A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers

Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic...

Full description

Saved in:
Bibliographic Details
Published inComplexity (New York, N.Y.) Vol. 2018; no. 2018; pp. 1 - 11
Main Authors Ying, Guangguo, Kong, Shaofei, Ruan, Jujun, Cai, Jiannan, Yi, XiaoHui, Zhang, Chao, Liu, Hongbin, Tian, Di, Huang, Mingzhi, Zhang, Tao
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1076-2787
1099-0526
1099-0526
DOI10.1155/2018/8241342

Cover

Abstract Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients R2 over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river.
AbstractList Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self‐adapted fuzzy c ‐means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self‐adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients R 2 over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river.
Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients R2 over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river.
Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on the fuzzy wavelet neural network (FWNN) including the neural network (NN), the fuzzy logic (FL), the wavelet transform (WT), and the genetic algorithm (GA) was proposed to simulate the nonlinearity of water quality parameters and water quality predictions. A self-adapted fuzzy c-means clustering was used to determine the number of fuzzy rules. A hybrid learning algorithm based on a genetic algorithm and gradient descent algorithm was employed to optimize the network parameters. Comparisons were made between the proposed FWNN model and the fuzzy neural network (FNN), the wavelet neural network (WNN), and the neural network (ANN). The results indicate that the FWNN made effective use of the self-adaptability of NN, the uncertainty capacity of FL, and the partial analysis ability of WT, so it could handle the fluctuation and the nonseasonal time series data of water quality, while exhibiting higher estimation accuracy and better robustness and achieving better performances for predicting water quality with high determination coefficients [R.sup.2] over 0.90. The FWNN is feasible and reliable for simulating and predicting water quality in river.
Audience Academic
Author Ying, Guangguo
Cai, Jiannan
Tian, Di
Huang, Mingzhi
Zhang, Chao
Liu, Hongbin
Ruan, Jujun
Yi, XiaoHui
Kong, Shaofei
Zhang, Tao
Author_xml – sequence: 1
  fullname: Ying, Guangguo
– sequence: 2
  fullname: Kong, Shaofei
– sequence: 3
  fullname: Ruan, Jujun
– sequence: 4
  fullname: Cai, Jiannan
– sequence: 5
  fullname: Yi, XiaoHui
– sequence: 6
  fullname: Zhang, Chao
– sequence: 7
  fullname: Liu, Hongbin
– sequence: 8
  fullname: Tian, Di
– sequence: 9
  fullname: Huang, Mingzhi
– sequence: 10
  fullname: Zhang, Tao
