Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus

Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics follow...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 18; no. 4; pp. 46050 - 46063
Main Authors Brinda, AnneMarie K, Doyle, Alex M, Blumenfeld, Madeline, Krieg, Jordan, Alisch, Joseph S R, Spencer, Chelsea, Lecy, Emily, Wilmerding, Lucius K, DeNicola, Adele, Johnson, Luke A, Vitek, Jerrold L, Johnson, Matthew D
Format Journal Article
LanguageEnglish
Published England IOP Publishing 13.05.2021
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/abfc1c

Cover

Abstract Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson’s disease. Approach. Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1–4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12–30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR). Results. Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1–4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1–4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode–tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power. Significance. These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.
AbstractList The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease. Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR). Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power. These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.
Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson's disease.Approach.Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1-4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12-30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR).Results.Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1-4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1-4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode-tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power.Significance.These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.
Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have implications on the interpretation of intraoperatively recorded local field potentials (LFPs). We characterized beta-band LFP dynamics following implantation of a directional DBS lead in the sensorimotor subthalamic nucleus (STN), which is a primary target for treating Parkinson’s disease. Approach. Directional STN-DBS leads were implanted in four healthy, non-human primates. LFPs were recorded over two weeks and again 1–4 months after implantation. Impedance was measured for two weeks post-implant without stimulation to compare the reactive tissue response to changes in LFP oscillations. Beta-band (12–30 Hz) peak power was calculated from the LFP power spectra using both common average referencing (CAR) and intra-row bipolar referencing (IRBR). Results. Resting-state LFPs in two of four subjects revealed a steady increase of beta power over the initial two weeks post-implant whereas the other two subjects showed variable changes over time. Beta power variance across days was significantly larger in the first two weeks compared to 1–4 months post-implant in all three long-term subjects. Further, spatial maps of beta power several hours after implantation did not correlate with those measured two weeks or 1–4 months post-implant. CAR and IRBR beta power correlated across short- and long-term time points. However, depending on the time period, subjects showed a significant bias towards larger beta power using one referencing scheme over the other. Lastly, electrode–tissue impedance increased over the two weeks post-implant but showed no significant correlation to beta power. Significance. These results suggest that beta power in the STN may undergo significant changes following DBS lead implantation. DBS lead diameter and electrode recording configurations can affect the post-implant interpretation of oscillatory features. Such insights will be important for extrapolating results from intraoperative and externalized LFP recordings.
Author Alisch, Joseph S R
Wilmerding, Lucius K
DeNicola, Adele
Vitek, Jerrold L
Doyle, Alex M
Spencer, Chelsea
Brinda, AnneMarie K
Johnson, Matthew D
Lecy, Emily
Krieg, Jordan
Johnson, Luke A
Blumenfeld, Madeline
AuthorAffiliation 1 Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
3 Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
2 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States of America
AuthorAffiliation_xml – name: 3 Department of Neurology, University of Minnesota, Minneapolis, MN 55455, United States of America
– name: 2 Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, United States of America
– name: 1 Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
Author_xml – sequence: 1
  givenname: AnneMarie K
  surname: Brinda
  fullname: Brinda, AnneMarie K
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 2
  givenname: Alex M
  surname: Doyle
  fullname: Doyle, Alex M
  organization: University of Minnesota Department of Neuroscience, Minneapolis, MN 55455, United States of America
– sequence: 3
  givenname: Madeline
  surname: Blumenfeld
  fullname: Blumenfeld, Madeline
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 4
  givenname: Jordan
  orcidid: 0000-0002-8608-5206
  surname: Krieg
  fullname: Krieg, Jordan
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 5
  givenname: Joseph S R
  surname: Alisch
  fullname: Alisch, Joseph S R
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 6
  givenname: Chelsea
  surname: Spencer
  fullname: Spencer, Chelsea
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 7
  givenname: Emily
  surname: Lecy
  fullname: Lecy, Emily
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 8
  givenname: Lucius K
  surname: Wilmerding
  fullname: Wilmerding, Lucius K
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
– sequence: 9
  givenname: Adele
  surname: DeNicola
  fullname: DeNicola, Adele
  organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America
– sequence: 10
  givenname: Luke A
  surname: Johnson
  fullname: Johnson, Luke A
  organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America
– sequence: 11
  givenname: Jerrold L
  surname: Vitek
  fullname: Vitek, Jerrold L
  organization: University of Minnesota Department of Neurology, Minneapolis, MN 55455, United States of America
– sequence: 12
  givenname: Matthew D
  orcidid: 0000-0001-9686-5540
  surname: Johnson
  fullname: Johnson, Matthew D
  organization: University of Minnesota Department of Biomedical Engineering, 7-105 Nils Hasselmo Hall, 312 Church Street SE, Minneapolis, MN 55455, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33906174$$D View this record in MEDLINE/PubMed
BookMark eNqNUcmO1DAUjNAgZoE7J-QbHGjGTuwsFyQ0AmaklrjA2fLyPO2WYwfbAfUn8Nc4ZGgWoREXL6-qXunVO69OfPBQVU8JfkVw31-SjpJNzVh9KaRRRD2ozo6lk-O7xafVeUp7jBvSDfhRddo0A24LelZ92wZ_a_OsrRcOiXIckk0oGOSCKhVjwWk0hQw-W-ESiqBC1KCRiWFE2pZ_tmERa4AJySisRynbcXZiAZADoZEdJyd8TqiAeQcozTLvhBOjVcjPysGcHlcPTTGAJ3f3RfXp3duPV9eb7Yf3N1dvthtFW5Y3VBGhaSeBMNpSzVTf9aA6Sskgm6E2jdESWqYaYWSnoGupYbIFjWsxGCNVc1GRte_sJ3H4KpzjU7SjiAdOMF9i5UtufMmQr7EWzetVM81yBK1KGFH80gVh-Z-Itzt-G77wnmFKalwavLhrEMPnGVLmo00KXAkFwpyKGRkawnrcF-qz372OJj93VgjtSlAxpBTBcGXzj6yLtXX3TYH_Ev7H4C9XiQ0T34c5lkWn--jP_0Hfe-Ck55Rj2mKG-aRN8x0LadzI
CODEN JNEIEZ
CitedBy_id crossref_primary_10_1016_j_neurom_2023_08_003
crossref_primary_10_1002_mds_29626
crossref_primary_10_2139_ssrn_4619425
crossref_primary_10_1007_s10143_023_02268_x
crossref_primary_10_1038_s41598_023_29439_6
crossref_primary_10_1002_mds_30169
crossref_primary_10_1080_0954898X_2024_2361799
Cites_doi 10.1152/jn.90989.2008
10.1101/696385
10.1227/NEU.0b013e3182676b91
10.1002/(SICI)1096-9861(20000131)417:1<17:AID-CNE2>3.0.CO;2-I
10.1016/j.expneurol.2008.09.008
10.1016/j.clinph.2017.10.036
10.1088/1741-2560/13/1/016010
10.1007/s00429-018-1726-x
10.1002/mds.23232
10.1016/j.neuroimage.2019.04.071
10.1016/j.nbd.2020.104819
10.3389/fneng.2014.00024
10.1111/j.1460-9568.2006.04717.x
10.1159/000328508
10.1212/WNL.0000000000005121
10.1016/j.brs.2019.12.008
10.1016/j.expneurol.2009.12.013
10.1523/JNEUROSCI.1803-13.2014
10.1002/mds.20796
10.1097/01376517-200508000-00006
10.1152/jn.00840.2014
10.1159/000481805
10.1088/1741-2560/4/4/007
10.1136/jnnp-2016-313518
10.1016/j.jneumeth.2014.12.010
10.1016/j.jneumeth.2010.06.020
10.1088/1741-2560/10/2/026007
10.1016/j.expneurol.2005.11.019
10.1136/jnnp.2008.159558
10.1109/TBME.2015.2492921
10.1093/brain/awu102
10.3171/foc.2006.20.5.5
10.1016/j.brs.2019.02.020
10.1016/j.expneurol.2012.09.013
10.1152/jn.00259.2015
10.1088/1741-2560/12/6/066012
10.1002/mds.27068
10.1016/j.brainres.2009.05.052
10.1002/mds.27215
10.1136/jnnp.2009.190918
10.1152/jn.00756.2016
10.1002/mds.20956
10.1111/j.1600-0684.2011.00525.x
10.1007/978-3-211-33081-4_65
10.1016/j.neuroscience.2010.08.068
10.1016/j.brs.2015.02.002
10.1016/j.expneurol.2005.02.010
10.1523/JNEUROSCI.4137-14.2015
10.1002/ana.23951
10.1088/1741-2552/aa5a90
10.1021/cn500256e
10.1109/TNSRE.2012.2183617
10.14814/phy2.13322
10.1016/j.neuroscience.2004.06.046
10.1109/TBME.2004.826680
10.1002/mds.26953
10.1016/j.jocn.2008.03.004
10.1016/j.brs.2016.06.051
10.1016/j.expneurol.2012.04.024
10.1136/jnnp-2013-306066
10.1227/01.NEU.0000372091.64824.63
10.1109/TNSRE.2005.857687
10.1088/1741-2552/aabdf5
10.1016/0006-8993(92)90199-J
10.1002/mds.22641
10.1088/1741-2560/6/4/046001
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd
2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd
– notice: 2021 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1088/1741-2552/abfc1c
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID oai:pubmedcentral.nih.gov:8504120
PMC8504120
33906174
10_1088_1741_2552_abfc1c
jneabfc1c
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institute of Neurological Disorders and Stroke
  grantid: P30-NS076408; P50-NS098573; R01-NS085188; R01-NS094206; R44-NS103714
  funderid: http://dx.doi.org/10.13039/100000065
– fundername: National Institute of Biomedical Imaging and Bioengineering
  grantid: P41-EB015894
  funderid: http://dx.doi.org/10.13039/100000070
– fundername: National Institute of Mental Health
  grantid: U54-MH091657
  funderid: http://dx.doi.org/10.13039/100000025
– fundername: NIMH NIH HHS
  grantid: U54 MH091657
– fundername: NINDS NIH HHS
  grantid: R01 NS058945
– fundername: NINDS NIH HHS
  grantid: R01 NS110613
– fundername: NINDS NIH HHS
  grantid: R37 NS077657
– fundername: NINDS NIH HHS
  grantid: R44 NS103714
– fundername: NIBIB NIH HHS
  grantid: P41 EB027061
– fundername: NIGMS NIH HHS
  grantid: K12 GM119955
– fundername: NINDS NIH HHS
  grantid: P50 NS098573
– fundername: NIBIB NIH HHS
  grantid: P41 EB015894
– fundername: NINDS NIH HHS
  grantid: R01 NS037019
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
NT-
NT.
Q02
RNS
S3P
UNPAY
ID FETCH-LOGICAL-c465t-4c1ad47be15464d5c878ec74419b392f3fdbe65c3afb7ce764f5b6ed02a9ffbc3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Wed Aug 20 00:16:34 EDT 2025
Thu Aug 21 18:27:05 EDT 2025
Fri Sep 05 09:06:41 EDT 2025
Wed Jul 23 01:45:57 EDT 2025
Wed Oct 01 02:41:34 EDT 2025
Thu Apr 24 22:58:19 EDT 2025
Wed Aug 21 03:34:31 EDT 2024
Tue Jun 13 23:30:41 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords impedance spectroscopy
recording configuration
electrode tissue interface
reactive tissue response
directional leads
local field potentials
deep brain stimulation
Language English
License This article is available under the terms of the IOP-Standard License.
2021 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-4c1ad47be15464d5c878ec74419b392f3fdbe65c3afb7ce764f5b6ed02a9ffbc3
Notes JNE-104083.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8608-5206
0000-0001-9686-5540
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8504120
PMID 33906174
PQID 2519315808
PQPubID 23479
PageCount 14
ParticipantIDs pubmed_primary_33906174
crossref_primary_10_1088_1741_2552_abfc1c
unpaywall_primary_10_1088_1741_2552_abfc1c
proquest_miscellaneous_2519315808
iop_journals_10_1088_1741_2552_abfc1c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8504120
crossref_citationtrail_10_1088_1741_2552_abfc1c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210513
PublicationDateYYYYMMDD 2021-05-13
PublicationDate_xml – month: 5
  year: 2021
  text: 20210513
  day: 13
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Kuhn (jneabfc1cbib57) 2006; 23
Rosa (jneabfc1cbib2) 2011; 19
Fernández (jneabfc1cbib19) 2014; 7
Lungu (jneabfc1cbib22) 2014; 85
Bronte-Stewart (jneabfc1cbib26) 2009; 215
Holdefer (jneabfc1cbib30) 2010; 25
Ludwig (jneabfc1cbib11) 2009; 101
Little (jneabfc1cbib61) 2012; 236
Chen (jneabfc1cbib32) 2006; 198
Connolly (jneabfc1cbib6) 2015
Ince (jneabfc1cbib5) 2010; 67
Lempka (jneabfc1cbib20) 2009; 6
Schmidt (jneabfc1cbib51) 2020; 13
Connolly (jneabfc1cbib49) 2015; 12
Abosch (jneabfc1cbib24) 2012; 71
Kuhn (jneabfc1cbib29) 2005; 194
Agnesi (jneabfc1cbib37) 2015; 114
Sharott (jneabfc1cbib60) 2014; 34
Connolly (jneabfc1cbib27) 2015; 35
Miocinovic (jneabfc1cbib36) 2007; 97
Aman (jneabfc1cbib40) 2020; 139
Vetter (jneabfc1cbib12) 2004; 51
Rezai (jneabfc1cbib54) 2006; 21
Ray (jneabfc1cbib58) 2009; 16
Priori (jneabfc1cbib1) 2013; 245
Unterberg (jneabfc1cbib42) 2004; 129
Cersosimo (jneabfc1cbib52) 2009; 24
Woolley (jneabfc1cbib15) 2013; 10
Kolb (jneabfc1cbib31) 2017; 5
Malaga (jneabfc1cbib50) 2016; 13
Zhang (jneabfc1cbib38) 2018; 15
Koop (jneabfc1cbib53) 2006; 21
Coudé (jneabfc1cbib47) 2018; 223
Rosa (jneabfc1cbib64) 2017; 32
Yoshida (jneabfc1cbib8) 2010; 81
Iturrate (jneabfc1cbib65) 2019
Arlotti (jneabfc1cbib25) 2018; 90
Bokil (jneabfc1cbib39) 2010; 192
Hazrati (jneabfc1cbib46) 1992; 598
Stanslaski (jneabfc1cbib68) 2012; 20
Sun (jneabfc1cbib44) 2018; 129
Ward (jneabfc1cbib13) 2009; 1282
Mann (jneabfc1cbib55) 2009; 80
Pogosyan (jneabfc1cbib56) 2010; 171
Hunka (jneabfc1cbib62) 2005; 37
Duprez (jneabfc1cbib41) 2019; 197
Suner (jneabfc1cbib17) 2005; 13
Graham (jneabfc1cbib34) 2012; 41
Bour (jneabfc1cbib7) 2015; 8
Velisar (jneabfc1cbib67) 2019; 12
Michel (jneabfc1cbib48) 2019; vol 160
Steiner (jneabfc1cbib59) 2017; 32
Sillay (jneabfc1cbib23) 2018; 25
Pollo (jneabfc1cbib66) 2014; 137
Little (jneabfc1cbib3) 2013; 74
Barz (jneabfc1cbib16) 2017; 14
Rosa (jneabfc1cbib33) 2010; 222
McMillan (jneabfc1cbib35) 2014; 53
Sato (jneabfc1cbib45) 2000; 417
Little (jneabfc1cbib63) 2016; 87
Connolly (jneabfc1cbib28) 2015; 114
Marmor (jneabfc1cbib43) 2017; 117
Johnson (jneabfc1cbib69) 2016; 9
House (jneabfc1cbib18) 2006; 20
Kozai (jneabfc1cbib21) 2015; 6
Williams (jneabfc1cbib14) 2007; 4
Connolly (jneabfc1cbib9) 2016; 63
Tinkhauser (jneabfc1cbib4) 2018; 33
Kozai (jneabfc1cbib10) 2015; 242
References_xml – volume: 101
  start-page: 1679
  year: 2009
  ident: jneabfc1cbib11
  article-title: Using a common average reference to improve cortical neuron recordings from microelectrode arrays
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.90989.2008
– year: 2019
  ident: jneabfc1cbib65
  article-title: Beta-driven closed-loop deep brain stimulation can compromise human motor behavior in parkinson’s disease
  doi: 10.1101/696385
– volume: 71
  start-page: 804
  year: 2012
  ident: jneabfc1cbib24
  article-title: Long-term recordings of local field potentials from implanted deep brain stimulation electrodes
  publication-title: Neurosurgery
  doi: 10.1227/NEU.0b013e3182676b91
– volume: 417
  start-page: 17
  year: 2000
  ident: jneabfc1cbib45
  article-title: Single-axon tracing study of neurons of the external segment of the globus pallidus in primate
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(20000131)417:1<17:AID-CNE2>3.0.CO;2-I
– volume: 215
  start-page: 20
  year: 2009
  ident: jneabfc1cbib26
  article-title: The STN beta-band profile in parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2008.09.008
– volume: 129
  start-page: 676
  year: 2018
  ident: jneabfc1cbib44
  article-title: Changes in the electrocorticogram after implantation of intracranial electrodes in humans: the implant effect
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.10.036
– volume: 13
  year: 2016
  ident: jneabfc1cbib50
  article-title: Data-driven model comparing the effects of glial scarring and interface interactions on chronic neural recordings in non-human primates
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/13/1/016010
– volume: 223
  start-page: 3959
  year: 2018
  ident: jneabfc1cbib47
  article-title: Single-axon tracing of the corticosubthalamic hyperdirect pathway in primates
  publication-title: Brain Struct. Funct.
  doi: 10.1007/s00429-018-1726-x
– volume: 25
  start-page: 2067
  year: 2010
  ident: jneabfc1cbib30
  article-title: Intraoperative local field recording for deep brain stimulation in parkinson’s disease and essential tremor
  publication-title: Mov. Disorders
  doi: 10.1002/mds.23232
– volume: 197
  start-page: 232
  year: 2019
  ident: jneabfc1cbib41
  article-title: Subthalamic nucleus local field potentials recordings reveal subtle effects of promised reward during conflict resolution in parkinson’s disease
  publication-title: Neuro Image
  doi: 10.1016/j.neuroimage.2019.04.071
– volume: 139
  year: 2020
  ident: jneabfc1cbib40
  article-title: Directional deep brain stimulation leads reveal spatially distinct oscillatory activity in the globus pallidus internus of parkinson’s disease patients
  publication-title: Neurobiol. Dis.
  doi: 10.1016/j.nbd.2020.104819
– volume: 7
  start-page: 24
  year: 2014
  ident: jneabfc1cbib19
  article-title: Acute human brain responses to intracortical microelectrode arrays: challenges and future prospects
  publication-title: Front. Neuroeng.
  doi: 10.3389/fneng.2014.00024
– volume: 23
  start-page: 1956
  year: 2006
  ident: jneabfc1cbib57
  article-title: Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in parkinson’s disease
  publication-title: Eur. J. Neurosci.
  doi: 10.1111/j.1460-9568.2006.04717.x
– volume: 19
  start-page: 151
  year: 2011
  ident: jneabfc1cbib2
  article-title: Subthalamic local field beta oscillations during ongoing deep brain stimulation in parkinson’s disease in hyperacute and chronic phases
  publication-title: Neurosignals
  doi: 10.1159/000328508
– volume: 90
  start-page: e971
  year: 2018
  ident: jneabfc1cbib25
  article-title: Eight-hours adaptive deep brain stimulation in patients with parkinson disease
  publication-title: Neurology
  doi: 10.1212/WNL.0000000000005121
– volume: 13
  start-page: 433
  year: 2020
  ident: jneabfc1cbib51
  article-title: Continuous deep brain stimulation of the subthalamic nucleus may not modulate beta bursts in patients with parkinson’s disease
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.12.008
– volume: 222
  start-page: 184
  year: 2010
  ident: jneabfc1cbib33
  article-title: Time dependent subthalamic local field potential changes after DBS surgery in parkinson’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2009.12.013
– volume: 34
  start-page: 6273
  year: 2014
  ident: jneabfc1cbib60
  article-title: Activity parameters of subthalamic nucleus neurons selectively predict motor symptom severity in parkinson’s disease
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.1803-13.2014
– volume: 21
  start-page: 673
  year: 2006
  ident: jneabfc1cbib53
  article-title: Improvement in a quantitative measure of bradykinesia after microelectrode recording in patients with parkinson’s disease during deep brain stimulation surgery
  publication-title: Mov. Disorders
  doi: 10.1002/mds.20796
– volume: 37
  start-page: 204
  year: 2005
  ident: jneabfc1cbib62
  article-title: Nursing time to program and assess deep brain stimulators in movement disorder patients
  publication-title: J. Neurosci. Nurs.
  doi: 10.1097/01376517-200508000-00006
– volume: 114
  start-page: 209
  year: 2015
  ident: jneabfc1cbib28
  article-title: Classification of pallidal oscillations with increasing parkinsonian severity
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00840.2014
– volume: 25
  start-page: 289
  year: 2018
  ident: jneabfc1cbib23
  article-title: Long-term surface electrode impedance recordings associated with gliosis for a closed-loop neurostimulation device
  publication-title: Ann. Neurosci.
  doi: 10.1159/000481805
– start-page: 840
  year: 2015
  ident: jneabfc1cbib6
  article-title: Guiding deep brain stimulation contact selection using local field potentials sensed by a chronically implanted device in parkinson’s disease patients
– volume: 4
  start-page: 410
  year: 2007
  ident: jneabfc1cbib14
  article-title: Complex impedance spectroscopy for monitoring tissue responses to inserted neural implants
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/4/4/007
– volume: 87
  start-page: 1388
  year: 2016
  ident: jneabfc1cbib63
  article-title: Adaptive deep brain stimulation for parkinson’s disease demonstrates reduced speech side effects compared to conventional stimulation in the acute setting
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp-2016-313518
– volume: 242
  start-page: 15
  year: 2015
  ident: jneabfc1cbib10
  article-title: Comprehensive chronic laminar single-unit, multi-unit, and local field potential recording performance with planar single shank electrode arrays
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2014.12.010
– volume: 192
  start-page: 146
  year: 2010
  ident: jneabfc1cbib39
  article-title: Chronux: a platform for analyzing neural signals
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2010.06.020
– volume: 10
  year: 2013
  ident: jneabfc1cbib15
  article-title: Chronic intracortical microelectrode arrays induce non-uniform, depth-related tissue responses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2560/10/2/026007
– volume: 198
  start-page: 214
  year: 2006
  ident: jneabfc1cbib32
  article-title: Intra-operative recordings of local field potentials can help localize the subthalamic nucleus in parkinson’s disease surgery
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.11.019
– volume: 80
  start-page: 794
  year: 2009
  ident: jneabfc1cbib55
  article-title: Brain penetration effects of microelectrodes and DBS leads in STN or GPi
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp.2008.159558
– volume: 63
  start-page: 148
  year: 2016
  ident: jneabfc1cbib9
  article-title: A novel lead design for modulation and sensing of deep brain structures
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2492921
– volume: 137
  start-page: 2015
  year: 2014
  ident: jneabfc1cbib66
  article-title: Directional deep brain stimulation: an intraoperative double-blind pilot study
  publication-title: Brain
  doi: 10.1093/brain/awu102
– volume: 20
  start-page: 1
  year: 2006
  ident: jneabfc1cbib18
  article-title: Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations
  publication-title: Neurosurg. Focus
  doi: 10.3171/foc.2006.20.5.5
– volume: 12
  start-page: 868
  year: 2019
  ident: jneabfc1cbib67
  article-title: Dual threshold neural closed loop deep brain stimulation in parkinson disease patients
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2019.02.020
– volume: 245
  start-page: 77
  year: 2013
  ident: jneabfc1cbib1
  article-title: Adaptive deep brain stimulation (aDBS) controlled by local field potential oscillations
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2012.09.013
– volume: 114
  start-page: 825
  year: 2015
  ident: jneabfc1cbib37
  article-title: Fidelity of frequency and phase entrainment of circuit-level spike activity during DBS
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00259.2015
– volume: vol 160
  start-page: 85
  year: 2019
  ident: jneabfc1cbib48
– volume: 12
  year: 2015
  ident: jneabfc1cbib49
  article-title: Local field potential recordings in a non-human primate model of parkinsons disease using the activa PC + S neurostimulator
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/12/6/066012
– volume: 32
  start-page: 1183
  year: 2017
  ident: jneabfc1cbib59
  article-title: Subthalamic beta dynamics mirror parkinsonian bradykinesia months after neurostimulator implantation
  publication-title: Mov. Disorders
  doi: 10.1002/mds.27068
– volume: 1282
  start-page: 183
  year: 2009
  ident: jneabfc1cbib13
  article-title: Toward a comparison of microelectrodes for acute and chronic recordings
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2009.05.052
– volume: 33
  start-page: 159
  year: 2018
  ident: jneabfc1cbib4
  article-title: Directional local field potentials: a tool to optimize deep brain stimulation
  publication-title: Mov. Disorders
  doi: 10.1002/mds.27215
– volume: 81
  start-page: 885
  year: 2010
  ident: jneabfc1cbib8
  article-title: Value of subthalamic nucleus local field potentials recordings in predicting stimulation parameters for deep brain stimulation in parkinson’s disease
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp.2009.190918
– volume: 117
  start-page: 2140
  year: 2017
  ident: jneabfc1cbib43
  article-title: Local vs volume conductance activity of field potentials in the human subthalamic nucleus
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00756.2016
– volume: 21
  start-page: S197
  year: 2006
  ident: jneabfc1cbib54
  article-title: Deep brain stimulation for parkinson’s disease: surgical issues
  publication-title: Mov. Disorders
  doi: 10.1002/mds.20956
– volume: 41
  start-page: 89
  year: 2012
  ident: jneabfc1cbib34
  article-title: Successful implementation of cooperative handling eliminates the need for restraint in a complex nonhuman primate disease model
  publication-title: J. Med. Primatol.
  doi: 10.1111/j.1600-0684.2011.00525.x
– volume: 97
  start-page: 561
  year: 2007
  ident: jneabfc1cbib36
  article-title: Cicerone: stereotactic neurophysiological recording and deep brain stimulation electrode placement software system
  publication-title: Acta Neurochir. Suppl.
  doi: 10.1007/978-3-211-33081-4_65
– volume: 171
  start-page: 245
  year: 2010
  ident: jneabfc1cbib56
  article-title: Parkinsonian impairment correlates with spatially extensive subthalamic oscillatory synchronization
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2010.08.068
– volume: 8
  start-page: 730
  year: 2015
  ident: jneabfc1cbib7
  article-title: Directional recording of subthalamic spectral power densities in parkinson’s disease and the effect of steering deep brain stimulation
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2015.02.002
– volume: 194
  start-page: 212
  year: 2005
  ident: jneabfc1cbib29
  article-title: The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with parkinson’s disease
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2005.02.010
– volume: 35
  start-page: 6231
  year: 2015
  ident: jneabfc1cbib27
  article-title: Modulations in oscillatory frequency and coupling in globus pallidus with increasing parkinsonian severity
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.4137-14.2015
– volume: 74
  start-page: 449
  year: 2013
  ident: jneabfc1cbib3
  article-title: Adaptive deep brain stimulation in advanced parkinson disease
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.23951
– volume: 14
  year: 2017
  ident: jneabfc1cbib16
  article-title: Versatile, modular 3D microelectrode arrays for neuronal ensemble recordings: from design to fabrication, assembly, and functional validation in non-human primates
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aa5a90
– volume: 6
  start-page: 48
  year: 2015
  ident: jneabfc1cbib21
  article-title: Brain tissue responses to neural implants impact signal sensitivity and intervention strategies
  publication-title: ACS Chem. Neurosci.
  doi: 10.1021/cn500256e
– volume: 20
  start-page: 410
  year: 2012
  ident: jneabfc1cbib68
  article-title: Design and validation of a fully implantable, chronic, closed-loop neuromodulation device with concurrent sensing and stimulation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2012.2183617
– volume: 5
  year: 2017
  ident: jneabfc1cbib31
  article-title: Use of intraoperative local field potential spectral analysis to differentiate basal ganglia structures in parkinson’s disease patients
  publication-title: Physiol. Rep.
  doi: 10.14814/phy2.13322
– volume: 129
  start-page: 1021
  year: 2004
  ident: jneabfc1cbib42
  article-title: Edema and brain trauma
  publication-title: Neuroscience
  doi: 10.1016/j.neuroscience.2004.06.046
– volume: 51
  start-page: 896
  year: 2004
  ident: jneabfc1cbib12
  article-title: Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2004.826680
– volume: 32
  start-page: 628
  year: 2017
  ident: jneabfc1cbib64
  article-title: Adaptive deep brain stimulation controls levodopa‐induced side effects in parkinsonian patients
  publication-title: Mov. Disord.
  doi: 10.1002/mds.26953
– volume: 16
  start-page: 32
  year: 2009
  ident: jneabfc1cbib58
  article-title: Abnormal thalamocortical dynamics may be altered by deep brain stimulation: using magnetoencephalography to study phantom limb pain
  publication-title: J. Clin. Neurosci.
  doi: 10.1016/j.jocn.2008.03.004
– volume: 9
  start-page: 892
  year: 2016
  ident: jneabfc1cbib69
  article-title: Closed-loop deep brain stimulation effects on parkinsonian motor symptoms in a non-human primate—is beta enough?
  publication-title: Brain Stimul.
  doi: 10.1016/j.brs.2016.06.051
– volume: 236
  start-page: 383
  year: 2012
  ident: jneabfc1cbib61
  article-title: Beta band stability over time correlates with parkinsonian rigidity and bradykinesia
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2012.04.024
– volume: 85
  start-page: 816
  year: 2014
  ident: jneabfc1cbib22
  article-title: Temporal macrodynamics and microdynamics of the postoperative impedance at the tissue–electrode interface in deep brain stimulation patients
  publication-title: J. Neurol. Neurosurg. Psychiatr.
  doi: 10.1136/jnnp-2013-306066
– volume: 67
  start-page: 390
  year: 2010
  ident: jneabfc1cbib5
  article-title: Selection of optimal programming contacts based on local field potential recordings from subthalamic nucleus in patients with parkinson’s disease
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000372091.64824.63
– volume: 13
  start-page: 524
  year: 2005
  ident: jneabfc1cbib17
  article-title: Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2005.857687
– volume: 15
  year: 2018
  ident: jneabfc1cbib38
  article-title: High-resolution local field potentials measured with deep brain stimulation arrays
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aabdf5
– volume: 53
  start-page: 61
  year: 2014
  ident: jneabfc1cbib35
  article-title: Refining the pole and collar method of restraint: emphasizing the use of positive training techniques with rhesus macaques (Macaca mulatta)
  publication-title: J. Am. Assoc. Lab. Anim. Sci.
– volume: 598
  start-page: 311
  year: 1992
  ident: jneabfc1cbib46
  article-title: Differential patterns of arborization of striatal and subthalamic fibers in the two pallidal segments in primates
  publication-title: Brain Res.
  doi: 10.1016/0006-8993(92)90199-J
– volume: 24
  start-page: 1488
  year: 2009
  ident: jneabfc1cbib52
  article-title: Micro lesion effect of the globus pallidus internus and outcome with deep brain stimulation in patients with parkinson’s disease and dystonia
  publication-title: Mov. Disorders
  doi: 10.1002/mds.22641
– volume: 6
  year: 2009
  ident: jneabfc1cbib20
  article-title: In vivo impedance spectroscopy of deep brain stimulation electrodes
  publication-title: J. Neural. Eng.
  doi: 10.1088/1741-2560/6/4/046001
SSID ssj0031790
Score 2.3518593
Snippet Objective. The electrode–tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have...
The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have...
Objective.The electrode-tissue interface surrounding a deep brain stimulation (DBS) lead is known to be highly dynamic following implantation, which may have...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46050
SubjectTerms Deep Brain Stimulation
directional leads
electrode tissue interface
Humans
impedance spectroscopy
local field potentials
Parkinson Disease - therapy
Prostheses and Implants
reactive tissue response
recording configuration
Subthalamic Nucleus
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB7W7oO-rJf1Um8cQQWFtElnMkkei7gsIouIhfVpmCtbTZOwTZD1H_ivPTNJq1VZ2bfAnEKGfKfnm5lvvkPIc4plWdrURgbZesSMpFGRF7OoyJzC5XPKMhXUFif8eMHenaaneyTZ3IUJon2tlpOqXE2q5VnQVjYrPd3oxKZ56i2icJW-z1NcMI_I_uLkw_xzf_ExiZAiz34983g4msRkmm7Hp1I5neidUnRtWTf_Ypl_iyWvd1UjL77JsvytEh3dJB83c-gFKF8nXasm-vsf9o5XmuQtcjDwUpj3Q7fJnq3ukMN5hWvy1QW8hKAUDVvwh-TH-9p3OeqM76gFcrA1gdpBqIwQVHHQ1K1XIiG8od8Jsgb8ZRboq2jYggRjbQPKt6kA_K9ZDb3EoETkwXLVlF6lAziINBXWnWrPJCJ4qaHyNszd-i5ZHL399OY4Glo6RJrxtI2YTqTB728RIpyZVOdZbnWGnKxQyNQcdUZZnmoqncq0zThzqeLWxDNZOKc0vUdGVV3ZBwRMolRhmTFSW8YNLzSliYstVzFlsWZjMt18XaEHv3PfdqMU4dw9z4XHg_B4ED0exuTV9hdN7_VxSewLBIwYEn59SRzsxH2prEhywUQ4kI5FY9yYPNugTmBu-wMbWdm6Wwt_qxiTKY_zMbnfo3D7YpQWnn3iNLMdfG4DvG_47ggiLfiHD-Aak9dbJP93vg-vEvyI3Jh56Y83uaWPyag97-wT5G6tejpk60_V40XR
  priority: 102
  providerName: Unpaywall
Title Longitudinal analysis of local field potentials recorded from directional deep brain stimulation lead implants in the subthalamic nucleus
URI https://iopscience.iop.org/article/10.1088/1741-2552/abfc1c
https://www.ncbi.nlm.nih.gov/pubmed/33906174
https://www.proquest.com/docview/2519315808
https://pubmed.ncbi.nlm.nih.gov/PMC8504120
https://www.ncbi.nlm.nih.gov/pmc/articles/8504120
UnpaywallVersion submittedVersion
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9NAFB728qAv62W91MtyBBUU0iadyQ2firisIus-WFhBGObKVtskbBNk_Qf-a89J0mJ1WcW3Qk7ansk3c77MOfMdxp5yDMvKxS6wyNYDYRUP8iwfB3nqNb4-xyLVbbXFcXI0Fe9O49Mt9mp9Fqas-qV_iB87oeBuCPuCuGyEHDoKkAmPR0p7E5lttkvZLYL32w8nq2WYk_RUdxqSrJOwz1Fe9g0bMWkbf_cyuvln1eS1pqjUxTc1n_8Skg5vsM8rZ7pKlK_DptZD8_03ncf_9PYm2-upKkw601tsyxW32f6kwNf0xQU8h7Z4tN2V32c_3pfU-Kix1GQLVK90AqWHNlhCWygHVVlTcRIiHrrNIWeBzrdAF1jbXUmwzlWgqXMF4PKz6NuLwRzBCLNFNafCHcCLyFxh2ej6TCGoZwYKUmZulnfY9PDNx9dHQd_lITAiietAmEhZhIRD1CTCxiZLM2dSpGm5RvLmubfaJbHhyuvUuDQRPtaJs-FY5d5rw--ynaIs3H0GNtI6d8JaZZxIbJIbziMfukSHXIRGDNho9Zyl6SXQqRPHXLap-CyTNNqSRlt2oz1gL9Z3VJ38xxW2z_Ahyn4NWF5hBxt2Xwono0wK2eaoQ1lZP2BPVviTON0ph6MKVzZLSQeNcX5lYTZg9zo8rv8Y5zkRUnQz3UDq2oCkxDevFLOzVlI8i0l3LRywl2tM_9XfB__o70N2fUyFQCR5yx-xnfq8cY-RydX6oJ2xB2x3enwy-fQTJatIxA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwELVokYAXbgUaroMESFTKbrJ2bo8VsGqhKn2gUt-Mr-rSbBKxiVD5A_6asZNdsVAVJN5WyiTZsceeE_v4DCEvKKZlYRITakTrIdOChkVeTMIisxI_nxOWSc-2OEz3jtn7k-RkqHPqz8LUzTD1j_BnLxTcN-FAiMvHiKHjEJHwZCykVbEaN9pukKsJZk7H6dv_eLSciqmTn-pPRLo70mjYp7zoKWt5aQPffRHk_JM5eb2rGnH-TZTlL2lpeot8XjrUs1HORl0rR-r7b1qP_-HxbXJzgKyw25vfIVdMdZds7Vb4uT4_h1fgSaR-dX6L_DioXQGkTrtiWyAGxROoLfikCZ4wB03dOpISRj70i0RGgzvnAn2C9auToI1pQLoKFoDT0HwoMwYlBiXM5k3pCDyAFxHBwqKT7anA4J4pqJxCc7e4R46n7z692QuHag-hYmnShkzFQmNoGIyelOlE5VluVIZwrZAI4iy1Wpo0UVRYmSmTpcwmMjU6mojCWqnofbJZ1ZXZJqBjKQvDtBbKsFSnhaI0tpFJZURZpFhAxsu-5mqQQncVOUrut-TznLsW567Fed_iAXm9uqPpZUAusX2JHcmHuWBxiR2s2X2pDI9zzrjfq444dnJAni9jkOOwd3s5ojJ1t-DuwDGOszzKA_Kgj8nVH6O0cMAU3czWonVl4CTF169Us1MvLZ4nTn8tCsjOKq7_6u_Df_T3Gbl29HbKD_YPPzwiNyaOG-RUcOljstl-7cwTBHetfOoH8E962kx1
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bi9NAFB7W7oO-rJf1Um8cQQWFtElnMkkei7gsIouIhfVpmCtbTZOwTZD1H_ivPTNJq1VZ2bfAnEKGfKfnm5lvvkPIc4plWdrURgbZesSMpFGRF7OoyJzC5XPKMhXUFif8eMHenaaneyTZ3IUJon2tlpOqXE2q5VnQVjYrPd3oxKZ56i2icJW-z1NcMI_I_uLkw_xzf_ExiZAiz34983g4msRkmm7Hp1I5neidUnRtWTf_Ypl_iyWvd1UjL77JsvytEh3dJB83c-gFKF8nXasm-vsf9o5XmuQtcjDwUpj3Q7fJnq3ukMN5hWvy1QW8hKAUDVvwh-TH-9p3OeqM76gFcrA1gdpBqIwQVHHQ1K1XIiG8od8Jsgb8ZRboq2jYggRjbQPKt6kA_K9ZDb3EoETkwXLVlF6lAziINBXWnWrPJCJ4qaHyNszd-i5ZHL399OY4Glo6RJrxtI2YTqTB728RIpyZVOdZbnWGnKxQyNQcdUZZnmoqncq0zThzqeLWxDNZOKc0vUdGVV3ZBwRMolRhmTFSW8YNLzSliYstVzFlsWZjMt18XaEHv3PfdqMU4dw9z4XHg_B4ED0exuTV9hdN7_VxSewLBIwYEn59SRzsxH2prEhywUQ4kI5FY9yYPNugTmBu-wMbWdm6Wwt_qxiTKY_zMbnfo3D7YpQWnn3iNLMdfG4DvG_47ggiLfiHD-Aak9dbJP93vg-vEvyI3Jh56Y83uaWPyag97-wT5G6tejpk60_V40XR
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Longitudinal+analysis+of+local+field+potentials+recorded+from+directional+deep+brain+stimulation+lead+implants+in+the+subthalamic+nucleus&rft.jtitle=Journal+of+neural+engineering&rft.au=Brinda%2C+AnneMarie+K&rft.au=Doyle%2C+Alex+M&rft.au=Blumenfeld%2C+Madeline&rft.au=Krieg%2C+Jordan&rft.date=2021-05-13&rft.issn=1741-2552&rft.eissn=1741-2552&rft.volume=18&rft.issue=4&rft_id=info:doi/10.1088%2F1741-2552%2Fabfc1c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon