Sulforaphane Inhibits Mitotic Clonal Expansion During Adipogenesis Through Cell Cycle Arrest

Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenes...

Full description

Saved in:
Bibliographic Details
Published inObesity (Silver Spring, Md.) Vol. 20; no. 7; pp. 1365 - 1371
Main Authors Choi, Kyeong‐Mi, Lee, Youn‐Sun, Sin, Dong‐Mi, Lee, Seunghyun, Lee, Mi Kyeong, Lee, Yong‐Moon, Hong, Jin‐Tae, Yun, Yeo‐Pyo, Yoo, Hwan‐Soo
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2012
Subjects
Online AccessGet full text
ISSN1930-7381
1930-739X
1930-739X
DOI10.1038/oby.2011.388

Cover

Abstract Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3–L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half‐maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator‐activated receptor γ (PPARγ) and CCAAT/enhancer‐binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early‐stage biomarker of adipogenesis, decreased in a concentration‐dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G0/G1 phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early‐stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G0/G1 phase through upregulation of p27 expression.
AbstractList Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3–L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half‐maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator‐activated receptor γ (PPARγ) and CCAAT/enhancer‐binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early‐stage biomarker of adipogenesis, decreased in a concentration‐dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G 0 /G 1 phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early‐stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G 0 /G 1 phase through upregulation of p27 expression.
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 mol/l). The expression of peroxisome proliferatoractivated receptor (PPAR) and CCAAT/enhancer-binding protein (C/EBP), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBP, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 mol/l). The proliferation of adipocytes treated with 20 mol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G0/G1 phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G0/G1 phase through upregulation of p27 expression.[PUBLICATION ABSTRACT]
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3–L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half‐maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator‐activated receptor γ (PPARγ) and CCAAT/enhancer‐binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early‐stage biomarker of adipogenesis, decreased in a concentration‐dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G0/G1 phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early‐stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G0/G1 phase through upregulation of p27 expression.
Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is triggered by adipocyte hyperplasia, which leads to obesity. In this study, the inhibitory effect of sulforaphane, an isothiocyanate, on adipogenesis in 3T3-L1 cells was investigated. Sulforaphane decreased the accumulation of lipid droplets stained with Oil Red O and inhibited the elevation of triglycerides in the adipocytes (half-maximal inhibitory concentration = 7.3 µmol/l). The expression of peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT/enhancer-binding protein α (C/EBPα), major transcription factors for adipocyte differentiation, was significantly reduced by sulforaphane. The major effects of sulforaphane on the inhibition of adipocyte differentiation occurred during the early stage of adipogenesis. Thus, the expression of C/EBPβ, an early-stage biomarker of adipogenesis, decreased in a concentration-dependent manner when the adipocytes were exposed to sulforaphane (0, 5, 10, and 20 µmol/l). The proliferation of adipocytes treated with 20 µmol/l sulforaphane for 24 and 48 h was also suppressed. These results indicate that sulforaphane may specifically affect mitotic clonal expansion to inhibit adipocyte differentiation. Sulforaphane arrested the cell cycle at the G(0)/G(1) phase, increased p27 expression, and decreased retinoblastoma (Rb) phosphorylation. Additionally, sulforaphane modestly decreased the phosphorylation of ERK1/2 and Akt. Our results indicate that the inhibition of early-stage adipocyte differentiation by sulforaphane may be associated with cell cycle arrest at the G(0)/G(1) phase through upregulation of p27 expression.
Author Yoo, Hwan‐Soo
Lee, Youn‐Sun
Lee, Yong‐Moon
Hong, Jin‐Tae
Choi, Kyeong‐Mi
Yun, Yeo‐Pyo
Sin, Dong‐Mi
Lee, Seunghyun
Lee, Mi Kyeong
Author_xml – sequence: 1
  givenname: Kyeong‐Mi
  surname: Choi
  fullname: Choi, Kyeong‐Mi
– sequence: 2
  givenname: Youn‐Sun
  surname: Lee
  fullname: Lee, Youn‐Sun
– sequence: 3
  givenname: Dong‐Mi
  surname: Sin
  fullname: Sin, Dong‐Mi
– sequence: 4
  givenname: Seunghyun
  surname: Lee
  fullname: Lee, Seunghyun
– sequence: 5
  givenname: Mi Kyeong
  surname: Lee
  fullname: Lee, Mi Kyeong
– sequence: 6
  givenname: Yong‐Moon
  surname: Lee
  fullname: Lee, Yong‐Moon
– sequence: 7
  givenname: Jin‐Tae
  surname: Hong
  fullname: Hong, Jin‐Tae
– sequence: 8
  givenname: Yeo‐Pyo
  surname: Yun
  fullname: Yun, Yeo‐Pyo
– sequence: 9
  givenname: Hwan‐Soo
  surname: Yoo
  fullname: Yoo, Hwan‐Soo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/22282047$$D View this record in MEDLINE/PubMed
BookMark eNp90U1PGzEQBmCrAhG-bj1Xlnrh0KT-yK7Xx7BQQAri0CCBVMmyvd7EyLEXe1c0_75GAQ6R6Mk-PDP2zHsE9nzwBoCvGE0wotXPoDYTgjCe0Kr6Ag4xp2jMKH_Y-7hXeASOUnpCaFqiAh-AESGkImjKDsGf34NrQ5TdSnoDb_zKKtsneGv70FsNaxe8dPDybyd9ssHDiyFav4SzxnZhabxJNsHFKoZhuYK1cQ7WG-0MnMVoUn8C9lvpkjl9O4_B_a_LRX09nt9d3dSz-VhPy4KMNacl5wy3TCJStqrVqlSSmwLRkpVMGdowznhRyUI1mjaEM6MriVpFjFGtpMfgbNu3i-F5yA-LtU06_ybPFIYkMCKEMlZRlun3HfoUhphn3CpcIFbirL69qUGtTSO6aNcybsT73jIgW6BjSCmaVmjbyz5vqI_SutxLvIYjcjjiNRyRw8lFP3aK3vt-wvGWv1hnNv-14u78kUwpof8ADsWf6g
CitedBy_id crossref_primary_10_3390_molecules25153346
crossref_primary_10_3390_ijms25020693
crossref_primary_10_1155_2014_415097
crossref_primary_10_17221_8665_CJAS
crossref_primary_10_1016_j_jnutbio_2021_108885
crossref_primary_10_3390_molecules24101894
crossref_primary_10_1016_j_bbrc_2012_08_107
crossref_primary_10_1096_fj_201901569R
crossref_primary_10_3389_fnut_2020_00111
crossref_primary_10_3390_nu14183814
crossref_primary_10_1016_j_ejmech_2017_10_034
crossref_primary_10_1002_ptr_6089
crossref_primary_10_1055_a_1853_7101
crossref_primary_10_1039_C5FO00397K
crossref_primary_10_1155_2018_4159013
crossref_primary_10_1080_09168451_2018_1514247
crossref_primary_10_1194_jlr_M039925
crossref_primary_10_1111_jfbc_13886
crossref_primary_10_1016_j_phymed_2021_153715
crossref_primary_10_1016_j_mam_2012_06_010
crossref_primary_10_1016_j_freeradbiomed_2018_02_004
crossref_primary_10_2147_DMSO_S281186
crossref_primary_10_1371_journal_pone_0150913
crossref_primary_10_1155_2015_407580
crossref_primary_10_1016_j_metabol_2017_01_021
crossref_primary_10_3390_ijms23042299
crossref_primary_10_2217_epi_15_74
crossref_primary_10_3390_foods12050925
crossref_primary_10_3945_an_113_004705
crossref_primary_10_3390_molecules24061157
crossref_primary_10_1016_j_ejphar_2022_174991
crossref_primary_10_1016_j_ejphar_2022_175002
crossref_primary_10_1002_ptr_6434
crossref_primary_10_3390_ijms19061693
crossref_primary_10_7554_eLife_67368
crossref_primary_10_1016_j_jff_2018_02_021
crossref_primary_10_1016_j_taap_2016_07_021
crossref_primary_10_1002_mnfr_201900183
crossref_primary_10_1016_j_mam_2017_01_008
crossref_primary_10_1016_j_jff_2015_10_024
crossref_primary_10_1016_j_vph_2013_06_003
crossref_primary_10_3892_mmr_2017_8235
crossref_primary_10_3390_molecules201219796
crossref_primary_10_1002_jsfa_8898
crossref_primary_10_1371_journal_pone_0132151
crossref_primary_10_1021_acs_jafc_8b04330
crossref_primary_10_3390_nu4121868
crossref_primary_10_1002_jcb_25093
crossref_primary_10_1089_jmf_2021_K_0163
crossref_primary_10_1002_lipd_12123
crossref_primary_10_1007_s12272_013_0251_y
crossref_primary_10_1002_ptr_6065
crossref_primary_10_1016_j_jnutbio_2016_01_009
crossref_primary_10_1016_j_nut_2021_111240
crossref_primary_10_1016_j_jnutbio_2022_109238
crossref_primary_10_1016_j_ejmech_2025_117346
crossref_primary_10_1016_j_jnutbio_2013_10_007
crossref_primary_10_1111_jfbc_13528
crossref_primary_10_1016_j_phytol_2017_12_011
crossref_primary_10_1248_bpb_b17_00837
crossref_primary_10_1016_j_jff_2015_09_060
crossref_primary_10_1016_j_jep_2021_114410
crossref_primary_10_1080_09168451_2017_1372181
crossref_primary_10_1002_mnfr_201500021
crossref_primary_10_1016_j_biochi_2014_06_010
crossref_primary_10_1016_j_cbi_2014_12_027
crossref_primary_10_1016_j_phymed_2013_10_009
crossref_primary_10_1038_s41598_021_87367_9
crossref_primary_10_1038_s41598_021_98385_y
crossref_primary_10_1002_oby_22145
crossref_primary_10_3390_antiox11101854
crossref_primary_10_3390_nu13103624
crossref_primary_10_3390_molecules27030624
crossref_primary_10_1016_j_bbrc_2015_12_049
crossref_primary_10_1002_ptr_6333
crossref_primary_10_1021_acs_jafc_4c01115
crossref_primary_10_1007_s11101_024_10021_5
crossref_primary_10_1016_j_cbi_2016_07_034
crossref_primary_10_3390_cells11040754
crossref_primary_10_1007_s10068_019_00672_y
Cites_doi 10.1093/carcin/bgg178
10.4161/cc.2.4.427
10.1016/j.bbrc.2010.04.163
10.1006/scdb.1998.0276
10.1002/(SICI)1097-4644(1999)75:32 <59::AID-JCB8>3.0.CO;2-1
10.1210/en.139.4.1638
10.1023/A:1011863414321
10.1016/j.bcp.2005.03.015
10.1002/dmr.5610050804
10.1146/annurev.nu.14.070194.000531
10.1593/tlo.10235
10.1055/s-0030-1270712
10.4161/cc.2.6.550
10.1152/physrev.1998.78.3.783
10.1002/biof.5520220154
10.1016/j.bbrc.2008.04.188
10.1093/eurheartj/ehp317
10.1093/jn/134.5.1134
10.1074/jbc.271.49.31372
10.1248/bpb.33.1610
10.1074/jbc.M000759200
10.1007/s00280-005-0050-3
10.1016/j.bbrc.2008.03.129
10.1128/MCB.22.20.7226-7241.2002
10.1016/j.bbrc.2006.07.095
10.1152/ajpcell.2001.280.6.C1540
10.1167/iovs.04-1120
10.1093/jn/130.12.3122S
10.1073/pnas.0137044100
10.1016/S0021-9258(18)89059-7
10.1007/s00125-009-1588-0
10.1080/10409230591008189
10.1126/science.274.5293.1672
10.1152/ajpcell.00569.2004
10.1074/jbc.M207776200
10.1074/jbc.273.45.29864
10.1016/j.phrs.2009.11.009
10.1210/endo.137.8.8754791
ContentType Journal Article
Copyright 2012 North American Association for the Study of Obesity (NAASO)
Copyright Nature Publishing Group Jul 2012
Copyright_xml – notice: 2012 North American Association for the Study of Obesity (NAASO)
– notice: Copyright Nature Publishing Group Jul 2012
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
DOI 10.1038/oby.2011.388
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic
DatabaseTitleList CrossRef
ProQuest Health & Medical Complete (Alumni)
MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1930-739X
EndPage 1371
ExternalDocumentID 2696268401
22282047
10_1038_oby_2011_388
OBY2432
Genre article
Research Support, Non-U.S. Gov't
Journal Article
Feature
GroupedDBID ---
05W
0R~
123
1OC
29N
2FS
2WC
31~
33P
39C
3SF
4.4
50Y
52U
52V
53G
70F
8-1
AAESR
AAEVG
AAFWJ
AAHBH
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAONW
AASGY
AAWTL
AAXRX
AAYCA
AAZKR
ABCUV
ABIVO
ABJNI
ABLJU
ABQWH
ABXGK
ACAHQ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGXDD
AGYGG
AHBTC
AHMBA
AIACR
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AZVAB
BAWUL
BFHJK
BHBCM
BKNYI
BMXJE
BOGZA
BPHCQ
BRXPI
BVXVI
CS3
DCZOG
DIK
DPXWK
DRFUL
DRMAN
DRSTM
DU5
E3Z
EBS
EJD
EMOBN
F5P
FUBAC
G-S
GODZA
HGLYW
HZ~
KBYEO
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
MY~
O66
O9-
OK1
P2W
PQQKQ
PROAC
R.K
ROL
SUPJJ
WBKPD
WHG
WHWMO
WIH
WIJ
WIK
WIN
WOHZO
WOQ
WQJ
WVDHM
WXSBR
YHZ
AAHHS
AAYXX
ACCFJ
AEEZP
AEQDE
AIWBW
AJBDE
ALIPV
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
K9.
7X8
ID FETCH-LOGICAL-c4652-c9369971f7a026fbfcb6ba9e5036767be3d797958a5bdc3d297ec8a0fb2eebfa3
ISSN 1930-7381
1930-739X
IngestDate Fri Sep 05 09:00:22 EDT 2025
Fri Jul 25 23:53:49 EDT 2025
Mon Jul 21 05:47:36 EDT 2025
Tue Jul 01 01:16:08 EDT 2025
Thu Apr 24 22:54:33 EDT 2025
Wed Sep 03 09:01:10 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4652-c9369971f7a026fbfcb6ba9e5036767be3d797958a5bdc3d297ec8a0fb2eebfa3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1038/oby.2011.388
PMID 22282047
PQID 1022150761
PQPubID 105348
PageCount 7
ParticipantIDs proquest_miscellaneous_1022377837
proquest_journals_1022150761
pubmed_primary_22282047
crossref_citationtrail_10_1038_oby_2011_388
crossref_primary_10_1038_oby_2011_388
wiley_primary_10_1038_oby_2011_388_OBY2432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2012
PublicationDateYYYYMMDD 2012-07-01
PublicationDate_xml – month: 07
  year: 2012
  text: July 2012
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: United States
– name: Silver Spring
PublicationTitle Obesity (Silver Spring, Md.)
PublicationTitleAlternate Obesity (Silver Spring)
PublicationYear 2012
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2004; 22
2010; 33
1989; 5
2010; 53
2010; 31
2006; 57
2001; 280
2004; 25
2002; 277
2005; 40
2000; 130
2011; 10
2000; 275
1998; 139
1985; 260
2005; 46
2010; 61
2005; 69
1999
1998; 273
2004; 134
2005; 288
1984; 13
2002; 22
2003; 2
2010; 396
1996; 271
1994; 14
2006; 29
1999; 10
2001; 2
1996; 274
2010; 3
1996; 137
2006; 348
1998; 78
2003; 100
2008; 372
2008; 371
e_1_2_7_5_2
e_1_2_7_3_2
e_1_2_7_2_2
e_1_2_7_9_2
e_1_2_7_8_2
e_1_2_7_7_2
e_1_2_7_6_2
e_1_2_7_18_2
e_1_2_7_17_2
e_1_2_7_16_2
e_1_2_7_15_2
e_1_2_7_14_2
e_1_2_7_40_2
e_1_2_7_13_2
e_1_2_7_41_2
e_1_2_7_12_2
e_1_2_7_11_2
e_1_2_7_10_2
Shan Y (e_1_2_7_19_2) 2006; 29
e_1_2_7_26_2
e_1_2_7_27_2
e_1_2_7_28_2
e_1_2_7_29_2
Martin RJ (e_1_2_7_4_2) 1984; 13
e_1_2_7_25_2
e_1_2_7_24_2
e_1_2_7_30_2
e_1_2_7_23_2
e_1_2_7_31_2
e_1_2_7_22_2
e_1_2_7_32_2
e_1_2_7_21_2
e_1_2_7_33_2
e_1_2_7_20_2
e_1_2_7_34_2
e_1_2_7_35_2
e_1_2_7_36_2
e_1_2_7_37_2
e_1_2_7_38_2
e_1_2_7_39_2
References_xml – volume: 61
  start-page: 342
  year: 2010
  end-page: 348
  article-title: Sulforaphane protects ischemic injury of hearts through antioxidant pathway and mitochondrial K(ATP) channels
  publication-title: Pharmacol Res
– volume: 33
  start-page: 1610
  year: 2010
  end-page: 1614
  article-title: Inhibitory effects of coumarins from the stem barks of Fraxinus rhynchophylla on adipocyte differentiation in 3T3‐L1 cells
  publication-title: Biol Pharm Bull
– volume: 46
  start-page: 979
  year: 2005
  end-page: 987
  article-title: Sulforaphane induces thioredoxin through the antioxidant‐responsive element and attenuates retinal light damage in mice
  publication-title: Invest Ophthalmol Vis Sci
– volume: 139
  start-page: 1638
  year: 1998
  end-page: 1644
  article-title: Modulation of insulin‐like growth factor I mitogenic signaling in 3T3‐L1 preadipocyte differentiation
  publication-title: Endocrinology
– volume: 14
  start-page: 99
  year: 1994
  end-page: 129
  article-title: Regulation of adipocyte development
  publication-title: Annu Rev Nutr
– volume: 78
  start-page: 783
  year: 1998
  end-page: 809
  article-title: Understanding adipocyte differentiation
  publication-title: Physiol Rev
– volume: 57
  start-page: 317
  year: 2006
  end-page: 327
  article-title: p53‐independent G1 cell cycle arrest of human colon carcinoma cells HT‐29 by sulforaphane is associated with induction of p21CIP1 and inhibition of expression of cyclin D1
  publication-title: Cancer Chemother Pharmacol
– volume: 348
  start-page: 571
  year: 2006
  end-page: 578
  article-title: Berberine inhibits 3T3‐L1 adipocyte differentiation through the PPARgamma pathway
  publication-title: Biochem Biophys Res Commun
– volume: 31
  start-page: 222
  year: 2010
  end-page: 226
  article-title: Obesity paradox in a cohort of 4880 consecutive patients undergoing percutaneous coronary intervention
  publication-title: Eur Heart J
– volume: 2
  start-page: 538
  year: 2003
  end-page: 544
  article-title: A structural analysis of the qualitative networks regulating the cell cycle and apoptosis
  publication-title: Cell Cycle
– volume: 134
  start-page: 1134
  year: 2004
  end-page: 1138
  article-title: Breast cancer risk in premenopausal women is inversely associated with consumption of broccoli, a source of isothiocyanates, but is not modified by GST genotype
  publication-title: J Nutr
– volume: 371
  start-page: 185
  year: 2008
  end-page: 190
  article-title: Rehmannia inhibits adipocyte differentiation and adipogenesis
  publication-title: Biochem Biophys Res Commun
– volume: 137
  start-page: 3590
  year: 1996
  end-page: 3593
  article-title: Expression of a constitutively activated form of protein kinase B (c‐Akt) in 3T3‐L1 preadipose cells causes spontaneous differentiation
  publication-title: Endocrinology
– volume: 10
  start-page: 1020
  year: 2011
  end-page: 1023
  article-title: Hydroxyframoside B, a secoiridoid of fraxinus rhynchophylla, inhibits adipocyte differentiation in 3T3‐L1 cells
  publication-title: Planta Med
– volume: 275
  start-page: 21960
  year: 2000
  end-page: 21968
  article-title: Inhibition of the phosphoinositide 3‐kinase pathway induces a senescence‐like arrest mediated by p27Kip1
  publication-title: J Biol Chem
– volume: 53
  start-page: 79
  year: 2010
  end-page: 88
  article-title: HOMA insulin sensitivity index and the risk of all‐cause mortality and cardiovascular disease events in the general population: the Australian Diabetes, Obesity and Lifestyle Study (AusDiab) study
  publication-title: Diabetologia
– volume: 273
  start-page: 29864
  year: 1998
  end-page: 29872
  article-title: Cyclin D expression is controlled post‐transcriptionally via a phosphatidylinositol 3‐kinase/Akt‐dependent pathway
  publication-title: J Biol Chem
– volume: 29
  start-page: 883
  year: 2006
  end-page: 888
  article-title: Effect of sulforaphane on cell growth, G(0)/G(1) phase cell progression and apoptosis in human bladder cancer T24 cells
  publication-title: Int J Oncol
– volume: 69
  start-page: 1543
  year: 2005
  end-page: 1552
  article-title: Role of PI3K/Akt and MEK/ERK signaling pathways in sulforaphane‐ and erucin‐induced phase II enzymes and MRP2 transcription, G2/M arrest and cell death in Caco‐2 cells
  publication-title: Biochem Pharmacol
– volume: 10
  start-page: 3
  year: 1999
  end-page: 10
  article-title: Molecular regulation of adipocyte differentiation
  publication-title: Semin Cell Dev Biol
– volume: 100
  start-page: 44
  year: 2003
  end-page: 49
  article-title: Mitotic clonal expansion: a synchronous process required for adipogenesis
  publication-title: Proc Natl Acad Sci USA
– volume: 372
  start-page: 108
  year: 2008
  end-page: 113
  article-title: Vitisin A inhibits adipocyte differentiation through cell cycle arrest in 3T3‐L1 cells
  publication-title: Biochem Biophys Res Commun
– volume: 277
  start-page: 46226
  year: 2002
  end-page: 46232
  article-title: Activation of MEK/ERK signaling promotes adipogenesis by enhancing peroxisome proliferator‐activated receptor gamma (PPARgamma) and C/EBPalpha gene expression during the differentiation of 3T3‐L1 preadipocytes
  publication-title: J Biol Chem
– volume: 40
  start-page: 229
  year: 2005
  end-page: 242
  article-title: Adipose development: from stem cell to adipocyte
  publication-title: Crit Rev Biochem Mol Biol
– volume: 3
  start-page: 389
  year: 2010
  end-page: 399
  article-title: Anticancer activity of a broccoli derivative, sulforaphane, in barrett adenocarcinoma: potential use in chemoprevention and as adjuvant in chemotherapy
  publication-title: Transl Oncol
– volume: 13
  start-page: 448
  year: 1984
  end-page: 453
  article-title: Adipocyte development
  publication-title: Pediatr Ann
– volume: 130
  start-page: 3122S
  year: 2000
  end-page: 3126S
  article-title: Adipocyte differentiation and gene expression
  publication-title: J Nutr
– volume: 5
  start-page: 665
  year: 1989
  end-page: 689
  article-title: Cellular alterations in liver, skeletal muscle, and adipose tissue responsible for insulin resistance in obesity and type II diabetes
  publication-title: Diabetes Metab Rev
– volume: 25
  start-page: 83
  year: 2004
  end-page: 90
  article-title: Sulforaphane induces caspase‐mediated apoptosis in cultured PC‐3 human prostate cancer cells and retards growth of PC‐3 xenografts in vivo
  publication-title: Carcinogenesis
– volume: 260
  start-page: 5563
  year: 1985
  end-page: 5567
  article-title: Evidence for an increase in transcription of specific mRNAs during differentiation of 3T3‐L1 preadipocytes
  publication-title: J Biol Chem
– volume: 22
  start-page: 271
  year: 2004
  end-page: 275
  article-title: Phase 1 study of multiple biomarkers for metabolism and oxidative stress after one‐week intake of broccoli sprouts
  publication-title: Biofactors
– volume: 22
  start-page: 7226
  year: 2002
  end-page: 7241
  article-title: Distinct cell cycle timing requirements for extracellular signal‐regulated kinase and phosphoinositide 3‐kinase signaling pathways in somatic cell mitosis
  publication-title: Mol Cell Biol
– volume: 396
  start-page: 691
  year: 2010
  end-page: 695
  article-title: Matrine inhibits 3T3‐L1 preadipocyte differentiation associated with suppression of ERK1/2 phosphorylation
  publication-title: Biochem Biophys Res Commun
– volume: 271
  start-page: 31372
  year: 1996
  end-page: 31378
  article-title: Expression of a constitutively active Akt Ser/Thr kinase in 3T3‐L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation
  publication-title: J Biol Chem
– volume: 274
  start-page: 1672
  year: 1996
  end-page: 1677
  article-title: Cancer cell cycles
  publication-title: Science
– volume: 2
  start-page: 349
  year: 2001
  end-page: 355
  article-title: Molecular mechanisms of adipocyte differentiation
  publication-title: Rev Endocr Metab Disord
– volume: 2
  start-page: 293
  year: 2003
  end-page: 295
  article-title: New targets for viral cyclins
  publication-title: Cell Cycle
– start-page: 59
  issue: Suppl 32–33
  year: 1999
  end-page: 67
  article-title: Insights into the transcriptional control of adipocyte differentiation
  publication-title: J Cell Biochem
– volume: 288
  start-page: C1094
  year: 2005
  end-page: C1108
  article-title: Antimitogenic effect of green tea (‐)‐epigallocatechin gallate on 3T3‐L1 preadipocytes depends on the ERK and Cdk2 pathways
  publication-title: Am J Physiol, Cell Physiol
– volume: 280
  start-page: C1540
  year: 2001
  end-page: C1554
  article-title: Human intestinal epithelial cell survival: differentiation state‐specific control mechanisms
  publication-title: Am J Physiol, Cell Physiol
– ident: e_1_2_7_15_2
  doi: 10.1093/carcin/bgg178
– ident: e_1_2_7_17_2
  doi: 10.4161/cc.2.4.427
– ident: e_1_2_7_36_2
  doi: 10.1016/j.bbrc.2010.04.163
– ident: e_1_2_7_23_2
  doi: 10.1006/scdb.1998.0276
– ident: e_1_2_7_24_2
  doi: 10.1002/(SICI)1097-4644(1999)75:32 <59::AID-JCB8>3.0.CO;2-1
– ident: e_1_2_7_34_2
  doi: 10.1210/en.139.4.1638
– ident: e_1_2_7_9_2
  doi: 10.1023/A:1011863414321
– ident: e_1_2_7_22_2
  doi: 10.1016/j.bcp.2005.03.015
– ident: e_1_2_7_5_2
  doi: 10.1002/dmr.5610050804
– ident: e_1_2_7_8_2
  doi: 10.1146/annurev.nu.14.070194.000531
– ident: e_1_2_7_16_2
  doi: 10.1593/tlo.10235
– volume: 13
  start-page: 448
  year: 1984
  ident: e_1_2_7_4_2
  article-title: Adipocyte development
  publication-title: Pediatr Ann
– ident: e_1_2_7_30_2
  doi: 10.1055/s-0030-1270712
– ident: e_1_2_7_20_2
  doi: 10.4161/cc.2.6.550
– ident: e_1_2_7_10_2
  doi: 10.1152/physrev.1998.78.3.783
– ident: e_1_2_7_13_2
  doi: 10.1002/biof.5520220154
– ident: e_1_2_7_32_2
  doi: 10.1016/j.bbrc.2008.04.188
– ident: e_1_2_7_3_2
  doi: 10.1093/eurheartj/ehp317
– ident: e_1_2_7_14_2
  doi: 10.1093/jn/134.5.1134
– ident: e_1_2_7_41_2
  doi: 10.1074/jbc.271.49.31372
– volume: 29
  start-page: 883
  year: 2006
  ident: e_1_2_7_19_2
  article-title: Effect of sulforaphane on cell growth, G(0)/G(1) phase cell progression and apoptosis in human bladder cancer T24 cells
  publication-title: Int J Oncol
– ident: e_1_2_7_25_2
  doi: 10.1248/bpb.33.1610
– ident: e_1_2_7_39_2
  doi: 10.1074/jbc.M000759200
– ident: e_1_2_7_31_2
  doi: 10.1007/s00280-005-0050-3
– ident: e_1_2_7_29_2
  doi: 10.1016/j.bbrc.2008.03.129
– ident: e_1_2_7_33_2
  doi: 10.1128/MCB.22.20.7226-7241.2002
– ident: e_1_2_7_28_2
  doi: 10.1016/j.bbrc.2006.07.095
– ident: e_1_2_7_21_2
  doi: 10.1152/ajpcell.2001.280.6.C1540
– ident: e_1_2_7_11_2
  doi: 10.1167/iovs.04-1120
– ident: e_1_2_7_6_2
  doi: 10.1093/jn/130.12.3122S
– ident: e_1_2_7_26_2
  doi: 10.1073/pnas.0137044100
– ident: e_1_2_7_27_2
  doi: 10.1016/S0021-9258(18)89059-7
– ident: e_1_2_7_2_2
  doi: 10.1007/s00125-009-1588-0
– ident: e_1_2_7_7_2
  doi: 10.1080/10409230591008189
– ident: e_1_2_7_18_2
  doi: 10.1126/science.274.5293.1672
– ident: e_1_2_7_37_2
  doi: 10.1152/ajpcell.00569.2004
– ident: e_1_2_7_35_2
  doi: 10.1074/jbc.M207776200
– ident: e_1_2_7_38_2
  doi: 10.1074/jbc.273.45.29864
– ident: e_1_2_7_12_2
  doi: 10.1016/j.phrs.2009.11.009
– ident: e_1_2_7_40_2
  doi: 10.1210/endo.137.8.8754791
SSID ssj0046051
Score 2.363123
Snippet Obesity is a risk factor for numerous metabolic disorders such as type 2 diabetes, hypertension, and coronary heart disease. Adipocyte differentiation is...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1365
SubjectTerms 3T3-L1 Cells - drug effects
Adipocytes - drug effects
Adipocytes - physiology
Adipogenesis - drug effects
Animals
Anticarcinogenic Agents - pharmacology
Blotting, Western
Body fat
Cell Cycle Checkpoints - drug effects
Cell Differentiation - drug effects
Cell Line
Cell Proliferation - drug effects
Cellular biology
Humans
Isothiocyanates
Mice
Mitosis - drug effects
Obesity
Phytochemicals
PPAR gamma - drug effects
PPAR gamma - metabolism
Proliferating Cell Nuclear Antigen - drug effects
Rats
Thiocyanates - pharmacology
Transcription Factors
Up-Regulation
Title Sulforaphane Inhibits Mitotic Clonal Expansion During Adipogenesis Through Cell Cycle Arrest
URI https://onlinelibrary.wiley.com/doi/abs/10.1038%2Foby.2011.388
https://www.ncbi.nlm.nih.gov/pubmed/22282047
https://www.proquest.com/docview/1022150761
https://www.proquest.com/docview/1022377837
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1930-739X
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0046051
  issn: 1930-7381
  databaseCode: DIK
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1tb9MwELbKkBBfEO8UBjIS8IHKXeK8OPlY2k0dowOpnTQkpChOnLVSaQptJcq_4h9yZ7tZCmUCvkSVbTWO7_H5fD7fQ8gLkTq54E7BIj8KGGg_ztJQKpbzKJAKFhhzi39wGvbP_LfnwXmj8aMWtbRaynb2fee9kv-RKpSBXPGW7D9ItvpTKIDfIF94goTh-VcyHq6mYHOm83E6wxDI8UTiMcAAJimmYe1OtZfv8BtMePSJtXrmSmInn8zLC9Rxk0VrZHl6uujD667hBa2O5uuoW62WPQCt0eEEQ6lbxh-oval5u-ZN6I5LEx6wVuXsgn2e_BLwg8qFLVYVIocmhUFvZ-OhAk00XtvW1jXhXoax7nRBGpfaZbASqtvYc5jwDGlLW9XLNMFupaO5U8OiqClcjNLbuRKYvO-lXJs0rZ4hD9xOuN3vDJMPvaPk3fHpyXatXuB5GIc6GY77av6FIVEZHuhb1pZr5DoXYYikGb3jk83ij6fMrglkMB9m71pAbw7qfdm2gn7b2mzvlLSpM7pNbtk9Cu0YwN0hDTW7S24MbBTGPfKpjju6wR21uKMGd7TCHTW4o3XcUYs7irijGnfU4O4-OTs6HHX7zLJ0sMwPA84ypISMhVvAtOdhIYtMhjKNVeDoZIBSebmIRRxEaSDzzMt5LFQWpU4huVKySL0HZG9WztQjQmFxcVUuPQfWXD9QaSyLCJqh1wu2KbFoktZm1JLMprBHJpVpokMpvCiBMU5wjBMY4yZ5WbWem9Qtf2i3vxFAYif3IkFHCO6VQrdJnlfVoHrxPA0Gt1yZNp4QkQcde2gEV70IHavc8aHmtZbklT1I3r_5yH2PP766J0_ITY7s05jW1d0ne8uvK_UUTOKlfKZB-BNm0rbb
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sulforaphane+Inhibits+Mitotic+Clonal+Expansion+During+Adipogenesis+Through+Cell+Cycle+Arrest&rft.jtitle=Obesity+%28Silver+Spring%2C+Md.%29&rft.au=Choi%2C+Kyeong-mi&rft.au=Lee%2C+Youn-sun&rft.au=Sin%2C+Dong-mi&rft.au=Lee%2C+Seunghyun&rft.date=2012-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1930-7381&rft.eissn=1930-739X&rft.volume=20&rft.issue=7&rft.spage=1365&rft_id=info:doi/10.1038%2Foby.2011.388&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=2696268401
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1930-7381&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1930-7381&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1930-7381&client=summon