BookMark eNqFkV1rFDEUhgepYFu981oCXuq0-ZhkkstlsR_Q-i1eDtnJyTZrNlkzmS7bv-EfNutUBUFKCCccnvc95-QcVQchBqiq5wSfEML5KcVEnkraENbQR9UhwUrVmFNxsH-3oqatbJ9UR8OwwhgrwdrD6scMXewWyRl0Nt7d7dBXfQseMnoLY9K-hLyN6Ru6jgY82rp8gz6Bt_XM6E2G36K-vgYdBjT345AhubBEOhh0DgGy69HML2Mq0jWyMZUKBUEfRu1d3qH3CYzrs4sBuYA-ultIw9PqsdV-gGf38bj6cvbm8_yivnp3fjmfXdV9I3iuueKyaaW1GBO84KyxnFKsiWSSUS2hXGxZa1tpBDBjmMFNLxkYS7m0CthxdTn5mqhX3Sa5tU67LmrX_UrEtOx0KgN46KAxFHrD8QJMI1qlqWo1wQKafQG1KF715DWGjd5ttfd_DAnu9tvp9tvp7rdT-JcTv0nx-whD7lZxTKGM21HClRKizFaok4la6tKECzbmpPtyDKxdX5ZvXcnPBFZSqrbhRUAnQZ_iMCSwXe-y3n9vETr_v15e_yN6oPVXE37jgtFb9xD9YqKhMGD1X5owgYVgPwH_HdUm
CitedBy_id crossref_primary_10_1016_j_jhazmat_2021_127029
crossref_primary_10_1007_s11356_021_13875_w
crossref_primary_10_1016_j_jwpe_2019_101046
crossref_primary_10_1007_s11356_024_32061_2
crossref_primary_10_3233_JIFS_191707
crossref_primary_10_1038_s41598_022_08875_w
crossref_primary_10_1007_s12083_024_01659_1
crossref_primary_10_1007_s11831_023_09947_4
crossref_primary_10_1080_21622515_2022_2118084
crossref_primary_10_1111_exsy_13155
crossref_primary_10_1016_j_watres_2022_118040
crossref_primary_10_1155_2019_2468189
crossref_primary_10_3934_mbe_2022595
crossref_primary_10_1115_1_4045282
crossref_primary_10_1007_s10661_023_11489_y
crossref_primary_10_3390_s20061641
crossref_primary_10_1007_s11831_023_10017_y
crossref_primary_10_3233_JIFS_190129
crossref_primary_10_1002_int_22540
crossref_primary_10_1155_2020_3849053
crossref_primary_10_3390_rs17060988
crossref_primary_10_1007_s00477_020_01776_2
crossref_primary_10_1016_j_jhydrol_2020_124670
crossref_primary_10_1155_2020_3432409
crossref_primary_10_3390_ijerph18020556
crossref_primary_10_1021_acsami_9b01551
crossref_primary_10_1371_journal_pone_0224075
crossref_primary_10_32604_cmc_2021_018752
crossref_primary_10_3390_environments9070085
crossref_primary_10_1088_1361_6501_ad66f5
crossref_primary_10_1016_j_simpat_2020_102215
crossref_primary_10_2166_wqrj_2023_031
crossref_primary_10_3390_su17020579
Cites_doi 10.1016/j.jenvman.2012.07.007
10.1016/j.biortech.2009.08.111
10.1016/j.jhydrol.2016.03.062
10.1007/s11269-012-9992-5
10.1016/j.asoc.2014.02.025
10.1021/acssuschemeng.6b01168
10.1016/j.engappai.2009.09.015
10.1016/j.asoc.2014.12.021
10.1109/GIWRM.2012.6349563
10.1016/j.jher.2014.09.006
10.1155/2017/4967870
10.1029/2007wr006737
10.1002/cplx.21606
10.1016/j.ijhydene.2012.12.109
10.1016/j.envsoft.2010.02.003
10.1016/j.jksues.2014.05.001
10.1007/s10295-013-1334-y
10.1016/j.marpolbul.2012.08.005
10.1007/s10661-013-3476-9
10.1016/j.asoc.2011.05.027
10.1038/srep41239
10.1021/ie201296p
10.4314/wsa.v33i1.47882
10.1016/j.jhydrol.2011.05.024
10.1504/IJEP.2006.011227
10.1016/j.asoc.2014.10.034
10.1109/FUZZY.2010.5584172
10.1016/j.cnsns.2015.08.010
10.1016/j.marpolbul.2015.06.052
10.1007/s11356-013-1874-8
10.1016/j.jenvman.2016.10.056
10.1007/s11269-015-1095-7
ContentType Journal Article
Copyright Copyright © 2018 Mingzhi Huang et al.
COPYRIGHT 2018 John Wiley & Sons, Inc.
Copyright © 2018 Mingzhi Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2018 Mingzhi Huang et al.
– notice: COPYRIGHT 2018 John Wiley & Sons, Inc.
– notice: Copyright © 2018 Mingzhi Huang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0
DBID ADJCN
AHFXO
AHMDM
RHU
RHW
RHX
AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.1155/2018/8241342
DatabaseName الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals
معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete
قاعدة العلوم الإنسانية - e-Marefa Humanities
Hindawi Publishing Complete
Hindawi Publishing Subscription Journals
Hindawi Publishing Open Access
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
ProQuest Research Library
SciTech Collection (ProQuest)
ProQuest Computer Science Collection
Computer Science Database
Research Library (ProQuest)
Research Library (Corporate)
Advanced Technologies & Aerospace Collection
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Research Library Prep




Database_xml – sequence: 1
  dbid: RHX
  name: Hindawi Publishing Open Access
  url: http://www.hindawi.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1099-0526
Editor Zargarzadeh, Hassan
Editor_xml – sequence: 1
  givenname: Hassan
  surname: Zargarzadeh
  fullname: Zargarzadeh, Hassan
EndPage 11
ExternalDocumentID oai_doaj_org_article_e4d2ecd50bed4679a297a106e437f79b
10.1155/2018/8241342
A609889745
10_1155_2018_8241342
1136066
GeographicLocations South China Sea
China
Pearl River
GeographicLocations_xml – name: China
– name: South China Sea
– name: Pearl River
GrantInformation_xml – fundername: Fundamental Research Funds for the Central Universities
  grantid: 310829161005
– fundername: National Natural Science Foundation of China
  grantid: 51210013; 51208206
– fundername: Guangdong Provincial Science and Technology Plan Project Foundation
  grantid: 2014A020216007
– fundername: Technological Innovation Young Talents of Guangdong Special Support Plan
  grantid: 2014TQ01Z530
– fundername: Natural Science Foundation of Guangdong Province
  grantid: 2016A030306033
– fundername: Pearl River S and T Nova Program of Guangzhou
  grantid: 201506010058
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
24P
31~
3R3
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8FE
8FG
8G5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAMMB
AANHP
AAONW
ABCQN
ABEML
ABIJN
ABPVW
ABUWG
ACBWZ
ACCMX
ACRPL
ACSCC
ACXQS
ACYXJ
ADBBV
ADIZJ
ADJCN
ADNMO
AEFGJ
AEIMD
AENEX
AFBPY
AFKRA
AFPKN
AFZJQ
AGQPQ
AGXDD
AHFXO
AHMDM
AIDQK
AIDYY
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMVHM
ARAPS
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BCNDV
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BNHUX
BPHCQ
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
DWQXO
EBD
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
GROUPED_DOAJ
GUQSH
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
ICD
ITC
IX1
J0M
JPC
K6V
K7-
KQQ
LAW
LC2
LC3
LH4
LP6
LP7
LW6
M2O
MK4
N04
N05
N9A
NF~
NNB
O9-
OIG
OK1
P2P
P2X
P4D
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PUEGO
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
RYL
SUPJJ
TUS
V2E
W8V
W99
WBKPD
WQJ
WYUIH
XG1
XPP
XSW
XV2
~IA
~WT
1OC
33P
3V.
AAJEY
O66
P2W
RHU
RHW
RHX
RWI
WIH
WRC
XBAML
AAYXX
CITATION
7XB
8FK
JQ2
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c465t-5958478ff0010b534f5220a183832a8e2a80f37f78d6e3dd3d04c83edf258f9e3
IEDL.DBID UNPAY
ISSN 1076-2787
1099-0526
IngestDate Tue Oct 14 19:00:23 EDT 2025
Tue Aug 19 22:40:10 EDT 2025
Fri Jul 25 21:02:57 EDT 2025
Mon Oct 20 16:58:37 EDT 2025
Thu Apr 24 23:05:33 EDT 2025
Wed Oct 01 02:43:54 EDT 2025
Sun Jun 02 18:53:46 EDT 2024
Thu Sep 25 15:09:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2018
Language English
License This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-5958478ff0010b534f5220a183832a8e2a80f37f78d6e3dd3d04c83edf258f9e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8194-2988
0000-0002-4424-0423
0000-0002-2592-3544
OpenAccessLink https://proxy.k.utb.cz/login?url=http://downloads.hindawi.com/journals/complexity/2018/8241342.pdf
PQID 2159966847
PQPubID 2029978
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_e4d2ecd50bed4679a297a106e437f79b
unpaywall_primary_10_1155_2018_8241342
proquest_journals_2159966847
gale_infotracacademiconefile_A609889745
crossref_citationtrail_10_1155_2018_8241342
crossref_primary_10_1155_2018_8241342
hindawi_primary_10_1155_2018_8241342
emarefa_primary_1136066
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-01-01
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Cairo, Egypt
PublicationPlace_xml – name: Cairo, Egypt
– name: Hoboken
PublicationTitle Complexity (New York, N.Y.)
PublicationYear 2018
Publisher Hindawi Publishing Corporation
Hindawi
John Wiley & Sons, Inc
Wiley
Publisher_xml – name: Hindawi Publishing Corporation
– name: Hindawi
– name: John Wiley & Sons, Inc
– name: Wiley
References e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_29_2
e_1_2_8_23_2
e_1_2_8_24_2
e_1_2_8_25_2
e_1_2_8_26_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_1_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_20_2
e_1_2_8_21_2
e_1_2_8_22_2
e_1_2_8_16_2
e_1_2_8_17_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_14_2
e_1_2_8_15_2
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – ident: e_1_2_8_26_2
  doi: 10.1016/j.jenvman.2012.07.007
– ident: e_1_2_8_4_2
  doi: 10.1016/j.biortech.2009.08.111
– ident: e_1_2_8_25_2
  doi: 10.1016/j.jhydrol.2016.03.062
– ident: e_1_2_8_17_2
  doi: 10.1007/s11269-012-9992-5
– ident: e_1_2_8_20_2
  doi: 10.1016/j.asoc.2014.02.025
– ident: e_1_2_8_1_2
  doi: 10.1021/acssuschemeng.6b01168
– ident: e_1_2_8_15_2
  doi: 10.1016/j.engappai.2009.09.015
– ident: e_1_2_8_21_2
  doi: 10.1016/j.asoc.2014.12.021
– ident: e_1_2_8_7_2
  doi: 10.1109/GIWRM.2012.6349563
– ident: e_1_2_8_12_2
  doi: 10.1016/j.jher.2014.09.006
– ident: e_1_2_8_18_2
  doi: 10.1155/2017/4967870
– ident: e_1_2_8_9_2
  doi: 10.1029/2007wr006737
– ident: e_1_2_8_22_2
  doi: 10.1002/cplx.21606
– ident: e_1_2_8_14_2
  doi: 10.1016/j.ijhydene.2012.12.109
– ident: e_1_2_8_10_2
  doi: 10.1016/j.envsoft.2010.02.003
– ident: e_1_2_8_16_2
  doi: 10.1016/j.jksues.2014.05.001
– ident: e_1_2_8_32_2
  doi: 10.1007/s10295-013-1334-y
– ident: e_1_2_8_3_2
  doi: 10.1016/j.marpolbul.2012.08.005
– ident: e_1_2_8_23_2
  doi: 10.1007/s10661-013-3476-9
– ident: e_1_2_8_29_2
  doi: 10.1016/j.asoc.2011.05.027
– ident: e_1_2_8_30_2
  doi: 10.1038/srep41239
– ident: e_1_2_8_31_2
  doi: 10.1021/ie201296p
– ident: e_1_2_8_5_2
  doi: 10.4314/wsa.v33i1.47882
– ident: e_1_2_8_8_2
  doi: 10.1016/j.jhydrol.2011.05.024
– ident: e_1_2_8_6_2
  doi: 10.1504/IJEP.2006.011227
– ident: e_1_2_8_2_2
  doi: 10.1016/j.asoc.2014.10.034
– ident: e_1_2_8_27_2
  doi: 10.1109/FUZZY.2010.5584172
– ident: e_1_2_8_28_2
  doi: 10.1016/j.cnsns.2015.08.010
– ident: e_1_2_8_13_2
  doi: 10.1016/j.marpolbul.2015.06.052
– ident: e_1_2_8_11_2
  doi: 10.1007/s11356-013-1874-8
– ident: e_1_2_8_19_2
  doi: 10.1016/j.jenvman.2016.10.056
– ident: e_1_2_8_24_2
  doi: 10.1007/s11269-015-1095-7
SSID ssj0009637
Score 2.3055065
Snippet Water quality prediction is the basis of water environmental planning, evaluation, and management. In this work, a novel intelligent prediction model based on...
SourceID doaj
unpaywall
proquest
gale
crossref
hindawi
emarefa
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Analysis
Artificial neural networks
Chemical oxygen demand
Clustering
Computer simulation
Data mining
Environmental management
Fuzzy logic
Genetic algorithms
Localization
Machine learning
Management
Mathematical models
Methods
Neural networks
Parameters
Performance prediction
Rain
Rivers
Sensors
Software
Variations
Water
Water quality
Water temperature
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQJQQcEC2vtAX5UF5CUbOxndjHULFaIW2FgIreLMePUimkq32o2v4N_jAziTe0B-iFwx525djOzufxfH58Q8hBFvC2pbBpLU1IubEsNaUapUUZYLoK3ucWF_Snx8XkhH86FafXUn3hmbBeHrj_4w49d7m3TmS1dzColclVaYDHeM7KUKoavW8m1YZMbeR2i04tE7hNkeaAyc2RdyGA7Y_kocTtJJ7fmIw6zf7uYq6B72bw0Xd_IDu-PL8Rg95btTOzvjRNc206Gj8iD2McSau-_9vkjm93yIPpIMK62CHbcdwu6NsoLv3uMflV0ckab2nR8erqak2_G8w8saQo0gH1HfenwimmSGsoLtLSr74JaeXMDGLT-JBNpx6mOHrUrFBnAWY_alpHsRVomlbN2cUcHv1JISKGFqAI7bU61vTzHHeGEA30vKVfulMhT8jJ-OO3o0kaEzOklhdimQqFm6syBGSUtWA8QBSXGfAO4B-M9PABDIB5pCs8c465jFvJvAu5kEF59pRstRetf04od9w75TJVWwXcCaK1knuTMW9QjEuxhLzfWEjbqFqOyTMa3bEXITTaU0d7JuTVUHrWq3X8pdwHNPZQBjW2ux8AeToiT9-GvIQ8i1D509aIISFMyBuEjkYfAZ21Jl51gFdGtS1dFZmSEpicSMhBRNct_d3fQE9HH7PQEKwhWQVLJOT1AMd_1rP7P957j9zHOvt1qH2ytZyv_AuIzJb1y24Q_ga0Wy7w
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Hindawi Publishing Open Access
  dbid: RHX
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Zb9QwELagEoI-IFqOBgryQ7mELLKJndiPS8VqhbQVKlTsm-X4KJVCutpD1fZv8IeZSbwpBXE85MGR7Uk045n5fHwm5CANeNpSWFZJExg3NmemVANWlAHCVfA-szihPzkqxif8w1RMI0nS4vclfIh2AM8H8q3E9R8OvvamLHDn1vF4esWtW7TUmABkCpaBAW72t__S9lrkaQn621O4Bsqmd8i3viIUvji7lnDeXjUzs74wdf1T7BndI3dj0kiHnZZ3yA3f7JLtSc-4utglO3GQLuiryCT9-j75PqTjNR7JoqPV5eWafjF4zcSSIiMH9HfUbQGneB9aTXFGln7ydWBDZ2aQiMZGlk08xDN6WK-QVAFCHTWNoygFRNNhfXo-h6bfKKS_IAGq0I6YY00_znEZCFVPzxp63G4BeUBORu8_H45ZvIWBWV6IJRMKV1JlCAgfK5HzAClbasAVgDMw0sMDCi9DKV3hc-dyl3Irc-9CJmRQPn9Itprzxu8Ryh33TrlUVVYBUILUrOTepLk3yLyl8oS82WhI20hRjjdl1LqFKkJo1KeO-kzI8772rKPm-EO9d6jsvg4SarcvwMh0HJ_ac5d560RaeQexQ5lMlQbgsuf4a6pKyKNoKleyBjmiv4S8RNPR6BDgY62J5xrgl5FaSw-LVEkJsE0k5CBa1z--d39jejo6lIWGzAyRKWgiIS96c_xrP4__T9wTcgeL3bTSPtlazlf-KSRay-pZO8x-ADYJG50
  priority: 102
  providerName: Hindawi Publishing
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1bb9MwFLZGJwQ8IDYuCwzkh3HTZDVL7CR-QKibVlVIrabBxN4ix5dtUki7XjR1f4M_zDmJ07IHxkMfUp3YSfz5XGyf7xCyFzrMthSaFZlyjCsdM5XKA5akDsyVszbSuKA_HCWDM_7tXJxvkFGbC4PHKludWCtqM9a4Rt4F04SuOSjTr5NrhlWjcHe1LaGhfGkF86WmGHtANiNkxuqQzcPj0cnpmoY3qVk0IeZJWARYbY_CC9EFS5h1M9xm4tEdI1Vz-dcJuwqu1Up3P7zEqPnm6o5v-mhRTdTyRpXlX2aq_4w89f4l7TWA2CIbttomT4YrctbZNtny83lGP3nS6c_Pye8eHSwxe4v2F7e3S_pTYUWKOUXyDmhv1JwWp1g6raS4eEu_29KxnlET8Fn9TZoNLZg-elQukH8BrCJVlaHYC3RNe-UFfNH55S8KnjL0ACK04fBY0pMp7hghSuhVRU_r0yIvyFn_-MfRgPmCDUzzRMyZkLjpmjmHkWYhYu7AuwsVaA3QGyqz8ANspC7NTGJjY2ITcp3F1rhIZE7a-CXpVOPK7hDKDbdGmlAWWkJMBV5cyq0KY6uQpEvGAdlvRyjXns0ci2qUeR3VCJHjeOZ-PAPyfiU9aVg8_iF3iIO9kkHu7fqP8fQi91M5t9xEVhsRFtaAmZEqkqmCyNpyfDVZBOSVh8q6r4MYA8WAfETo5Kg74GG18ikQ8MrIwpX3klBmGUR4IiB7Hl3_ed7dFnq51z2zfD1TAvJhBcd723l9fztvyGOUblaedklnPl3Yt-CLzYt3foL9AYJwLIU
  priority: 102
  providerName: ProQuest
Title A Hybrid Fuzzy Wavelet Neural Network Model with Self-Adapted Fuzzy c-Means Clustering and Genetic Algorithm for Water Quality Prediction in Rivers
URI https://search.emarefa.net/detail/BIM-1136066
https://dx.doi.org/10.1155/2018/8241342
https://www.proquest.com/docview/2159966847
http://downloads.hindawi.com/journals/complexity/2018/8241342.pdf
https://doaj.org/article/e4d2ecd50bed4679a297a106e437f79b
UnpaywallVersion publishedVersion
Volume 2018
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: DOA
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: AMVHM
  dateStart: 20120701
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 8FG
  dateStart: 20120501
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1076-2787
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009637
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access (WRLC)
  customDbUrl:
  eissn: 1099-0526
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009637
  issn: 1076-2787
  databaseCode: 24P
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFH6iiRBwAFo2Q4nmUDYhp07s8XJ0q4YIKVEUiCgna-yZKRXGibKoJCd-Ajf-H7-E9-xJaIRYxMGRbD3Pkvn8lpk33wAcOJp2W_LMTkOhbU9kri2CqGX7gUZzpZVqZzSh3-v73ZH3-pRfyiaUxBA_FnLW_EAh6cV5qazN3zo7LNOs1Wf0TzFob4WHIa0KeRgaSr0DdZ-jO16D-qg_iN9XuYa-3Q7KQ_JoAcgmbpN18jvnW0VsmaWSvb_coivwXmy09VXTqC1v9NqimIjlhcjzS4apcwvS9faeKh_lY3MxT5vZ6le2x__v8224adxWFlc424UrqtiDG70N5-tsD3aNmpix54bL-sUd-Baz7pI2hbHOYrVasneCDrqYM-IEwfL6VRI6oxPZckZzwuyNyvX3L19jKSboDJvXMnzSU2hV2XG-IGoHNLhMFJJRTVg9i_Oz8RRf_8TQCcdaUIRV9CBLNpjSYhQBkJ0XbFgmotyFUefk7XHXNmdB2Jnn87nNI1rPDbWmIDblrqfRcXQEKiRUSSJUeCHsAh2E0leulK50vCx0ldRtHupIufegVowL9QCYJz0lI-lEaRZhuIYOYuAp4bhKEP9X5Frwcg2FJDNE6XReR56UARPnCY1DYsbBgicb6UlFEPIbuSNC1UaGaL3LB-PpWWK0RKI82VaZ5E6qJFqwSLSjQGDQrjzqWpRacN9g8mddLZdiUAueEUYTUkvY2EyY3RXYZSL4SmLficIQg0duwYHB2V_au7_GeLLGYoL-IcXHOBIWPN3g_o_lPPxXwUdwnW6r6a19qM2nC_UYHb552oCdsPOqAfWjk_5g2CinTfB32D1tmI_9B4-RVPc
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NTtwwELYoqKI9VIX-paWtD9AWVdaGxE7iA6oWCloKu0IUVG6pE9uAlGa3-6PV8hp9nz5bZ7LObjmUnjjsISvHjjXjmflszzeErPsWsy1FzrJEWcZVHjIVyy0WxRbclTUmyHFDv92JWmf8y7k4XyC_61wYvFZZ28TKUOtujnvkDXBNGJqDMf3U-8mwahSertYlNJQrraC3K4oxl9hxaCZjgHCD7YPPIO-NINjfO91tMVdlgOU8EkMmJJ4UJtYiPMpEyC2EJL4CVQdlV4mBH0wotnGiIxNqHWqf50lotA1EYqUJod97ZImHXAL4W9rZ6xyfzGl_o4q1EzBWxAJYG_XVeyEa4HmTRoLHWjy44RSr2gFVgrCCZzXzFfcvEaWPr27EwsujsqcmY1UUf7nF_cfkkYtnaXOqgCtkwZSr5GF7RgY7WCUrzn4M6AdHcr35hPxq0tYEs8Xo_uj6ekK_KayAMaRIFgL9daa30ymWaisobhbTr6awrKlVD2Jk91LO2gZcLd0tRsj3AF6YqlJTHAWGps3iAiQ4vPxBITKHEaAJnXKGTOhxH0-oUCvpVUlPqtspT8nZnYjuGVksu6V5QSjX3GipfZnlEjAcRI0xN8oPjUJSMBl65GMtoTR37OlYxKNIKxQlRIryTJ08PbIxa92bsob8o90OCnvWBrm-qz-6_YvUmY7UcB2YXAs_MxrcmlSBjBUgecNxajLzyHOnKvOxtkIEph55j6qToq2Cj82VS7mAKSPrV9qMfJkkgCiFR9addv3ne9dq1UudrRuk85XpkXczdby1n5e39_OWLLdO20fp0UHn8BV5gG9Od73WyOKwPzKvIQ4cZm_cYqPk-12v7z8nWmhJ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9NAFB5BKgQcgJbNUNAcylIhp449Y3uOpiKKkBJVQAScrPEsbVXjRFlUkhM_gRv_j1_Ce_YkNEIs4uCDredZPJ_fMvPmG0L2Aou7Lbnyi1Ran0kV-TIRHT9OLJgra0yocEK_P4h7Q_b6A7-QTaiRIX4k9bR9giHp-WmtrN1nnR7UadbmM_inELR30oMUV4UYhIbaXiZbMQd3vEW2hoOj7GOTaxj7YVIfkocLQD5ym6yS3znfKGLDLNXs_fUWXQn3cq2tr7hGbXijV-fVWC7OZVleMEzdm6RYbe9p8lHO2vNZ0VbLX9ke_7_Pt8gN57bSrMHZNrlkqh1yvb_mfJ3ukG2nJqb0ueOy3r9NvmW0t8BNYbQ7Xy4X9L3Egy5mFDlBoLxBk4RO8US2kuKcMH1rSvv9y9dMyzE4w-41BU_6BqwqPSznSO0ABpfKSlOsCaqnWXk8msDrnyg44VALiNCGHmRBjya4GIUApKcVfVMnotwhw-6rd4c9350F4SsW85nPBa7nptZiEFvwiFlwHAMJCglUkkwNXAC7xCapjk2kdaQDptLIaBvy1AoT3SWtalSZ-4QyzYwWOhCFEhCugYOYMCODyEjk_xKRR16soJArR5SO53WUeR0wcZ7jOORuHDzyZC09bghCfiP3ElG1lkFa7_rBaHKcOy2RG6ZDozQPCqPBggkZikRC0G4Ydk0UHrnnMPmzrk6EMahHniFGc1RL0Fgl3e4K6DISfOVZHIg0heCRe2TP4ewv7d1dYTxfYTEH_xDjYxgJjzxd4_6P5Tz4V8GH5BreNtNbu6Q1m8zNI3D4ZsVj90v_ADP5UG8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Hybrid+Fuzzy+Wavelet+Neural+Network+Model+with+Self-Adapted+Fuzzy+c-Means+Clustering+and+Genetic+Algorithm+for+Water+Quality+Prediction+in+Rivers&rft.jtitle=Complexity+%28New+York%2C+N.Y.%29&rft.au=Huang%2C+Mingzhi&rft.au=Tian%2C+Di&rft.au=Liu%2C+Hongbin&rft.au=Zhang%2C+Chao&rft.date=2018-01-01&rft.pub=Hindawi&rft.issn=1076-2787&rft.eissn=1099-0526&rft.volume=2018&rft_id=info:doi/10.1155%2F2018%2F8241342&rft.externalDocID=10_1155_2018_8241342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-2787&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-2787&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-2787&client=summon