bsqmd8i3viIUvji7lnDeXjUzs74wdf1T7BndI3dj0kiHnZZ3yA3f7JLtSc-4utglO3GQLuiryCT9-j75PqTjNR7JoqPV5eWafjF4zcSSIiMH9HfUbQGneB9aTXFGln7ydWBDZ2aQiMZGlk08xDN6WK-QVAFCHTWNoygFRNNhfXo-h6bfKKS_IAGq0I6YY00_znEZCFVPzxp63G4BeUBORu8_H45ZvIWBWV6IJRMKV1JlCAgfK5HzAClbasAVgDMw0sMDCi9DKV3hc-dyl3Irc-9CJmRQPn9Itprzxu8Ryh33TrlUVVYBUILUrOTepLk3yLyl8oS82WhI20hRjjdl1LqFKkJo1KeO-kzI8772rKPm-EO9d6jsvg4SarcvwMh0HJ_ac5d560RaeQexQ5lMlQbgsuf4a6pKyKNoKleyBjmiv4S8RNPR6BDgY62J5xrgl5FaSw-LVEkJsE0k5CBa1z--d39jejo6lIWGzAyRKWgiIS96c_xrP4__T9wTcgeL3bTSPtlazlf-KSRay-pZO8x-ADYJG50 priority: 102 providerName: Hindawi Publishing – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQ8IDYuCwzkh3HTZDVL7CR-QKibVlVIrabBxN4ix5dtUki7XjR1f4M_zDmJ07IHxkMfUp3YSfz5XGyf7xCyFzrMthSaFZlyjCsdM5XKA5akDsyVszbSuKA_HCWDM_7tXJxvkFGbC4PHKludWCtqM9a4Rt4F04SuOSjTr5NrhlWjcHe1LaGhfGkF86WmGHtANiNkxuqQzcPj0cnpmoY3qVk0IeZJWARYbY_CC9EFS5h1M9xm4tEdI1Vz-dcJuwqu1Up3P7zEqPnm6o5v-mhRTdTyRpXlX2aq_4w89f4l7TWA2CIbttomT4YrctbZNtny83lGP3nS6c_Pye8eHSwxe4v2F7e3S_pTYUWKOUXyDmhv1JwWp1g6raS4eEu_29KxnlET8Fn9TZoNLZg-elQukH8BrCJVlaHYC3RNe-UFfNH55S8KnjL0ACK04fBY0pMp7hghSuhVRU_r0yIvyFn_-MfRgPmCDUzzRMyZkLjpmjmHkWYhYu7AuwsVaA3QGyqz8ANspC7NTGJjY2ITcp3F1rhIZE7a-CXpVOPK7hDKDbdGmlAWWkJMBV5cyq0KY6uQpEvGAdlvRyjXns0ci2qUeR3VCJHjeOZ-PAPyfiU9aVg8_iF3iIO9kkHu7fqP8fQi91M5t9xEVhsRFtaAmZEqkqmCyNpyfDVZBOSVh8q6r4MYA8WAfETo5Kg74GG18ikQ8MrIwpX3klBmGUR4IiB7Hl3_ed7dFnq51z2zfD1TAvJhBcd723l9fztvyGOUblaedklnPl3Yt-CLzYt3foL9AYJwLIU priority: 102 providerName: ProQuest |
| Title | A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers |
| URI | https://search.emarefa.net/detail/BIM-1136066 https://dx.doi.org/10.1155/2018/8241342 https://www.proquest.com/docview/2159966847 http://downloads.hindawi.com/journals/complexity/2018/8241342.pdf https://doaj.org/article/e4d2ecd50bed4679a297a106e437f79b |
| UnpaywallVersion | publishedVersion |
| Volume | 2018 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: DOA dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: AMVHM dateStart: 20120701 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 8FG dateStart: 20120501 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1076-2787 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009637 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access (WRLC) customDbUrl: eissn: 1099-0526 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009637 issn: 1076-2787 databaseCode: 24P dateStart: 20170101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH6iiRBwAFo2Q4nmUDYhp07s8XJ0q4YIKVEUiCgna-yZKRXGibKoJCd-Ajf-H7-E9-xJaIRYxMGRbD3Pkvn8lpk33wAcOJp2W_LMTkOhbU9kri2CqGX7gUZzpZVqZzSh3-v73ZH3-pRfyiaUxBA_FnLW_EAh6cV5qazN3zo7LNOs1Wf0TzFob4WHIa0KeRgaSr0DdZ-jO16D-qg_iN9XuYa-3Q7KQ_JoAcgmbpN18jvnW0VsmaWSvb_coivwXmy09VXTqC1v9NqimIjlhcjzS4apcwvS9faeKh_lY3MxT5vZ6le2x__v8224adxWFlc424UrqtiDG70N5-tsD3aNmpix54bL-sUd-Baz7pI2hbHOYrVasneCDrqYM-IEwfL6VRI6oxPZckZzwuyNyvX3L19jKSboDJvXMnzSU2hV2XG-IGoHNLhMFJJRTVg9i_Oz8RRf_8TQCcdaUIRV9CBLNpjSYhQBkJ0XbFgmotyFUefk7XHXNmdB2Jnn87nNI1rPDbWmIDblrqfRcXQEKiRUSSJUeCHsAh2E0leulK50vCx0ldRtHupIufegVowL9QCYJz0lI-lEaRZhuIYOYuAp4bhKEP9X5Frwcg2FJDNE6XReR56UARPnCY1DYsbBgicb6UlFEPIbuSNC1UaGaL3LB-PpWWK0RKI82VaZ5E6qJFqwSLSjQGDQrjzqWpRacN9g8mddLZdiUAueEUYTUkvY2EyY3RXYZSL4SmLficIQg0duwYHB2V_au7_GeLLGYoL-IcXHOBIWPN3g_o_lPPxXwUdwnW6r6a19qM2nC_UYHb552oCdsPOqAfWjk_5g2CinTfB32D1tmI_9B4-RVPc |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYoqKI9VIX-paWtD9AWVdaGxE7iA6oWCloKu0IUVG6pE9uAlGa3-6PV8hp9nz5bZ7LObjmUnjjsISvHjjXjmflszzeErPsWsy1FzrJEWcZVHjIVyy0WxRbclTUmyHFDv92JWmf8y7k4XyC_61wYvFZZ28TKUOtujnvkDXBNGJqDMf3U-8mwahSertYlNJQrraC3K4oxl9hxaCZjgHCD7YPPIO-NINjfO91tMVdlgOU8EkMmJJ4UJtYiPMpEyC2EJL4CVQdlV4mBH0wotnGiIxNqHWqf50lotA1EYqUJod97ZImHXAL4W9rZ6xyfzGl_o4q1EzBWxAJYG_XVeyEa4HmTRoLHWjy44RSr2gFVgrCCZzXzFfcvEaWPr27EwsujsqcmY1UUf7nF_cfkkYtnaXOqgCtkwZSr5GF7RgY7WCUrzn4M6AdHcr35hPxq0tYEs8Xo_uj6ekK_KayAMaRIFgL9daa30ymWaisobhbTr6awrKlVD2Jk91LO2gZcLd0tRsj3AF6YqlJTHAWGps3iAiQ4vPxBITKHEaAJnXKGTOhxH0-oUCvpVUlPqtspT8nZnYjuGVksu6V5QSjX3GipfZnlEjAcRI0xN8oPjUJSMBl65GMtoTR37OlYxKNIKxQlRIryTJ08PbIxa92bsob8o90OCnvWBrm-qz-6_YvUmY7UcB2YXAs_MxrcmlSBjBUgecNxajLzyHOnKvOxtkIEph55j6qToq2Cj82VS7mAKSPrV9qMfJkkgCiFR9addv3ne9dq1UudrRuk85XpkXczdby1n5e39_OWLLdO20fp0UHn8BV5gG9Od73WyOKwPzKvIQ4cZm_cYqPk-12v7z8nWmhJ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKgQcgJbNUNAcylIhp449Y3uOpiKKkBJVQAScrPEsbVXjRFlUkhM_gRv_j1_Ce_YkNEIs4uCDredZPJ_fMvPmG0L2Aou7Lbnyi1Ran0kV-TIRHT9OLJgra0yocEK_P4h7Q_b6A7-QTaiRIX4k9bR9giHp-WmtrN1nnR7UadbmM_inELR30oMUV4UYhIbaXiZbMQd3vEW2hoOj7GOTaxj7YVIfkocLQD5ym6yS3znfKGLDLNXs_fUWXQn3cq2tr7hGbXijV-fVWC7OZVleMEzdm6RYbe9p8lHO2vNZ0VbLX9ke_7_Pt8gN57bSrMHZNrlkqh1yvb_mfJ3ukG2nJqb0ueOy3r9NvmW0t8BNYbQ7Xy4X9L3Egy5mFDlBoLxBk4RO8US2kuKcMH1rSvv9y9dMyzE4w-41BU_6BqwqPSznSO0ABpfKSlOsCaqnWXk8msDrnyg44VALiNCGHmRBjya4GIUApKcVfVMnotwhw-6rd4c9350F4SsW85nPBa7nptZiEFvwiFlwHAMJCglUkkwNXAC7xCapjk2kdaQDptLIaBvy1AoT3SWtalSZ-4QyzYwWOhCFEhCugYOYMCODyEjk_xKRR16soJArR5SO53WUeR0wcZ7jOORuHDzyZC09bghCfiP3ElG1lkFa7_rBaHKcOy2RG6ZDozQPCqPBggkZikRC0G4Ydk0UHrnnMPmzrk6EMahHniFGc1RL0Fgl3e4K6DISfOVZHIg0heCRe2TP4ewv7d1dYTxfYTEH_xDjYxgJjzxd4_6P5Tz4V8GH5BreNtNbu6Q1m8zNI3D4ZsVj90v_ADP5UG8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Fuzzy+Wavelet+Neural+Network+Model+with+Self-Adapted+Fuzzy+c-Means+Clustering+and+Genetic+Algorithm+for+Water+Quality+Prediction+in+Rivers&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Huang%2C+Mingzhi&rft.au=Tian%2C+Di&rft.au=Liu%2C+Hongbin&rft.au=Zhang%2C+Chao&rft.date=2018-01-01&rft.pub=Hindawi&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F8241342&rft.externalDocID=10_1155_2018_8241342 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon |