The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures
[Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols&...
Saved in:
Published in | Journal of catalysis Vol. 329; pp. 355 - 367 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
San Diego
Elsevier Inc
01.09.2015
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9517 1090-2694 |
DOI | 10.1016/j.jcat.2015.06.005 |
Cover
Abstract | [Display omitted]
•Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols.•Rates correlate with alcohol polarity and alcohol standard oxidation potential.
M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm−2). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg−1h−1) and 1,2-ethanediol–water mixtures (44.5mmolg−1h−1). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential. |
---|---|
AbstractList | Display Omitted * Pd, Pt and Au activate TiO2 for H2 production in alcohol-water mixtures under UV. * H2 production rates decrease in the order Pd/TiO2 >Pt/TiO2 [approximate]Au/TiO2 >>P25 TiO2. * Metal particle size does not impact H2 production rates in the size range 1-5nm. * Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols. * Rates correlate with alcohol polarity and alcohol standard oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol-water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV-Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron-hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol-water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm -2 ). H2 production rates in the alcohol-water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt[approximate]Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol-water mixtures (47.5mmolg -1 h-1 ) and 1,2-ethanediol-water mixtures (44.5mmolg-1 h-1 ). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol>>water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential. [Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols.•Rates correlate with alcohol polarity and alcohol standard oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm−2). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg−1h−1) and 1,2-ethanediol–water mixtures (44.5mmolg−1h−1). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm⁻²). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg⁻¹h⁻¹) and 1,2-ethanediol–water mixtures (44.5mmolg⁻¹h⁻¹). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential. |
Author | Chen, Wan-Ting Ina, Toshiaki Al-Azri, Zakiya H.N. Chan, Andrew Idriss, Hicham Jovic, Vedran Waterhouse, Geoffrey I.N. |
Author_xml | – sequence: 1 givenname: Zakiya H.N. surname: Al-Azri fullname: Al-Azri, Zakiya H.N. organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand – sequence: 2 givenname: Wan-Ting surname: Chen fullname: Chen, Wan-Ting organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand – sequence: 3 givenname: Andrew surname: Chan fullname: Chan, Andrew organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand – sequence: 4 givenname: Vedran surname: Jovic fullname: Jovic, Vedran organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand – sequence: 5 givenname: Toshiaki surname: Ina fullname: Ina, Toshiaki organization: Japan Synchrotron Radiation Research Institute, Hyogo, Japan – sequence: 6 givenname: Hicham surname: Idriss fullname: Idriss, Hicham email: IdrissH@SABIC.com organization: SABIC, Corporate Research & Innovation (CRI) Centre, KAUST, Saudi Arabia – sequence: 7 givenname: Geoffrey I.N. surname: Waterhouse fullname: Waterhouse, Geoffrey I.N. email: g.waterhouse@auckland.ac.nz organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand |
BookMark | eNp9kUFu1DAYhS1UJKaFC7CyxKZITWp7YidBsKgqCkitOothbXnsP4wjJy62U5gdd-A-PQwnwZlhgbroypL9vfd-_-8YHY1-BIReU1JSQsV5X_ZapZIRyksiSkL4M7SgpCUFE211hBaEMFq0nNYv0HGMPSGUct4s0MN6Czh4BxH7Dg-QlMPaF9lMuV1MEavR4ABKJ-vH_G6swnbEd1uf_AFKVuPtzgT_DfJ98Gbas-_wCkLnw6BGDRjulZvU3iPH3Jyv7S3732ROOr35sDJneJXO8MX0dk4xtusgwJiwctpvvfvz6_cPlSDgwf5MU4D4Ej3vlIvw6t95gr5efVxffi6ubz99uby4LnQlqlR0tFoaIwivjKhYrQjfMNEw1hgAzYRRTdWITrRLoYgmolt2nNNN3RqmFWwasTxBpwff_MHvE8QkBxs1OKdG8FOUjFLRiJq3VUbfPEJ7P4UxTydpTWpSsZbPVHOgdPAxBuiktmm_oBSUdZISORcrezkXK-diJREyF5ul7JH0LthBhd3TovcHEeQt3VsIMmoLuRpjA-gkjbdPyf8CM6rCVQ |
CitedBy_id | crossref_primary_10_1002_cctc_201600697 crossref_primary_10_1021_acs_chemrev_6b00099 crossref_primary_10_3390_catal10111279 crossref_primary_10_1007_s11164_019_03988_w crossref_primary_10_1016_j_apsusc_2021_152196 crossref_primary_10_1016_j_apcatb_2020_119246 crossref_primary_10_1021_acs_est_0c07266 crossref_primary_10_1016_j_electacta_2019_06_173 crossref_primary_10_1016_j_ccr_2015_12_009 crossref_primary_10_1016_j_ijhydene_2024_04_114 crossref_primary_10_1021_acs_inorgchem_0c03038 crossref_primary_10_1039_D3NA00513E crossref_primary_10_1016_j_cej_2025_161636 crossref_primary_10_1016_j_rser_2022_112827 crossref_primary_10_1016_j_jcat_2017_01_012 crossref_primary_10_1016_j_ijhydene_2018_10_200 crossref_primary_10_1016_j_apt_2021_06_021 crossref_primary_10_1016_j_jcat_2019_05_033 crossref_primary_10_1016_j_jphotochem_2022_114099 crossref_primary_10_1039_C8TA01034J crossref_primary_10_1088_1361_648X_ac4d5b crossref_primary_10_1021_acsanm_3c05585 crossref_primary_10_1002_cctc_201601659 crossref_primary_10_1016_j_cattod_2016_11_007 crossref_primary_10_1016_j_cplett_2025_141965 crossref_primary_10_1002_cssc_201900071 crossref_primary_10_3389_fchem_2019_00563 crossref_primary_10_1002_anie_202405681 crossref_primary_10_1016_j_cjche_2020_08_010 crossref_primary_10_1016_j_ijhydene_2019_11_194 crossref_primary_10_3390_molecules29102347 crossref_primary_10_1002_admi_201900775 crossref_primary_10_1039_D4CY00775A crossref_primary_10_1002_cctc_202001048 crossref_primary_10_1016_j_cattod_2024_115168 crossref_primary_10_1002_wene_254 crossref_primary_10_1021_acsomega_3c07336 crossref_primary_10_1038_s41467_017_02527_8 crossref_primary_10_1038_s41570_023_00567_x crossref_primary_10_1039_C6SE00091F crossref_primary_10_3390_catal11020212 crossref_primary_10_1016_j_apcatb_2017_07_020 crossref_primary_10_1016_j_physb_2024_416086 crossref_primary_10_1016_j_jece_2023_110534 crossref_primary_10_1039_C7CY00961E crossref_primary_10_1515_chem_2018_0120 crossref_primary_10_3389_fchem_2018_00110 crossref_primary_10_1002_adma_202206569 crossref_primary_10_1007_s43630_022_00249_5 crossref_primary_10_3390_solar3010008 crossref_primary_10_1016_j_cattod_2017_06_026 crossref_primary_10_1016_j_nanoen_2017_05_013 crossref_primary_10_1134_S0023158424602043 crossref_primary_10_1002_cssc_201900844 crossref_primary_10_1016_S1872_2067_19_63469_8 crossref_primary_10_1002_advs_202402651 crossref_primary_10_1039_D2NJ05962B crossref_primary_10_1007_s12209_024_00388_z crossref_primary_10_1088_1742_6596_1664_1_012096 crossref_primary_10_1016_j_cattod_2021_03_008 crossref_primary_10_1002_slct_202403308 crossref_primary_10_1002_slct_202404518 crossref_primary_10_1016_j_commatsci_2018_05_001 crossref_primary_10_1039_D2ME00221C crossref_primary_10_3390_catal11111279 crossref_primary_10_1007_s11270_018_3881_3 crossref_primary_10_1039_C7CY02219K crossref_primary_10_1039_C8DT02383B crossref_primary_10_1515_zpch_2019_1424 crossref_primary_10_1016_j_jallcom_2015_07_123 crossref_primary_10_1038_s41929_020_0423_3 crossref_primary_10_3390_nano13050792 crossref_primary_10_1039_D0CY00843E crossref_primary_10_3390_molecules29092108 crossref_primary_10_1016_j_cattod_2025_115207 crossref_primary_10_1016_j_jphotochem_2016_11_001 crossref_primary_10_3390_catal11080897 crossref_primary_10_1039_C6TA07853B crossref_primary_10_1016_j_apcatb_2017_01_042 crossref_primary_10_1039_C9CY01818B crossref_primary_10_3390_nano12213808 crossref_primary_10_1002_adfm_202313793 crossref_primary_10_1039_D3GC02644B crossref_primary_10_1016_j_cattod_2024_115144 crossref_primary_10_1002_adfm_202423088 crossref_primary_10_1016_j_seta_2024_104144 crossref_primary_10_1002_ceat_201900338 crossref_primary_10_1038_s41467_023_41976_2 crossref_primary_10_1016_j_jallcom_2021_163039 crossref_primary_10_1088_2515_7655_ac8ed3 crossref_primary_10_1016_j_rser_2017_05_243 crossref_primary_10_3390_jcs9020068 crossref_primary_10_1016_j_apcata_2020_117706 crossref_primary_10_1002_ange_202405681 crossref_primary_10_1016_j_apcata_2020_117703 crossref_primary_10_3365_KJMM_2018_56_12_900 crossref_primary_10_1021_acscatal_9b01110 crossref_primary_10_1016_j_apcatb_2020_118753 crossref_primary_10_1039_D2CC04328A crossref_primary_10_1016_j_apcata_2018_08_004 crossref_primary_10_1039_C5RA18302B crossref_primary_10_1016_j_ijhydene_2017_08_153 crossref_primary_10_1016_j_ijhydene_2016_12_131 crossref_primary_10_1021_acsami_1c20514 crossref_primary_10_1016_j_mcat_2017_04_035 crossref_primary_10_1016_j_apcatb_2018_07_047 crossref_primary_10_1002_er_6620 crossref_primary_10_1016_j_apcatb_2023_123431 crossref_primary_10_1016_j_apsusc_2018_07_042 crossref_primary_10_1039_C8CP05513K crossref_primary_10_1016_j_snb_2024_136973 crossref_primary_10_1021_acscatal_8b05070 crossref_primary_10_1016_j_jcat_2018_04_015 crossref_primary_10_1016_j_apcatb_2020_119736 crossref_primary_10_1016_j_apsusc_2024_162124 crossref_primary_10_1016_j_cattod_2024_115091 crossref_primary_10_1016_j_rser_2021_111266 crossref_primary_10_12677_MS_2021_115061 crossref_primary_10_1016_j_apcatb_2019_118236 crossref_primary_10_3390_catal12040402 crossref_primary_10_1016_j_cej_2019_03_291 crossref_primary_10_1016_j_ijhydene_2020_07_223 crossref_primary_10_1016_j_jallcom_2020_156634 crossref_primary_10_3390_catal13040749 crossref_primary_10_3390_photochem2030038 crossref_primary_10_1021_acsaem_2c00474 crossref_primary_10_1016_j_jece_2018_10_044 crossref_primary_10_1016_j_apcatb_2017_03_016 crossref_primary_10_3390_hydrogen4010014 crossref_primary_10_1002_gch2_202400134 crossref_primary_10_1016_j_jece_2020_104529 crossref_primary_10_1016_j_coche_2020_05_009 crossref_primary_10_1039_C6RA01140C crossref_primary_10_1016_j_ces_2016_05_029 crossref_primary_10_1039_C8SE00293B crossref_primary_10_1071_EN19308 crossref_primary_10_1021_acscatal_7b00508 crossref_primary_10_1007_s10563_023_09411_0 crossref_primary_10_1039_C6CY02435A crossref_primary_10_1021_acsanm_1c00345 crossref_primary_10_1016_j_apcatb_2016_12_006 crossref_primary_10_1016_j_jphotochem_2018_06_033 crossref_primary_10_1016_j_jiec_2023_01_006 crossref_primary_10_1021_acsanm_0c01300 crossref_primary_10_1016_j_ijhydene_2025_01_203 crossref_primary_10_1016_j_solmat_2019_110065 crossref_primary_10_1016_j_jallcom_2017_10_224 crossref_primary_10_1021_jacs_8b10929 crossref_primary_10_1016_j_ijhydene_2018_02_098 crossref_primary_10_1021_acs_nanolett_0c01507 crossref_primary_10_1016_j_apsusc_2019_01_050 crossref_primary_10_1039_D4NJ03129F crossref_primary_10_1007_s11164_019_04023_8 crossref_primary_10_1016_j_ijhydene_2024_07_410 crossref_primary_10_1038_s41598_023_49982_6 crossref_primary_10_3389_fchem_2019_00780 crossref_primary_10_1016_j_cej_2023_141514 crossref_primary_10_1134_S0023158424601943 crossref_primary_10_3390_membranes12070693 crossref_primary_10_1016_j_apcatb_2020_119755 crossref_primary_10_1016_j_jcat_2018_08_015 crossref_primary_10_1002_gch2_202300185 crossref_primary_10_1021_acssuschemeng_9b03796 crossref_primary_10_1039_D3CP01576A crossref_primary_10_1016_j_apsusc_2020_147376 crossref_primary_10_1021_acscatal_6b02832 crossref_primary_10_1021_acsami_0c00825 crossref_primary_10_3390_app13042337 crossref_primary_10_1002_cjce_24496 crossref_primary_10_1016_j_jhazmat_2022_129251 crossref_primary_10_3390_catal12101263 crossref_primary_10_1016_j_jphotochem_2016_05_018 crossref_primary_10_1002_adem_202301062 crossref_primary_10_1016_j_ijhydene_2022_11_265 crossref_primary_10_1016_j_cattod_2016_05_009 crossref_primary_10_1016_j_jphotochem_2022_113963 crossref_primary_10_1016_j_cattod_2022_11_015 crossref_primary_10_1007_s10562_017_2197_z crossref_primary_10_1016_j_mcat_2023_113506 crossref_primary_10_1002_ente_202100469 crossref_primary_10_1016_j_ijhydene_2016_04_217 crossref_primary_10_1007_s11244_020_01362_4 crossref_primary_10_1002_chem_201601988 crossref_primary_10_1002_aenm_202103733 crossref_primary_10_3390_nano9030391 crossref_primary_10_1021_acs_jpcc_4c00081 crossref_primary_10_1002_ente_201700853 crossref_primary_10_1021_acs_jpcc_2c04025 crossref_primary_10_3390_nano13152266 crossref_primary_10_3390_ma12010040 crossref_primary_10_1016_j_jcat_2019_03_021 crossref_primary_10_1039_D3MA01137B crossref_primary_10_1016_j_jece_2024_112043 crossref_primary_10_1016_j_apsusc_2019_04_028 crossref_primary_10_1039_C9CP02241D crossref_primary_10_1016_j_apsusc_2018_10_036 crossref_primary_10_1016_j_cej_2018_09_092 crossref_primary_10_1021_acsenergylett_7b00189 crossref_primary_10_1002_slct_202303631 crossref_primary_10_3390_catal11091048 crossref_primary_10_1016_j_jclepro_2021_128546 crossref_primary_10_1039_C6RA10408H crossref_primary_10_1016_j_cej_2023_143916 crossref_primary_10_1039_C7CC07969A crossref_primary_10_1002_asia_201601356 crossref_primary_10_1039_C8DT01915K crossref_primary_10_1021_acsaem_9b00091 crossref_primary_10_1016_j_ijhydene_2024_11_270 crossref_primary_10_1016_j_apsusc_2018_05_122 crossref_primary_10_3390_en10101624 crossref_primary_10_1016_j_ijhydene_2019_04_047 crossref_primary_10_3390_catal12121556 crossref_primary_10_1016_j_ijhydene_2023_12_004 crossref_primary_10_1021_acscatal_4c05001 crossref_primary_10_1021_acsami_3c05833 crossref_primary_10_1088_2515_7655_abdd82 crossref_primary_10_3390_nano12152717 crossref_primary_10_1016_j_mcat_2023_112993 crossref_primary_10_1016_j_jece_2023_110375 crossref_primary_10_1038_s42004_023_00947_w crossref_primary_10_1016_j_susc_2017_09_011 crossref_primary_10_3390_catal14110810 crossref_primary_10_1142_S1793292020501295 crossref_primary_10_1016_j_apcatb_2023_122765 crossref_primary_10_3390_nano13081326 crossref_primary_10_1016_j_ijhydene_2021_12_133 crossref_primary_10_1021_acs_jpcc_2c04005 crossref_primary_10_1021_acs_jpcc_6b12776 crossref_primary_10_1016_j_surfrep_2016_01_001 crossref_primary_10_1016_j_susmat_2023_e00636 crossref_primary_10_1016_j_cattod_2020_07_041 crossref_primary_10_1021_acsami_7b00496 crossref_primary_10_1007_s12598_021_01705_4 crossref_primary_10_1016_j_nwnano_2023_100023 crossref_primary_10_1016_j_cej_2020_125665 crossref_primary_10_1039_D2NA00119E crossref_primary_10_1080_2055074X_2015_1124191 crossref_primary_10_1016_j_jcat_2016_08_009 crossref_primary_10_1002_ep_12998 crossref_primary_10_1016_j_ijhydene_2019_11_019 crossref_primary_10_1016_j_ijhydene_2024_11_176 crossref_primary_10_1007_s12274_023_6351_1 crossref_primary_10_1016_j_cclet_2023_108723 crossref_primary_10_3390_catal13030614 crossref_primary_10_1016_S1872_2067_19_63453_4 crossref_primary_10_1016_j_apcatb_2017_05_022 crossref_primary_10_1016_j_apcatb_2021_120391 crossref_primary_10_1016_j_apsusc_2018_08_126 crossref_primary_10_1088_2632_959X_aba131 crossref_primary_10_1016_j_arabjc_2018_01_007 crossref_primary_10_1016_j_solidstatesciences_2023_107317 crossref_primary_10_1039_D3QI01863F crossref_primary_10_2139_ssrn_4074215 crossref_primary_10_1016_j_cej_2022_141134 crossref_primary_10_1016_j_ijhydene_2021_08_141 crossref_primary_10_1016_j_ijhydene_2023_12_102 crossref_primary_10_1016_j_apsusc_2018_12_076 crossref_primary_10_1016_j_mtener_2021_100648 crossref_primary_10_1002_smll_202412097 crossref_primary_10_1016_j_rser_2021_111095 crossref_primary_10_1016_j_jece_2024_112017 crossref_primary_10_1039_D1NJ06197F crossref_primary_10_3390_en14040817 crossref_primary_10_1016_j_catcom_2018_03_026 crossref_primary_10_1021_acs_jpcc_8b03741 crossref_primary_10_1038_s41598_022_24290_7 crossref_primary_10_1016_j_jcis_2024_09_028 crossref_primary_10_1080_09593330_2016_1158871 crossref_primary_10_1007_s11244_018_0980_8 crossref_primary_10_1016_j_jcat_2017_04_033 crossref_primary_10_1016_j_ijhydene_2023_05_344 crossref_primary_10_1016_j_ijhydene_2024_09_420 crossref_primary_10_1246_cl_171053 crossref_primary_10_1039_D2YA00110A crossref_primary_10_3390_ijms24032878 crossref_primary_10_1016_j_jmst_2021_12_003 crossref_primary_10_1016_j_jcat_2017_04_035 crossref_primary_10_1039_D0EE03116J crossref_primary_10_1002_adsu_202400321 crossref_primary_10_1016_j_seppur_2024_126671 crossref_primary_10_1021_acs_iecr_1c01701 crossref_primary_10_1016_j_jwpe_2021_101989 crossref_primary_10_1002_ente_201700546 crossref_primary_10_1016_j_susmat_2025_e01332 crossref_primary_10_1039_D0RE00382D crossref_primary_10_1016_j_mcat_2017_12_023 crossref_primary_10_1016_j_apcatb_2025_125225 crossref_primary_10_1002_solr_202101042 crossref_primary_10_1016_j_jiec_2023_10_055 crossref_primary_10_1038_s41893_020_00650_x crossref_primary_10_1007_s11244_025_02051_w crossref_primary_10_1016_j_chemosphere_2019_04_044 crossref_primary_10_1016_j_jtice_2023_105159 crossref_primary_10_1016_j_jphotochem_2017_07_046 crossref_primary_10_1007_s41061_022_00373_x crossref_primary_10_1007_s10570_020_03527_6 crossref_primary_10_1039_C9TC02068C crossref_primary_10_1021_acssuschemeng_4c06918 crossref_primary_10_1002_aoc_7856 crossref_primary_10_1016_j_cej_2020_124701 crossref_primary_10_1002_cctc_202400474 crossref_primary_10_1016_j_ijhydene_2022_09_153 crossref_primary_10_1016_j_apcatb_2016_11_045 crossref_primary_10_1016_j_chemosphere_2024_142330 crossref_primary_10_1021_acscatal_9b01890 crossref_primary_10_1039_C9CP00826H crossref_primary_10_1002_aenm_202401838 crossref_primary_10_1007_s10562_017_1998_4 crossref_primary_10_1016_j_cattod_2018_05_031 crossref_primary_10_1021_acsanm_0c03320 crossref_primary_10_1002_ceat_202100513 crossref_primary_10_1021_acscatal_0c03464 crossref_primary_10_1021_acs_oprd_9b00225 crossref_primary_10_1002_chem_202401486 crossref_primary_10_1016_j_jallcom_2021_160936 crossref_primary_10_1016_j_jcat_2023_05_019 crossref_primary_10_1021_acscatal_8b01317 crossref_primary_10_1016_j_cattod_2018_10_001 crossref_primary_10_1002_jctb_6123 crossref_primary_10_1016_j_jallcom_2022_165320 crossref_primary_10_1021_acscatal_6b03092 crossref_primary_10_1021_acscatal_9b00332 crossref_primary_10_1016_j_jece_2021_105070 crossref_primary_10_1016_j_apcatb_2017_03_077 crossref_primary_10_3390_catal13111444 crossref_primary_10_1039_D4CY00345D crossref_primary_10_1021_acs_iecr_0c04765 crossref_primary_10_1002_admi_202101241 crossref_primary_10_1016_j_ces_2022_117479 crossref_primary_10_1016_j_jhazmat_2018_03_044 crossref_primary_10_3390_catal11030317 crossref_primary_10_1016_j_cis_2022_102793 crossref_primary_10_13005_msri_180202 |
Cites_doi | 10.1504/IJNT.2014.060592 10.1016/j.jcat.2006.04.004 10.1021/jz400624w 10.1504/IJNT.2012.044832 10.1021/jp962060q 10.1039/B800489G 10.1016/j.apcata.2013.01.005 10.1039/c1gc00022e 10.1016/j.catcom.2011.09.003 10.1021/ja00312a043 10.1021/es950391v 10.1016/j.ijhydene.2008.05.047 10.1103/RevModPhys.65.599 10.1038/srep02849 10.1016/j.jcat.2013.04.005 10.1016/j.apcatb.2006.05.007 10.1007/s11244-013-0080-8 10.1063/1.1878333 10.1016/j.ijhydene.2013.09.101 10.1063/1.1742723 10.1016/j.apcatb.2012.02.020 10.1016/j.jcat.2013.05.031 10.1063/1.1743423 10.1016/j.apcatb.2012.11.006 10.1039/c2cs35230c 10.1016/j.jcat.2014.10.003 10.1039/C1GC15992E 10.1021/jp011576t 10.1021/cs100072k 10.1016/j.ijhydene.2010.05.103 10.1016/j.cattod.2012.09.027 10.1016/j.jcat.2009.04.016 10.1016/S0013-4686(02)00336-5 10.1039/c2cp40641a 10.1016/1010-6030(95)04039-I 10.1039/c1ee01120k 10.1063/1.1743424 10.1021/jp020729p 10.1039/c3cp50416f 10.1021/jp1074048 10.1007/s10562-014-1443-x 10.1016/j.jcat.2008.09.009 10.1021/cr0501994 10.1021/la00017a005 10.1021/jz1007966 10.1039/C2GC16112E 10.1016/S1381-1169(96)00348-2 10.1021/cs3006499 10.1016/j.physb.2005.12.205 10.1021/j100045a026 10.1021/ie0498551 10.1038/nchem.1048 10.1088/0034-4885/76/4/046401 10.1016/j.apcatb.2011.07.015 10.1002/elan.200503476 10.1063/1.1696792 10.1039/c0cp01896a 10.1021/jp075608+ 10.1007/s11671-010-9705-z 10.1021/la9502711 10.1021/jp071022b 10.1021/jp209215c 10.1021/jp060971m 10.1016/j.cattod.2007.01.022 10.1021/jp0144810 10.1016/S1381-1169(02)00210-8 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Inc. |
Copyright_xml | – notice: 2015 Elsevier Inc. |
DBID | AAYXX CITATION 7S9 L.6 |
DOI | 10.1016/j.jcat.2015.06.005 |
DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry |
EISSN | 1090-2694 |
EndPage | 367 |
ExternalDocumentID | 3788015071 10_1016_j_jcat_2015_06_005 S002195171500202X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABDEX ABFNM ABFRF ABJNI ABMAC ABNUV ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEWK ADEZE ADFGL ADIYS ADMUD AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLY HVGLF HZ~ H~9 IHE J1W KOM LG5 LX6 M41 MO0 N9A NDZJH O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SCC SCE SDF SDG SDP SES SEW SPC SPCBC SSG SSZ T5K TAE TWZ UPT VH1 WUQ XFK XPP YQT ZMT ZU3 ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-f143dd6054d6427a05b268228deec26da8486f6936a0c06f3f551b79d2caeb863 |
IEDL.DBID | .~1 |
ISSN | 0021-9517 |
IngestDate | Fri Sep 05 11:36:01 EDT 2025 Sun Sep 07 03:48:09 EDT 2025 Tue Jul 01 03:14:00 EDT 2025 Thu Apr 24 23:09:44 EDT 2025 Fri Feb 23 02:27:01 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Polarity Co-catalyst Photocatalysis Hydrogen production TiO2 Alcohols |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-f143dd6054d6427a05b268228deec26da8486f6936a0c06f3f551b79d2caeb863 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Undefined-3 content type line 23 |
PQID | 1707042954 |
PQPubID | 32080 |
PageCount | 13 |
ParticipantIDs | proquest_miscellaneous_2116867594 proquest_journals_1707042954 crossref_citationtrail_10_1016_j_jcat_2015_06_005 crossref_primary_10_1016_j_jcat_2015_06_005 elsevier_sciencedirect_doi_10_1016_j_jcat_2015_06_005 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-09-01 |
PublicationDateYYYYMMDD | 2015-09-01 |
PublicationDate_xml | – month: 09 year: 2015 text: 2015-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | San Diego |
PublicationPlace_xml | – name: San Diego |
PublicationTitle | Journal of catalysis |
PublicationYear | 2015 |
Publisher | Elsevier Inc Elsevier BV |
Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
References | Gallo, Marelli, Psaro, Gombac, Montini, Fornasiero, Pievo, Santo (b0070) 2012; 14 Alonso, Riente, Rodríguez-Reinoso, Ruiz-Martínez, Sepúlveda-Escribano, Yus (b0125) 2008; 260 Fu, Clark, Yang, Anderson (b0135) 1996; 30 Muir, Choi, Idriss (b0255) 2012; 14 Rodriguez, Hanson, Stacchiola, Senanayake (b0195) 2013; 15 Zhu, Liang, Gu, Xie, Wang, Ding, Liu (b0075) 2012; 119–120 Nadeem, Muir, Connelly, Adamson, Metson, Idriss (b0260) 2011; 13 Ruban, Hammer, Stoltze, Skriver, Nørskov (b0225) 1997; 115 Tanaka, Sakaguchi, Hashimoto, Kominami (b0160) 2013; 3 Farfan-Arribas, Madix (b0275) 2002; 106 Panayotov, Burrows, Morris (b0335) 2012; 116 Chen, Feng, Wu, Shi, Ma, Ying, Li (b0340) 2007; 111 Shimura, Yoshida (b0250) 2011; 4 Chen, Wu, Wu, Tsai (b0035) 2010; 115 Jovic, Al-Azri, Chen, Sun-Waterhouse, Idriss, Waterhouse (b0140) 2013; 56 Kieu, Boyd, Idriss (b0270) 2002; 188 Al-Azri, Jovic, Chen, Sun-Waterhouse, Metson, Waterhouse (b0175) 2014; 11 Marcus (b0305) 1965; 43 Di Valentin, Fittipaldi (b0265) 2013; 4 Nakajima, Mori (b0210) 2006; 376 Rothenberger, Moser, Grätzel, Serpone, Sharma (b0045) 1985; 107 Wood, Giersig, Mulvaney (b0155) 2001; 105 Serpone, Lawless, Khairutdinov (b0205) 1995; 99 Colmenares, Magdziarz, Aramendia, Marinas, Marinas, Urbano, Navio (b0235) 2011; 16 Kaise, Nagai, Tokuhashi, Kondo (b0285) 1994; 10 Marcus (b0295) 1957; 26 Golikand, Maragheh, Sherehjini, Taghi-Ganji, Yarib (b0330) 2006; 18 (b0215) 2009 Maeda, Domen (b0030) 2010; 1 Bamwenda, Tsubota, Nakamura, Haruta (b0245) 1995; 89 Chen, Li, Grätzel, Kostecki, Mao (b0010) 2012; 41 Ohyama, Yamamoto, Teramura, Shishido, Tanaka (b0165) 2011; 1 Waterhouse, Murdoch, Llorca, Idriss (b0185) 2012; 9 Balat (b0005) 2008; 33 Kim, Kay, White, Dohnálek (b0280) 2007; 111 Miller, Kropf, Zha, Regalbuto, Delannoy, Louis, Bus, Van Bokhoven (b0190) 2006; 240 Ohtani, Iwai, Nishimoto, Sato (b0240) 1997; 101 Zanella, Giorgio, Henry, Louis (b0120) 2002; 106 Crabtree, Dresselhaus, Buchanan (b0015) 2004; 57 Bahruji, Bowker, Davies, Pedrono (b0090) 2011; 107 Bowker, Morton, Kennedy, Bahruji, Greves, Jones, Davies, Brookes, Wells, Dimitratos (b0095) 2014; 310 Iwasita (b0325) 2002; 47 Chen, Jovic, Sun-Waterhouse, Idriss, Waterhouse (b0200) 2013; 38 Marcus (b0310) 1993; 65 Waterhouse, Wahab, Al-Oufi, Jovic, Anjum, Sun-Waterhouse, Llorca, Idriss (b0085) 2013; 3 Al-Mazroai, Bowker, Davies, Dickinson, Greaves, James, Millard (b0100) 2007; 122 Bowker (b0320) 2011; 13 Huang, Chang, Wey (b0130) 2010; 35 Kudo, Miseki (b0025) 2009; 38 Okumura, Matsui, Sanada, Arao, Honma, Hirayama, Niwa (b0170) 2009; 265 Yang, Chang, Idriss (b0115) 2006; 67 Murdoch, Waterhouse, Nadeem, Metson, Keane, Howe, Llorca, Idriss (b0080) 2011; 3 Behar, Rabani (b0065) 2006; 110 Kabra, Chaudhary, Sawhney (b0050) 2004; 43 Zhu, Su, Lv, Pan, Sun (b0220) 2010; 5 Zhang, Chen, Liu, Tsai (b0040) 2013; 76 Mulvaney (b0150) 1996; 12 Marcus (b0290) 1956; 24 Marcus (b0300) 1957; 26 Connelly, Idriss (b0055) 2012; 14 Bahruji, Bowker, Brookes, Davies, Wawata (b0110) 2013; 454 Ouyang, Tian, Da, Xu, Ao, Chen, Si, Xu, Han (b0180) 2015; 321 Bowker, Bahruji, Kennedy, Jones, Hartley, Morton (b0105) 2015; 145 Naldoni, D’Arienzo, Altomare, Marelli, Scotti, Morazzoni, Selli, Dal Santo (b0060) 2013; 130–131 Navarro, Pena, Fierro (b0020) 2007; 107 Jovic, Chen, Sun-Waterhouse, Blackford, Idriss, Waterhouse (b0145) 2013; 305 Balzani, Scandola (b0315) 1983 Ismail, Al-Sayari, Bahnemann (b0230) 2013; 209 Panayotov (10.1016/j.jcat.2015.06.005_b0335) 2012; 116 Waterhouse (10.1016/j.jcat.2015.06.005_b0185) 2012; 9 Miller (10.1016/j.jcat.2015.06.005_b0190) 2006; 240 Golikand (10.1016/j.jcat.2015.06.005_b0330) 2006; 18 Rodriguez (10.1016/j.jcat.2015.06.005_b0195) 2013; 15 Okumura (10.1016/j.jcat.2015.06.005_b0170) 2009; 265 Chen (10.1016/j.jcat.2015.06.005_b0340) 2007; 111 Zanella (10.1016/j.jcat.2015.06.005_b0120) 2002; 106 Marcus (10.1016/j.jcat.2015.06.005_b0295) 1957; 26 Mulvaney (10.1016/j.jcat.2015.06.005_b0150) 1996; 12 Al-Mazroai (10.1016/j.jcat.2015.06.005_b0100) 2007; 122 Bowker (10.1016/j.jcat.2015.06.005_b0320) 2011; 13 Marcus (10.1016/j.jcat.2015.06.005_b0300) 1957; 26 Maeda (10.1016/j.jcat.2015.06.005_b0030) 2010; 1 Ouyang (10.1016/j.jcat.2015.06.005_b0180) 2015; 321 Kieu (10.1016/j.jcat.2015.06.005_b0270) 2002; 188 Naldoni (10.1016/j.jcat.2015.06.005_b0060) 2013; 130–131 Nakajima (10.1016/j.jcat.2015.06.005_b0210) 2006; 376 Kabra (10.1016/j.jcat.2015.06.005_b0050) 2004; 43 Gallo (10.1016/j.jcat.2015.06.005_b0070) 2012; 14 Nadeem (10.1016/j.jcat.2015.06.005_b0260) 2011; 13 Kaise (10.1016/j.jcat.2015.06.005_b0285) 1994; 10 Chen (10.1016/j.jcat.2015.06.005_b0010) 2012; 41 Connelly (10.1016/j.jcat.2015.06.005_b0055) 2012; 14 Colmenares (10.1016/j.jcat.2015.06.005_b0235) 2011; 16 Fu (10.1016/j.jcat.2015.06.005_b0135) 1996; 30 Marcus (10.1016/j.jcat.2015.06.005_b0310) 1993; 65 Kim (10.1016/j.jcat.2015.06.005_b0280) 2007; 111 Marcus (10.1016/j.jcat.2015.06.005_b0305) 1965; 43 Bamwenda (10.1016/j.jcat.2015.06.005_b0245) 1995; 89 Al-Azri (10.1016/j.jcat.2015.06.005_b0175) 2014; 11 Balat (10.1016/j.jcat.2015.06.005_b0005) 2008; 33 Zhu (10.1016/j.jcat.2015.06.005_b0220) 2010; 5 Rothenberger (10.1016/j.jcat.2015.06.005_b0045) 1985; 107 Shimura (10.1016/j.jcat.2015.06.005_b0250) 2011; 4 Bahruji (10.1016/j.jcat.2015.06.005_b0090) 2011; 107 Bahruji (10.1016/j.jcat.2015.06.005_b0110) 2013; 454 Zhang (10.1016/j.jcat.2015.06.005_b0040) 2013; 76 Ohtani (10.1016/j.jcat.2015.06.005_b0240) 1997; 101 Tanaka (10.1016/j.jcat.2015.06.005_b0160) 2013; 3 (10.1016/j.jcat.2015.06.005_b0215) 2009 Behar (10.1016/j.jcat.2015.06.005_b0065) 2006; 110 Kudo (10.1016/j.jcat.2015.06.005_b0025) 2009; 38 Marcus (10.1016/j.jcat.2015.06.005_b0290) 1956; 24 Di Valentin (10.1016/j.jcat.2015.06.005_b0265) 2013; 4 Alonso (10.1016/j.jcat.2015.06.005_b0125) 2008; 260 Ohyama (10.1016/j.jcat.2015.06.005_b0165) 2011; 1 Iwasita (10.1016/j.jcat.2015.06.005_b0325) 2002; 47 Balzani (10.1016/j.jcat.2015.06.005_b0315) 1983 Muir (10.1016/j.jcat.2015.06.005_b0255) 2012; 14 Chen (10.1016/j.jcat.2015.06.005_b0200) 2013; 38 Yang (10.1016/j.jcat.2015.06.005_b0115) 2006; 67 Bowker (10.1016/j.jcat.2015.06.005_b0105) 2015; 145 Jovic (10.1016/j.jcat.2015.06.005_b0145) 2013; 305 Waterhouse (10.1016/j.jcat.2015.06.005_b0085) 2013; 3 Jovic (10.1016/j.jcat.2015.06.005_b0140) 2013; 56 Farfan-Arribas (10.1016/j.jcat.2015.06.005_b0275) 2002; 106 Ruban (10.1016/j.jcat.2015.06.005_b0225) 1997; 115 Navarro (10.1016/j.jcat.2015.06.005_b0020) 2007; 107 Serpone (10.1016/j.jcat.2015.06.005_b0205) 1995; 99 Chen (10.1016/j.jcat.2015.06.005_b0035) 2010; 115 Zhu (10.1016/j.jcat.2015.06.005_b0075) 2012; 119–120 Murdoch (10.1016/j.jcat.2015.06.005_b0080) 2011; 3 Bowker (10.1016/j.jcat.2015.06.005_b0095) 2014; 310 Wood (10.1016/j.jcat.2015.06.005_b0155) 2001; 105 Huang (10.1016/j.jcat.2015.06.005_b0130) 2010; 35 Crabtree (10.1016/j.jcat.2015.06.005_b0015) 2004; 57 Ismail (10.1016/j.jcat.2015.06.005_b0230) 2013; 209 |
References_xml | – volume: 41 start-page: 7909 year: 2012 end-page: 7937 ident: b0010 publication-title: Chem. Soc. Rev. – volume: 265 start-page: 89 year: 2009 end-page: 98 ident: b0170 publication-title: J. Catal. – volume: 115 start-page: 421 year: 1997 end-page: 429 ident: b0225 publication-title: J. Mol. Catal. A: Chem. – volume: 35 start-page: 7699 year: 2010 end-page: 7705 ident: b0130 publication-title: Int. J. Hydrogen Energy – volume: 10 start-page: 1345 year: 1994 end-page: 1347 ident: b0285 publication-title: Langmuir – volume: 38 start-page: 15036 year: 2013 end-page: 15048 ident: b0200 publication-title: Int. J. Hydrogen Energy – volume: 13 start-page: 2235 year: 2011 end-page: 2246 ident: b0320 publication-title: Green Chem. – volume: 14 start-page: 260 year: 2012 end-page: 280 ident: b0055 publication-title: Green Chem. – volume: 321 start-page: 70 year: 2015 end-page: 80 ident: b0180 publication-title: J. Catal. – volume: 107 start-page: 205 year: 2011 end-page: 209 ident: b0090 publication-title: Appl. Catal. B – volume: 106 start-page: 10680 year: 2002 end-page: 10692 ident: b0275 publication-title: J. Phys. Chem. B – volume: 47 start-page: 3663 year: 2002 end-page: 3674 ident: b0325 publication-title: Electrochim. Acta – volume: 76 start-page: 046401 year: 2013 ident: b0040 publication-title: Rep. Prog. Phys. – volume: 310 start-page: 10 year: 2014 end-page: 15 ident: b0095 publication-title: J. Catal. – volume: 9 start-page: 113 year: 2012 end-page: 120 ident: b0185 publication-title: Int. J. Nanotechnol. – volume: 1 start-page: 187 year: 2011 end-page: 192 ident: b0165 publication-title: ACS Catal. – volume: 305 start-page: 307 year: 2013 end-page: 317 ident: b0145 publication-title: J. Catal. – volume: 130–131 start-page: 239 year: 2013 end-page: 248 ident: b0060 publication-title: Appl. Catal. B – volume: 56 start-page: 1139 year: 2013 end-page: 1151 ident: b0140 publication-title: Top. Catal. – volume: 43 start-page: 679 year: 1965 end-page: 701 ident: b0305 publication-title: J. Chem. Phys. – volume: 12 start-page: 788 year: 1996 end-page: 800 ident: b0150 publication-title: Langmuir – volume: 14 start-page: 11910 year: 2012 end-page: 11919 ident: b0255 publication-title: Phys. Chem. Chem. Phys. – volume: 33 start-page: 4013 year: 2008 end-page: 4029 ident: b0005 publication-title: Int. J. Hydrogen Energy – volume: 3 start-page: 79 year: 2013 end-page: 85 ident: b0160 publication-title: ACS Catal. – volume: 1 start-page: 2655 year: 2010 end-page: 2661 ident: b0030 publication-title: J. Phys. Chem. Lett. – volume: 4 start-page: 2467 year: 2011 end-page: 2481 ident: b0250 publication-title: Energy Environ. Sci. – volume: 99 start-page: 16646 year: 1995 end-page: 16654 ident: b0205 publication-title: J. Phys. Chem. – volume: 145 start-page: 214 year: 2015 end-page: 219 ident: b0105 publication-title: Catal. Lett. – volume: 89 start-page: 177 year: 1995 end-page: 189 ident: b0245 publication-title: J. Photochem. Photobiol. A – volume: 57 start-page: 39 year: 2004 end-page: 44 ident: b0015 publication-title: Phys. Today – volume: 38 start-page: 253 year: 2009 end-page: 278 ident: b0025 publication-title: Chem. Soc. Rev. – volume: 5 start-page: 1749 year: 2010 end-page: 1754 ident: b0220 publication-title: Nanoscale Res. Lett. – volume: 101 start-page: 3349 year: 1997 end-page: 3359 ident: b0240 publication-title: J. Phys. Chem. B – start-page: 2 year: 1983 end-page: 48 ident: b0315 publication-title: Energy Resources through Photochemistry and Catalysis – volume: 260 start-page: 113 year: 2008 end-page: 118 ident: b0125 publication-title: J. Catal. – volume: 67 start-page: 217 year: 2006 end-page: 222 ident: b0115 publication-title: Appl. Catal. B – volume: 65 start-page: 599 year: 1993 end-page: 610 ident: b0310 publication-title: Rev. Mod. Phys. – volume: 111 start-page: 8005 year: 2007 end-page: 8014 ident: b0340 publication-title: J. Phys. Chem. C – volume: 4 start-page: 1901 year: 2013 end-page: 1906 ident: b0265 publication-title: J. Phys. Chem. Lett. – volume: 116 start-page: 6623 year: 2012 end-page: 6635 ident: b0335 publication-title: J. Phys. Chem. C – volume: 3 start-page: 2849 year: 2013 ident: b0085 publication-title: Sci. Rep. – volume: 11 start-page: 695 year: 2014 end-page: 703 ident: b0175 publication-title: Int. J. Nanotechnol. – volume: 240 start-page: 222 year: 2006 end-page: 234 ident: b0190 publication-title: J. Catal. – volume: 209 start-page: 2 year: 2013 end-page: 7 ident: b0230 publication-title: Catal. Today – volume: 24 start-page: 966 year: 1956 end-page: 978 ident: b0290 publication-title: J. Chem. Phys. – volume: 26 start-page: 872 year: 1957 end-page: 877 ident: b0300 publication-title: J. Chem. Phys. – volume: 30 start-page: 647 year: 1996 end-page: 653 ident: b0135 publication-title: Environ. Sci. Technol. – volume: 188 start-page: 153 year: 2002 end-page: 161 ident: b0270 publication-title: J. Mol. Catal. – volume: 115 start-page: 210 year: 2010 end-page: 216 ident: b0035 publication-title: J. Phys. Chem. C – volume: 107 start-page: 8054 year: 1985 end-page: 8059 ident: b0045 publication-title: J. Am. Chem. Soc. – volume: 119–120 start-page: 146 year: 2012 end-page: 155 ident: b0075 publication-title: Appl. Catal. B – volume: 18 start-page: 911 year: 2006 end-page: 917 ident: b0330 publication-title: Electroanalysis – volume: 107 start-page: 3952 year: 2007 end-page: 3991 ident: b0020 publication-title: Chem. Rev. – volume: 110 start-page: 8750 year: 2006 end-page: 8755 ident: b0065 publication-title: J. Phys. Chem. B – volume: 3 start-page: 489 year: 2011 end-page: 492 ident: b0080 publication-title: Nat. Chem. – volume: 454 start-page: 66 year: 2013 end-page: 73 ident: b0110 publication-title: Appl. Catal. A – volume: 105 start-page: 8810 year: 2001 end-page: 8815 ident: b0155 publication-title: J. Phys. Chem. B – volume: 16 start-page: 1 year: 2011 end-page: 6 ident: b0235 publication-title: Catal. Commun. – volume: 13 start-page: 7637 year: 2011 end-page: 7643 ident: b0260 publication-title: Phys. Chem. Chem. Phys. – volume: 106 start-page: 7634 year: 2002 end-page: 7642 ident: b0120 publication-title: J. Phys. Chem. B – volume: 376 start-page: 820 year: 2006 end-page: 822 ident: b0210 publication-title: Physica B – volume: 14 start-page: 330 year: 2012 end-page: 333 ident: b0070 publication-title: Green Chem. – volume: 122 start-page: 46 year: 2007 end-page: 50 ident: b0100 publication-title: Catal. Today – volume: 26 start-page: 867 year: 1957 end-page: 871 ident: b0295 publication-title: J. Chem. Phys. – year: 2009 ident: b0215 publication-title: CRC Handbook of Chemistry and Physics – volume: 43 start-page: 7683 year: 2004 end-page: 7696 ident: b0050 publication-title: Ind. Eng. Chem. Res. – volume: 15 start-page: 12004 year: 2013 end-page: 12025 ident: b0195 publication-title: Phys. Chem. Chem. Phys. – volume: 111 start-page: 18236 year: 2007 end-page: 18242 ident: b0280 publication-title: J. Phys. Chem. C – volume: 11 start-page: 695 year: 2014 ident: 10.1016/j.jcat.2015.06.005_b0175 publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2014.060592 – volume: 240 start-page: 222 year: 2006 ident: 10.1016/j.jcat.2015.06.005_b0190 publication-title: J. Catal. doi: 10.1016/j.jcat.2006.04.004 – volume: 4 start-page: 1901 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0265 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz400624w – volume: 9 start-page: 113 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0185 publication-title: Int. J. Nanotechnol. doi: 10.1504/IJNT.2012.044832 – volume: 101 start-page: 3349 year: 1997 ident: 10.1016/j.jcat.2015.06.005_b0240 publication-title: J. Phys. Chem. B doi: 10.1021/jp962060q – volume: 38 start-page: 253 year: 2009 ident: 10.1016/j.jcat.2015.06.005_b0025 publication-title: Chem. Soc. Rev. doi: 10.1039/B800489G – volume: 454 start-page: 66 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0110 publication-title: Appl. Catal. A doi: 10.1016/j.apcata.2013.01.005 – volume: 13 start-page: 2235 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0320 publication-title: Green Chem. doi: 10.1039/c1gc00022e – volume: 16 start-page: 1 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0235 publication-title: Catal. Commun. doi: 10.1016/j.catcom.2011.09.003 – volume: 107 start-page: 8054 year: 1985 ident: 10.1016/j.jcat.2015.06.005_b0045 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00312a043 – volume: 30 start-page: 647 year: 1996 ident: 10.1016/j.jcat.2015.06.005_b0135 publication-title: Environ. Sci. Technol. doi: 10.1021/es950391v – volume: 33 start-page: 4013 year: 2008 ident: 10.1016/j.jcat.2015.06.005_b0005 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2008.05.047 – volume: 65 start-page: 599 year: 1993 ident: 10.1016/j.jcat.2015.06.005_b0310 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.65.599 – volume: 3 start-page: 2849 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0085 publication-title: Sci. Rep. doi: 10.1038/srep02849 – volume: 310 start-page: 10 year: 2014 ident: 10.1016/j.jcat.2015.06.005_b0095 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.04.005 – volume: 67 start-page: 217 year: 2006 ident: 10.1016/j.jcat.2015.06.005_b0115 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2006.05.007 – volume: 56 start-page: 1139 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0140 publication-title: Top. Catal. doi: 10.1007/s11244-013-0080-8 – volume: 57 start-page: 39 year: 2004 ident: 10.1016/j.jcat.2015.06.005_b0015 publication-title: Phys. Today doi: 10.1063/1.1878333 – volume: 38 start-page: 15036 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0200 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2013.09.101 – volume: 24 start-page: 966 year: 1956 ident: 10.1016/j.jcat.2015.06.005_b0290 publication-title: J. Chem. Phys. doi: 10.1063/1.1742723 – volume: 119–120 start-page: 146 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0075 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.02.020 – volume: 305 start-page: 307 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0145 publication-title: J. Catal. doi: 10.1016/j.jcat.2013.05.031 – volume: 26 start-page: 867 year: 1957 ident: 10.1016/j.jcat.2015.06.005_b0295 publication-title: J. Chem. Phys. doi: 10.1063/1.1743423 – volume: 130–131 start-page: 239 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0060 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2012.11.006 – volume: 41 start-page: 7909 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0010 publication-title: Chem. Soc. Rev. doi: 10.1039/c2cs35230c – volume: 321 start-page: 70 year: 2015 ident: 10.1016/j.jcat.2015.06.005_b0180 publication-title: J. Catal. doi: 10.1016/j.jcat.2014.10.003 – volume: 14 start-page: 260 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0055 publication-title: Green Chem. doi: 10.1039/C1GC15992E – volume: 105 start-page: 8810 year: 2001 ident: 10.1016/j.jcat.2015.06.005_b0155 publication-title: J. Phys. Chem. B doi: 10.1021/jp011576t – volume: 1 start-page: 187 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0165 publication-title: ACS Catal. doi: 10.1021/cs100072k – volume: 35 start-page: 7699 year: 2010 ident: 10.1016/j.jcat.2015.06.005_b0130 publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2010.05.103 – volume: 209 start-page: 2 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0230 publication-title: Catal. Today doi: 10.1016/j.cattod.2012.09.027 – volume: 265 start-page: 89 year: 2009 ident: 10.1016/j.jcat.2015.06.005_b0170 publication-title: J. Catal. doi: 10.1016/j.jcat.2009.04.016 – volume: 47 start-page: 3663 year: 2002 ident: 10.1016/j.jcat.2015.06.005_b0325 publication-title: Electrochim. Acta doi: 10.1016/S0013-4686(02)00336-5 – volume: 14 start-page: 11910 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0255 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c2cp40641a – year: 2009 ident: 10.1016/j.jcat.2015.06.005_b0215 – volume: 89 start-page: 177 year: 1995 ident: 10.1016/j.jcat.2015.06.005_b0245 publication-title: J. Photochem. Photobiol. A doi: 10.1016/1010-6030(95)04039-I – volume: 4 start-page: 2467 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0250 publication-title: Energy Environ. Sci. doi: 10.1039/c1ee01120k – volume: 26 start-page: 872 year: 1957 ident: 10.1016/j.jcat.2015.06.005_b0300 publication-title: J. Chem. Phys. doi: 10.1063/1.1743424 – volume: 106 start-page: 10680 year: 2002 ident: 10.1016/j.jcat.2015.06.005_b0275 publication-title: J. Phys. Chem. B doi: 10.1021/jp020729p – volume: 15 start-page: 12004 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0195 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp50416f – volume: 115 start-page: 210 year: 2010 ident: 10.1016/j.jcat.2015.06.005_b0035 publication-title: J. Phys. Chem. C doi: 10.1021/jp1074048 – volume: 145 start-page: 214 year: 2015 ident: 10.1016/j.jcat.2015.06.005_b0105 publication-title: Catal. Lett. doi: 10.1007/s10562-014-1443-x – volume: 260 start-page: 113 year: 2008 ident: 10.1016/j.jcat.2015.06.005_b0125 publication-title: J. Catal. doi: 10.1016/j.jcat.2008.09.009 – volume: 107 start-page: 3952 year: 2007 ident: 10.1016/j.jcat.2015.06.005_b0020 publication-title: Chem. Rev. doi: 10.1021/cr0501994 – volume: 10 start-page: 1345 year: 1994 ident: 10.1016/j.jcat.2015.06.005_b0285 publication-title: Langmuir doi: 10.1021/la00017a005 – volume: 1 start-page: 2655 year: 2010 ident: 10.1016/j.jcat.2015.06.005_b0030 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz1007966 – volume: 14 start-page: 330 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0070 publication-title: Green Chem. doi: 10.1039/C2GC16112E – volume: 115 start-page: 421 year: 1997 ident: 10.1016/j.jcat.2015.06.005_b0225 publication-title: J. Mol. Catal. A: Chem. doi: 10.1016/S1381-1169(96)00348-2 – volume: 3 start-page: 79 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0160 publication-title: ACS Catal. doi: 10.1021/cs3006499 – volume: 376 start-page: 820 year: 2006 ident: 10.1016/j.jcat.2015.06.005_b0210 publication-title: Physica B doi: 10.1016/j.physb.2005.12.205 – volume: 99 start-page: 16646 year: 1995 ident: 10.1016/j.jcat.2015.06.005_b0205 publication-title: J. Phys. Chem. doi: 10.1021/j100045a026 – volume: 43 start-page: 7683 year: 2004 ident: 10.1016/j.jcat.2015.06.005_b0050 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0498551 – volume: 3 start-page: 489 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0080 publication-title: Nat. Chem. doi: 10.1038/nchem.1048 – volume: 76 start-page: 046401 year: 2013 ident: 10.1016/j.jcat.2015.06.005_b0040 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/76/4/046401 – volume: 107 start-page: 205 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0090 publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2011.07.015 – volume: 18 start-page: 911 issue: 9 year: 2006 ident: 10.1016/j.jcat.2015.06.005_b0330 publication-title: Electroanalysis doi: 10.1002/elan.200503476 – volume: 43 start-page: 679 year: 1965 ident: 10.1016/j.jcat.2015.06.005_b0305 publication-title: J. Chem. Phys. doi: 10.1063/1.1696792 – volume: 13 start-page: 7637 year: 2011 ident: 10.1016/j.jcat.2015.06.005_b0260 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c0cp01896a – volume: 111 start-page: 18236 year: 2007 ident: 10.1016/j.jcat.2015.06.005_b0280 publication-title: J. Phys. Chem. C doi: 10.1021/jp075608+ – volume: 5 start-page: 1749 year: 2010 ident: 10.1016/j.jcat.2015.06.005_b0220 publication-title: Nanoscale Res. Lett. doi: 10.1007/s11671-010-9705-z – volume: 12 start-page: 788 year: 1996 ident: 10.1016/j.jcat.2015.06.005_b0150 publication-title: Langmuir doi: 10.1021/la9502711 – start-page: 2 year: 1983 ident: 10.1016/j.jcat.2015.06.005_b0315 – volume: 111 start-page: 8005 year: 2007 ident: 10.1016/j.jcat.2015.06.005_b0340 publication-title: J. Phys. Chem. C doi: 10.1021/jp071022b – volume: 116 start-page: 6623 year: 2012 ident: 10.1016/j.jcat.2015.06.005_b0335 publication-title: J. Phys. Chem. C doi: 10.1021/jp209215c – volume: 110 start-page: 8750 year: 2006 ident: 10.1016/j.jcat.2015.06.005_b0065 publication-title: J. Phys. Chem. B doi: 10.1021/jp060971m – volume: 122 start-page: 46 year: 2007 ident: 10.1016/j.jcat.2015.06.005_b0100 publication-title: Catal. Today doi: 10.1016/j.cattod.2007.01.022 – volume: 106 start-page: 7634 year: 2002 ident: 10.1016/j.jcat.2015.06.005_b0120 publication-title: J. Phys. Chem. B doi: 10.1021/jp0144810 – volume: 188 start-page: 153 year: 2002 ident: 10.1016/j.jcat.2015.06.005_b0270 publication-title: J. Mol. Catal. doi: 10.1016/S1381-1169(02)00210-8 |
SSID | ssj0011558 |
Score | 2.61633 |
Snippet | [Display omitted]
•Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order... Display Omitted * Pd, Pt and Au activate TiO2 for H2 production in alcohol-water mixtures under UV. * H2 production rates decrease in the order Pd/TiO2... M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 355 |
SubjectTerms | Alcohols Catalysts Co-catalyst ethanol glycerol gold Hydrogen Hydrogen production isopropyl alcohol methanol nanoparticles Oxidation palladium Photocatalysis photocatalysts photoluminescence platinum Polarity TiO2 titanium dioxide transmission electron microscopy ultraviolet-visible spectroscopy X-ray photoelectron spectroscopy |
Title | The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures |
URI | https://dx.doi.org/10.1016/j.jcat.2015.06.005 https://www.proquest.com/docview/1707042954 https://www.proquest.com/docview/2116867594 |
Volume | 329 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcgAOCAqIhVINEgcQDbvJOnYWicNqRbWAtuyhlfZmObGjpqLJapNV2wviHXgfHoYnYcZOtgWhHjgmGWeizHjmsz0_jL0M9RA9d5gHkU3SgKcmDVKjZSCiUWxQAeTAlWOYHYrpMf-0iBdbbNLlwlBYZWv7vU131rq902__Zn9ZFJTji7MtDiVCGsQ80YIy2LkkXX_7bRPmgYAn9taYQhGQuk2c8TFep7S7hy4wdjU8qYXdv53TX2ba-Z6D--xeCxph7L_rAduy5Q67Pel6te2wu9fKCj5kP1H2QGGDNVQ5nFnE15BVgdupuaybGnRpAMGiS2kAlzsCRQnLk6qpPBHygZNLs6pQvWDpi8Ii7TuYX-UZwFWhcGIz6x8VX6LrLyFOr2bv52Yf5s0-jNeviUvXkaUB7bvz_vr-4xwB7wrOigs6zqgfseODD0eTadD2aQgyLngT5Ii5jMF1ETe4mpF6EKeRQOCRGGuzSBid8ETkYjQUepANRD7MEaalcmSiTNs0EcPHbLusSvuEgUFAakWOoNVhzTDJEolkmYmkkXjZY2EnIJW1Rcypl8ZX1UWrnSoSqiKhKheyF_fYm82YpS_hcSN13Mld_aGICn3MjeN2OyVRrRmoVSjRonI6Su2xF5vHqBt0KqNLW61rhStwkeCybcSf_ifrZ-wOXfnIt1223azW9jlCpSbdc3Nhj90af_w8PfwNF24V1A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcigcKigg0h8YJA4gahI79q6DxKGKqAI0JYdUym219q5VV9SOYkelF8Q78D59GJ6E2V07LQj1wNH2rMfyzM58uzs_AC992SfP7WdeoOPECxOVeImS3GPBIFKkALxnyzGMj9noJPw0i2ZrMGxzYUxYZWP7nU231rq5023-Znee5ybHl2Zb5HOCNIR5gtkduBuaNgek1G-_r-I8CPFEzhybWAQibzJnXJDXmdneIx8Y2SKepofdv73TX3baOp_DB7DZoEY8cB_2ENZ0sQUbw7ZZ2xbcv1FX8BFckfDRxA1WWGZ4rglgY1p6dqvmsqorlIVCQos2pwFt8gjmBc5Py7p0RMQHTy_VoiT9wrmrCku073BynWiA15XCDZtxd5p_CW6-xHB6NX4_Ufs4qffxYPnacGlbstQoXXveXz9-XhDiXeB5_s2cZ1SP4eTww3Q48ppGDV4asrD2MgJdStHCKFS0nOGyFyUBI-QRK63TgCkZhzHL2KDPZC_tsayfEU5L-EAFqdRJzPpPYL0oC_0UUBEi1Swj1GrBph-nMSeyVAVccbrsgN8KSKRNFXPTTOOraMPVzoQRqjBCFTZmL-rAm9WYuavhcSt11Mpd_KGJgpzMreN2WyURjR2ohM_JpIbmLLUDL1aPSTfMsYwsdLmsBC3BWUzrtkG4_Z-sn8PGaDo-Ekcfjz_vwD3zxIXB7cJ6vVjqPcJNdfLMzovfNFsXXQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+roles+of+metal+co-catalysts+and+reaction+media+in+photocatalytic+hydrogen+production%3A+Performance+evaluation+of+M%2FTiO2+photocatalysts+%28M%3DPd%2C+Pt%2C+Au%29+in+different+alcohol-water+mixtures&rft.jtitle=Journal+of+catalysis&rft.au=Al-Azri%2C+Zakiya+H.N&rft.au=Chen%2C+Wan-Ting&rft.au=Chan%2C+Andrew&rft.au=Jovic%2C+Vedran&rft.date=2015-09-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=329&rft.spage=355&rft_id=info:doi/10.1016%2Fj.jcat.2015.06.005&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3788015071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon |