Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance

•Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulatio...

Full description

Saved in:
Bibliographic Details
Published inCarbohydrate polymers Vol. 241; p. 116344
Main Authors Zhao, Pin, Liu, Shuwei, Wang, Lu, Liu, Guojian, Cheng, Yanru, Lin, Min, Sui, Kunyan, Zhang, Hao
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2020
Subjects
Online AccessGet full text
ISSN0144-8617
1879-1344
1879-1344
DOI10.1016/j.carbpol.2020.116344

Cover

Abstract •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulation and prolongs the half-life to ∼9.3 h. For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
AbstractList •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulation and prolongs the half-life to ∼9.3 h. For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t₁/₂) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t ) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.
ArticleNumber 116344
Author Liu, Guojian
Lin, Min
Wang, Lu
Zhang, Hao
Zhao, Pin
Liu, Shuwei
Cheng, Yanru
Sui, Kunyan
Author_xml – sequence: 1
  givenname: Pin
  surname: Zhao
  fullname: Zhao, Pin
  organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
– sequence: 2
  givenname: Shuwei
  surname: Liu
  fullname: Liu, Shuwei
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
– sequence: 3
  givenname: Lu
  surname: Wang
  fullname: Wang, Lu
  organization: Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China
– sequence: 4
  givenname: Guojian
  surname: Liu
  fullname: Liu, Guojian
  organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
– sequence: 5
  givenname: Yanru
  surname: Cheng
  fullname: Cheng, Yanru
  organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
– sequence: 6
  givenname: Min
  orcidid: 0000-0001-9161-9121
  surname: Lin
  fullname: Lin, Min
  email: linmin900401@126.com
  organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
– sequence: 7
  givenname: Kunyan
  surname: Sui
  fullname: Sui, Kunyan
  email: sky@qdu.edu.cn
  organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China
– sequence: 8
  givenname: Hao
  surname: Zhang
  fullname: Zhang, Hao
  email: hao_zhang@jlu.edu.cn
  organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32507204$$D View this record in MEDLINE/PubMed
BookMark eNqNkUGP1SAUhYkZ47wZ_Qkalm76hEJLGxdmMnFGk0nc6JpQuO3wQqECNXkL_7vU92bjZmRzL-ScQ_KdK3ThgweE3lKyp4S2Hw57reKwBLevSV3eaMs4f4F2tBN9Rct-gXaEcl51LRWX6CqlAymnpeQVumR1Q0RN-A79vnGT9SoDnsHYMg0eV6-zDV45rKYpwqS2Gw4jnoIz2CsftFtThpjwGCJOx7LPVuPlMeSQHyHOxbpNtRyx8gbDOFptwWccYYvVDlRUXsNr9HJULsGb87xGP-4-f7_9Uj18u_96e_NQad7yXBlWGyFobzirOzHwXglqyCCEYe1goNOaUaParhEt74CJumkGQikfoO8HPjJ2jd6fcpcYfq6Qspxt0uCc8hDWJGvOSdv3xfkfUlrQiYb3RfruLF2HQk8u0c4qHuUT3SL4eBLoGFKKMEpt81-aOSrrJCVy61Ie5LlLuXUpT10Wd_OP--mD53yfTj4oRH9ZiDJt8HXpN4LO0gT7TMIf95i87A
CitedBy_id crossref_primary_10_1039_D1NJ03714E
crossref_primary_10_1016_j_ijpharm_2021_120848
crossref_primary_10_1007_s42114_021_00368_0
crossref_primary_10_1039_D0CS00461H
crossref_primary_10_3390_molecules29071574
crossref_primary_10_1016_j_biomaterials_2024_122805
crossref_primary_10_1039_D3TB02444J
crossref_primary_10_1016_j_jconrel_2022_12_051
crossref_primary_10_1002_mame_202100885
crossref_primary_10_3390_nano11081946
crossref_primary_10_1021_acsami_4c04303
crossref_primary_10_1039_D4TA03900A
crossref_primary_10_1039_D3TB02797J
crossref_primary_10_1088_1748_605X_ac5a23
crossref_primary_10_1039_D3TB00651D
crossref_primary_10_1016_j_ccr_2022_214540
crossref_primary_10_1021_acsbiomaterials_4c00669
crossref_primary_10_1007_s42114_022_00479_2
crossref_primary_10_1016_j_carbpol_2023_121643
crossref_primary_10_1016_j_ijbiomac_2024_139211
crossref_primary_10_1039_D0RA03069D
crossref_primary_10_1016_j_carbpol_2022_120311
crossref_primary_10_1021_acs_biomac_4c00091
crossref_primary_10_1007_s12088_024_01274_x
crossref_primary_10_1021_acsabm_3c00518
crossref_primary_10_1021_acsabm_0c00573
crossref_primary_10_1016_j_clay_2021_106106
crossref_primary_10_3390_nano11051113
crossref_primary_10_1021_acsomega_3c03538
crossref_primary_10_1515_ntrev_2023_0193
crossref_primary_10_1007_s00216_024_05303_y
crossref_primary_10_1016_j_carbpol_2022_119998
Cites_doi 10.1002/adfm.201603524
10.1021/acsnano.9b01492
10.1002/adma.201600038
10.1038/s41565-019-0527-6
10.1002/adma.201900822
10.1002/adma.201904639
10.1021/acsnano.9b03049
10.1016/j.carbpol.2018.09.084
10.1002/adma.201703284
10.1039/C9BM01017C
10.1002/adma.201601498
10.1002/adma.201902885
10.1016/j.carbpol.2017.11.096
10.1002/adhm.201600923
10.1002/adma.201902733
10.1021/acs.nanolett.9b00534
10.1021/bm060099n
10.1016/j.msec.2018.03.015
10.1016/j.carbpol.2019.115297
10.1016/j.carbpol.2020.115983
10.1016/j.cell.2011.02.013
10.1002/anie.201311136
10.1021/acsbiomaterials.5b00305
10.1016/j.carbpol.2016.06.109
10.1080/21691401.2018.1443116
10.1002/adma.201300081
10.1002/adma.201501420
10.1039/C5CS00224A
10.1002/adfm.201803804
10.1177/0885328218782355
10.1002/adma.201901015
10.1038/nbt1340
10.1016/j.biomaterials.2016.12.027
10.1002/adfm.201302312
10.1021/acs.molpharmaceut.9b00433
10.1002/adma.201808166
10.1016/j.phrs.2019.01.005
10.1002/smll.201906585
10.1016/j.jphotobiol.2019.01.005
10.1016/j.carbpol.2018.10.076
10.1016/j.biomaterials.2018.05.055
10.1002/adma.201500870
10.1021/acsnano.7b00476
10.1021/nn402201w
10.1021/jacs.9b04725
10.1016/j.carbpol.2019.115281
10.1002/adma.201402964
10.1002/anie.201807847
10.1002/anie.200705537
10.1002/smll.201702815
10.1038/am.2016.63
10.1016/j.addr.2009.03.009
10.1039/C9BM01377F
10.1016/j.carbpol.2017.10.033
10.1038/s41598-019-56754-8
10.1038/nnano.2012.237
10.1021/acs.nanolett.9b02834
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1016/j.carbpol.2020.116344
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
MEDLINE - Academic
AGRICOLA
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-1344
ExternalDocumentID 32507204
10_1016_j_carbpol_2020_116344
S014486172030518X
Genre Journal Article
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATLK
AAXUO
ABFNM
ABFRF
ABGRD
ABGSF
ABJNI
ABMAC
ABUDA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADQTV
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CBWCG
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LW9
M24
M2Y
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SAB
SDF
SDG
SDP
SES
SPC
SPCBC
SSA
SSK
SSU
SSZ
T5K
Y6R
~G-
~KM
53G
AAHBH
AALCJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HLV
HMS
HVGLF
HZ~
R2-
RIG
SCB
SEW
SMS
SOC
SSH
WUQ
XPP
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ACLOT
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c464t-d32d7719d43287b49a71d0b77d36bde8cc31da6857648e37255b0114be99b4f33
IEDL.DBID AIKHN
ISSN 0144-8617
1879-1344
IngestDate Sun Sep 28 02:19:41 EDT 2025
Sun Sep 28 08:23:34 EDT 2025
Wed Feb 19 02:30:34 EST 2025
Tue Jul 01 01:24:40 EDT 2025
Thu Apr 24 22:55:17 EDT 2025
Fri Feb 23 02:46:41 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Systemic therapy
Photothermal therapy
Sodium alginate
Biosecurity
Renal clearance
Nanoclusters
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-d32d7719d43287b49a71d0b77d36bde8cc31da6857648e37255b0114be99b4f33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-9161-9121
PMID 32507204
PQID 2410727549
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2440699372
proquest_miscellaneous_2410727549
pubmed_primary_32507204
crossref_citationtrail_10_1016_j_carbpol_2020_116344
crossref_primary_10_1016_j_carbpol_2020_116344
elsevier_sciencedirect_doi_10_1016_j_carbpol_2020_116344
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
2020-08-00
2020-Aug-01
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Carbohydrate polymers
PublicationTitleAlternate Carbohydr Polym
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Lazarovits, Poon, Ouyang, Nguyen, Kingston (bib0310) 2019; 19
Li, Le, Bui, Yang, Lee (bib0135) 2019; 226
Hou, Xia, Alfranca, Yan, Zhi, Liu (bib0080) 2017; 120
Loynachan, Soleimany, Dudani, Lin, Najer, Bekdemir (bib0175) 2019; 14
Keshavarz, Moloudi, Paydar, Abed, Beik, Ghaznavi (bib0105) 2018; 33
Yang, Phua, Bindra, Zhao (bib0270) 2019; 31
Li, Xun, Pei, Liu, Peng, Du (bib0140) 2019; 141
Deng, Dai, Ma, Zhang (bib0045) 2015; 27
Park, Lee, Park, Choi, Kim, Park (bib0190) 2019; 9
Hanahan, Weinberg (bib0070) 2011; 144
Liu, Hong, Luo, Chen, Chang, Gong (bib0160) 2019; 31
Khademi, Sarkar, Shakeri-Zadeh, Attaran, Kharrazi, Ay (bib0110) 2018; 89
Zhang, Chen, Min, Park, Shen, Song (bib0305) 2014; 24
Chen, Wang, Tang, Todd, Zhen, Tsang (bib0030) 2014; 26
Zhang, Wang, Wu, Xu, Nie, Zhao (bib0315) 2019; 15
Huang, Lovell (bib0085) 2017; 27
Lu, Zhou, Hou, Xiong, Chen, Pu (bib0180) 2019; 31
Xu, Han, Yang, Jia, Dong, Bi (bib0260) 2018; 28
Beik, Jafariyan, Montazerabadi, Ghadimi-Daresajini, Tarighi, Mahmoudabadi (bib0020) 2017; 46
Chen, Liu (bib0025) 2016; 28
Yang, Dai, Yin, Fan, Zhang, Song (bib0265) 2018; 30
Yu, Xu, Zheng (bib0290) 2019; 58
Chi, Jiang, Chen, Peng, Liu, Han (bib0035) 2019; 226
Lee, Choi, Hyeon (bib0120) 2013; 25
Tan, Arshadi, Lee, Godec, Azizi, Yan (bib0205) 2019; 13
Jiang, Upputuri, Xie, Zeng, Sharma, Zhen (bib0100) 2019; 31
Xing, Zou, Yuan, Zhao, Chang, Yan (bib0255) 2019; 31
Jia, Han, Pei, Zhao, Tian, Zhou (bib0095) 2016; 152
Uthaman, Mathew, Park, Lee, Kim, Huh (bib0220) 2018; 181
Yong, Zhou, Zhang, Yan, Gu, Zhang (bib0280) 2016; 8
Tao, Liu, Wang, Qiu, Li, Zhang (bib0215) 2020; 8
Liu, Chen, Li, Huang, Jin, Ren (bib0150) 2013; 7
Zhang, Wang (bib0300) 2008; 47
Gao, Tang, Liu, Zou, Huang, Liu (bib0050) 2019; 31
Guo, Ping, Ejima, Alt, Meissner, Richardson (bib0060) 2014; 53
Wang, Li, Chen, Cai, Yao, Gao (bib0230) 2015; 27
Alhasan, Fardous, Alsudir, Majrashi, Alghamdi, Alsharaeh (bib0015) 2019; 16
Guo, Wu, Lin, Xu, Lian, Huang (bib0065) 2018; 14
Wei, Chen, Hu, Li, Wang, Shen (bib0240) 2016; 5
Vold, Kristiansen, Christensen (bib0225) 2006; 7
Alamzadeh, Beik, Mahabadi, Ardekani, Ghader, Kamrava (bib0010) 2019; 192
Xie, Du, Li, Liu (bib0250) 2019; 205
Huo, Cao, Li, Xie, Tao, Xia (bib0090) 2019; 19
Wang, Huang, Chen (bib0235) 2016; 28
Kumar, Shin, Sunwoo, Kim, Koo, Bhuniya (bib0115) 2015; 44
Tao, Ji, Zhu, Li, Wang, Zhang (bib0210) 2018; 30
Liu, Li, Yang, Hou, Lin (bib0155) 2017; 29
Lin, Wang, Gao, Chen, Shi (bib0145) 2018; 30
Salvati, Pitek, Monopoli, Prapainop, Bombelli, Hristov (bib0200) 2013; 8
Yu, Li, Zhao, Yang, Chen, Li (bib0285) 2017; 11
Li, Tang, Chen, Hao, Kurniawan, Gu (bib0125) 2018; 177
Zeinizade, Tabei, Shakeri-Zadeh, Ghaznavi, Attaran, Komeili (bib0295) 2018; 46
Aggarwal, Hall, McLeland, Dobrovolskaia, McNeil (bib0005) 2009; 61
Wei, Chen, Ma, Ji, Qiao, Zhou (bib0245) 2018; 28
Hočevar, Milošević, Rodriguez-Lorenzo, Ackermann-Hirschi, Mottas, Petri-Fink (bib0075) 2019; 13
Li, Zhang, Yu, Zhang (bib0130) 2020; 235
Choi, Liu, Misra, Tanaka, Zimmer, Ipe (bib0040) 2007; 25
Yen, Young, Tsai, Cheng, Chen, Chen (bib0275) 2018; 183
Ghosh, Goswami, Sahoo, Chattopadhyay, Ghosh (bib0055) 2015; 12
Mirrahimi, Abed, Beik, Shiri, Dezfuli, Mahabadi (bib0185) 2019; 143
Peng, Ding, Wang, Cheng, Gong, Xu (bib0195) 2019; 204
Liu, Lin, Zhang, Wang, Sheng, Xu (bib0165) 2019; 31
Liu, Wang, Li, Meng, Sun, Zhang (bib0170) 2019; 7
Chen (10.1016/j.carbpol.2020.116344_bib0030) 2014; 26
Guo (10.1016/j.carbpol.2020.116344_bib0060) 2014; 53
Li (10.1016/j.carbpol.2020.116344_bib0130) 2020; 235
Beik (10.1016/j.carbpol.2020.116344_bib0020) 2017; 46
Ghosh (10.1016/j.carbpol.2020.116344_bib0055) 2015; 12
Kumar (10.1016/j.carbpol.2020.116344_bib0115) 2015; 44
Zhang (10.1016/j.carbpol.2020.116344_bib0300) 2008; 47
Chen (10.1016/j.carbpol.2020.116344_bib0025) 2016; 28
Hočevar (10.1016/j.carbpol.2020.116344_bib0075) 2019; 13
Liu (10.1016/j.carbpol.2020.116344_bib0155) 2017; 29
Wei (10.1016/j.carbpol.2020.116344_bib0240) 2016; 5
Yen (10.1016/j.carbpol.2020.116344_bib0275) 2018; 183
Hou (10.1016/j.carbpol.2020.116344_bib0080) 2017; 120
Gao (10.1016/j.carbpol.2020.116344_bib0050) 2019; 31
Xing (10.1016/j.carbpol.2020.116344_bib0255) 2019; 31
Alamzadeh (10.1016/j.carbpol.2020.116344_bib0010) 2019; 192
Yu (10.1016/j.carbpol.2020.116344_bib0285) 2017; 11
Hanahan (10.1016/j.carbpol.2020.116344_bib0070) 2011; 144
Loynachan (10.1016/j.carbpol.2020.116344_bib0175) 2019; 14
Tan (10.1016/j.carbpol.2020.116344_bib0205) 2019; 13
Zhang (10.1016/j.carbpol.2020.116344_bib0305) 2014; 24
Zeinizade (10.1016/j.carbpol.2020.116344_bib0295) 2018; 46
Wang (10.1016/j.carbpol.2020.116344_bib0230) 2015; 27
Khademi (10.1016/j.carbpol.2020.116344_bib0110) 2018; 89
Yang (10.1016/j.carbpol.2020.116344_bib0270) 2019; 31
Yong (10.1016/j.carbpol.2020.116344_bib0280) 2016; 8
Chi (10.1016/j.carbpol.2020.116344_bib0035) 2019; 226
Uthaman (10.1016/j.carbpol.2020.116344_bib0220) 2018; 181
Choi (10.1016/j.carbpol.2020.116344_bib0040) 2007; 25
Zhang (10.1016/j.carbpol.2020.116344_bib0310) 2019; 19
Liu (10.1016/j.carbpol.2020.116344_bib0150) 2013; 7
Li (10.1016/j.carbpol.2020.116344_bib0140) 2019; 141
Tao (10.1016/j.carbpol.2020.116344_bib0210) 2018; 30
Xu (10.1016/j.carbpol.2020.116344_bib0260) 2018; 28
Huang (10.1016/j.carbpol.2020.116344_bib0085) 2017; 27
Jiang (10.1016/j.carbpol.2020.116344_bib0100) 2019; 31
Liu (10.1016/j.carbpol.2020.116344_bib0160) 2019; 31
Huo (10.1016/j.carbpol.2020.116344_bib0090) 2019; 19
Deng (10.1016/j.carbpol.2020.116344_bib0045) 2015; 27
Tao (10.1016/j.carbpol.2020.116344_bib0215) 2020; 8
Mirrahimi (10.1016/j.carbpol.2020.116344_bib0185) 2019; 143
Aggarwal (10.1016/j.carbpol.2020.116344_bib0005) 2009; 61
Park (10.1016/j.carbpol.2020.116344_bib0190) 2019; 9
Lu (10.1016/j.carbpol.2020.116344_bib0180) 2019; 31
Xie (10.1016/j.carbpol.2020.116344_bib0250) 2019; 205
Yang (10.1016/j.carbpol.2020.116344_bib0265) 2018; 30
Salvati (10.1016/j.carbpol.2020.116344_bib0200) 2013; 8
Wei (10.1016/j.carbpol.2020.116344_bib0245) 2018; 28
Liu (10.1016/j.carbpol.2020.116344_bib0165) 2019; 31
Peng (10.1016/j.carbpol.2020.116344_bib0195) 2019; 204
Lee (10.1016/j.carbpol.2020.116344_bib0120) 2013; 25
Vold (10.1016/j.carbpol.2020.116344_bib0225) 2006; 7
Keshavarz (10.1016/j.carbpol.2020.116344_bib0105) 2018; 33
Yu (10.1016/j.carbpol.2020.116344_bib0290) 2019; 58
Guo (10.1016/j.carbpol.2020.116344_bib0065) 2018; 14
Li (10.1016/j.carbpol.2020.116344_bib0135) 2019; 226
Lin (10.1016/j.carbpol.2020.116344_bib0145) 2018; 30
Jia (10.1016/j.carbpol.2020.116344_bib0095) 2016; 152
Li (10.1016/j.carbpol.2020.116344_bib0125) 2018; 177
Alhasan (10.1016/j.carbpol.2020.116344_bib0015) 2019; 16
Liu (10.1016/j.carbpol.2020.116344_bib0170) 2019; 7
Wang (10.1016/j.carbpol.2020.116344_bib0235) 2016; 28
Zhang (10.1016/j.carbpol.2020.116344_bib0315) 2019; 15
References_xml – volume: 9
  start-page: 20180
  year: 2019
  ident: bib0190
  article-title: Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy
  publication-title: Scientific Reports
– volume: 120
  start-page: 103
  year: 2017
  end-page: 114
  ident: bib0080
  article-title: Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions
  publication-title: Biomaterials
– volume: 28
  year: 2018
  ident: bib0245
  article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy
  publication-title: Advanced Functional Materials
– volume: 8
  start-page: 137
  year: 2013
  end-page: 143
  ident: bib0200
  article-title: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
  publication-title: Nature Nanotechnology
– volume: 143
  start-page: 178
  year: 2019
  end-page: 185
  ident: bib0185
  article-title: A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy
  publication-title: Pharmacological Research
– volume: 13
  start-page: 9016
  year: 2019
  end-page: 9027
  ident: bib0205
  article-title: A robust aqueous core-shell-shell coconut-like nanostructure for stimuli-responsive delivery of hydrophilic cargo
  publication-title: ACS Nano
– volume: 33
  start-page: 161
  year: 2018
  end-page: 169
  ident: bib0105
  article-title: Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy
  publication-title: Journal of Biomaterials Applications
– volume: 204
  start-page: 32
  year: 2019
  end-page: 41
  ident: bib0195
  article-title: Novel dual responsive alginate-based magnetic nanogels for onco-theranostics
  publication-title: Carbohydrate Polymers
– volume: 31
  year: 2019
  ident: bib0160
  article-title: Atomic-precision gold clusters for NIR-II imaging
  publication-title: Advanced Materials
– volume: 16
  start-page: 3577
  year: 2019
  end-page: 3587
  ident: bib0015
  article-title: Polymeric reactor for the synthesis of superparamagnetic-thermal treatment of breast cancer
  publication-title: Molecular Pharmaceutics
– volume: 19
  start-page: 7226
  year: 2019
  end-page: 7235
  ident: bib0310
  article-title: Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity
  publication-title: Nano Letters
– volume: 27
  start-page: 3645
  year: 2015
  end-page: 3653
  ident: bib0045
  article-title: Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance
  publication-title: Advanced Materials
– volume: 177
  start-page: 40
  year: 2018
  end-page: 51
  ident: bib0125
  article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy
  publication-title: Biomaterials
– volume: 7
  start-page: 2136
  year: 2006
  end-page: 2146
  ident: bib0225
  article-title: A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors
  publication-title: Biomacromolecules
– volume: 7
  start-page: 4990
  year: 2019
  end-page: 5001
  ident: bib0170
  article-title: Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials
  publication-title: Biomaterials Science
– volume: 13
  start-page: 6790
  year: 2019
  end-page: 6800
  ident: bib0075
  article-title: Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro
  publication-title: ACS Nano
– volume: 25
  start-page: 2641
  year: 2013
  end-page: 2660
  ident: bib0120
  article-title: Nano-sized CT contrast agents
  publication-title: Advanced Materials
– volume: 27
  year: 2017
  ident: bib0085
  article-title: Advanced functional nanomaterials for theranostics
  publication-title: Advanced Functional Materials
– volume: 7
  start-page: 6244
  year: 2013
  end-page: 6257
  ident: bib0150
  article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior
  publication-title: ACS Nano
– volume: 235
  year: 2020
  ident: bib0130
  article-title: A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy
  publication-title: Carbohydrate Polymers
– volume: 89
  start-page: 182
  year: 2018
  end-page: 193
  ident: bib0110
  article-title: Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells
  publication-title: Materials Science and Engineering: C
– volume: 31
  year: 2019
  ident: bib0180
  article-title: Functional macromolecule-enabled colloidal synthesis: From nanoparticle engineering to multifunctionality
  publication-title: Advanced Materials
– volume: 31
  year: 2019
  ident: bib0255
  article-title: Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics
  publication-title: Advanced Materials
– volume: 46
  start-page: 1026
  year: 2018
  end-page: 1038
  ident: bib0295
  article-title: Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
– volume: 141
  start-page: 18013
  year: 2019
  end-page: 18020
  ident: bib0140
  article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions
  publication-title: Journal of the American Chemical Society
– volume: 28
  start-page: 7340
  year: 2016
  end-page: 7364
  ident: bib0235
  article-title: Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization
  publication-title: Advanced Materials
– volume: 58
  start-page: 4112
  year: 2019
  end-page: 4128
  ident: bib0290
  article-title: Renal clearable luminescent gold nanoparticles: From the bench to theclinic
  publication-title: Angewandte Chemie-International Edition
– volume: 192
  start-page: 19
  year: 2019
  end-page: 25
  ident: bib0010
  article-title: Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method
  publication-title: Journal of Photochemistry & Photobiology, B: Biology
– volume: 144
  start-page: 646
  year: 2011
  end-page: 674
  ident: bib0070
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
– volume: 205
  start-page: 377
  year: 2019
  end-page: 384
  ident: bib0250
  article-title: Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging
  publication-title: Carbohydrate Polymers
– volume: 30
  year: 2018
  ident: bib0265
  article-title: Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo
  publication-title: Advanced Materials
– volume: 47
  start-page: 3984
  year: 2008
  end-page: 3987
  ident: bib0300
  article-title: Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion
  publication-title: Angewandte Chemie-International Edition
– volume: 14
  start-page: 883
  year: 2019
  end-page: 890
  ident: bib0175
  article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring
  publication-title: Nature Nanotechnology
– volume: 11
  start-page: 3990
  year: 2017
  end-page: 4001
  ident: bib0285
  article-title: Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy
  publication-title: ACS Nano
– volume: 31
  year: 2019
  ident: bib0100
  article-title: Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging
  publication-title: Advanced Materials
– volume: 44
  start-page: 6670
  year: 2015
  end-page: 6683
  ident: bib0115
  article-title: Small conjugate-based theranostic agents: An encouraging approach for cancer therapy
  publication-title: Chemical Society Reviews
– volume: 28
  year: 2018
  ident: bib0260
  article-title: Tumor microenvironment-responsive mesoporous MnO
  publication-title: Advanced Functional Materials
– volume: 181
  start-page: 1
  year: 2018
  end-page: 9
  ident: bib0220
  article-title: IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy
  publication-title: Carbohydrate Polymers
– volume: 226
  year: 2019
  ident: bib0035
  article-title: Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates
  publication-title: Carbohydrate Polymers
– volume: 31
  year: 2019
  ident: bib0050
  article-title: Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors
  publication-title: Advanced Materials
– volume: 8
  start-page: 342
  year: 2020
  end-page: 352
  ident: bib0215
  article-title: Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer
  publication-title: Biomaterials Science
– volume: 5
  start-page: 3203
  year: 2016
  end-page: 3213
  ident: bib0240
  article-title: Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy and gene silencing of tumors
  publication-title: Advanced Healthcare Materials
– volume: 24
  start-page: 1718
  year: 2014
  end-page: 1729
  ident: bib0305
  article-title: Metabolizable Bi
  publication-title: Advanced Functional Materials
– volume: 61
  start-page: 428
  year: 2009
  end-page: 437
  ident: bib0005
  article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy
  publication-title: Advanced Drug Delivery Reviews
– volume: 26
  start-page: 6761
  year: 2014
  end-page: 6766
  ident: bib0030
  article-title: Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging
  publication-title: Advanced Materials
– volume: 14
  year: 2018
  ident: bib0065
  article-title: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy
  publication-title: Small
– volume: 29
  year: 2017
  ident: bib0155
  article-title: 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications
  publication-title: Advanced Materials
– volume: 30
  year: 2018
  ident: bib0145
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Advanced Materials
– volume: 31
  year: 2019
  ident: bib0165
  article-title: A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy
  publication-title: Advanced Materials
– volume: 8
  start-page: e273
  year: 2016
  ident: bib0280
  article-title: Gadolinium polytungstate nanoclusters: A new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer
  publication-title: NPG Asia Materials
– volume: 12
  start-page: 1256
  year: 2015
  end-page: 1266
  ident: bib0055
  article-title: Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer thernostics
  publication-title: ACS Biomaterials Science & Engineering
– volume: 46
  start-page: 1993
  year: 2017
  end-page: 2001
  ident: bib0020
  article-title: The benefits of folic acid-modified gold nanopartical in CT-based molecular imaimg: Radiation dose reduction and image contrast enhancement
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
– volume: 226
  year: 2019
  ident: bib0135
  article-title: Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy
  publication-title: Carbohydrate Polymers
– volume: 15
  year: 2019
  ident: bib0315
  article-title: Oxidation-responsive nanoassemblies for light-enhanced gene therapy
  publication-title: Small
– volume: 53
  start-page: 5546
  year: 2014
  end-page: 5551
  ident: bib0060
  article-title: Engineering multifunctional capsules through the assembly of metal-phenolic networks
  publication-title: Angewandte Chemie-International Edition
– volume: 25
  start-page: 1165
  year: 2007
  end-page: 1170
  ident: bib0040
  article-title: Renal clearance of quantum dots
  publication-title: Nature Biotechnology
– volume: 19
  start-page: 3115
  year: 2019
  end-page: 3121
  ident: bib0090
  article-title: Seed-mediated growth of Au nanospheres into hexagonal stars and the emergence of a hexagonal close-packed phase
  publication-title: Nano Letters
– volume: 30
  year: 2018
  ident: bib0210
  article-title: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics
  publication-title: Advanced Materials
– volume: 183
  start-page: 140
  year: 2018
  end-page: 150
  ident: bib0275
  article-title: Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells
  publication-title: Carbohydrate Polymers
– volume: 28
  start-page: 10557
  year: 2016
  end-page: 10566
  ident: bib0025
  article-title: Albumin carriers for cancer theranostics: A conventional platform with new promise
  publication-title: Advanced Materials
– volume: 152
  start-page: 391
  year: 2016
  end-page: 397
  ident: bib0095
  article-title: Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics
  publication-title: Carbohydrate Polymers
– volume: 31
  year: 2019
  ident: bib0270
  article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications
  publication-title: Advanced Materials
– volume: 27
  start-page: 2775
  year: 2015
  end-page: 2782
  ident: bib0230
  article-title: A facile one-pot synthesis of a two-dimensional MoS
  publication-title: Advanced Materials
– volume: 27
  year: 2017
  ident: 10.1016/j.carbpol.2020.116344_bib0085
  article-title: Advanced functional nanomaterials for theranostics
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201603524
– volume: 13
  start-page: 6790
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0075
  article-title: Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b01492
– volume: 28
  start-page: 10557
  year: 2016
  ident: 10.1016/j.carbpol.2020.116344_bib0025
  article-title: Albumin carriers for cancer theranostics: A conventional platform with new promise
  publication-title: Advanced Materials
  doi: 10.1002/adma.201600038
– volume: 14
  start-page: 883
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0175
  article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring
  publication-title: Nature Nanotechnology
  doi: 10.1038/s41565-019-0527-6
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0255
  article-title: Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics
  publication-title: Advanced Materials
  doi: 10.1002/adma.201900822
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0050
  article-title: Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors
  publication-title: Advanced Materials
  doi: 10.1002/adma.201904639
– volume: 13
  start-page: 9016
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0205
  article-title: A robust aqueous core-shell-shell coconut-like nanostructure for stimuli-responsive delivery of hydrophilic cargo
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b03049
– volume: 204
  start-page: 32
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0195
  article-title: Novel dual responsive alginate-based magnetic nanogels for onco-theranostics
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.09.084
– volume: 30
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0145
  article-title: Theranostic 2D tantalum carbide (MXene)
  publication-title: Advanced Materials
  doi: 10.1002/adma.201703284
– volume: 7
  start-page: 4990
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0170
  article-title: Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials
  publication-title: Biomaterials Science
  doi: 10.1039/C9BM01017C
– volume: 28
  start-page: 7340
  year: 2016
  ident: 10.1016/j.carbpol.2020.116344_bib0235
  article-title: Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization
  publication-title: Advanced Materials
  doi: 10.1002/adma.201601498
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0165
  article-title: A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902885
– volume: 30
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0210
  article-title: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics
  publication-title: Advanced Materials
– volume: 183
  start-page: 140
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0275
  article-title: Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.11.096
– volume: 5
  start-page: 3203
  year: 2016
  ident: 10.1016/j.carbpol.2020.116344_bib0240
  article-title: Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy and gene silencing of tumors
  publication-title: Advanced Healthcare Materials
  doi: 10.1002/adhm.201600923
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0180
  article-title: Functional macromolecule-enabled colloidal synthesis: From nanoparticle engineering to multifunctionality
  publication-title: Advanced Materials
  doi: 10.1002/adma.201902733
– volume: 19
  start-page: 3115
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0090
  article-title: Seed-mediated growth of Au nanospheres into hexagonal stars and the emergence of a hexagonal close-packed phase
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.9b00534
– volume: 7
  start-page: 2136
  year: 2006
  ident: 10.1016/j.carbpol.2020.116344_bib0225
  article-title: A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors
  publication-title: Biomacromolecules
  doi: 10.1021/bm060099n
– volume: 89
  start-page: 182
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0110
  article-title: Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells
  publication-title: Materials Science and Engineering: C
  doi: 10.1016/j.msec.2018.03.015
– volume: 226
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0035
  article-title: Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2019.115297
– volume: 235
  year: 2020
  ident: 10.1016/j.carbpol.2020.116344_bib0130
  article-title: A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2020.115983
– volume: 144
  start-page: 646
  year: 2011
  ident: 10.1016/j.carbpol.2020.116344_bib0070
  article-title: Hallmarks of cancer: The next generation
  publication-title: Cell
  doi: 10.1016/j.cell.2011.02.013
– volume: 53
  start-page: 5546
  year: 2014
  ident: 10.1016/j.carbpol.2020.116344_bib0060
  article-title: Engineering multifunctional capsules through the assembly of metal-phenolic networks
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.201311136
– volume: 12
  start-page: 1256
  year: 2015
  ident: 10.1016/j.carbpol.2020.116344_bib0055
  article-title: Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer thernostics
  publication-title: ACS Biomaterials Science & Engineering
  doi: 10.1021/acsbiomaterials.5b00305
– volume: 152
  start-page: 391
  year: 2016
  ident: 10.1016/j.carbpol.2020.116344_bib0095
  article-title: Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2016.06.109
– volume: 46
  start-page: 1026
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0295
  article-title: Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
  doi: 10.1080/21691401.2018.1443116
– volume: 25
  start-page: 2641
  year: 2013
  ident: 10.1016/j.carbpol.2020.116344_bib0120
  article-title: Nano-sized CT contrast agents
  publication-title: Advanced Materials
  doi: 10.1002/adma.201300081
– volume: 27
  start-page: 3645
  year: 2015
  ident: 10.1016/j.carbpol.2020.116344_bib0045
  article-title: Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance
  publication-title: Advanced Materials
  doi: 10.1002/adma.201501420
– volume: 44
  start-page: 6670
  year: 2015
  ident: 10.1016/j.carbpol.2020.116344_bib0115
  article-title: Small conjugate-based theranostic agents: An encouraging approach for cancer therapy
  publication-title: Chemical Society Reviews
  doi: 10.1039/C5CS00224A
– volume: 28
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0260
  article-title: Tumor microenvironment-responsive mesoporous MnO2-coated up conversion nanoplatform for self-enhanced tumor theranostics
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201803804
– volume: 33
  start-page: 161
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0105
  article-title: Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy
  publication-title: Journal of Biomaterials Applications
  doi: 10.1177/0885328218782355
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0160
  article-title: Atomic-precision gold clusters for NIR-II imaging
  publication-title: Advanced Materials
  doi: 10.1002/adma.201901015
– volume: 25
  start-page: 1165
  year: 2007
  ident: 10.1016/j.carbpol.2020.116344_bib0040
  article-title: Renal clearance of quantum dots
  publication-title: Nature Biotechnology
  doi: 10.1038/nbt1340
– volume: 30
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0265
  article-title: Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo
  publication-title: Advanced Materials
– volume: 120
  start-page: 103
  year: 2017
  ident: 10.1016/j.carbpol.2020.116344_bib0080
  article-title: Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2016.12.027
– volume: 24
  start-page: 1718
  year: 2014
  ident: 10.1016/j.carbpol.2020.116344_bib0305
  article-title: Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging
  publication-title: Advanced Functional Materials
  doi: 10.1002/adfm.201302312
– volume: 16
  start-page: 3577
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0015
  article-title: Polymeric reactor for the synthesis of superparamagnetic-thermal treatment of breast cancer
  publication-title: Molecular Pharmaceutics
  doi: 10.1021/acs.molpharmaceut.9b00433
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0100
  article-title: Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging
  publication-title: Advanced Materials
  doi: 10.1002/adma.201808166
– volume: 143
  start-page: 178
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0185
  article-title: A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy
  publication-title: Pharmacological Research
  doi: 10.1016/j.phrs.2019.01.005
– volume: 15
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0315
  article-title: Oxidation-responsive nanoassemblies for light-enhanced gene therapy
  publication-title: Small
  doi: 10.1002/smll.201906585
– volume: 192
  start-page: 19
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0010
  article-title: Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method
  publication-title: Journal of Photochemistry & Photobiology, B: Biology
  doi: 10.1016/j.jphotobiol.2019.01.005
– volume: 205
  start-page: 377
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0250
  article-title: Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2018.10.076
– volume: 177
  start-page: 40
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0125
  article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.05.055
– volume: 27
  start-page: 2775
  year: 2015
  ident: 10.1016/j.carbpol.2020.116344_bib0230
  article-title: A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy
  publication-title: Advanced Materials
  doi: 10.1002/adma.201500870
– volume: 11
  start-page: 3990
  year: 2017
  ident: 10.1016/j.carbpol.2020.116344_bib0285
  article-title: Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00476
– volume: 7
  start-page: 6244
  year: 2013
  ident: 10.1016/j.carbpol.2020.116344_bib0150
  article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior
  publication-title: ACS Nano
  doi: 10.1021/nn402201w
– volume: 141
  start-page: 18013
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0140
  article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions
  publication-title: Journal of the American Chemical Society
  doi: 10.1021/jacs.9b04725
– volume: 226
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0135
  article-title: Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2019.115281
– volume: 26
  start-page: 6761
  year: 2014
  ident: 10.1016/j.carbpol.2020.116344_bib0030
  article-title: Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging
  publication-title: Advanced Materials
  doi: 10.1002/adma.201402964
– volume: 29
  year: 2017
  ident: 10.1016/j.carbpol.2020.116344_bib0155
  article-title: 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications
  publication-title: Advanced Materials
– volume: 58
  start-page: 4112
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0290
  article-title: Renal clearable luminescent gold nanoparticles: From the bench to theclinic
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.201807847
– volume: 46
  start-page: 1993
  year: 2017
  ident: 10.1016/j.carbpol.2020.116344_bib0020
  article-title: The benefits of folic acid-modified gold nanopartical in CT-based molecular imaimg: Radiation dose reduction and image contrast enhancement
  publication-title: Artificial Cells, Nanomedicine, and Biotechnology
– volume: 31
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0270
  article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications
  publication-title: Advanced Materials
– volume: 47
  start-page: 3984
  year: 2008
  ident: 10.1016/j.carbpol.2020.116344_bib0300
  article-title: Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion
  publication-title: Angewandte Chemie-International Edition
  doi: 10.1002/anie.200705537
– volume: 14
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0065
  article-title: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy
  publication-title: Small
  doi: 10.1002/smll.201702815
– volume: 8
  start-page: e273
  year: 2016
  ident: 10.1016/j.carbpol.2020.116344_bib0280
  article-title: Gadolinium polytungstate nanoclusters: A new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer
  publication-title: NPG Asia Materials
  doi: 10.1038/am.2016.63
– volume: 61
  start-page: 428
  year: 2009
  ident: 10.1016/j.carbpol.2020.116344_bib0005
  article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy
  publication-title: Advanced Drug Delivery Reviews
  doi: 10.1016/j.addr.2009.03.009
– volume: 8
  start-page: 342
  year: 2020
  ident: 10.1016/j.carbpol.2020.116344_bib0215
  article-title: Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer
  publication-title: Biomaterials Science
  doi: 10.1039/C9BM01377F
– volume: 181
  start-page: 1
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0220
  article-title: IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy
  publication-title: Carbohydrate Polymers
  doi: 10.1016/j.carbpol.2017.10.033
– volume: 28
  year: 2018
  ident: 10.1016/j.carbpol.2020.116344_bib0245
  article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy
  publication-title: Advanced Functional Materials
– volume: 9
  start-page: 20180
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0190
  article-title: Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy
  publication-title: Scientific Reports
  doi: 10.1038/s41598-019-56754-8
– volume: 8
  start-page: 137
  year: 2013
  ident: 10.1016/j.carbpol.2020.116344_bib0200
  article-title: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface
  publication-title: Nature Nanotechnology
  doi: 10.1038/nnano.2012.237
– volume: 19
  start-page: 7226
  year: 2019
  ident: 10.1016/j.carbpol.2020.116344_bib0310
  article-title: Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity
  publication-title: Nano Letters
  doi: 10.1021/acs.nanolett.9b02834
SSID ssj0000610
Score 2.5031953
Snippet •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on...
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA)...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 116344
SubjectTerms adverse effects
Alginates - chemistry
animal experimentation
Animals
biocompatibility
Biosecurity
gold
Gold - pharmacokinetics
Gold - pharmacology
half life
HEK293 Cells
Humans
KB Cells
ligands
Metal Nanoparticles - therapeutic use
Mice, Inbred BALB C
Mice, Nude
Nanoclusters
nanogold
neoplasms
Neoplasms - therapy
Photothermal Therapy
photothermotherapy
Renal clearance
Sodium alginate
Systemic therapy
Tumor Microenvironment
Title Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance
URI https://dx.doi.org/10.1016/j.carbpol.2020.116344
https://www.ncbi.nlm.nih.gov/pubmed/32507204
https://www.proquest.com/docview/2410727549
https://www.proquest.com/docview/2440699372
Volume 241
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWBBvCkvGYk1lMRu4o5VBSogmEDqZsWPlqKSVCUdGOC3cxcnPAZAYkzkiyzf6e774nsAnOjQtaOU2uM5hwQFlwUyMnTLjmBC8BQ5BRUK39zG_XtxNWgPFqBX18JQWmXl-71PL7119aZVnWZrOh63KC1JSArAZLOhHCzCUoTRXjZgqXt53b_94pDLpgS0PiCBz0Ke1iOywJme5nQJEZH_iLkQP4WonyBoGYou1mC1wpCs67e5Dgsu24DlXj26bRNeuxMat1A4VhaGIKhkFL_8bz-WjpBjj0qNsHzIRvnEsizNcjOZU9eEZ4Y4lvkOz2PDpg95UVZpPaGor9Z6YWlmmSubT2DMYjNHnzU0gIJsaAvuL87vev2gmrMQGBGLIrA8skkSdqzgyJ-06KRJaM90klgea-ukMTy0aSyRmgjpeIIsRBOP0q7T0WLI-TY0sjxzu8Askm2prTVclL3tZRhaG-koQeQxbFvZBFEfrTJVE3KahTFRdbbZo6o0okgjymukCacfYlPfheMvAVnrTX0zJ4WR4i_R41rPCtVG9ydp5vL5s0Kwc4ZwDxn1b2uolBgxX9SEHW8kHzvmCDdpJtDe_ze3Dyv05DMQD6BRzObuEFFRoY9g8fQtPKps_x3cAAz6
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5JBeUGkLBErZSr2aYO_G3hyjqCiUJCci5bbyPhKCgh0F58CB_86M1w7tgSL1au9YK8945vu88wD4qUPXjVJqj-ccEhRcFsjI0Ck7ggnBU-QUVCg8nsTDqfg96872YFDXwlBaZeX7vU8vvXV1pVO9zc56uexQWpKQFIDJZkM5-wBNQUOtG9DsX98MJ3845LIpAa0PSOC1kKdzjyxwo9c5HUJE5D9iLsRbIeotCFqGoqtPsF9hSNb32zyAPZd9htagHt32BZ77Kxq3UDhWFoYgqGQUv_xvP5YukGMvSo2wfM4W-cqyLM1ys9pS14RHhjiW-Q7PS8PWd3lRVmk9oKiv1npiaWaZK5tPYMxiG0ePNTSAgmzoK0yvft0OhkE1ZyEwIhZFYHlkkyTsWcGRP2nRS5PQXuoksTzW1kljeGjTWCI1EdLxBFmIJh6lXa-nxZzzQ2hkeeaOgVkk21Jba7goe9vLMLQ20lGCyGPetbINon61ylRNyGkWxkrV2Wb3qtKIIo0or5E2XOzE1r4Lx3sCstab-sucFEaK90R_1HpWqDY6P0kzl28fFYKdS4R7yKj_tYZKiRHzRW048kay2zFHuEkzgU7-f3Pn0BrejkdqdD25OYWPdMdnI36DRrHZujNESIX-Xn0BLzCjDuA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alginate+mediated+functional+aggregation+of+gold+nanoclusters+for+systemic+photothermal+therapy+and+efficient+renal+clearance&rft.jtitle=Carbohydrate+polymers&rft.au=Zhao%2C+Pin&rft.au=Liu%2C+Shuwei&rft.au=Wang%2C+Lu&rft.au=Liu%2C+Guojian&rft.date=2020-08-01&rft.issn=0144-8617&rft.volume=241+p.116344-&rft_id=info:doi/10.1016%2Fj.carbpol.2020.116344&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon