Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus
Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics follow...
Saved in:
Published in | Journal of neural engineering Vol. 18; no. 4; pp. 46050 - 46063 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
13.05.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1741-2560 1741-2552 1741-2552 |
DOI | 10.1088/1741-2552/abfc1c |
Cover
Abstract | Objective.
The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson’s disease.
Approach.
Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1–4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12–30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).
Results.
Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1–4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1–4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode–tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.
Significance.
These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings. |
---|---|
AbstractList | The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.
Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).
Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.
These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings. Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings. Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson’s disease. Approach. Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1–4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12–30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR). Results. Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1–4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1–4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode–tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power. Significance. These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings. |
Author | Alisch, Joseph S R Wilmerding, Lucius K DeNicola, Adele Vitek, Jerrold L Doyle, Alex M Spencer, Chelsea Brinda, AnneMarie K Johnson, Matthew D Lecy, Emily Krieg, Jordan Johnson, Luke A Blumenfeld, Madeline |
AuthorAffiliation | 1 Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America 3 Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America 2 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States of America |
AuthorAffiliation_xml | – name: 3 Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America – name: 2 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States of America – name: 1 Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America |
Author_xml | – sequence: 1 givenname: AnneMarie K surname: Brinda fullname: Brinda, AnneMarie K organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 2 givenname: Alex M surname: Doyle fullname: Doyle, Alex M organization: University of Minnesota Department of Neuroscience, Minneapolis, MN 55455, United States of America – sequence: 3 givenname: Madeline surname: Blumenfeld fullname: Blumenfeld, Madeline organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 4 givenname: Jordan orcidid: 0000-0002-8608-5206 surname: Krieg fullname: Krieg, Jordan organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 5 givenname: Joseph S R surname: Alisch fullname: Alisch, Joseph S R organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 6 givenname: Chelsea surname: Spencer fullname: Spencer, Chelsea organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 7 givenname: Emily surname: Lecy fullname: Lecy, Emily organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 8 givenname: Lucius K surname: Wilmerding fullname: Wilmerding, Lucius K organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America – sequence: 9 givenname: Adele surname: DeNicola fullname: DeNicola, Adele organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America – sequence: 10 givenname: Luke A surname: Johnson fullname: Johnson, Luke A organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America – sequence: 11 givenname: Jerrold L surname: Vitek fullname: Vitek, Jerrold L organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America – sequence: 12 givenname: Matthew D orcidid: 0000-0001-9686-5540 surname: Johnson fullname: Johnson, Matthew D organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/33906174$$D View this record in MEDLINE/PubMed |
BookMark | eNqNUcmO1DAUjNAgZoE7J-QbHGjGTuwsFyQ0AmaklrjA2fLyPO2WYwfbAfUn8Nc4ZGgWoREXL6-qXunVO69OfPBQVU8JfkVw31-SjpJNzVh9KaRRRD2ozo6lk-O7xafVeUp7jBvSDfhRddo0A24LelZ92wZ_a_OsrRcOiXIckk0oGOSCKhVjwWk0hQw-W-ESiqBC1KCRiWFE2pZ_tmERa4AJySisRynbcXZiAZADoZEdJyd8TqiAeQcozTLvhBOjVcjPysGcHlcPTTGAJ3f3RfXp3duPV9eb7Yf3N1dvthtFW5Y3VBGhaSeBMNpSzVTf9aA6Sskgm6E2jdESWqYaYWSnoGupYbIFjWsxGCNVc1GRte_sJ3H4KpzjU7SjiAdOMF9i5UtufMmQr7EWzetVM81yBK1KGFH80gVh-Z-Itzt-G77wnmFKalwavLhrEMPnGVLmo00KXAkFwpyKGRkawnrcF-qz372OJj93VgjtSlAxpBTBcGXzj6yLtXX3TYH_Ev7H4C9XiQ0T34c5lkWn--jP_0Hfe-Ck55Rj2mKG-aRN8x0LadzI |
CODEN | JNEIEZ |
CitedBy_id | crossref_primary_10_1016_j_neurom_2023_08_003 crossref_primary_10_1002_mds_29626 crossref_primary_10_2139_ssrn_4619425 crossref_primary_10_1007_s10143_023_02268_x crossref_primary_10_1038_s41598_023_29439_6 crossref_primary_10_1002_mds_30169 crossref_primary_10_1080_0954898X_2024_2361799 |
Cites_doi | 10.1152/jn.90989.2008 10.1101/696385 10.1227/NEU.0b013e3182676b91 10.1002/(SICI)1096-9861(20000131)417:1<17:AID-CNE2>3.0.CO;2-I 10.1016/j.expneurol.2008.09.008 10.1016/j.clinph.2017.10.036 10.1088/1741-2560/13/1/016010 10.1007/s00429-018-1726-x 10.1002/mds.23232 10.1016/j.neuroimage.2019.04.071 10.1016/j.nbd.2020.104819 10.3389/fneng.2014.00024 10.1111/j.1460-9568.2006.04717.x 10.1159/000328508 10.1212/WNL.0000000000005121 10.1016/j.brs.2019.12.008 10.1016/j.expneurol.2009.12.013 10.1523/JNEUROSCI.1803-13.2014 10.1002/mds.20796 10.1097/01376517-200508000-00006 10.1152/jn.00840.2014 10.1159/000481805 10.1088/1741-2560/4/4/007 10.1136/jnnp-2016-313518 10.1016/j.jneumeth.2014.12.010 10.1016/j.jneumeth.2010.06.020 10.1088/1741-2560/10/2/026007 10.1016/j.expneurol.2005.11.019 10.1136/jnnp.2008.159558 10.1109/TBME.2015.2492921 10.1093/brain/awu102 10.3171/foc.2006.20.5.5 10.1016/j.brs.2019.02.020 10.1016/j.expneurol.2012.09.013 10.1152/jn.00259.2015 10.1088/1741-2560/12/6/066012 10.1002/mds.27068 10.1016/j.brainres.2009.05.052 10.1002/mds.27215 10.1136/jnnp.2009.190918 10.1152/jn.00756.2016 10.1002/mds.20956 10.1111/j.1600-0684.2011.00525.x 10.1007/978-3-211-33081-4_65 10.1016/j.neuroscience.2010.08.068 10.1016/j.brs.2015.02.002 10.1016/j.expneurol.2005.02.010 10.1523/JNEUROSCI.4137-14.2015 10.1002/ana.23951 10.1088/1741-2552/aa5a90 10.1021/cn500256e 10.1109/TNSRE.2012.2183617 10.14814/phy2.13322 10.1016/j.neuroscience.2004.06.046 10.1109/TBME.2004.826680 10.1002/mds.26953 10.1016/j.jocn.2008.03.004 10.1016/j.brs.2016.06.051 10.1016/j.expneurol.2012.04.024 10.1136/jnnp-2013-306066 10.1227/01.NEU.0000372091.64824.63 10.1109/TNSRE.2005.857687 10.1088/1741-2552/aabdf5 10.1016/0006-8993(92)90199-J 10.1002/mds.22641 10.1088/1741-2560/6/4/046001 |
ContentType | Journal Article |
Copyright | 2021 IOP Publishing Ltd 2021 IOP Publishing Ltd. |
Copyright_xml | – notice: 2021 IOP Publishing Ltd – notice: 2021 IOP Publishing Ltd. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM ADTOC UNPAY |
DOI | 10.1088/1741-2552/abfc1c |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1741-2552 |
ExternalDocumentID | oai:pubmedcentral.nih.gov:8504120 PMC8504120 33906174 10_1088_1741_2552_abfc1c jneabfc1c |
Genre | Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institute of Neurological Disorders and Stroke grantid: P30-NS076408; P50-NS098573; R01-NS085188; R01-NS094206; R44-NS103714 funderid: http://dx.doi.org/10.13039/100000065 – fundername: National Institute of Biomedical Imaging and Bioengineering grantid: P41-EB015894 funderid: http://dx.doi.org/10.13039/100000070 – fundername: National Institute of Mental Health grantid: U54-MH091657 funderid: http://dx.doi.org/10.13039/100000025 – fundername: NIMH NIH HHS grantid: U54 MH091657 – fundername: NINDS NIH HHS grantid: R01 NS058945 – fundername: NINDS NIH HHS grantid: R01 NS110613 – fundername: NINDS NIH HHS grantid: R37 NS077657 – fundername: NINDS NIH HHS grantid: R44 NS103714 – fundername: NIBIB NIH HHS grantid: P41 EB027061 – fundername: NIGMS NIH HHS grantid: K12 GM119955 – fundername: NINDS NIH HHS grantid: P50 NS098573 – fundername: NIBIB NIH HHS grantid: P41 EB015894 – fundername: NINDS NIH HHS grantid: R01 NS037019 |
GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP M45 N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM 02O 1WK AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ NT- NT. Q02 RNS S3P UNPAY |
ID | FETCH-LOGICAL-c465t-4c1ad47be15464d5c878ec74419b392f3fdbe65c3afb7ce764f5b6ed02a9ffbc3 |
IEDL.DBID | IOP |
ISSN | 1741-2560 1741-2552 |
IngestDate | Wed Aug 20 00:16:34 EDT 2025 Thu Aug 21 18:27:05 EDT 2025 Fri Sep 05 09:06:41 EDT 2025 Wed Jul 23 01:45:57 EDT 2025 Wed Oct 01 02:41:34 EDT 2025 Thu Apr 24 22:58:19 EDT 2025 Wed Aug 21 03:34:31 EDT 2024 Tue Jun 13 23:30:41 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | impedance spectroscopy recording configuration electrode tissue interface reactive tissue response directional leads local field potentials deep brain stimulation |
Language | English |
License | This article is available under the terms of the IOP-Standard License. 2021 IOP Publishing Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c465t-4c1ad47be15464d5c878ec74419b392f3fdbe65c3afb7ce764f5b6ed02a9ffbc3 |
Notes | JNE-104083.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8608-5206 0000-0001-9686-5540 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8504120 |
PMID | 33906174 |
PQID | 2519315808 |
PQPubID | 23479 |
PageCount | 14 |
ParticipantIDs | pubmed_primary_33906174 crossref_primary_10_1088_1741_2552_abfc1c unpaywall_primary_10_1088_1741_2552_abfc1c proquest_miscellaneous_2519315808 iop_journals_10_1088_1741_2552_abfc1c pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504120 crossref_citationtrail_10_1088_1741_2552_abfc1c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210513 |
PublicationDateYYYYMMDD | 2021-05-13 |
PublicationDate_xml | – month: 5 year: 2021 text: 20210513 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Journal of neural engineering |
PublicationTitleAbbrev | JNE |
PublicationTitleAlternate | J. Neural Eng |
PublicationYear | 2021 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Kuhn (jneabfc1cbib57) 2006; 23 Rosa (jneabfc1cbib2) 2011; 19 Fernández (jneabfc1cbib19) 2014; 7 Lungu (jneabfc1cbib22) 2014; 85 Bronte-Stewart (jneabfc1cbib26) 2009; 215 Holdefer (jneabfc1cbib30) 2010; 25 Ludwig (jneabfc1cbib11) 2009; 101 Little (jneabfc1cbib61) 2012; 236 Chen (jneabfc1cbib32) 2006; 198 Connolly (jneabfc1cbib6) 2015 Ince (jneabfc1cbib5) 2010; 67 Lempka (jneabfc1cbib20) 2009; 6 Schmidt (jneabfc1cbib51) 2020; 13 Connolly (jneabfc1cbib49) 2015; 12 Abosch (jneabfc1cbib24) 2012; 71 Kuhn (jneabfc1cbib29) 2005; 194 Agnesi (jneabfc1cbib37) 2015; 114 Sharott (jneabfc1cbib60) 2014; 34 Connolly (jneabfc1cbib27) 2015; 35 Miocinovic (jneabfc1cbib36) 2007; 97 Aman (jneabfc1cbib40) 2020; 139 Vetter (jneabfc1cbib12) 2004; 51 Rezai (jneabfc1cbib54) 2006; 21 Ray (jneabfc1cbib58) 2009; 16 Priori (jneabfc1cbib1) 2013; 245 Unterberg (jneabfc1cbib42) 2004; 129 Cersosimo (jneabfc1cbib52) 2009; 24 Woolley (jneabfc1cbib15) 2013; 10 Kolb (jneabfc1cbib31) 2017; 5 Malaga (jneabfc1cbib50) 2016; 13 Zhang (jneabfc1cbib38) 2018; 15 Koop (jneabfc1cbib53) 2006; 21 Coudé (jneabfc1cbib47) 2018; 223 Rosa (jneabfc1cbib64) 2017; 32 Yoshida (jneabfc1cbib8) 2010; 81 Iturrate (jneabfc1cbib65) 2019 Arlotti (jneabfc1cbib25) 2018; 90 Bokil (jneabfc1cbib39) 2010; 192 Hazrati (jneabfc1cbib46) 1992; 598 Stanslaski (jneabfc1cbib68) 2012; 20 Sun (jneabfc1cbib44) 2018; 129 Ward (jneabfc1cbib13) 2009; 1282 Mann (jneabfc1cbib55) 2009; 80 Pogosyan (jneabfc1cbib56) 2010; 171 Hunka (jneabfc1cbib62) 2005; 37 Duprez (jneabfc1cbib41) 2019; 197 Suner (jneabfc1cbib17) 2005; 13 Graham (jneabfc1cbib34) 2012; 41 Bour (jneabfc1cbib7) 2015; 8 Velisar (jneabfc1cbib67) 2019; 12 Michel (jneabfc1cbib48) 2019; vol 160 Steiner (jneabfc1cbib59) 2017; 32 Sillay (jneabfc1cbib23) 2018; 25 Pollo (jneabfc1cbib66) 2014; 137 Little (jneabfc1cbib3) 2013; 74 Barz (jneabfc1cbib16) 2017; 14 Rosa (jneabfc1cbib33) 2010; 222 McMillan (jneabfc1cbib35) 2014; 53 Sato (jneabfc1cbib45) 2000; 417 Little (jneabfc1cbib63) 2016; 87 Connolly (jneabfc1cbib28) 2015; 114 Marmor (jneabfc1cbib43) 2017; 117 Johnson (jneabfc1cbib69) 2016; 9 House (jneabfc1cbib18) 2006; 20 Kozai (jneabfc1cbib21) 2015; 6 Williams (jneabfc1cbib14) 2007; 4 Connolly (jneabfc1cbib9) 2016; 63 Tinkhauser (jneabfc1cbib4) 2018; 33 Kozai (jneabfc1cbib10) 2015; 242 |
References_xml | – volume: 101 start-page: 1679 year: 2009 ident: jneabfc1cbib11 article-title: Using a common average reference to improve cortical neuron recordings from microelectrode arrays publication-title: J. Neurophysiol. doi: 10.1152/jn.90989.2008 – year: 2019 ident: jneabfc1cbib65 article-title: Beta-driven closed-loop deep brain stimulation can compromise human motor behavior in parkinson’s disease doi: 10.1101/696385 – volume: 71 start-page: 804 year: 2012 ident: jneabfc1cbib24 article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes publication-title: Neurosurgery doi: 10.1227/NEU.0b013e3182676b91 – volume: 417 start-page: 17 year: 2000 ident: jneabfc1cbib45 article-title: Single-axon tracing study of neurons of the external segment of the globus pallidus in primate publication-title: J. Comp. Neurol. doi: 10.1002/(SICI)1096-9861(20000131)417:1<17:AID-CNE2>3.0.CO;2-I – volume: 215 start-page: 20 year: 2009 ident: jneabfc1cbib26 article-title: The STN beta-band profile in parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2008.09.008 – volume: 129 start-page: 676 year: 2018 ident: jneabfc1cbib44 article-title: Changes in the electrocorticogram after implantation of intracranial electrodes in humans: the implant effect publication-title: Clin. Neurophysiol. doi: 10.1016/j.clinph.2017.10.036 – volume: 13 year: 2016 ident: jneabfc1cbib50 article-title: Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/13/1/016010 – volume: 223 start-page: 3959 year: 2018 ident: jneabfc1cbib47 article-title: Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates publication-title: Brain Struct. Funct. doi: 10.1007/s00429-018-1726-x – volume: 25 start-page: 2067 year: 2010 ident: jneabfc1cbib30 article-title: Intraoperative local field recording for deep brain stimulation in parkinson’s disease and essential tremor publication-title: Mov. Disorders doi: 10.1002/mds.23232 – volume: 197 start-page: 232 year: 2019 ident: jneabfc1cbib41 article-title: Subthalamic nucleus local field potentials recordings reveal subtle effects of promised reward during conflict resolution in parkinson’s disease publication-title: Neuro Image doi: 10.1016/j.neuroimage.2019.04.071 – volume: 139 year: 2020 ident: jneabfc1cbib40 article-title: Directional deep brain stimulation leads reveal spatially distinct oscillatory activity in the globus pallidus internus of parkinson’s disease patients publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.104819 – volume: 7 start-page: 24 year: 2014 ident: jneabfc1cbib19 article-title: Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects publication-title: Front. Neuroeng. doi: 10.3389/fneng.2014.00024 – volume: 23 start-page: 1956 year: 2006 ident: jneabfc1cbib57 article-title: Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in parkinson’s disease publication-title: Eur. J. Neurosci. doi: 10.1111/j.1460-9568.2006.04717.x – volume: 19 start-page: 151 year: 2011 ident: jneabfc1cbib2 article-title: Subthalamic local field beta oscillations during ongoing deep brain stimulation in parkinson’s disease in hyperacute and chronic phases publication-title: Neurosignals doi: 10.1159/000328508 – volume: 90 start-page: e971 year: 2018 ident: jneabfc1cbib25 article-title: Eight-hours adaptive deep brain stimulation in patients with parkinson disease publication-title: Neurology doi: 10.1212/WNL.0000000000005121 – volume: 13 start-page: 433 year: 2020 ident: jneabfc1cbib51 article-title: Continuous deep brain stimulation of the subthalamic nucleus may not modulate beta bursts in patients with parkinson’s disease publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.12.008 – volume: 222 start-page: 184 year: 2010 ident: jneabfc1cbib33 article-title: Time dependent subthalamic local field potential changes after DBS surgery in parkinson’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2009.12.013 – volume: 34 start-page: 6273 year: 2014 ident: jneabfc1cbib60 article-title: Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in parkinson’s disease publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1803-13.2014 – volume: 21 start-page: 673 year: 2006 ident: jneabfc1cbib53 article-title: Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with parkinson’s disease during deep brain stimulation surgery publication-title: Mov. Disorders doi: 10.1002/mds.20796 – volume: 37 start-page: 204 year: 2005 ident: jneabfc1cbib62 article-title: Nursing time to program and assess deep brain stimulators in movement disorder patients publication-title: J. Neurosci. Nurs. doi: 10.1097/01376517-200508000-00006 – volume: 114 start-page: 209 year: 2015 ident: jneabfc1cbib28 article-title: Classification of pallidal oscillations with increasing parkinsonian severity publication-title: J. Neurophysiol. doi: 10.1152/jn.00840.2014 – volume: 25 start-page: 289 year: 2018 ident: jneabfc1cbib23 article-title: Long-term surface electrode impedance recordings associated with gliosis for a closed-loop neurostimulation device publication-title: Ann. Neurosci. doi: 10.1159/000481805 – start-page: 840 year: 2015 ident: jneabfc1cbib6 article-title: Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically implanted device in parkinson’s disease patients – volume: 4 start-page: 410 year: 2007 ident: jneabfc1cbib14 article-title: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants publication-title: J. Neural Eng. doi: 10.1088/1741-2560/4/4/007 – volume: 87 start-page: 1388 year: 2016 ident: jneabfc1cbib63 article-title: Adaptive deep brain stimulation for parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp-2016-313518 – volume: 242 start-page: 15 year: 2015 ident: jneabfc1cbib10 article-title: Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2014.12.010 – volume: 192 start-page: 146 year: 2010 ident: jneabfc1cbib39 article-title: Chronux: a platform for analyzing neural signals publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2010.06.020 – volume: 10 year: 2013 ident: jneabfc1cbib15 article-title: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses publication-title: J. Neural Eng. doi: 10.1088/1741-2560/10/2/026007 – volume: 198 start-page: 214 year: 2006 ident: jneabfc1cbib32 article-title: Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in parkinson’s disease surgery publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.11.019 – volume: 80 start-page: 794 year: 2009 ident: jneabfc1cbib55 article-title: Brain penetration effects of microelectrodes and DBS leads in STN or GPi publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp.2008.159558 – volume: 63 start-page: 148 year: 2016 ident: jneabfc1cbib9 article-title: A novel lead design for modulation and sensing of deep brain structures publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2492921 – volume: 137 start-page: 2015 year: 2014 ident: jneabfc1cbib66 article-title: Directional deep brain stimulation: an intraoperative double-blind pilot study publication-title: Brain doi: 10.1093/brain/awu102 – volume: 20 start-page: 1 year: 2006 ident: jneabfc1cbib18 article-title: Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations publication-title: Neurosurg. Focus doi: 10.3171/foc.2006.20.5.5 – volume: 12 start-page: 868 year: 2019 ident: jneabfc1cbib67 article-title: Dual threshold neural closed loop deep brain stimulation in parkinson disease patients publication-title: Brain Stimul. doi: 10.1016/j.brs.2019.02.020 – volume: 245 start-page: 77 year: 2013 ident: jneabfc1cbib1 article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2012.09.013 – volume: 114 start-page: 825 year: 2015 ident: jneabfc1cbib37 article-title: Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS publication-title: J. Neurophysiol. doi: 10.1152/jn.00259.2015 – volume: vol 160 start-page: 85 year: 2019 ident: jneabfc1cbib48 – volume: 12 year: 2015 ident: jneabfc1cbib49 article-title: Local field potential recordings in a non-human primate model of parkinsons disease using the activa PC + S neurostimulator publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/12/6/066012 – volume: 32 start-page: 1183 year: 2017 ident: jneabfc1cbib59 article-title: Subthalamic beta dynamics mirror parkinsonian bradykinesia months after neurostimulator implantation publication-title: Mov. Disorders doi: 10.1002/mds.27068 – volume: 1282 start-page: 183 year: 2009 ident: jneabfc1cbib13 article-title: Toward a comparison of microelectrodes for acute and chronic recordings publication-title: Brain Res. doi: 10.1016/j.brainres.2009.05.052 – volume: 33 start-page: 159 year: 2018 ident: jneabfc1cbib4 article-title: Directional local field potentials: a tool to optimize deep brain stimulation publication-title: Mov. Disorders doi: 10.1002/mds.27215 – volume: 81 start-page: 885 year: 2010 ident: jneabfc1cbib8 article-title: Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in parkinson’s disease publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp.2009.190918 – volume: 117 start-page: 2140 year: 2017 ident: jneabfc1cbib43 article-title: Local vs volume conductance activity of field potentials in the human subthalamic nucleus publication-title: J. Neurophysiol. doi: 10.1152/jn.00756.2016 – volume: 21 start-page: S197 year: 2006 ident: jneabfc1cbib54 article-title: Deep brain stimulation for parkinson’s disease: surgical issues publication-title: Mov. Disorders doi: 10.1002/mds.20956 – volume: 41 start-page: 89 year: 2012 ident: jneabfc1cbib34 article-title: Successful implementation of cooperative handling eliminates the need for restraint in a complex nonhuman primate disease model publication-title: J. Med. Primatol. doi: 10.1111/j.1600-0684.2011.00525.x – volume: 97 start-page: 561 year: 2007 ident: jneabfc1cbib36 article-title: Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system publication-title: Acta Neurochir. Suppl. doi: 10.1007/978-3-211-33081-4_65 – volume: 171 start-page: 245 year: 2010 ident: jneabfc1cbib56 article-title: Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization publication-title: Neuroscience doi: 10.1016/j.neuroscience.2010.08.068 – volume: 8 start-page: 730 year: 2015 ident: jneabfc1cbib7 article-title: Directional recording of subthalamic spectral power densities in parkinson’s disease and the effect of steering deep brain stimulation publication-title: Brain Stimul. doi: 10.1016/j.brs.2015.02.002 – volume: 194 start-page: 212 year: 2005 ident: jneabfc1cbib29 article-title: The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with parkinson’s disease publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2005.02.010 – volume: 35 start-page: 6231 year: 2015 ident: jneabfc1cbib27 article-title: Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4137-14.2015 – volume: 74 start-page: 449 year: 2013 ident: jneabfc1cbib3 article-title: Adaptive deep brain stimulation in advanced parkinson disease publication-title: Ann. Neurol. doi: 10.1002/ana.23951 – volume: 14 year: 2017 ident: jneabfc1cbib16 article-title: Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aa5a90 – volume: 6 start-page: 48 year: 2015 ident: jneabfc1cbib21 article-title: Brain tissue responses to neural implants impact signal sensitivity and intervention strategies publication-title: ACS Chem. Neurosci. doi: 10.1021/cn500256e – volume: 20 start-page: 410 year: 2012 ident: jneabfc1cbib68 article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2012.2183617 – volume: 5 year: 2017 ident: jneabfc1cbib31 article-title: Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in parkinson’s disease patients publication-title: Physiol. Rep. doi: 10.14814/phy2.13322 – volume: 129 start-page: 1021 year: 2004 ident: jneabfc1cbib42 article-title: Edema and brain trauma publication-title: Neuroscience doi: 10.1016/j.neuroscience.2004.06.046 – volume: 51 start-page: 896 year: 2004 ident: jneabfc1cbib12 article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2004.826680 – volume: 32 start-page: 628 year: 2017 ident: jneabfc1cbib64 article-title: Adaptive deep brain stimulation controls levodopa‐induced side effects in parkinsonian patients publication-title: Mov. Disord. doi: 10.1002/mds.26953 – volume: 16 start-page: 32 year: 2009 ident: jneabfc1cbib58 article-title: Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain publication-title: J. Clin. Neurosci. doi: 10.1016/j.jocn.2008.03.004 – volume: 9 start-page: 892 year: 2016 ident: jneabfc1cbib69 article-title: Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate—is beta enough? publication-title: Brain Stimul. doi: 10.1016/j.brs.2016.06.051 – volume: 236 start-page: 383 year: 2012 ident: jneabfc1cbib61 article-title: Beta band stability over time correlates with parkinsonian rigidity and bradykinesia publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2012.04.024 – volume: 85 start-page: 816 year: 2014 ident: jneabfc1cbib22 article-title: Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue–electrode interface in deep brain stimulation patients publication-title: J. Neurol. Neurosurg. Psychiatr. doi: 10.1136/jnnp-2013-306066 – volume: 67 start-page: 390 year: 2010 ident: jneabfc1cbib5 article-title: Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with parkinson’s disease publication-title: Neurosurgery doi: 10.1227/01.NEU.0000372091.64824.63 – volume: 13 start-page: 524 year: 2005 ident: jneabfc1cbib17 article-title: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2005.857687 – volume: 15 year: 2018 ident: jneabfc1cbib38 article-title: High-resolution local field potentials measured with deep brain stimulation arrays publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aabdf5 – volume: 53 start-page: 61 year: 2014 ident: jneabfc1cbib35 article-title: Refining the pole and collar method of restraint: emphasizing the use of positive training techniques with rhesus macaques (Macaca mulatta) publication-title: J. Am. Assoc. Lab. Anim. Sci. – volume: 598 start-page: 311 year: 1992 ident: jneabfc1cbib46 article-title: Differential patterns of arborization of striatal and subthalamic fibers in the two pallidal segments in primates publication-title: Brain Res. doi: 10.1016/0006-8993(92)90199-J – volume: 24 start-page: 1488 year: 2009 ident: jneabfc1cbib52 article-title: Micro lesion effect of the globus pallidus internus and outcome with deep brain stimulation in patients with parkinson’s disease and dystonia publication-title: Mov. Disorders doi: 10.1002/mds.22641 – volume: 6 year: 2009 ident: jneabfc1cbib20 article-title: In vivo impedance spectroscopy of deep brain stimulation electrodes publication-title: J. Neural. Eng. doi: 10.1088/1741-2560/6/4/046001 |
SSID | ssj0031790 |
Score | 2.3518593 |
Snippet | Objective.
The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have... The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have... Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have... |
SourceID | unpaywall pubmedcentral proquest pubmed crossref iop |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 46050 |
SubjectTerms | Deep Brain Stimulation directional leads electrode tissue interface Humans impedance spectroscopy local field potentials Parkinson Disease - therapy Prostheses and Implants reactive tissue response recording configuration Subthalamic Nucleus |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB7W7oO-rJf1Um8cQQWFtElnMkkei7gsIouIhfVpmCtbTZOwTZD1H_ivPTNJq1VZ2bfAnEKGfKfnm5lvvkPIc4plWdrURgbZesSMpFGRF7OoyJzC5XPKMhXUFif8eMHenaaneyTZ3IUJon2tlpOqXE2q5VnQVjYrPd3oxKZ56i2icJW-z1NcMI_I_uLkw_xzf_ExiZAiz34983g4msRkmm7Hp1I5neidUnRtWTf_Ypl_iyWvd1UjL77JsvytEh3dJB83c-gFKF8nXasm-vsf9o5XmuQtcjDwUpj3Q7fJnq3ukMN5hWvy1QW8hKAUDVvwh-TH-9p3OeqM76gFcrA1gdpBqIwQVHHQ1K1XIiG8od8Jsgb8ZRboq2jYggRjbQPKt6kA_K9ZDb3EoETkwXLVlF6lAziINBXWnWrPJCJ4qaHyNszd-i5ZHL399OY4Glo6RJrxtI2YTqTB728RIpyZVOdZbnWGnKxQyNQcdUZZnmoqncq0zThzqeLWxDNZOKc0vUdGVV3ZBwRMolRhmTFSW8YNLzSliYstVzFlsWZjMt18XaEHv3PfdqMU4dw9z4XHg_B4ED0exuTV9hdN7_VxSewLBIwYEn59SRzsxH2prEhywUQ4kI5FY9yYPNugTmBu-wMbWdm6Wwt_qxiTKY_zMbnfo3D7YpQWnn3iNLMdfG4DvG_47ggiLfiHD-Aak9dbJP93vg-vEvyI3Jh56Y83uaWPyag97-wT5G6tejpk60_V40XR priority: 102 providerName: Unpaywall |
Title | Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus |
URI | https://iopscience.iop.org/article/10.1088/1741-2552/abfc1c https://www.ncbi.nlm.nih.gov/pubmed/33906174 https://www.proquest.com/docview/2519315808 https://pubmed.ncbi.nlm.nih.gov/PMC8504120 https://www.ncbi.nlm.nih.gov/pmc/articles/8504120 |
UnpaywallVersion | submittedVersion |
Volume | 18 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB728qAv62W91MtyBBUU0iadyQ2firisIus-WFhBGObKVtskbBNk_Qf-a89J0mJ1WcW3Qk7ansk3c77MOfMdxp5yDMvKxS6wyNYDYRUP8iwfB3nqNb4-xyLVbbXFcXI0Fe9O49Mt9mp9Fqas-qV_iB87oeBuCPuCuGyEHDoKkAmPR0p7E5lttkvZLYL32w8nq2WYk_RUdxqSrJOwz1Fe9g0bMWkbf_cyuvln1eS1pqjUxTc1n_8Skg5vsM8rZ7pKlK_DptZD8_03ncf_9PYm2-upKkw601tsyxW32f6kwNf0xQU8h7Z4tN2V32c_3pfU-Kix1GQLVK90AqWHNlhCWygHVVlTcRIiHrrNIWeBzrdAF1jbXUmwzlWgqXMF4PKz6NuLwRzBCLNFNafCHcCLyFxh2ej6TCGoZwYKUmZulnfY9PDNx9dHQd_lITAiietAmEhZhIRD1CTCxiZLM2dSpGm5RvLmubfaJbHhyuvUuDQRPtaJs-FY5d5rw--ynaIs3H0GNtI6d8JaZZxIbJIbziMfukSHXIRGDNho9Zyl6SXQqRPHXLap-CyTNNqSRlt2oz1gL9Z3VJ38xxW2z_Ahyn4NWF5hBxt2Xwono0wK2eaoQ1lZP2BPVviTON0ph6MKVzZLSQeNcX5lYTZg9zo8rv8Y5zkRUnQz3UDq2oCkxDevFLOzVlI8i0l3LRywl2tM_9XfB__o70N2fUyFQCR5yx-xnfq8cY-RydX6oJ2xB2x3enwy-fQTJatIxA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVokYAXbgUaroMESFTKbrJ2bo8VsGqhKn2gUt-Mr-rSbBKxiVD5A_6asZNdsVAVJN5WyiTZsceeE_v4DCEvKKZlYRITakTrIdOChkVeTMIisxI_nxOWSc-2OEz3jtn7k-RkqHPqz8LUzTD1j_BnLxTcN-FAiMvHiKHjEJHwZCykVbEaN9pukKsJZk7H6dv_eLSciqmTn-pPRLo70mjYp7zoKWt5aQPffRHk_JM5eb2rGnH-TZTlL2lpeot8XjrUs1HORl0rR-r7b1qP_-HxbXJzgKyw25vfIVdMdZds7Vb4uT4_h1fgSaR-dX6L_DioXQGkTrtiWyAGxROoLfikCZ4wB03dOpISRj70i0RGgzvnAn2C9auToI1pQLoKFoDT0HwoMwYlBiXM5k3pCDyAFxHBwqKT7anA4J4pqJxCc7e4R46n7z692QuHag-hYmnShkzFQmNoGIyelOlE5VluVIZwrZAI4iy1Wpo0UVRYmSmTpcwmMjU6mojCWqnofbJZ1ZXZJqBjKQvDtBbKsFSnhaI0tpFJZURZpFhAxsu-5mqQQncVOUrut-TznLsW567Fed_iAXm9uqPpZUAusX2JHcmHuWBxiR2s2X2pDI9zzrjfq444dnJAni9jkOOwd3s5ojJ1t-DuwDGOszzKA_Kgj8nVH6O0cMAU3czWonVl4CTF169Us1MvLZ4nTn8tCsjOKq7_6u_Df_T3Gbl29HbKD_YPPzwiNyaOG-RUcOljstl-7cwTBHetfOoH8E962kx1 |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB7W7oO-rJf1Um8cQQWFtElnMkkei7gsIouIhfVpmCtbTZOwTZD1H_ivPTNJq1VZ2bfAnEKGfKfnm5lvvkPIc4plWdrURgbZesSMpFGRF7OoyJzC5XPKMhXUFif8eMHenaaneyTZ3IUJon2tlpOqXE2q5VnQVjYrPd3oxKZ56i2icJW-z1NcMI_I_uLkw_xzf_ExiZAiz34983g4msRkmm7Hp1I5neidUnRtWTf_Ypl_iyWvd1UjL77JsvytEh3dJB83c-gFKF8nXasm-vsf9o5XmuQtcjDwUpj3Q7fJnq3ukMN5hWvy1QW8hKAUDVvwh-TH-9p3OeqM76gFcrA1gdpBqIwQVHHQ1K1XIiG8od8Jsgb8ZRboq2jYggRjbQPKt6kA_K9ZDb3EoETkwXLVlF6lAziINBXWnWrPJCJ4qaHyNszd-i5ZHL399OY4Glo6RJrxtI2YTqTB728RIpyZVOdZbnWGnKxQyNQcdUZZnmoqncq0zThzqeLWxDNZOKc0vUdGVV3ZBwRMolRhmTFSW8YNLzSliYstVzFlsWZjMt18XaEHv3PfdqMU4dw9z4XHg_B4ED0exuTV9hdN7_VxSewLBIwYEn59SRzsxH2prEhywUQ4kI5FY9yYPNugTmBu-wMbWdm6Wwt_qxiTKY_zMbnfo3D7YpQWnn3iNLMdfG4DvG_47ggiLfiHD-Aak9dbJP93vg-vEvyI3Jh56Y83uaWPyag97-wT5G6tejpk60_V40XR |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+analysis+of+local+field+potentials+recorded+from+directional+deep+brain+stimulation+lead+implants+in+the+subthalamic+nucleus&rft.jtitle=Journal+of+neural+engineering&rft.au=Brinda%2C+AnneMarie+K&rft.au=Doyle%2C+Alex+M&rft.au=Blumenfeld%2C+Madeline&rft.au=Krieg%2C+Jordan&rft.date=2021-05-13&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fabfc1c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |