The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures

[Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols&...

Full description

Saved in:
Bibliographic Details
Published inJournal of catalysis Vol. 329; pp. 355 - 367
Main Authors Al-Azri, Zakiya H.N., Chen, Wan-Ting, Chan, Andrew, Jovic, Vedran, Ina, Toshiaki, Idriss, Hicham, Waterhouse, Geoffrey I.N.
Format Journal Article
LanguageEnglish
Published San Diego Elsevier Inc 01.09.2015
Elsevier BV
Subjects
Online AccessGet full text
ISSN0021-9517
1090-2694
DOI10.1016/j.jcat.2015.06.005

Cover

Abstract [Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols.•Rates correlate with alcohol polarity and alcohol standard oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm−2). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg−1h−1) and 1,2-ethanediol–water mixtures (44.5mmolg−1h−1). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential.
AbstractList Display Omitted * Pd, Pt and Au activate TiO2 for H2 production in alcohol-water mixtures under UV. * H2 production rates decrease in the order Pd/TiO2 >Pt/TiO2 [approximate]Au/TiO2 >>P25 TiO2. * Metal particle size does not impact H2 production rates in the size range 1-5nm. * Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols. * Rates correlate with alcohol polarity and alcohol standard oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol-water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV-Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron-hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol-water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm -2 ). H2 production rates in the alcohol-water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt[approximate]Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol-water mixtures (47.5mmolg -1 h-1 ) and 1,2-ethanediol-water mixtures (44.5mmolg-1 h-1 ). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol>>water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential.
[Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order Pd/TiO2>Pt/TiO2≈Au/TiO2≫P25 TiO2.•Metal particle size does not impact H2 production rates in the size range 1–5nm.•Rates follow the order triols>diols>1° alcohols>2° alcohols>3° alcohols.•Rates correlate with alcohol polarity and alcohol standard oxidation potential. M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm−2). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg−1h−1) and 1,2-ethanediol–water mixtures (44.5mmolg−1h−1). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential.
M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the performance of M/TiO2 photocatalysts (M=Pd, Pt, Au) for H2 production in different alcohol–water mixtures under UV excitation. Photocatalysts were prepared using Degussa P25 TiO2 at metal loadings of 0.5 and 1wt.% for Pd, 1wt.% for Pt and 1wt.% for Au. TEM, UV–Vis, XPS and EXAFS analyses confirmed the presence of supported metal nanoparticles of size ∼2, 1.3 and 5.4nm for Pd/TiO2, Pt/TiO2 and Au/TiO2, respectively. Photoluminescence data established that the metal co-catalysts effectively suppressed electron–hole pair recombination in TiO2 following photo-excitation. The activities of the M/TiO2 photocatalysts for H2 production were evaluated in a wide range of alcohol–water mixtures (alcohol concentration 10vol.%) under UV (365nm, 5mWcm⁻²). H2 production rates in the alcohol–water mixtures were dependent on (i) the metal co-catalyst; (ii) the co-catalyst loading; and (iii) the alcohol type. Co-catalyst activity followed the order Pd>Pt≈Au. The highest H2 production rates were achieved for the 1wt.% Pd/TiO2 photocatalyst in glycerol–water mixtures (47.5mmolg⁻¹h⁻¹) and 1,2-ethanediol–water mixtures (44.5mmolg⁻¹h⁻¹). H2 production rates decreased in the order glycerol>1,2-ethanediol>1,2-propanediol>methanol>ethanol>2-propanol>tert-butanol≫water. For each M/TiO2 photocatalyst, correlations were established between the rate of H2 production and specific alcohol properties, especially alcohol polarity and the exponential of the alcohol oxidation potential.
Author Chen, Wan-Ting
Ina, Toshiaki
Al-Azri, Zakiya H.N.
Chan, Andrew
Idriss, Hicham
Jovic, Vedran
Waterhouse, Geoffrey I.N.
Author_xml – sequence: 1
  givenname: Zakiya H.N.
  surname: Al-Azri
  fullname: Al-Azri, Zakiya H.N.
  organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
– sequence: 2
  givenname: Wan-Ting
  surname: Chen
  fullname: Chen, Wan-Ting
  organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
– sequence: 3
  givenname: Andrew
  surname: Chan
  fullname: Chan, Andrew
  organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
– sequence: 4
  givenname: Vedran
  surname: Jovic
  fullname: Jovic, Vedran
  organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
– sequence: 5
  givenname: Toshiaki
  surname: Ina
  fullname: Ina, Toshiaki
  organization: Japan Synchrotron Radiation Research Institute, Hyogo, Japan
– sequence: 6
  givenname: Hicham
  surname: Idriss
  fullname: Idriss, Hicham
  email: IdrissH@SABIC.com
  organization: SABIC, Corporate Research & Innovation (CRI) Centre, KAUST, Saudi Arabia
– sequence: 7
  givenname: Geoffrey I.N.
  surname: Waterhouse
  fullname: Waterhouse, Geoffrey I.N.
  email: g.waterhouse@auckland.ac.nz
  organization: School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
BookMark eNp9kUFu1DAYhS1UJKaFC7CyxKZITWp7YidBsKgqCkitOothbXnsP4wjJy62U5gdd-A-PQwnwZlhgbroypL9vfd-_-8YHY1-BIReU1JSQsV5X_ZapZIRyksiSkL4M7SgpCUFE211hBaEMFq0nNYv0HGMPSGUct4s0MN6Czh4BxH7Dg-QlMPaF9lMuV1MEavR4ABKJ-vH_G6swnbEd1uf_AFKVuPtzgT_DfJ98Gbas-_wCkLnw6BGDRjulZvU3iPH3Jyv7S3732ROOr35sDJneJXO8MX0dk4xtusgwJiwctpvvfvz6_cPlSDgwf5MU4D4Ej3vlIvw6t95gr5efVxffi6ubz99uby4LnQlqlR0tFoaIwivjKhYrQjfMNEw1hgAzYRRTdWITrRLoYgmolt2nNNN3RqmFWwasTxBpwff_MHvE8QkBxs1OKdG8FOUjFLRiJq3VUbfPEJ7P4UxTydpTWpSsZbPVHOgdPAxBuiktmm_oBSUdZISORcrezkXK-diJREyF5ul7JH0LthBhd3TovcHEeQt3VsIMmoLuRpjA-gkjbdPyf8CM6rCVQ
CitedBy_id crossref_primary_10_1002_cctc_201600697
crossref_primary_10_1021_acs_chemrev_6b00099
crossref_primary_10_3390_catal10111279
crossref_primary_10_1007_s11164_019_03988_w
crossref_primary_10_1016_j_apsusc_2021_152196
crossref_primary_10_1016_j_apcatb_2020_119246
crossref_primary_10_1021_acs_est_0c07266
crossref_primary_10_1016_j_electacta_2019_06_173
crossref_primary_10_1016_j_ccr_2015_12_009
crossref_primary_10_1016_j_ijhydene_2024_04_114
crossref_primary_10_1021_acs_inorgchem_0c03038
crossref_primary_10_1039_D3NA00513E
crossref_primary_10_1016_j_cej_2025_161636
crossref_primary_10_1016_j_rser_2022_112827
crossref_primary_10_1016_j_jcat_2017_01_012
crossref_primary_10_1016_j_ijhydene_2018_10_200
crossref_primary_10_1016_j_apt_2021_06_021
crossref_primary_10_1016_j_jcat_2019_05_033
crossref_primary_10_1016_j_jphotochem_2022_114099
crossref_primary_10_1039_C8TA01034J
crossref_primary_10_1088_1361_648X_ac4d5b
crossref_primary_10_1021_acsanm_3c05585
crossref_primary_10_1002_cctc_201601659
crossref_primary_10_1016_j_cattod_2016_11_007
crossref_primary_10_1016_j_cplett_2025_141965
crossref_primary_10_1002_cssc_201900071
crossref_primary_10_3389_fchem_2019_00563
crossref_primary_10_1002_anie_202405681
crossref_primary_10_1016_j_cjche_2020_08_010
crossref_primary_10_1016_j_ijhydene_2019_11_194
crossref_primary_10_3390_molecules29102347
crossref_primary_10_1002_admi_201900775
crossref_primary_10_1039_D4CY00775A
crossref_primary_10_1002_cctc_202001048
crossref_primary_10_1016_j_cattod_2024_115168
crossref_primary_10_1002_wene_254
crossref_primary_10_1021_acsomega_3c07336
crossref_primary_10_1038_s41467_017_02527_8
crossref_primary_10_1038_s41570_023_00567_x
crossref_primary_10_1039_C6SE00091F
crossref_primary_10_3390_catal11020212
crossref_primary_10_1016_j_apcatb_2017_07_020
crossref_primary_10_1016_j_physb_2024_416086
crossref_primary_10_1016_j_jece_2023_110534
crossref_primary_10_1039_C7CY00961E
crossref_primary_10_1515_chem_2018_0120
crossref_primary_10_3389_fchem_2018_00110
crossref_primary_10_1002_adma_202206569
crossref_primary_10_1007_s43630_022_00249_5
crossref_primary_10_3390_solar3010008
crossref_primary_10_1016_j_cattod_2017_06_026
crossref_primary_10_1016_j_nanoen_2017_05_013
crossref_primary_10_1134_S0023158424602043
crossref_primary_10_1002_cssc_201900844
crossref_primary_10_1016_S1872_2067_19_63469_8
crossref_primary_10_1002_advs_202402651
crossref_primary_10_1039_D2NJ05962B
crossref_primary_10_1007_s12209_024_00388_z
crossref_primary_10_1088_1742_6596_1664_1_012096
crossref_primary_10_1016_j_cattod_2021_03_008
crossref_primary_10_1002_slct_202403308
crossref_primary_10_1002_slct_202404518
crossref_primary_10_1016_j_commatsci_2018_05_001
crossref_primary_10_1039_D2ME00221C
crossref_primary_10_3390_catal11111279
crossref_primary_10_1007_s11270_018_3881_3
crossref_primary_10_1039_C7CY02219K
crossref_primary_10_1039_C8DT02383B
crossref_primary_10_1515_zpch_2019_1424
crossref_primary_10_1016_j_jallcom_2015_07_123
crossref_primary_10_1038_s41929_020_0423_3
crossref_primary_10_3390_nano13050792
crossref_primary_10_1039_D0CY00843E
crossref_primary_10_3390_molecules29092108
crossref_primary_10_1016_j_cattod_2025_115207
crossref_primary_10_1016_j_jphotochem_2016_11_001
crossref_primary_10_3390_catal11080897
crossref_primary_10_1039_C6TA07853B
crossref_primary_10_1016_j_apcatb_2017_01_042
crossref_primary_10_1039_C9CY01818B
crossref_primary_10_3390_nano12213808
crossref_primary_10_1002_adfm_202313793
crossref_primary_10_1039_D3GC02644B
crossref_primary_10_1016_j_cattod_2024_115144
crossref_primary_10_1002_adfm_202423088
crossref_primary_10_1016_j_seta_2024_104144
crossref_primary_10_1002_ceat_201900338
crossref_primary_10_1038_s41467_023_41976_2
crossref_primary_10_1016_j_jallcom_2021_163039
crossref_primary_10_1088_2515_7655_ac8ed3
crossref_primary_10_1016_j_rser_2017_05_243
crossref_primary_10_3390_jcs9020068
crossref_primary_10_1016_j_apcata_2020_117706
crossref_primary_10_1002_ange_202405681
crossref_primary_10_1016_j_apcata_2020_117703
crossref_primary_10_3365_KJMM_2018_56_12_900
crossref_primary_10_1021_acscatal_9b01110
crossref_primary_10_1016_j_apcatb_2020_118753
crossref_primary_10_1039_D2CC04328A
crossref_primary_10_1016_j_apcata_2018_08_004
crossref_primary_10_1039_C5RA18302B
crossref_primary_10_1016_j_ijhydene_2017_08_153
crossref_primary_10_1016_j_ijhydene_2016_12_131
crossref_primary_10_1021_acsami_1c20514
crossref_primary_10_1016_j_mcat_2017_04_035
crossref_primary_10_1016_j_apcatb_2018_07_047
crossref_primary_10_1002_er_6620
crossref_primary_10_1016_j_apcatb_2023_123431
crossref_primary_10_1016_j_apsusc_2018_07_042
crossref_primary_10_1039_C8CP05513K
crossref_primary_10_1016_j_snb_2024_136973
crossref_primary_10_1021_acscatal_8b05070
crossref_primary_10_1016_j_jcat_2018_04_015
crossref_primary_10_1016_j_apcatb_2020_119736
crossref_primary_10_1016_j_apsusc_2024_162124
crossref_primary_10_1016_j_cattod_2024_115091
crossref_primary_10_1016_j_rser_2021_111266
crossref_primary_10_12677_MS_2021_115061
crossref_primary_10_1016_j_apcatb_2019_118236
crossref_primary_10_3390_catal12040402
crossref_primary_10_1016_j_cej_2019_03_291
crossref_primary_10_1016_j_ijhydene_2020_07_223
crossref_primary_10_1016_j_jallcom_2020_156634
crossref_primary_10_3390_catal13040749
crossref_primary_10_3390_photochem2030038
crossref_primary_10_1021_acsaem_2c00474
crossref_primary_10_1016_j_jece_2018_10_044
crossref_primary_10_1016_j_apcatb_2017_03_016
crossref_primary_10_3390_hydrogen4010014
crossref_primary_10_1002_gch2_202400134
crossref_primary_10_1016_j_jece_2020_104529
crossref_primary_10_1016_j_coche_2020_05_009
crossref_primary_10_1039_C6RA01140C
crossref_primary_10_1016_j_ces_2016_05_029
crossref_primary_10_1039_C8SE00293B
crossref_primary_10_1071_EN19308
crossref_primary_10_1021_acscatal_7b00508
crossref_primary_10_1007_s10563_023_09411_0
crossref_primary_10_1039_C6CY02435A
crossref_primary_10_1021_acsanm_1c00345
crossref_primary_10_1016_j_apcatb_2016_12_006
crossref_primary_10_1016_j_jphotochem_2018_06_033
crossref_primary_10_1016_j_jiec_2023_01_006
crossref_primary_10_1021_acsanm_0c01300
crossref_primary_10_1016_j_ijhydene_2025_01_203
crossref_primary_10_1016_j_solmat_2019_110065
crossref_primary_10_1016_j_jallcom_2017_10_224
crossref_primary_10_1021_jacs_8b10929
crossref_primary_10_1016_j_ijhydene_2018_02_098
crossref_primary_10_1021_acs_nanolett_0c01507
crossref_primary_10_1016_j_apsusc_2019_01_050
crossref_primary_10_1039_D4NJ03129F
crossref_primary_10_1007_s11164_019_04023_8
crossref_primary_10_1016_j_ijhydene_2024_07_410
crossref_primary_10_1038_s41598_023_49982_6
crossref_primary_10_3389_fchem_2019_00780
crossref_primary_10_1016_j_cej_2023_141514
crossref_primary_10_1134_S0023158424601943
crossref_primary_10_3390_membranes12070693
crossref_primary_10_1016_j_apcatb_2020_119755
crossref_primary_10_1016_j_jcat_2018_08_015
crossref_primary_10_1002_gch2_202300185
crossref_primary_10_1021_acssuschemeng_9b03796
crossref_primary_10_1039_D3CP01576A
crossref_primary_10_1016_j_apsusc_2020_147376
crossref_primary_10_1021_acscatal_6b02832
crossref_primary_10_1021_acsami_0c00825
crossref_primary_10_3390_app13042337
crossref_primary_10_1002_cjce_24496
crossref_primary_10_1016_j_jhazmat_2022_129251
crossref_primary_10_3390_catal12101263
crossref_primary_10_1016_j_jphotochem_2016_05_018
crossref_primary_10_1002_adem_202301062
crossref_primary_10_1016_j_ijhydene_2022_11_265
crossref_primary_10_1016_j_cattod_2016_05_009
crossref_primary_10_1016_j_jphotochem_2022_113963
crossref_primary_10_1016_j_cattod_2022_11_015
crossref_primary_10_1007_s10562_017_2197_z
crossref_primary_10_1016_j_mcat_2023_113506
crossref_primary_10_1002_ente_202100469
crossref_primary_10_1016_j_ijhydene_2016_04_217
crossref_primary_10_1007_s11244_020_01362_4
crossref_primary_10_1002_chem_201601988
crossref_primary_10_1002_aenm_202103733
crossref_primary_10_3390_nano9030391
crossref_primary_10_1021_acs_jpcc_4c00081
crossref_primary_10_1002_ente_201700853
crossref_primary_10_1021_acs_jpcc_2c04025
crossref_primary_10_3390_nano13152266
crossref_primary_10_3390_ma12010040
crossref_primary_10_1016_j_jcat_2019_03_021
crossref_primary_10_1039_D3MA01137B
crossref_primary_10_1016_j_jece_2024_112043
crossref_primary_10_1016_j_apsusc_2019_04_028
crossref_primary_10_1039_C9CP02241D
crossref_primary_10_1016_j_apsusc_2018_10_036
crossref_primary_10_1016_j_cej_2018_09_092
crossref_primary_10_1021_acsenergylett_7b00189
crossref_primary_10_1002_slct_202303631
crossref_primary_10_3390_catal11091048
crossref_primary_10_1016_j_jclepro_2021_128546
crossref_primary_10_1039_C6RA10408H
crossref_primary_10_1016_j_cej_2023_143916
crossref_primary_10_1039_C7CC07969A
crossref_primary_10_1002_asia_201601356
crossref_primary_10_1039_C8DT01915K
crossref_primary_10_1021_acsaem_9b00091
crossref_primary_10_1016_j_ijhydene_2024_11_270
crossref_primary_10_1016_j_apsusc_2018_05_122
crossref_primary_10_3390_en10101624
crossref_primary_10_1016_j_ijhydene_2019_04_047
crossref_primary_10_3390_catal12121556
crossref_primary_10_1016_j_ijhydene_2023_12_004
crossref_primary_10_1021_acscatal_4c05001
crossref_primary_10_1021_acsami_3c05833
crossref_primary_10_1088_2515_7655_abdd82
crossref_primary_10_3390_nano12152717
crossref_primary_10_1016_j_mcat_2023_112993
crossref_primary_10_1016_j_jece_2023_110375
crossref_primary_10_1038_s42004_023_00947_w
crossref_primary_10_1016_j_susc_2017_09_011
crossref_primary_10_3390_catal14110810
crossref_primary_10_1142_S1793292020501295
crossref_primary_10_1016_j_apcatb_2023_122765
crossref_primary_10_3390_nano13081326
crossref_primary_10_1016_j_ijhydene_2021_12_133
crossref_primary_10_1021_acs_jpcc_2c04005
crossref_primary_10_1021_acs_jpcc_6b12776
crossref_primary_10_1016_j_surfrep_2016_01_001
crossref_primary_10_1016_j_susmat_2023_e00636
crossref_primary_10_1016_j_cattod_2020_07_041
crossref_primary_10_1021_acsami_7b00496
crossref_primary_10_1007_s12598_021_01705_4
crossref_primary_10_1016_j_nwnano_2023_100023
crossref_primary_10_1016_j_cej_2020_125665
crossref_primary_10_1039_D2NA00119E
crossref_primary_10_1080_2055074X_2015_1124191
crossref_primary_10_1016_j_jcat_2016_08_009
crossref_primary_10_1002_ep_12998
crossref_primary_10_1016_j_ijhydene_2019_11_019
crossref_primary_10_1016_j_ijhydene_2024_11_176
crossref_primary_10_1007_s12274_023_6351_1
crossref_primary_10_1016_j_cclet_2023_108723
crossref_primary_10_3390_catal13030614
crossref_primary_10_1016_S1872_2067_19_63453_4
crossref_primary_10_1016_j_apcatb_2017_05_022
crossref_primary_10_1016_j_apcatb_2021_120391
crossref_primary_10_1016_j_apsusc_2018_08_126
crossref_primary_10_1088_2632_959X_aba131
crossref_primary_10_1016_j_arabjc_2018_01_007
crossref_primary_10_1016_j_solidstatesciences_2023_107317
crossref_primary_10_1039_D3QI01863F
crossref_primary_10_2139_ssrn_4074215
crossref_primary_10_1016_j_cej_2022_141134
crossref_primary_10_1016_j_ijhydene_2021_08_141
crossref_primary_10_1016_j_ijhydene_2023_12_102
crossref_primary_10_1016_j_apsusc_2018_12_076
crossref_primary_10_1016_j_mtener_2021_100648
crossref_primary_10_1002_smll_202412097
crossref_primary_10_1016_j_rser_2021_111095
crossref_primary_10_1016_j_jece_2024_112017
crossref_primary_10_1039_D1NJ06197F
crossref_primary_10_3390_en14040817
crossref_primary_10_1016_j_catcom_2018_03_026
crossref_primary_10_1021_acs_jpcc_8b03741
crossref_primary_10_1038_s41598_022_24290_7
crossref_primary_10_1016_j_jcis_2024_09_028
crossref_primary_10_1080_09593330_2016_1158871
crossref_primary_10_1007_s11244_018_0980_8
crossref_primary_10_1016_j_jcat_2017_04_033
crossref_primary_10_1016_j_ijhydene_2023_05_344
crossref_primary_10_1016_j_ijhydene_2024_09_420
crossref_primary_10_1246_cl_171053
crossref_primary_10_1039_D2YA00110A
crossref_primary_10_3390_ijms24032878
crossref_primary_10_1016_j_jmst_2021_12_003
crossref_primary_10_1016_j_jcat_2017_04_035
crossref_primary_10_1039_D0EE03116J
crossref_primary_10_1002_adsu_202400321
crossref_primary_10_1016_j_seppur_2024_126671
crossref_primary_10_1021_acs_iecr_1c01701
crossref_primary_10_1016_j_jwpe_2021_101989
crossref_primary_10_1002_ente_201700546
crossref_primary_10_1016_j_susmat_2025_e01332
crossref_primary_10_1039_D0RE00382D
crossref_primary_10_1016_j_mcat_2017_12_023
crossref_primary_10_1016_j_apcatb_2025_125225
crossref_primary_10_1002_solr_202101042
crossref_primary_10_1016_j_jiec_2023_10_055
crossref_primary_10_1038_s41893_020_00650_x
crossref_primary_10_1007_s11244_025_02051_w
crossref_primary_10_1016_j_chemosphere_2019_04_044
crossref_primary_10_1016_j_jtice_2023_105159
crossref_primary_10_1016_j_jphotochem_2017_07_046
crossref_primary_10_1007_s41061_022_00373_x
crossref_primary_10_1007_s10570_020_03527_6
crossref_primary_10_1039_C9TC02068C
crossref_primary_10_1021_acssuschemeng_4c06918
crossref_primary_10_1002_aoc_7856
crossref_primary_10_1016_j_cej_2020_124701
crossref_primary_10_1002_cctc_202400474
crossref_primary_10_1016_j_ijhydene_2022_09_153
crossref_primary_10_1016_j_apcatb_2016_11_045
crossref_primary_10_1016_j_chemosphere_2024_142330
crossref_primary_10_1021_acscatal_9b01890
crossref_primary_10_1039_C9CP00826H
crossref_primary_10_1002_aenm_202401838
crossref_primary_10_1007_s10562_017_1998_4
crossref_primary_10_1016_j_cattod_2018_05_031
crossref_primary_10_1021_acsanm_0c03320
crossref_primary_10_1002_ceat_202100513
crossref_primary_10_1021_acscatal_0c03464
crossref_primary_10_1021_acs_oprd_9b00225
crossref_primary_10_1002_chem_202401486
crossref_primary_10_1016_j_jallcom_2021_160936
crossref_primary_10_1016_j_jcat_2023_05_019
crossref_primary_10_1021_acscatal_8b01317
crossref_primary_10_1016_j_cattod_2018_10_001
crossref_primary_10_1002_jctb_6123
crossref_primary_10_1016_j_jallcom_2022_165320
crossref_primary_10_1021_acscatal_6b03092
crossref_primary_10_1021_acscatal_9b00332
crossref_primary_10_1016_j_jece_2021_105070
crossref_primary_10_1016_j_apcatb_2017_03_077
crossref_primary_10_3390_catal13111444
crossref_primary_10_1039_D4CY00345D
crossref_primary_10_1021_acs_iecr_0c04765
crossref_primary_10_1002_admi_202101241
crossref_primary_10_1016_j_ces_2022_117479
crossref_primary_10_1016_j_jhazmat_2018_03_044
crossref_primary_10_3390_catal11030317
crossref_primary_10_1016_j_cis_2022_102793
crossref_primary_10_13005_msri_180202
Cites_doi 10.1504/IJNT.2014.060592
10.1016/j.jcat.2006.04.004
10.1021/jz400624w
10.1504/IJNT.2012.044832
10.1021/jp962060q
10.1039/B800489G
10.1016/j.apcata.2013.01.005
10.1039/c1gc00022e
10.1016/j.catcom.2011.09.003
10.1021/ja00312a043
10.1021/es950391v
10.1016/j.ijhydene.2008.05.047
10.1103/RevModPhys.65.599
10.1038/srep02849
10.1016/j.jcat.2013.04.005
10.1016/j.apcatb.2006.05.007
10.1007/s11244-013-0080-8
10.1063/1.1878333
10.1016/j.ijhydene.2013.09.101
10.1063/1.1742723
10.1016/j.apcatb.2012.02.020
10.1016/j.jcat.2013.05.031
10.1063/1.1743423
10.1016/j.apcatb.2012.11.006
10.1039/c2cs35230c
10.1016/j.jcat.2014.10.003
10.1039/C1GC15992E
10.1021/jp011576t
10.1021/cs100072k
10.1016/j.ijhydene.2010.05.103
10.1016/j.cattod.2012.09.027
10.1016/j.jcat.2009.04.016
10.1016/S0013-4686(02)00336-5
10.1039/c2cp40641a
10.1016/1010-6030(95)04039-I
10.1039/c1ee01120k
10.1063/1.1743424
10.1021/jp020729p
10.1039/c3cp50416f
10.1021/jp1074048
10.1007/s10562-014-1443-x
10.1016/j.jcat.2008.09.009
10.1021/cr0501994
10.1021/la00017a005
10.1021/jz1007966
10.1039/C2GC16112E
10.1016/S1381-1169(96)00348-2
10.1021/cs3006499
10.1016/j.physb.2005.12.205
10.1021/j100045a026
10.1021/ie0498551
10.1038/nchem.1048
10.1088/0034-4885/76/4/046401
10.1016/j.apcatb.2011.07.015
10.1002/elan.200503476
10.1063/1.1696792
10.1039/c0cp01896a
10.1021/jp075608+
10.1007/s11671-010-9705-z
10.1021/la9502711
10.1021/jp071022b
10.1021/jp209215c
10.1021/jp060971m
10.1016/j.cattod.2007.01.022
10.1021/jp0144810
10.1016/S1381-1169(02)00210-8
ContentType Journal Article
Copyright 2015 Elsevier Inc.
Copyright_xml – notice: 2015 Elsevier Inc.
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.jcat.2015.06.005
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList

AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
EISSN 1090-2694
EndPage 367
ExternalDocumentID 3788015071
10_1016_j_jcat_2015_06_005
S002195171500202X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABDEX
ABFNM
ABFRF
ABJNI
ABMAC
ABNUV
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEWK
ADEZE
ADFGL
ADIYS
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG5
LX6
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SCC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SSZ
T5K
TAE
TWZ
UPT
VH1
WUQ
XFK
XPP
YQT
ZMT
ZU3
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
7S9
L.6
ID FETCH-LOGICAL-c464t-f143dd6054d6427a05b268228deec26da8486f6936a0c06f3f551b79d2caeb863
IEDL.DBID .~1
ISSN 0021-9517
IngestDate Fri Sep 05 11:36:01 EDT 2025
Sun Sep 07 03:48:09 EDT 2025
Tue Jul 01 03:14:00 EDT 2025
Thu Apr 24 23:09:44 EDT 2025
Fri Feb 23 02:27:01 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polarity
Co-catalyst
Photocatalysis
Hydrogen production
TiO2
Alcohols
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-f143dd6054d6427a05b268228deec26da8486f6936a0c06f3f551b79d2caeb863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Undefined-3
content type line 23
PQID 1707042954
PQPubID 32080
PageCount 13
ParticipantIDs proquest_miscellaneous_2116867594
proquest_journals_1707042954
crossref_citationtrail_10_1016_j_jcat_2015_06_005
crossref_primary_10_1016_j_jcat_2015_06_005
elsevier_sciencedirect_doi_10_1016_j_jcat_2015_06_005
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-09-01
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-09-01
  day: 01
PublicationDecade 2010
PublicationPlace San Diego
PublicationPlace_xml – name: San Diego
PublicationTitle Journal of catalysis
PublicationYear 2015
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Gallo, Marelli, Psaro, Gombac, Montini, Fornasiero, Pievo, Santo (b0070) 2012; 14
Alonso, Riente, Rodríguez-Reinoso, Ruiz-Martínez, Sepúlveda-Escribano, Yus (b0125) 2008; 260
Fu, Clark, Yang, Anderson (b0135) 1996; 30
Muir, Choi, Idriss (b0255) 2012; 14
Rodriguez, Hanson, Stacchiola, Senanayake (b0195) 2013; 15
Zhu, Liang, Gu, Xie, Wang, Ding, Liu (b0075) 2012; 119–120
Nadeem, Muir, Connelly, Adamson, Metson, Idriss (b0260) 2011; 13
Ruban, Hammer, Stoltze, Skriver, Nørskov (b0225) 1997; 115
Tanaka, Sakaguchi, Hashimoto, Kominami (b0160) 2013; 3
Farfan-Arribas, Madix (b0275) 2002; 106
Panayotov, Burrows, Morris (b0335) 2012; 116
Chen, Feng, Wu, Shi, Ma, Ying, Li (b0340) 2007; 111
Shimura, Yoshida (b0250) 2011; 4
Chen, Wu, Wu, Tsai (b0035) 2010; 115
Jovic, Al-Azri, Chen, Sun-Waterhouse, Idriss, Waterhouse (b0140) 2013; 56
Kieu, Boyd, Idriss (b0270) 2002; 188
Al-Azri, Jovic, Chen, Sun-Waterhouse, Metson, Waterhouse (b0175) 2014; 11
Marcus (b0305) 1965; 43
Di Valentin, Fittipaldi (b0265) 2013; 4
Nakajima, Mori (b0210) 2006; 376
Rothenberger, Moser, Grätzel, Serpone, Sharma (b0045) 1985; 107
Wood, Giersig, Mulvaney (b0155) 2001; 105
Serpone, Lawless, Khairutdinov (b0205) 1995; 99
Colmenares, Magdziarz, Aramendia, Marinas, Marinas, Urbano, Navio (b0235) 2011; 16
Kaise, Nagai, Tokuhashi, Kondo (b0285) 1994; 10
Marcus (b0295) 1957; 26
Golikand, Maragheh, Sherehjini, Taghi-Ganji, Yarib (b0330) 2006; 18
(b0215) 2009
Maeda, Domen (b0030) 2010; 1
Bamwenda, Tsubota, Nakamura, Haruta (b0245) 1995; 89
Chen, Li, Grätzel, Kostecki, Mao (b0010) 2012; 41
Ohyama, Yamamoto, Teramura, Shishido, Tanaka (b0165) 2011; 1
Waterhouse, Murdoch, Llorca, Idriss (b0185) 2012; 9
Balat (b0005) 2008; 33
Kim, Kay, White, Dohnálek (b0280) 2007; 111
Miller, Kropf, Zha, Regalbuto, Delannoy, Louis, Bus, Van Bokhoven (b0190) 2006; 240
Ohtani, Iwai, Nishimoto, Sato (b0240) 1997; 101
Zanella, Giorgio, Henry, Louis (b0120) 2002; 106
Crabtree, Dresselhaus, Buchanan (b0015) 2004; 57
Bahruji, Bowker, Davies, Pedrono (b0090) 2011; 107
Bowker, Morton, Kennedy, Bahruji, Greves, Jones, Davies, Brookes, Wells, Dimitratos (b0095) 2014; 310
Iwasita (b0325) 2002; 47
Chen, Jovic, Sun-Waterhouse, Idriss, Waterhouse (b0200) 2013; 38
Marcus (b0310) 1993; 65
Waterhouse, Wahab, Al-Oufi, Jovic, Anjum, Sun-Waterhouse, Llorca, Idriss (b0085) 2013; 3
Al-Mazroai, Bowker, Davies, Dickinson, Greaves, James, Millard (b0100) 2007; 122
Bowker (b0320) 2011; 13
Huang, Chang, Wey (b0130) 2010; 35
Kudo, Miseki (b0025) 2009; 38
Okumura, Matsui, Sanada, Arao, Honma, Hirayama, Niwa (b0170) 2009; 265
Yang, Chang, Idriss (b0115) 2006; 67
Murdoch, Waterhouse, Nadeem, Metson, Keane, Howe, Llorca, Idriss (b0080) 2011; 3
Behar, Rabani (b0065) 2006; 110
Kabra, Chaudhary, Sawhney (b0050) 2004; 43
Zhu, Su, Lv, Pan, Sun (b0220) 2010; 5
Zhang, Chen, Liu, Tsai (b0040) 2013; 76
Mulvaney (b0150) 1996; 12
Marcus (b0290) 1956; 24
Marcus (b0300) 1957; 26
Connelly, Idriss (b0055) 2012; 14
Bahruji, Bowker, Brookes, Davies, Wawata (b0110) 2013; 454
Ouyang, Tian, Da, Xu, Ao, Chen, Si, Xu, Han (b0180) 2015; 321
Bowker, Bahruji, Kennedy, Jones, Hartley, Morton (b0105) 2015; 145
Naldoni, D’Arienzo, Altomare, Marelli, Scotti, Morazzoni, Selli, Dal Santo (b0060) 2013; 130–131
Navarro, Pena, Fierro (b0020) 2007; 107
Jovic, Chen, Sun-Waterhouse, Blackford, Idriss, Waterhouse (b0145) 2013; 305
Balzani, Scandola (b0315) 1983
Ismail, Al-Sayari, Bahnemann (b0230) 2013; 209
Panayotov (10.1016/j.jcat.2015.06.005_b0335) 2012; 116
Waterhouse (10.1016/j.jcat.2015.06.005_b0185) 2012; 9
Miller (10.1016/j.jcat.2015.06.005_b0190) 2006; 240
Golikand (10.1016/j.jcat.2015.06.005_b0330) 2006; 18
Rodriguez (10.1016/j.jcat.2015.06.005_b0195) 2013; 15
Okumura (10.1016/j.jcat.2015.06.005_b0170) 2009; 265
Chen (10.1016/j.jcat.2015.06.005_b0340) 2007; 111
Zanella (10.1016/j.jcat.2015.06.005_b0120) 2002; 106
Marcus (10.1016/j.jcat.2015.06.005_b0295) 1957; 26
Mulvaney (10.1016/j.jcat.2015.06.005_b0150) 1996; 12
Al-Mazroai (10.1016/j.jcat.2015.06.005_b0100) 2007; 122
Bowker (10.1016/j.jcat.2015.06.005_b0320) 2011; 13
Marcus (10.1016/j.jcat.2015.06.005_b0300) 1957; 26
Maeda (10.1016/j.jcat.2015.06.005_b0030) 2010; 1
Ouyang (10.1016/j.jcat.2015.06.005_b0180) 2015; 321
Kieu (10.1016/j.jcat.2015.06.005_b0270) 2002; 188
Naldoni (10.1016/j.jcat.2015.06.005_b0060) 2013; 130–131
Nakajima (10.1016/j.jcat.2015.06.005_b0210) 2006; 376
Kabra (10.1016/j.jcat.2015.06.005_b0050) 2004; 43
Gallo (10.1016/j.jcat.2015.06.005_b0070) 2012; 14
Nadeem (10.1016/j.jcat.2015.06.005_b0260) 2011; 13
Kaise (10.1016/j.jcat.2015.06.005_b0285) 1994; 10
Chen (10.1016/j.jcat.2015.06.005_b0010) 2012; 41
Connelly (10.1016/j.jcat.2015.06.005_b0055) 2012; 14
Colmenares (10.1016/j.jcat.2015.06.005_b0235) 2011; 16
Fu (10.1016/j.jcat.2015.06.005_b0135) 1996; 30
Marcus (10.1016/j.jcat.2015.06.005_b0310) 1993; 65
Kim (10.1016/j.jcat.2015.06.005_b0280) 2007; 111
Marcus (10.1016/j.jcat.2015.06.005_b0305) 1965; 43
Bamwenda (10.1016/j.jcat.2015.06.005_b0245) 1995; 89
Al-Azri (10.1016/j.jcat.2015.06.005_b0175) 2014; 11
Balat (10.1016/j.jcat.2015.06.005_b0005) 2008; 33
Zhu (10.1016/j.jcat.2015.06.005_b0220) 2010; 5
Rothenberger (10.1016/j.jcat.2015.06.005_b0045) 1985; 107
Shimura (10.1016/j.jcat.2015.06.005_b0250) 2011; 4
Bahruji (10.1016/j.jcat.2015.06.005_b0090) 2011; 107
Bahruji (10.1016/j.jcat.2015.06.005_b0110) 2013; 454
Zhang (10.1016/j.jcat.2015.06.005_b0040) 2013; 76
Ohtani (10.1016/j.jcat.2015.06.005_b0240) 1997; 101
Tanaka (10.1016/j.jcat.2015.06.005_b0160) 2013; 3
(10.1016/j.jcat.2015.06.005_b0215) 2009
Behar (10.1016/j.jcat.2015.06.005_b0065) 2006; 110
Kudo (10.1016/j.jcat.2015.06.005_b0025) 2009; 38
Marcus (10.1016/j.jcat.2015.06.005_b0290) 1956; 24
Di Valentin (10.1016/j.jcat.2015.06.005_b0265) 2013; 4
Alonso (10.1016/j.jcat.2015.06.005_b0125) 2008; 260
Ohyama (10.1016/j.jcat.2015.06.005_b0165) 2011; 1
Iwasita (10.1016/j.jcat.2015.06.005_b0325) 2002; 47
Balzani (10.1016/j.jcat.2015.06.005_b0315) 1983
Muir (10.1016/j.jcat.2015.06.005_b0255) 2012; 14
Chen (10.1016/j.jcat.2015.06.005_b0200) 2013; 38
Yang (10.1016/j.jcat.2015.06.005_b0115) 2006; 67
Bowker (10.1016/j.jcat.2015.06.005_b0105) 2015; 145
Jovic (10.1016/j.jcat.2015.06.005_b0145) 2013; 305
Waterhouse (10.1016/j.jcat.2015.06.005_b0085) 2013; 3
Jovic (10.1016/j.jcat.2015.06.005_b0140) 2013; 56
Farfan-Arribas (10.1016/j.jcat.2015.06.005_b0275) 2002; 106
Ruban (10.1016/j.jcat.2015.06.005_b0225) 1997; 115
Navarro (10.1016/j.jcat.2015.06.005_b0020) 2007; 107
Serpone (10.1016/j.jcat.2015.06.005_b0205) 1995; 99
Chen (10.1016/j.jcat.2015.06.005_b0035) 2010; 115
Zhu (10.1016/j.jcat.2015.06.005_b0075) 2012; 119–120
Murdoch (10.1016/j.jcat.2015.06.005_b0080) 2011; 3
Bowker (10.1016/j.jcat.2015.06.005_b0095) 2014; 310
Wood (10.1016/j.jcat.2015.06.005_b0155) 2001; 105
Huang (10.1016/j.jcat.2015.06.005_b0130) 2010; 35
Crabtree (10.1016/j.jcat.2015.06.005_b0015) 2004; 57
Ismail (10.1016/j.jcat.2015.06.005_b0230) 2013; 209
References_xml – volume: 41
  start-page: 7909
  year: 2012
  end-page: 7937
  ident: b0010
  publication-title: Chem. Soc. Rev.
– volume: 265
  start-page: 89
  year: 2009
  end-page: 98
  ident: b0170
  publication-title: J. Catal.
– volume: 115
  start-page: 421
  year: 1997
  end-page: 429
  ident: b0225
  publication-title: J. Mol. Catal. A: Chem.
– volume: 35
  start-page: 7699
  year: 2010
  end-page: 7705
  ident: b0130
  publication-title: Int. J. Hydrogen Energy
– volume: 10
  start-page: 1345
  year: 1994
  end-page: 1347
  ident: b0285
  publication-title: Langmuir
– volume: 38
  start-page: 15036
  year: 2013
  end-page: 15048
  ident: b0200
  publication-title: Int. J. Hydrogen Energy
– volume: 13
  start-page: 2235
  year: 2011
  end-page: 2246
  ident: b0320
  publication-title: Green Chem.
– volume: 14
  start-page: 260
  year: 2012
  end-page: 280
  ident: b0055
  publication-title: Green Chem.
– volume: 321
  start-page: 70
  year: 2015
  end-page: 80
  ident: b0180
  publication-title: J. Catal.
– volume: 107
  start-page: 205
  year: 2011
  end-page: 209
  ident: b0090
  publication-title: Appl. Catal. B
– volume: 106
  start-page: 10680
  year: 2002
  end-page: 10692
  ident: b0275
  publication-title: J. Phys. Chem. B
– volume: 47
  start-page: 3663
  year: 2002
  end-page: 3674
  ident: b0325
  publication-title: Electrochim. Acta
– volume: 76
  start-page: 046401
  year: 2013
  ident: b0040
  publication-title: Rep. Prog. Phys.
– volume: 310
  start-page: 10
  year: 2014
  end-page: 15
  ident: b0095
  publication-title: J. Catal.
– volume: 9
  start-page: 113
  year: 2012
  end-page: 120
  ident: b0185
  publication-title: Int. J. Nanotechnol.
– volume: 1
  start-page: 187
  year: 2011
  end-page: 192
  ident: b0165
  publication-title: ACS Catal.
– volume: 305
  start-page: 307
  year: 2013
  end-page: 317
  ident: b0145
  publication-title: J. Catal.
– volume: 130–131
  start-page: 239
  year: 2013
  end-page: 248
  ident: b0060
  publication-title: Appl. Catal. B
– volume: 56
  start-page: 1139
  year: 2013
  end-page: 1151
  ident: b0140
  publication-title: Top. Catal.
– volume: 43
  start-page: 679
  year: 1965
  end-page: 701
  ident: b0305
  publication-title: J. Chem. Phys.
– volume: 12
  start-page: 788
  year: 1996
  end-page: 800
  ident: b0150
  publication-title: Langmuir
– volume: 14
  start-page: 11910
  year: 2012
  end-page: 11919
  ident: b0255
  publication-title: Phys. Chem. Chem. Phys.
– volume: 33
  start-page: 4013
  year: 2008
  end-page: 4029
  ident: b0005
  publication-title: Int. J. Hydrogen Energy
– volume: 3
  start-page: 79
  year: 2013
  end-page: 85
  ident: b0160
  publication-title: ACS Catal.
– volume: 1
  start-page: 2655
  year: 2010
  end-page: 2661
  ident: b0030
  publication-title: J. Phys. Chem. Lett.
– volume: 4
  start-page: 2467
  year: 2011
  end-page: 2481
  ident: b0250
  publication-title: Energy Environ. Sci.
– volume: 99
  start-page: 16646
  year: 1995
  end-page: 16654
  ident: b0205
  publication-title: J. Phys. Chem.
– volume: 145
  start-page: 214
  year: 2015
  end-page: 219
  ident: b0105
  publication-title: Catal. Lett.
– volume: 89
  start-page: 177
  year: 1995
  end-page: 189
  ident: b0245
  publication-title: J. Photochem. Photobiol. A
– volume: 57
  start-page: 39
  year: 2004
  end-page: 44
  ident: b0015
  publication-title: Phys. Today
– volume: 38
  start-page: 253
  year: 2009
  end-page: 278
  ident: b0025
  publication-title: Chem. Soc. Rev.
– volume: 5
  start-page: 1749
  year: 2010
  end-page: 1754
  ident: b0220
  publication-title: Nanoscale Res. Lett.
– volume: 101
  start-page: 3349
  year: 1997
  end-page: 3359
  ident: b0240
  publication-title: J. Phys. Chem. B
– start-page: 2
  year: 1983
  end-page: 48
  ident: b0315
  publication-title: Energy Resources through Photochemistry and Catalysis
– volume: 260
  start-page: 113
  year: 2008
  end-page: 118
  ident: b0125
  publication-title: J. Catal.
– volume: 67
  start-page: 217
  year: 2006
  end-page: 222
  ident: b0115
  publication-title: Appl. Catal. B
– volume: 65
  start-page: 599
  year: 1993
  end-page: 610
  ident: b0310
  publication-title: Rev. Mod. Phys.
– volume: 111
  start-page: 8005
  year: 2007
  end-page: 8014
  ident: b0340
  publication-title: J. Phys. Chem. C
– volume: 4
  start-page: 1901
  year: 2013
  end-page: 1906
  ident: b0265
  publication-title: J. Phys. Chem. Lett.
– volume: 116
  start-page: 6623
  year: 2012
  end-page: 6635
  ident: b0335
  publication-title: J. Phys. Chem. C
– volume: 3
  start-page: 2849
  year: 2013
  ident: b0085
  publication-title: Sci. Rep.
– volume: 11
  start-page: 695
  year: 2014
  end-page: 703
  ident: b0175
  publication-title: Int. J. Nanotechnol.
– volume: 240
  start-page: 222
  year: 2006
  end-page: 234
  ident: b0190
  publication-title: J. Catal.
– volume: 209
  start-page: 2
  year: 2013
  end-page: 7
  ident: b0230
  publication-title: Catal. Today
– volume: 24
  start-page: 966
  year: 1956
  end-page: 978
  ident: b0290
  publication-title: J. Chem. Phys.
– volume: 26
  start-page: 872
  year: 1957
  end-page: 877
  ident: b0300
  publication-title: J. Chem. Phys.
– volume: 30
  start-page: 647
  year: 1996
  end-page: 653
  ident: b0135
  publication-title: Environ. Sci. Technol.
– volume: 188
  start-page: 153
  year: 2002
  end-page: 161
  ident: b0270
  publication-title: J. Mol. Catal.
– volume: 115
  start-page: 210
  year: 2010
  end-page: 216
  ident: b0035
  publication-title: J. Phys. Chem. C
– volume: 107
  start-page: 8054
  year: 1985
  end-page: 8059
  ident: b0045
  publication-title: J. Am. Chem. Soc.
– volume: 119–120
  start-page: 146
  year: 2012
  end-page: 155
  ident: b0075
  publication-title: Appl. Catal. B
– volume: 18
  start-page: 911
  year: 2006
  end-page: 917
  ident: b0330
  publication-title: Electroanalysis
– volume: 107
  start-page: 3952
  year: 2007
  end-page: 3991
  ident: b0020
  publication-title: Chem. Rev.
– volume: 110
  start-page: 8750
  year: 2006
  end-page: 8755
  ident: b0065
  publication-title: J. Phys. Chem. B
– volume: 3
  start-page: 489
  year: 2011
  end-page: 492
  ident: b0080
  publication-title: Nat. Chem.
– volume: 454
  start-page: 66
  year: 2013
  end-page: 73
  ident: b0110
  publication-title: Appl. Catal. A
– volume: 105
  start-page: 8810
  year: 2001
  end-page: 8815
  ident: b0155
  publication-title: J. Phys. Chem. B
– volume: 16
  start-page: 1
  year: 2011
  end-page: 6
  ident: b0235
  publication-title: Catal. Commun.
– volume: 13
  start-page: 7637
  year: 2011
  end-page: 7643
  ident: b0260
  publication-title: Phys. Chem. Chem. Phys.
– volume: 106
  start-page: 7634
  year: 2002
  end-page: 7642
  ident: b0120
  publication-title: J. Phys. Chem. B
– volume: 376
  start-page: 820
  year: 2006
  end-page: 822
  ident: b0210
  publication-title: Physica B
– volume: 14
  start-page: 330
  year: 2012
  end-page: 333
  ident: b0070
  publication-title: Green Chem.
– volume: 122
  start-page: 46
  year: 2007
  end-page: 50
  ident: b0100
  publication-title: Catal. Today
– volume: 26
  start-page: 867
  year: 1957
  end-page: 871
  ident: b0295
  publication-title: J. Chem. Phys.
– year: 2009
  ident: b0215
  publication-title: CRC Handbook of Chemistry and Physics
– volume: 43
  start-page: 7683
  year: 2004
  end-page: 7696
  ident: b0050
  publication-title: Ind. Eng. Chem. Res.
– volume: 15
  start-page: 12004
  year: 2013
  end-page: 12025
  ident: b0195
  publication-title: Phys. Chem. Chem. Phys.
– volume: 111
  start-page: 18236
  year: 2007
  end-page: 18242
  ident: b0280
  publication-title: J. Phys. Chem. C
– volume: 11
  start-page: 695
  year: 2014
  ident: 10.1016/j.jcat.2015.06.005_b0175
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2014.060592
– volume: 240
  start-page: 222
  year: 2006
  ident: 10.1016/j.jcat.2015.06.005_b0190
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2006.04.004
– volume: 4
  start-page: 1901
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0265
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz400624w
– volume: 9
  start-page: 113
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0185
  publication-title: Int. J. Nanotechnol.
  doi: 10.1504/IJNT.2012.044832
– volume: 101
  start-page: 3349
  year: 1997
  ident: 10.1016/j.jcat.2015.06.005_b0240
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp962060q
– volume: 38
  start-page: 253
  year: 2009
  ident: 10.1016/j.jcat.2015.06.005_b0025
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/B800489G
– volume: 454
  start-page: 66
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0110
  publication-title: Appl. Catal. A
  doi: 10.1016/j.apcata.2013.01.005
– volume: 13
  start-page: 2235
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0320
  publication-title: Green Chem.
  doi: 10.1039/c1gc00022e
– volume: 16
  start-page: 1
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0235
  publication-title: Catal. Commun.
  doi: 10.1016/j.catcom.2011.09.003
– volume: 107
  start-page: 8054
  year: 1985
  ident: 10.1016/j.jcat.2015.06.005_b0045
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00312a043
– volume: 30
  start-page: 647
  year: 1996
  ident: 10.1016/j.jcat.2015.06.005_b0135
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950391v
– volume: 33
  start-page: 4013
  year: 2008
  ident: 10.1016/j.jcat.2015.06.005_b0005
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2008.05.047
– volume: 65
  start-page: 599
  year: 1993
  ident: 10.1016/j.jcat.2015.06.005_b0310
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.65.599
– volume: 3
  start-page: 2849
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0085
  publication-title: Sci. Rep.
  doi: 10.1038/srep02849
– volume: 310
  start-page: 10
  year: 2014
  ident: 10.1016/j.jcat.2015.06.005_b0095
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.04.005
– volume: 67
  start-page: 217
  year: 2006
  ident: 10.1016/j.jcat.2015.06.005_b0115
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2006.05.007
– volume: 56
  start-page: 1139
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0140
  publication-title: Top. Catal.
  doi: 10.1007/s11244-013-0080-8
– volume: 57
  start-page: 39
  year: 2004
  ident: 10.1016/j.jcat.2015.06.005_b0015
  publication-title: Phys. Today
  doi: 10.1063/1.1878333
– volume: 38
  start-page: 15036
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0200
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2013.09.101
– volume: 24
  start-page: 966
  year: 1956
  ident: 10.1016/j.jcat.2015.06.005_b0290
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1742723
– volume: 119–120
  start-page: 146
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0075
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.02.020
– volume: 305
  start-page: 307
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0145
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2013.05.031
– volume: 26
  start-page: 867
  year: 1957
  ident: 10.1016/j.jcat.2015.06.005_b0295
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743423
– volume: 130–131
  start-page: 239
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0060
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2012.11.006
– volume: 41
  start-page: 7909
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0010
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c2cs35230c
– volume: 321
  start-page: 70
  year: 2015
  ident: 10.1016/j.jcat.2015.06.005_b0180
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2014.10.003
– volume: 14
  start-page: 260
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0055
  publication-title: Green Chem.
  doi: 10.1039/C1GC15992E
– volume: 105
  start-page: 8810
  year: 2001
  ident: 10.1016/j.jcat.2015.06.005_b0155
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp011576t
– volume: 1
  start-page: 187
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0165
  publication-title: ACS Catal.
  doi: 10.1021/cs100072k
– volume: 35
  start-page: 7699
  year: 2010
  ident: 10.1016/j.jcat.2015.06.005_b0130
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2010.05.103
– volume: 209
  start-page: 2
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0230
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2012.09.027
– volume: 265
  start-page: 89
  year: 2009
  ident: 10.1016/j.jcat.2015.06.005_b0170
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2009.04.016
– volume: 47
  start-page: 3663
  year: 2002
  ident: 10.1016/j.jcat.2015.06.005_b0325
  publication-title: Electrochim. Acta
  doi: 10.1016/S0013-4686(02)00336-5
– volume: 14
  start-page: 11910
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0255
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c2cp40641a
– year: 2009
  ident: 10.1016/j.jcat.2015.06.005_b0215
– volume: 89
  start-page: 177
  year: 1995
  ident: 10.1016/j.jcat.2015.06.005_b0245
  publication-title: J. Photochem. Photobiol. A
  doi: 10.1016/1010-6030(95)04039-I
– volume: 4
  start-page: 2467
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0250
  publication-title: Energy Environ. Sci.
  doi: 10.1039/c1ee01120k
– volume: 26
  start-page: 872
  year: 1957
  ident: 10.1016/j.jcat.2015.06.005_b0300
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1743424
– volume: 106
  start-page: 10680
  year: 2002
  ident: 10.1016/j.jcat.2015.06.005_b0275
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp020729p
– volume: 15
  start-page: 12004
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0195
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp50416f
– volume: 115
  start-page: 210
  year: 2010
  ident: 10.1016/j.jcat.2015.06.005_b0035
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp1074048
– volume: 145
  start-page: 214
  year: 2015
  ident: 10.1016/j.jcat.2015.06.005_b0105
  publication-title: Catal. Lett.
  doi: 10.1007/s10562-014-1443-x
– volume: 260
  start-page: 113
  year: 2008
  ident: 10.1016/j.jcat.2015.06.005_b0125
  publication-title: J. Catal.
  doi: 10.1016/j.jcat.2008.09.009
– volume: 107
  start-page: 3952
  year: 2007
  ident: 10.1016/j.jcat.2015.06.005_b0020
  publication-title: Chem. Rev.
  doi: 10.1021/cr0501994
– volume: 10
  start-page: 1345
  year: 1994
  ident: 10.1016/j.jcat.2015.06.005_b0285
  publication-title: Langmuir
  doi: 10.1021/la00017a005
– volume: 1
  start-page: 2655
  year: 2010
  ident: 10.1016/j.jcat.2015.06.005_b0030
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/jz1007966
– volume: 14
  start-page: 330
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0070
  publication-title: Green Chem.
  doi: 10.1039/C2GC16112E
– volume: 115
  start-page: 421
  year: 1997
  ident: 10.1016/j.jcat.2015.06.005_b0225
  publication-title: J. Mol. Catal. A: Chem.
  doi: 10.1016/S1381-1169(96)00348-2
– volume: 3
  start-page: 79
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0160
  publication-title: ACS Catal.
  doi: 10.1021/cs3006499
– volume: 376
  start-page: 820
  year: 2006
  ident: 10.1016/j.jcat.2015.06.005_b0210
  publication-title: Physica B
  doi: 10.1016/j.physb.2005.12.205
– volume: 99
  start-page: 16646
  year: 1995
  ident: 10.1016/j.jcat.2015.06.005_b0205
  publication-title: J. Phys. Chem.
  doi: 10.1021/j100045a026
– volume: 43
  start-page: 7683
  year: 2004
  ident: 10.1016/j.jcat.2015.06.005_b0050
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0498551
– volume: 3
  start-page: 489
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0080
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1048
– volume: 76
  start-page: 046401
  year: 2013
  ident: 10.1016/j.jcat.2015.06.005_b0040
  publication-title: Rep. Prog. Phys.
  doi: 10.1088/0034-4885/76/4/046401
– volume: 107
  start-page: 205
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0090
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2011.07.015
– volume: 18
  start-page: 911
  issue: 9
  year: 2006
  ident: 10.1016/j.jcat.2015.06.005_b0330
  publication-title: Electroanalysis
  doi: 10.1002/elan.200503476
– volume: 43
  start-page: 679
  year: 1965
  ident: 10.1016/j.jcat.2015.06.005_b0305
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1696792
– volume: 13
  start-page: 7637
  year: 2011
  ident: 10.1016/j.jcat.2015.06.005_b0260
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c0cp01896a
– volume: 111
  start-page: 18236
  year: 2007
  ident: 10.1016/j.jcat.2015.06.005_b0280
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp075608+
– volume: 5
  start-page: 1749
  year: 2010
  ident: 10.1016/j.jcat.2015.06.005_b0220
  publication-title: Nanoscale Res. Lett.
  doi: 10.1007/s11671-010-9705-z
– volume: 12
  start-page: 788
  year: 1996
  ident: 10.1016/j.jcat.2015.06.005_b0150
  publication-title: Langmuir
  doi: 10.1021/la9502711
– start-page: 2
  year: 1983
  ident: 10.1016/j.jcat.2015.06.005_b0315
– volume: 111
  start-page: 8005
  year: 2007
  ident: 10.1016/j.jcat.2015.06.005_b0340
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp071022b
– volume: 116
  start-page: 6623
  year: 2012
  ident: 10.1016/j.jcat.2015.06.005_b0335
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp209215c
– volume: 110
  start-page: 8750
  year: 2006
  ident: 10.1016/j.jcat.2015.06.005_b0065
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp060971m
– volume: 122
  start-page: 46
  year: 2007
  ident: 10.1016/j.jcat.2015.06.005_b0100
  publication-title: Catal. Today
  doi: 10.1016/j.cattod.2007.01.022
– volume: 106
  start-page: 7634
  year: 2002
  ident: 10.1016/j.jcat.2015.06.005_b0120
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp0144810
– volume: 188
  start-page: 153
  year: 2002
  ident: 10.1016/j.jcat.2015.06.005_b0270
  publication-title: J. Mol. Catal.
  doi: 10.1016/S1381-1169(02)00210-8
SSID ssj0011558
Score 2.61633
Snippet [Display omitted] •Pd, Pt and Au activate TiO2 for H2 production in alcohol–water mixtures under UV.•H2 production rates decrease in the order...
Display Omitted * Pd, Pt and Au activate TiO2 for H2 production in alcohol-water mixtures under UV. * H2 production rates decrease in the order Pd/TiO2...
M/TiO2 photocatalyst activity for H2 production depends on both the metal co-catalyst (M) and the reaction medium. To quantify such effects, we compared the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 355
SubjectTerms Alcohols
Catalysts
Co-catalyst
ethanol
glycerol
gold
Hydrogen
Hydrogen production
isopropyl alcohol
methanol
nanoparticles
Oxidation
palladium
Photocatalysis
photocatalysts
photoluminescence
platinum
Polarity
TiO2
titanium dioxide
transmission electron microscopy
ultraviolet-visible spectroscopy
X-ray photoelectron spectroscopy
Title The roles of metal co-catalysts and reaction media in photocatalytic hydrogen production: Performance evaluation of M/TiO2 photocatalysts (M=Pd, Pt, Au) in different alcohol–water mixtures
URI https://dx.doi.org/10.1016/j.jcat.2015.06.005
https://www.proquest.com/docview/1707042954
https://www.proquest.com/docview/2116867594
Volume 329
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELaqcgAOCAqIhVINEgcQDbvJOnYWicNqRbWAtuyhlfZmObGjpqLJapNV2wviHXgfHoYnYcZOtgWhHjgmGWeizHjmsz0_jL0M9RA9d5gHkU3SgKcmDVKjZSCiUWxQAeTAlWOYHYrpMf-0iBdbbNLlwlBYZWv7vU131rq902__Zn9ZFJTji7MtDiVCGsQ80YIy2LkkXX_7bRPmgYAn9taYQhGQuk2c8TFep7S7hy4wdjU8qYXdv53TX2ba-Z6D--xeCxph7L_rAduy5Q67Pel6te2wu9fKCj5kP1H2QGGDNVQ5nFnE15BVgdupuaybGnRpAMGiS2kAlzsCRQnLk6qpPBHygZNLs6pQvWDpi8Ii7TuYX-UZwFWhcGIz6x8VX6LrLyFOr2bv52Yf5s0-jNeviUvXkaUB7bvz_vr-4xwB7wrOigs6zqgfseODD0eTadD2aQgyLngT5Ii5jMF1ETe4mpF6EKeRQOCRGGuzSBid8ETkYjQUepANRD7MEaalcmSiTNs0EcPHbLusSvuEgUFAakWOoNVhzTDJEolkmYmkkXjZY2EnIJW1Rcypl8ZX1UWrnSoSqiKhKheyF_fYm82YpS_hcSN13Mld_aGICn3MjeN2OyVRrRmoVSjRonI6Su2xF5vHqBt0KqNLW61rhStwkeCybcSf_ifrZ-wOXfnIt1223azW9jlCpSbdc3Nhj90af_w8PfwNF24V1A
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtNAEB6VcigcKigg0h8YJA4gahI79q6DxKGKqAI0JYdUym219q5VV9SOYkelF8Q78D59GJ6E2V07LQj1wNH2rMfyzM58uzs_AC992SfP7WdeoOPECxOVeImS3GPBIFKkALxnyzGMj9noJPw0i2ZrMGxzYUxYZWP7nU231rq5023-Znee5ybHl2Zb5HOCNIR5gtkduBuaNgek1G-_r-I8CPFEzhybWAQibzJnXJDXmdneIx8Y2SKepofdv73TX3baOp_DB7DZoEY8cB_2ENZ0sQUbw7ZZ2xbcv1FX8BFckfDRxA1WWGZ4rglgY1p6dqvmsqorlIVCQos2pwFt8gjmBc5Py7p0RMQHTy_VoiT9wrmrCku073BynWiA15XCDZtxd5p_CW6-xHB6NX4_Ufs4qffxYPnacGlbstQoXXveXz9-XhDiXeB5_s2cZ1SP4eTww3Q48ppGDV4asrD2MgJdStHCKFS0nOGyFyUBI-QRK63TgCkZhzHL2KDPZC_tsayfEU5L-EAFqdRJzPpPYL0oC_0UUBEi1Swj1GrBph-nMSeyVAVccbrsgN8KSKRNFXPTTOOraMPVzoQRqjBCFTZmL-rAm9WYuavhcSt11Mpd_KGJgpzMreN2WyURjR2ohM_JpIbmLLUDL1aPSTfMsYwsdLmsBC3BWUzrtkG4_Z-sn8PGaDo-Ekcfjz_vwD3zxIXB7cJ6vVjqPcJNdfLMzovfNFsXXQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+roles+of+metal+co-catalysts+and+reaction+media+in+photocatalytic+hydrogen+production%3A+Performance+evaluation+of+M%2FTiO2+photocatalysts+%28M%3DPd%2C+Pt%2C+Au%29+in+different+alcohol-water+mixtures&rft.jtitle=Journal+of+catalysis&rft.au=Al-Azri%2C+Zakiya+H.N&rft.au=Chen%2C+Wan-Ting&rft.au=Chan%2C+Andrew&rft.au=Jovic%2C+Vedran&rft.date=2015-09-01&rft.pub=Elsevier+BV&rft.issn=0021-9517&rft.eissn=1090-2694&rft.volume=329&rft.spage=355&rft_id=info:doi/10.1016%2Fj.jcat.2015.06.005&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=3788015071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9517&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9517&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9517&client=summon