Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance
•Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulatio...
Saved in:
Published in | Carbohydrate polymers Vol. 241; p. 116344 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.08.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0144-8617 1879-1344 1879-1344 |
DOI | 10.1016/j.carbpol.2020.116344 |
Cover
Abstract | •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulation and prolongs the half-life to ∼9.3 h.
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology. |
---|---|
AbstractList | •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on photothermal conversion of AuNCs, endowing systemic photothermal therapy.•Sodium alginate delays renal clearance of AuNCs in blood circulation and prolongs the half-life to ∼9.3 h.
For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology. For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology.For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t1/2) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology. For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t₁/₂) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology. For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA) stabilized gold (Au) NCs. The Au NCs are of high biocompatibility and renal clearable. Contributed from the ligands of SA, the half-life (t ) of Au NCs is prolonged to ∼9.3 h, enhancing the tumor accumulation rate to 10.4 %ID/g. In tumor microenvironment (TME), the Au NCs are stimulated to functionally aggregate, which switches on the photothermal effect. Animal experiments prove that Au NCs aggregates are efficient photothermal therapy (PTT) agents for both local treatment of single tumors and systemic treatment of double-tumor models without causing noticeable side effects, confirming the biosecurity of Au NCs and systemic PTT. The switchable strategy of PTT may signify the establishment of a new systemic therapeutic methodology. |
ArticleNumber | 116344 |
Author | Liu, Guojian Lin, Min Wang, Lu Zhang, Hao Zhao, Pin Liu, Shuwei Cheng, Yanru Sui, Kunyan |
Author_xml | – sequence: 1 givenname: Pin surname: Zhao fullname: Zhao, Pin organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China – sequence: 2 givenname: Shuwei surname: Liu fullname: Liu, Shuwei organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China – sequence: 3 givenname: Lu surname: Wang fullname: Wang, Lu organization: Department of Oral Pathology, School and Hospital of Stomatology, Jilin University, Changchun 130021, PR China – sequence: 4 givenname: Guojian surname: Liu fullname: Liu, Guojian organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China – sequence: 5 givenname: Yanru surname: Cheng fullname: Cheng, Yanru organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China – sequence: 6 givenname: Min orcidid: 0000-0001-9161-9121 surname: Lin fullname: Lin, Min email: linmin900401@126.com organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China – sequence: 7 givenname: Kunyan surname: Sui fullname: Sui, Kunyan email: sky@qdu.edu.cn organization: State Key Laboratory of Bio-Fibers and Eco-Textiles, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, College of Materials Science and Engineering, Institute of Marine Biobased Materials, Qingdao University, Qingdao 266071, PR China – sequence: 8 givenname: Hao surname: Zhang fullname: Zhang, Hao email: hao_zhang@jlu.edu.cn organization: State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, PR China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32507204$$D View this record in MEDLINE/PubMed |
BookMark | eNqNkUGP1SAUhYkZ47wZ_Qkalm76hEJLGxdmMnFGk0nc6JpQuO3wQqECNXkL_7vU92bjZmRzL-ScQ_KdK3ThgweE3lKyp4S2Hw57reKwBLevSV3eaMs4f4F2tBN9Rct-gXaEcl51LRWX6CqlAymnpeQVumR1Q0RN-A79vnGT9SoDnsHYMg0eV6-zDV45rKYpwqS2Gw4jnoIz2CsftFtThpjwGCJOx7LPVuPlMeSQHyHOxbpNtRyx8gbDOFptwWccYYvVDlRUXsNr9HJULsGb87xGP-4-f7_9Uj18u_96e_NQad7yXBlWGyFobzirOzHwXglqyCCEYe1goNOaUaParhEt74CJumkGQikfoO8HPjJ2jd6fcpcYfq6Qspxt0uCc8hDWJGvOSdv3xfkfUlrQiYb3RfruLF2HQk8u0c4qHuUT3SL4eBLoGFKKMEpt81-aOSrrJCVy61Ie5LlLuXUpT10Wd_OP--mD53yfTj4oRH9ZiDJt8HXpN4LO0gT7TMIf95i87A |
CitedBy_id | crossref_primary_10_1039_D1NJ03714E crossref_primary_10_1016_j_ijpharm_2021_120848 crossref_primary_10_1007_s42114_021_00368_0 crossref_primary_10_1039_D0CS00461H crossref_primary_10_3390_molecules29071574 crossref_primary_10_1016_j_biomaterials_2024_122805 crossref_primary_10_1039_D3TB02444J crossref_primary_10_1016_j_jconrel_2022_12_051 crossref_primary_10_1002_mame_202100885 crossref_primary_10_3390_nano11081946 crossref_primary_10_1021_acsami_4c04303 crossref_primary_10_1039_D4TA03900A crossref_primary_10_1039_D3TB02797J crossref_primary_10_1088_1748_605X_ac5a23 crossref_primary_10_1039_D3TB00651D crossref_primary_10_1016_j_ccr_2022_214540 crossref_primary_10_1021_acsbiomaterials_4c00669 crossref_primary_10_1007_s42114_022_00479_2 crossref_primary_10_1016_j_carbpol_2023_121643 crossref_primary_10_1016_j_ijbiomac_2024_139211 crossref_primary_10_1039_D0RA03069D crossref_primary_10_1016_j_carbpol_2022_120311 crossref_primary_10_1021_acs_biomac_4c00091 crossref_primary_10_1007_s12088_024_01274_x crossref_primary_10_1021_acsabm_3c00518 crossref_primary_10_1021_acsabm_0c00573 crossref_primary_10_1016_j_clay_2021_106106 crossref_primary_10_3390_nano11051113 crossref_primary_10_1021_acsomega_3c03538 crossref_primary_10_1515_ntrev_2023_0193 crossref_primary_10_1007_s00216_024_05303_y crossref_primary_10_1016_j_carbpol_2022_119998 |
Cites_doi | 10.1002/adfm.201603524 10.1021/acsnano.9b01492 10.1002/adma.201600038 10.1038/s41565-019-0527-6 10.1002/adma.201900822 10.1002/adma.201904639 10.1021/acsnano.9b03049 10.1016/j.carbpol.2018.09.084 10.1002/adma.201703284 10.1039/C9BM01017C 10.1002/adma.201601498 10.1002/adma.201902885 10.1016/j.carbpol.2017.11.096 10.1002/adhm.201600923 10.1002/adma.201902733 10.1021/acs.nanolett.9b00534 10.1021/bm060099n 10.1016/j.msec.2018.03.015 10.1016/j.carbpol.2019.115297 10.1016/j.carbpol.2020.115983 10.1016/j.cell.2011.02.013 10.1002/anie.201311136 10.1021/acsbiomaterials.5b00305 10.1016/j.carbpol.2016.06.109 10.1080/21691401.2018.1443116 10.1002/adma.201300081 10.1002/adma.201501420 10.1039/C5CS00224A 10.1002/adfm.201803804 10.1177/0885328218782355 10.1002/adma.201901015 10.1038/nbt1340 10.1016/j.biomaterials.2016.12.027 10.1002/adfm.201302312 10.1021/acs.molpharmaceut.9b00433 10.1002/adma.201808166 10.1016/j.phrs.2019.01.005 10.1002/smll.201906585 10.1016/j.jphotobiol.2019.01.005 10.1016/j.carbpol.2018.10.076 10.1016/j.biomaterials.2018.05.055 10.1002/adma.201500870 10.1021/acsnano.7b00476 10.1021/nn402201w 10.1021/jacs.9b04725 10.1016/j.carbpol.2019.115281 10.1002/adma.201402964 10.1002/anie.201807847 10.1002/anie.200705537 10.1002/smll.201702815 10.1038/am.2016.63 10.1016/j.addr.2009.03.009 10.1039/C9BM01377F 10.1016/j.carbpol.2017.10.033 10.1038/s41598-019-56754-8 10.1038/nnano.2012.237 10.1021/acs.nanolett.9b02834 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1016/j.carbpol.2020.116344 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | MEDLINE - Academic AGRICOLA MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1879-1344 |
ExternalDocumentID | 32507204 10_1016_j_carbpol_2020_116344 S014486172030518X |
Genre | Journal Article |
GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JM 9JN AABNK AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATLK AAXUO ABFNM ABFRF ABGRD ABGSF ABJNI ABMAC ABUDA ABYKQ ACDAQ ACGFO ACGFS ACIUM ACRLP ADBBV ADECG ADEZE ADQTV ADUVX AEBSH AEFWE AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CBWCG CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM LW9 M24 M2Y M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SAB SDF SDG SDP SES SPC SPCBC SSA SSK SSU SSZ T5K Y6R ~G- ~KM 53G AAHBH AALCJ AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HLV HMS HVGLF HZ~ R2- RIG SCB SEW SMS SOC SSH WUQ XPP CGR CUY CVF ECM EIF NPM 7X8 ACLOT EFKBS ~HD 7S9 L.6 |
ID | FETCH-LOGICAL-c464t-d32d7719d43287b49a71d0b77d36bde8cc31da6857648e37255b0114be99b4f33 |
IEDL.DBID | AIKHN |
ISSN | 0144-8617 1879-1344 |
IngestDate | Sun Sep 28 02:19:41 EDT 2025 Sun Sep 28 08:23:34 EDT 2025 Wed Feb 19 02:30:34 EST 2025 Tue Jul 01 01:24:40 EDT 2025 Thu Apr 24 22:55:17 EDT 2025 Fri Feb 23 02:46:41 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Systemic therapy Photothermal therapy Sodium alginate Biosecurity Renal clearance Nanoclusters |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-d32d7719d43287b49a71d0b77d36bde8cc31da6857648e37255b0114be99b4f33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-9161-9121 |
PMID | 32507204 |
PQID | 2410727549 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2440699372 proquest_miscellaneous_2410727549 pubmed_primary_32507204 crossref_citationtrail_10_1016_j_carbpol_2020_116344 crossref_primary_10_1016_j_carbpol_2020_116344 elsevier_sciencedirect_doi_10_1016_j_carbpol_2020_116344 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 2020-08-00 2020-Aug-01 20200801 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Carbohydrate polymers |
PublicationTitleAlternate | Carbohydr Polym |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Zhang, Lazarovits, Poon, Ouyang, Nguyen, Kingston (bib0310) 2019; 19 Li, Le, Bui, Yang, Lee (bib0135) 2019; 226 Hou, Xia, Alfranca, Yan, Zhi, Liu (bib0080) 2017; 120 Loynachan, Soleimany, Dudani, Lin, Najer, Bekdemir (bib0175) 2019; 14 Keshavarz, Moloudi, Paydar, Abed, Beik, Ghaznavi (bib0105) 2018; 33 Yang, Phua, Bindra, Zhao (bib0270) 2019; 31 Li, Xun, Pei, Liu, Peng, Du (bib0140) 2019; 141 Deng, Dai, Ma, Zhang (bib0045) 2015; 27 Park, Lee, Park, Choi, Kim, Park (bib0190) 2019; 9 Hanahan, Weinberg (bib0070) 2011; 144 Liu, Hong, Luo, Chen, Chang, Gong (bib0160) 2019; 31 Khademi, Sarkar, Shakeri-Zadeh, Attaran, Kharrazi, Ay (bib0110) 2018; 89 Zhang, Chen, Min, Park, Shen, Song (bib0305) 2014; 24 Chen, Wang, Tang, Todd, Zhen, Tsang (bib0030) 2014; 26 Zhang, Wang, Wu, Xu, Nie, Zhao (bib0315) 2019; 15 Huang, Lovell (bib0085) 2017; 27 Lu, Zhou, Hou, Xiong, Chen, Pu (bib0180) 2019; 31 Xu, Han, Yang, Jia, Dong, Bi (bib0260) 2018; 28 Beik, Jafariyan, Montazerabadi, Ghadimi-Daresajini, Tarighi, Mahmoudabadi (bib0020) 2017; 46 Chen, Liu (bib0025) 2016; 28 Yang, Dai, Yin, Fan, Zhang, Song (bib0265) 2018; 30 Yu, Xu, Zheng (bib0290) 2019; 58 Chi, Jiang, Chen, Peng, Liu, Han (bib0035) 2019; 226 Lee, Choi, Hyeon (bib0120) 2013; 25 Tan, Arshadi, Lee, Godec, Azizi, Yan (bib0205) 2019; 13 Jiang, Upputuri, Xie, Zeng, Sharma, Zhen (bib0100) 2019; 31 Xing, Zou, Yuan, Zhao, Chang, Yan (bib0255) 2019; 31 Jia, Han, Pei, Zhao, Tian, Zhou (bib0095) 2016; 152 Uthaman, Mathew, Park, Lee, Kim, Huh (bib0220) 2018; 181 Yong, Zhou, Zhang, Yan, Gu, Zhang (bib0280) 2016; 8 Tao, Liu, Wang, Qiu, Li, Zhang (bib0215) 2020; 8 Liu, Chen, Li, Huang, Jin, Ren (bib0150) 2013; 7 Zhang, Wang (bib0300) 2008; 47 Gao, Tang, Liu, Zou, Huang, Liu (bib0050) 2019; 31 Guo, Ping, Ejima, Alt, Meissner, Richardson (bib0060) 2014; 53 Wang, Li, Chen, Cai, Yao, Gao (bib0230) 2015; 27 Alhasan, Fardous, Alsudir, Majrashi, Alghamdi, Alsharaeh (bib0015) 2019; 16 Guo, Wu, Lin, Xu, Lian, Huang (bib0065) 2018; 14 Wei, Chen, Hu, Li, Wang, Shen (bib0240) 2016; 5 Vold, Kristiansen, Christensen (bib0225) 2006; 7 Alamzadeh, Beik, Mahabadi, Ardekani, Ghader, Kamrava (bib0010) 2019; 192 Xie, Du, Li, Liu (bib0250) 2019; 205 Huo, Cao, Li, Xie, Tao, Xia (bib0090) 2019; 19 Wang, Huang, Chen (bib0235) 2016; 28 Kumar, Shin, Sunwoo, Kim, Koo, Bhuniya (bib0115) 2015; 44 Tao, Ji, Zhu, Li, Wang, Zhang (bib0210) 2018; 30 Liu, Li, Yang, Hou, Lin (bib0155) 2017; 29 Lin, Wang, Gao, Chen, Shi (bib0145) 2018; 30 Salvati, Pitek, Monopoli, Prapainop, Bombelli, Hristov (bib0200) 2013; 8 Yu, Li, Zhao, Yang, Chen, Li (bib0285) 2017; 11 Li, Tang, Chen, Hao, Kurniawan, Gu (bib0125) 2018; 177 Zeinizade, Tabei, Shakeri-Zadeh, Ghaznavi, Attaran, Komeili (bib0295) 2018; 46 Aggarwal, Hall, McLeland, Dobrovolskaia, McNeil (bib0005) 2009; 61 Wei, Chen, Ma, Ji, Qiao, Zhou (bib0245) 2018; 28 Hočevar, Milošević, Rodriguez-Lorenzo, Ackermann-Hirschi, Mottas, Petri-Fink (bib0075) 2019; 13 Li, Zhang, Yu, Zhang (bib0130) 2020; 235 Choi, Liu, Misra, Tanaka, Zimmer, Ipe (bib0040) 2007; 25 Yen, Young, Tsai, Cheng, Chen, Chen (bib0275) 2018; 183 Ghosh, Goswami, Sahoo, Chattopadhyay, Ghosh (bib0055) 2015; 12 Mirrahimi, Abed, Beik, Shiri, Dezfuli, Mahabadi (bib0185) 2019; 143 Peng, Ding, Wang, Cheng, Gong, Xu (bib0195) 2019; 204 Liu, Lin, Zhang, Wang, Sheng, Xu (bib0165) 2019; 31 Liu, Wang, Li, Meng, Sun, Zhang (bib0170) 2019; 7 Chen (10.1016/j.carbpol.2020.116344_bib0030) 2014; 26 Guo (10.1016/j.carbpol.2020.116344_bib0060) 2014; 53 Li (10.1016/j.carbpol.2020.116344_bib0130) 2020; 235 Beik (10.1016/j.carbpol.2020.116344_bib0020) 2017; 46 Ghosh (10.1016/j.carbpol.2020.116344_bib0055) 2015; 12 Kumar (10.1016/j.carbpol.2020.116344_bib0115) 2015; 44 Zhang (10.1016/j.carbpol.2020.116344_bib0300) 2008; 47 Chen (10.1016/j.carbpol.2020.116344_bib0025) 2016; 28 Hočevar (10.1016/j.carbpol.2020.116344_bib0075) 2019; 13 Liu (10.1016/j.carbpol.2020.116344_bib0155) 2017; 29 Wei (10.1016/j.carbpol.2020.116344_bib0240) 2016; 5 Yen (10.1016/j.carbpol.2020.116344_bib0275) 2018; 183 Hou (10.1016/j.carbpol.2020.116344_bib0080) 2017; 120 Gao (10.1016/j.carbpol.2020.116344_bib0050) 2019; 31 Xing (10.1016/j.carbpol.2020.116344_bib0255) 2019; 31 Alamzadeh (10.1016/j.carbpol.2020.116344_bib0010) 2019; 192 Yu (10.1016/j.carbpol.2020.116344_bib0285) 2017; 11 Hanahan (10.1016/j.carbpol.2020.116344_bib0070) 2011; 144 Loynachan (10.1016/j.carbpol.2020.116344_bib0175) 2019; 14 Tan (10.1016/j.carbpol.2020.116344_bib0205) 2019; 13 Zhang (10.1016/j.carbpol.2020.116344_bib0305) 2014; 24 Zeinizade (10.1016/j.carbpol.2020.116344_bib0295) 2018; 46 Wang (10.1016/j.carbpol.2020.116344_bib0230) 2015; 27 Khademi (10.1016/j.carbpol.2020.116344_bib0110) 2018; 89 Yang (10.1016/j.carbpol.2020.116344_bib0270) 2019; 31 Yong (10.1016/j.carbpol.2020.116344_bib0280) 2016; 8 Chi (10.1016/j.carbpol.2020.116344_bib0035) 2019; 226 Uthaman (10.1016/j.carbpol.2020.116344_bib0220) 2018; 181 Choi (10.1016/j.carbpol.2020.116344_bib0040) 2007; 25 Zhang (10.1016/j.carbpol.2020.116344_bib0310) 2019; 19 Liu (10.1016/j.carbpol.2020.116344_bib0150) 2013; 7 Li (10.1016/j.carbpol.2020.116344_bib0140) 2019; 141 Tao (10.1016/j.carbpol.2020.116344_bib0210) 2018; 30 Xu (10.1016/j.carbpol.2020.116344_bib0260) 2018; 28 Huang (10.1016/j.carbpol.2020.116344_bib0085) 2017; 27 Jiang (10.1016/j.carbpol.2020.116344_bib0100) 2019; 31 Liu (10.1016/j.carbpol.2020.116344_bib0160) 2019; 31 Huo (10.1016/j.carbpol.2020.116344_bib0090) 2019; 19 Deng (10.1016/j.carbpol.2020.116344_bib0045) 2015; 27 Tao (10.1016/j.carbpol.2020.116344_bib0215) 2020; 8 Mirrahimi (10.1016/j.carbpol.2020.116344_bib0185) 2019; 143 Aggarwal (10.1016/j.carbpol.2020.116344_bib0005) 2009; 61 Park (10.1016/j.carbpol.2020.116344_bib0190) 2019; 9 Lu (10.1016/j.carbpol.2020.116344_bib0180) 2019; 31 Xie (10.1016/j.carbpol.2020.116344_bib0250) 2019; 205 Yang (10.1016/j.carbpol.2020.116344_bib0265) 2018; 30 Salvati (10.1016/j.carbpol.2020.116344_bib0200) 2013; 8 Wei (10.1016/j.carbpol.2020.116344_bib0245) 2018; 28 Liu (10.1016/j.carbpol.2020.116344_bib0165) 2019; 31 Peng (10.1016/j.carbpol.2020.116344_bib0195) 2019; 204 Lee (10.1016/j.carbpol.2020.116344_bib0120) 2013; 25 Vold (10.1016/j.carbpol.2020.116344_bib0225) 2006; 7 Keshavarz (10.1016/j.carbpol.2020.116344_bib0105) 2018; 33 Yu (10.1016/j.carbpol.2020.116344_bib0290) 2019; 58 Guo (10.1016/j.carbpol.2020.116344_bib0065) 2018; 14 Li (10.1016/j.carbpol.2020.116344_bib0135) 2019; 226 Lin (10.1016/j.carbpol.2020.116344_bib0145) 2018; 30 Jia (10.1016/j.carbpol.2020.116344_bib0095) 2016; 152 Li (10.1016/j.carbpol.2020.116344_bib0125) 2018; 177 Alhasan (10.1016/j.carbpol.2020.116344_bib0015) 2019; 16 Liu (10.1016/j.carbpol.2020.116344_bib0170) 2019; 7 Wang (10.1016/j.carbpol.2020.116344_bib0235) 2016; 28 Zhang (10.1016/j.carbpol.2020.116344_bib0315) 2019; 15 |
References_xml | – volume: 9 start-page: 20180 year: 2019 ident: bib0190 article-title: Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy publication-title: Scientific Reports – volume: 120 start-page: 103 year: 2017 end-page: 114 ident: bib0080 article-title: Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions publication-title: Biomaterials – volume: 28 year: 2018 ident: bib0245 article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy publication-title: Advanced Functional Materials – volume: 8 start-page: 137 year: 2013 end-page: 143 ident: bib0200 article-title: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface publication-title: Nature Nanotechnology – volume: 143 start-page: 178 year: 2019 end-page: 185 ident: bib0185 article-title: A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy publication-title: Pharmacological Research – volume: 13 start-page: 9016 year: 2019 end-page: 9027 ident: bib0205 article-title: A robust aqueous core-shell-shell coconut-like nanostructure for stimuli-responsive delivery of hydrophilic cargo publication-title: ACS Nano – volume: 33 start-page: 161 year: 2018 end-page: 169 ident: bib0105 article-title: Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy publication-title: Journal of Biomaterials Applications – volume: 204 start-page: 32 year: 2019 end-page: 41 ident: bib0195 article-title: Novel dual responsive alginate-based magnetic nanogels for onco-theranostics publication-title: Carbohydrate Polymers – volume: 31 year: 2019 ident: bib0160 article-title: Atomic-precision gold clusters for NIR-II imaging publication-title: Advanced Materials – volume: 16 start-page: 3577 year: 2019 end-page: 3587 ident: bib0015 article-title: Polymeric reactor for the synthesis of superparamagnetic-thermal treatment of breast cancer publication-title: Molecular Pharmaceutics – volume: 19 start-page: 7226 year: 2019 end-page: 7235 ident: bib0310 article-title: Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity publication-title: Nano Letters – volume: 27 start-page: 3645 year: 2015 end-page: 3653 ident: bib0045 article-title: Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance publication-title: Advanced Materials – volume: 177 start-page: 40 year: 2018 end-page: 51 ident: bib0125 article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy publication-title: Biomaterials – volume: 7 start-page: 2136 year: 2006 end-page: 2146 ident: bib0225 article-title: A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors publication-title: Biomacromolecules – volume: 7 start-page: 4990 year: 2019 end-page: 5001 ident: bib0170 article-title: Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials publication-title: Biomaterials Science – volume: 13 start-page: 6790 year: 2019 end-page: 6800 ident: bib0075 article-title: Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro publication-title: ACS Nano – volume: 25 start-page: 2641 year: 2013 end-page: 2660 ident: bib0120 article-title: Nano-sized CT contrast agents publication-title: Advanced Materials – volume: 27 year: 2017 ident: bib0085 article-title: Advanced functional nanomaterials for theranostics publication-title: Advanced Functional Materials – volume: 7 start-page: 6244 year: 2013 end-page: 6257 ident: bib0150 article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior publication-title: ACS Nano – volume: 235 year: 2020 ident: bib0130 article-title: A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy publication-title: Carbohydrate Polymers – volume: 89 start-page: 182 year: 2018 end-page: 193 ident: bib0110 article-title: Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells publication-title: Materials Science and Engineering: C – volume: 31 year: 2019 ident: bib0180 article-title: Functional macromolecule-enabled colloidal synthesis: From nanoparticle engineering to multifunctionality publication-title: Advanced Materials – volume: 31 year: 2019 ident: bib0255 article-title: Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics publication-title: Advanced Materials – volume: 46 start-page: 1026 year: 2018 end-page: 1038 ident: bib0295 article-title: Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions publication-title: Artificial Cells, Nanomedicine, and Biotechnology – volume: 141 start-page: 18013 year: 2019 end-page: 18020 ident: bib0140 article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions publication-title: Journal of the American Chemical Society – volume: 28 start-page: 7340 year: 2016 end-page: 7364 ident: bib0235 article-title: Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization publication-title: Advanced Materials – volume: 58 start-page: 4112 year: 2019 end-page: 4128 ident: bib0290 article-title: Renal clearable luminescent gold nanoparticles: From the bench to theclinic publication-title: Angewandte Chemie-International Edition – volume: 192 start-page: 19 year: 2019 end-page: 25 ident: bib0010 article-title: Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method publication-title: Journal of Photochemistry & Photobiology, B: Biology – volume: 144 start-page: 646 year: 2011 end-page: 674 ident: bib0070 article-title: Hallmarks of cancer: The next generation publication-title: Cell – volume: 205 start-page: 377 year: 2019 end-page: 384 ident: bib0250 article-title: Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging publication-title: Carbohydrate Polymers – volume: 30 year: 2018 ident: bib0265 article-title: Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo publication-title: Advanced Materials – volume: 47 start-page: 3984 year: 2008 end-page: 3987 ident: bib0300 article-title: Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion publication-title: Angewandte Chemie-International Edition – volume: 14 start-page: 883 year: 2019 end-page: 890 ident: bib0175 article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring publication-title: Nature Nanotechnology – volume: 11 start-page: 3990 year: 2017 end-page: 4001 ident: bib0285 article-title: Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy publication-title: ACS Nano – volume: 31 year: 2019 ident: bib0100 article-title: Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging publication-title: Advanced Materials – volume: 44 start-page: 6670 year: 2015 end-page: 6683 ident: bib0115 article-title: Small conjugate-based theranostic agents: An encouraging approach for cancer therapy publication-title: Chemical Society Reviews – volume: 28 year: 2018 ident: bib0260 article-title: Tumor microenvironment-responsive mesoporous MnO publication-title: Advanced Functional Materials – volume: 181 start-page: 1 year: 2018 end-page: 9 ident: bib0220 article-title: IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy publication-title: Carbohydrate Polymers – volume: 226 year: 2019 ident: bib0035 article-title: Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates publication-title: Carbohydrate Polymers – volume: 31 year: 2019 ident: bib0050 article-title: Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors publication-title: Advanced Materials – volume: 8 start-page: 342 year: 2020 end-page: 352 ident: bib0215 article-title: Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer publication-title: Biomaterials Science – volume: 5 start-page: 3203 year: 2016 end-page: 3213 ident: bib0240 article-title: Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy and gene silencing of tumors publication-title: Advanced Healthcare Materials – volume: 24 start-page: 1718 year: 2014 end-page: 1729 ident: bib0305 article-title: Metabolizable Bi publication-title: Advanced Functional Materials – volume: 61 start-page: 428 year: 2009 end-page: 437 ident: bib0005 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Advanced Drug Delivery Reviews – volume: 26 start-page: 6761 year: 2014 end-page: 6766 ident: bib0030 article-title: Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging publication-title: Advanced Materials – volume: 14 year: 2018 ident: bib0065 article-title: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy publication-title: Small – volume: 29 year: 2017 ident: bib0155 article-title: 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications publication-title: Advanced Materials – volume: 30 year: 2018 ident: bib0145 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Advanced Materials – volume: 31 year: 2019 ident: bib0165 article-title: A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy publication-title: Advanced Materials – volume: 8 start-page: e273 year: 2016 ident: bib0280 article-title: Gadolinium polytungstate nanoclusters: A new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer publication-title: NPG Asia Materials – volume: 12 start-page: 1256 year: 2015 end-page: 1266 ident: bib0055 article-title: Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer thernostics publication-title: ACS Biomaterials Science & Engineering – volume: 46 start-page: 1993 year: 2017 end-page: 2001 ident: bib0020 article-title: The benefits of folic acid-modified gold nanopartical in CT-based molecular imaimg: Radiation dose reduction and image contrast enhancement publication-title: Artificial Cells, Nanomedicine, and Biotechnology – volume: 226 year: 2019 ident: bib0135 article-title: Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy publication-title: Carbohydrate Polymers – volume: 15 year: 2019 ident: bib0315 article-title: Oxidation-responsive nanoassemblies for light-enhanced gene therapy publication-title: Small – volume: 53 start-page: 5546 year: 2014 end-page: 5551 ident: bib0060 article-title: Engineering multifunctional capsules through the assembly of metal-phenolic networks publication-title: Angewandte Chemie-International Edition – volume: 25 start-page: 1165 year: 2007 end-page: 1170 ident: bib0040 article-title: Renal clearance of quantum dots publication-title: Nature Biotechnology – volume: 19 start-page: 3115 year: 2019 end-page: 3121 ident: bib0090 article-title: Seed-mediated growth of Au nanospheres into hexagonal stars and the emergence of a hexagonal close-packed phase publication-title: Nano Letters – volume: 30 year: 2018 ident: bib0210 article-title: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics publication-title: Advanced Materials – volume: 183 start-page: 140 year: 2018 end-page: 150 ident: bib0275 article-title: Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells publication-title: Carbohydrate Polymers – volume: 28 start-page: 10557 year: 2016 end-page: 10566 ident: bib0025 article-title: Albumin carriers for cancer theranostics: A conventional platform with new promise publication-title: Advanced Materials – volume: 152 start-page: 391 year: 2016 end-page: 397 ident: bib0095 article-title: Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics publication-title: Carbohydrate Polymers – volume: 31 year: 2019 ident: bib0270 article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications publication-title: Advanced Materials – volume: 27 start-page: 2775 year: 2015 end-page: 2782 ident: bib0230 article-title: A facile one-pot synthesis of a two-dimensional MoS publication-title: Advanced Materials – volume: 27 year: 2017 ident: 10.1016/j.carbpol.2020.116344_bib0085 article-title: Advanced functional nanomaterials for theranostics publication-title: Advanced Functional Materials doi: 10.1002/adfm.201603524 – volume: 13 start-page: 6790 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0075 article-title: Polymer-coated gold nanospheres do not impair the innate immune function of human B lymphocytes in vitro publication-title: ACS Nano doi: 10.1021/acsnano.9b01492 – volume: 28 start-page: 10557 year: 2016 ident: 10.1016/j.carbpol.2020.116344_bib0025 article-title: Albumin carriers for cancer theranostics: A conventional platform with new promise publication-title: Advanced Materials doi: 10.1002/adma.201600038 – volume: 14 start-page: 883 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0175 article-title: Renal clearable catalytic gold nanoclusters for in vivo disease monitoring publication-title: Nature Nanotechnology doi: 10.1038/s41565-019-0527-6 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0255 article-title: Self-assembling endogenous biliverdin as a versatile near-infrared photothermal nanoagent for cancer theranostics publication-title: Advanced Materials doi: 10.1002/adma.201900822 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0050 article-title: Intra/extracellular lactic acid exhaustion for synergistic metabolic therapy and immunotherapy of tumors publication-title: Advanced Materials doi: 10.1002/adma.201904639 – volume: 13 start-page: 9016 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0205 article-title: A robust aqueous core-shell-shell coconut-like nanostructure for stimuli-responsive delivery of hydrophilic cargo publication-title: ACS Nano doi: 10.1021/acsnano.9b03049 – volume: 204 start-page: 32 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0195 article-title: Novel dual responsive alginate-based magnetic nanogels for onco-theranostics publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.09.084 – volume: 30 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0145 article-title: Theranostic 2D tantalum carbide (MXene) publication-title: Advanced Materials doi: 10.1002/adma.201703284 – volume: 7 start-page: 4990 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0170 article-title: Multidrug resistant tumors-aimed theranostics on the basis of strong electrostatic attraction between resistant cells and nanomaterials publication-title: Biomaterials Science doi: 10.1039/C9BM01017C – volume: 28 start-page: 7340 year: 2016 ident: 10.1016/j.carbpol.2020.116344_bib0235 article-title: Hierarchical targeting strategy for enhanced tumor tissue accumulation/retention and cellular internalization publication-title: Advanced Materials doi: 10.1002/adma.201601498 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0165 article-title: A tumor-microenvironment-activated nanozyme-mediated theranostic nanoreactor for imaging-guided combined tumor therapy publication-title: Advanced Materials doi: 10.1002/adma.201902885 – volume: 30 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0210 article-title: Two-dimensional antimonene-based photonic nanomedicine for cancer theranostics publication-title: Advanced Materials – volume: 183 start-page: 140 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0275 article-title: Positively charged gold nanoparticles capped with folate quaternary chitosan: Synthesis, cytotoxicity, and uptake by cancer cells publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.11.096 – volume: 5 start-page: 3203 year: 2016 ident: 10.1016/j.carbpol.2020.116344_bib0240 article-title: Dendrimer-stabilized gold nanostars as a multifunctional theranostic nanoplatform for CT imaging, photothermal therapy and gene silencing of tumors publication-title: Advanced Healthcare Materials doi: 10.1002/adhm.201600923 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0180 article-title: Functional macromolecule-enabled colloidal synthesis: From nanoparticle engineering to multifunctionality publication-title: Advanced Materials doi: 10.1002/adma.201902733 – volume: 19 start-page: 3115 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0090 article-title: Seed-mediated growth of Au nanospheres into hexagonal stars and the emergence of a hexagonal close-packed phase publication-title: Nano Letters doi: 10.1021/acs.nanolett.9b00534 – volume: 7 start-page: 2136 year: 2006 ident: 10.1016/j.carbpol.2020.116344_bib0225 article-title: A study of the chain stiffness and extension of alginates, in vitro epimerized alginates, and periodate-oxidized alginates using size-exclusion chromatography combined with light scattering and viscosity detectors publication-title: Biomacromolecules doi: 10.1021/bm060099n – volume: 89 start-page: 182 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0110 article-title: Folic acid-cysteamine modified gold nanoparticle as a nanoprobe for targeted computed tomography imaging of cancer cells publication-title: Materials Science and Engineering: C doi: 10.1016/j.msec.2018.03.015 – volume: 226 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0035 article-title: Studies on anti-hepatocarcinoma effect, pharmacokinetics and tissue distribution of carboxymethyl chitosan based norcantharidin conjugates publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115297 – volume: 235 year: 2020 ident: 10.1016/j.carbpol.2020.116344_bib0130 article-title: A dermatan sulfate-functionalized biomimetic nanocarrier for melanoma targeted chemotherapy publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2020.115983 – volume: 144 start-page: 646 year: 2011 ident: 10.1016/j.carbpol.2020.116344_bib0070 article-title: Hallmarks of cancer: The next generation publication-title: Cell doi: 10.1016/j.cell.2011.02.013 – volume: 53 start-page: 5546 year: 2014 ident: 10.1016/j.carbpol.2020.116344_bib0060 article-title: Engineering multifunctional capsules through the assembly of metal-phenolic networks publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.201311136 – volume: 12 start-page: 1256 year: 2015 ident: 10.1016/j.carbpol.2020.116344_bib0055 article-title: Targeting Wnt canonical signaling by recombinant sFRP1 bound luminescent Au-nanocluster embedded nanoparticles in cancer thernostics publication-title: ACS Biomaterials Science & Engineering doi: 10.1021/acsbiomaterials.5b00305 – volume: 152 start-page: 391 year: 2016 ident: 10.1016/j.carbpol.2020.116344_bib0095 article-title: Multi-functionalized hyaluronic acid nanogels crosslinked with carbon dots as dual receptor-mediated targeting tumor theranostics publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2016.06.109 – volume: 46 start-page: 1026 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0295 article-title: Selective apoptosis induction in cancer cells using folate-conjugated gold nanoparticles and controlling the laser irradiation conditions publication-title: Artificial Cells, Nanomedicine, and Biotechnology doi: 10.1080/21691401.2018.1443116 – volume: 25 start-page: 2641 year: 2013 ident: 10.1016/j.carbpol.2020.116344_bib0120 article-title: Nano-sized CT contrast agents publication-title: Advanced Materials doi: 10.1002/adma.201300081 – volume: 27 start-page: 3645 year: 2015 ident: 10.1016/j.carbpol.2020.116344_bib0045 article-title: Theranostic gold nanomicelles made from biocompatible comb-like polymers for thermochemotherapy and multifunctional imaging with rapid clearance publication-title: Advanced Materials doi: 10.1002/adma.201501420 – volume: 44 start-page: 6670 year: 2015 ident: 10.1016/j.carbpol.2020.116344_bib0115 article-title: Small conjugate-based theranostic agents: An encouraging approach for cancer therapy publication-title: Chemical Society Reviews doi: 10.1039/C5CS00224A – volume: 28 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0260 article-title: Tumor microenvironment-responsive mesoporous MnO2-coated up conversion nanoplatform for self-enhanced tumor theranostics publication-title: Advanced Functional Materials doi: 10.1002/adfm.201803804 – volume: 33 start-page: 161 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0105 article-title: Alginate hydrogel co-loaded with cisplatin and gold nanoparticles for computed tomography image-guided chemotherapy publication-title: Journal of Biomaterials Applications doi: 10.1177/0885328218782355 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0160 article-title: Atomic-precision gold clusters for NIR-II imaging publication-title: Advanced Materials doi: 10.1002/adma.201901015 – volume: 25 start-page: 1165 year: 2007 ident: 10.1016/j.carbpol.2020.116344_bib0040 article-title: Renal clearance of quantum dots publication-title: Nature Biotechnology doi: 10.1038/nbt1340 – volume: 30 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0265 article-title: Activatable semiconducting theranostics: Simultaneous generation and ratiometric photoacoustic imaging of reactive oxygen species in vivo publication-title: Advanced Materials – volume: 120 start-page: 103 year: 2017 ident: 10.1016/j.carbpol.2020.116344_bib0080 article-title: Nanoparticles for multi-modality cancer diagnosis: Simple protocol for self-assembly of gold nanoclusters mediated by gadolinium ions publication-title: Biomaterials doi: 10.1016/j.biomaterials.2016.12.027 – volume: 24 start-page: 1718 year: 2014 ident: 10.1016/j.carbpol.2020.116344_bib0305 article-title: Metabolizable Bi2Se3 nanoplates: Biodistribution, toxicity, and uses for cancer radiation therapy and imaging publication-title: Advanced Functional Materials doi: 10.1002/adfm.201302312 – volume: 16 start-page: 3577 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0015 article-title: Polymeric reactor for the synthesis of superparamagnetic-thermal treatment of breast cancer publication-title: Molecular Pharmaceutics doi: 10.1021/acs.molpharmaceut.9b00433 – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0100 article-title: Metabolizable semiconducting polymer nanoparticles for second near-infrared photoacoustic imaging publication-title: Advanced Materials doi: 10.1002/adma.201808166 – volume: 143 start-page: 178 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0185 article-title: A thermo-responsive alginate nanogel platform co-loaded with gold nanoparticles and cisplatin for combined cancer chemo-photothermal therapy publication-title: Pharmacological Research doi: 10.1016/j.phrs.2019.01.005 – volume: 15 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0315 article-title: Oxidation-responsive nanoassemblies for light-enhanced gene therapy publication-title: Small doi: 10.1002/smll.201906585 – volume: 192 start-page: 19 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0010 article-title: Ultrastructural and optical characteristics of cancer cells treated by a nanotechnology based chemo-photothermal therapy method publication-title: Journal of Photochemistry & Photobiology, B: Biology doi: 10.1016/j.jphotobiol.2019.01.005 – volume: 205 start-page: 377 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0250 article-title: Stimuli-responsive hybrid cluster bombs of PEGylated chitosan encapsulated DOX-loaded superparamagnetic nanoparticles enabling tumor-specific disassembly for on-demand drug delivery and enhanced MR imaging publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2018.10.076 – volume: 177 start-page: 40 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0125 article-title: Novel theranostic nanoplatform for complete mice tumor elimination via MR imaging-guided acid-enhanced photothermo-/chemo-therapy publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.05.055 – volume: 27 start-page: 2775 year: 2015 ident: 10.1016/j.carbpol.2020.116344_bib0230 article-title: A facile one-pot synthesis of a two-dimensional MoS2/Bi2S3 composite theranostic nanosystem for multi-modality tumor imaging and therapy publication-title: Advanced Materials doi: 10.1002/adma.201500870 – volume: 11 start-page: 3990 year: 2017 ident: 10.1016/j.carbpol.2020.116344_bib0285 article-title: Ultrasmall semimetal nanoparticles of bismuth for dual-modal computed tomography/photoacoustic imaging and synergistic thermoradiotherapy publication-title: ACS Nano doi: 10.1021/acsnano.7b00476 – volume: 7 start-page: 6244 year: 2013 ident: 10.1016/j.carbpol.2020.116344_bib0150 article-title: Enhanced retention and cellular uptake of nanoparticles in tumors by controlling their aggregation behavior publication-title: ACS Nano doi: 10.1021/nn402201w – volume: 141 start-page: 18013 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0140 article-title: Cell-membrane-anchored DNA nanoplatform for programming cellular interactions publication-title: Journal of the American Chemical Society doi: 10.1021/jacs.9b04725 – volume: 226 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0135 article-title: Tumor acidity and CD44 dual targeting hyaluronic acid-coated gold nanorods for combined chemo- and photothermal cancer therapy publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2019.115281 – volume: 26 start-page: 6761 year: 2014 ident: 10.1016/j.carbpol.2020.116344_bib0030 article-title: Gd-encapsulated carbonaceous dots with efficient renal clearance for magnetic resonance imaging publication-title: Advanced Materials doi: 10.1002/adma.201402964 – volume: 29 year: 2017 ident: 10.1016/j.carbpol.2020.116344_bib0155 article-title: 808-nm-light-excited lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications publication-title: Advanced Materials – volume: 58 start-page: 4112 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0290 article-title: Renal clearable luminescent gold nanoparticles: From the bench to theclinic publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.201807847 – volume: 46 start-page: 1993 year: 2017 ident: 10.1016/j.carbpol.2020.116344_bib0020 article-title: The benefits of folic acid-modified gold nanopartical in CT-based molecular imaimg: Radiation dose reduction and image contrast enhancement publication-title: Artificial Cells, Nanomedicine, and Biotechnology – volume: 31 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0270 article-title: Degradability and clearance of inorganic nanoparticles for biomedical applications publication-title: Advanced Materials – volume: 47 start-page: 3984 year: 2008 ident: 10.1016/j.carbpol.2020.116344_bib0300 article-title: Controlling the growth of charged-nanoparticle chains through interparticle electrostatic repulsion publication-title: Angewandte Chemie-International Edition doi: 10.1002/anie.200705537 – volume: 14 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0065 article-title: Black phosphorus quantum dots with renal clearance property for efficient photodynamic therapy publication-title: Small doi: 10.1002/smll.201702815 – volume: 8 start-page: e273 year: 2016 ident: 10.1016/j.carbpol.2020.116344_bib0280 article-title: Gadolinium polytungstate nanoclusters: A new theranostic with ultrasmall size and versatile properties for dual-modal MR/CT imaging and photothermal therapy/radiotherapy of cancer publication-title: NPG Asia Materials doi: 10.1038/am.2016.63 – volume: 61 start-page: 428 year: 2009 ident: 10.1016/j.carbpol.2020.116344_bib0005 article-title: Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy publication-title: Advanced Drug Delivery Reviews doi: 10.1016/j.addr.2009.03.009 – volume: 8 start-page: 342 year: 2020 ident: 10.1016/j.carbpol.2020.116344_bib0215 article-title: Targeted multifunctional nanomaterials with MRI, chemotherapy and photothermal therapy for the diagnosis and treatment of bladder cancer publication-title: Biomaterials Science doi: 10.1039/C9BM01377F – volume: 181 start-page: 1 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0220 article-title: IR 780-loaded hyaluronic acid micelles for enhanced tumor-targeted photothermal therapy publication-title: Carbohydrate Polymers doi: 10.1016/j.carbpol.2017.10.033 – volume: 28 year: 2018 ident: 10.1016/j.carbpol.2020.116344_bib0245 article-title: High-efficient clearable nanoparticles for multi-modal imaging and image-guided cancer therapy publication-title: Advanced Functional Materials – volume: 9 start-page: 20180 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0190 article-title: Reversibly pH-responsive gold nanoparticles and their applications for photothermal cancer therapy publication-title: Scientific Reports doi: 10.1038/s41598-019-56754-8 – volume: 8 start-page: 137 year: 2013 ident: 10.1016/j.carbpol.2020.116344_bib0200 article-title: Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface publication-title: Nature Nanotechnology doi: 10.1038/nnano.2012.237 – volume: 19 start-page: 7226 year: 2019 ident: 10.1016/j.carbpol.2020.116344_bib0310 article-title: Nanoparticle size influences antigen retention and presentation in lymph node follicles for humoral immunity publication-title: Nano Letters doi: 10.1021/acs.nanolett.9b02834 |
SSID | ssj0000610 |
Score | 2.5031953 |
Snippet | •Contributed from polysarchride ligand of sodium alginate, Au NCs are sensitive to aggregate in tumor microenvironment.•The functional aggregation switches on... For renal clearable nanoagents, it is challenging to delay the renal clearance to acquire efficient tumor accumulation. Herein, we report sodium alginate (SA)... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 116344 |
SubjectTerms | adverse effects Alginates - chemistry animal experimentation Animals biocompatibility Biosecurity gold Gold - pharmacokinetics Gold - pharmacology half life HEK293 Cells Humans KB Cells ligands Metal Nanoparticles - therapeutic use Mice, Inbred BALB C Mice, Nude Nanoclusters nanogold neoplasms Neoplasms - therapy Photothermal Therapy photothermotherapy Renal clearance Sodium alginate Systemic therapy Tumor Microenvironment |
Title | Alginate mediated functional aggregation of gold nanoclusters for systemic photothermal therapy and efficient renal clearance |
URI | https://dx.doi.org/10.1016/j.carbpol.2020.116344 https://www.ncbi.nlm.nih.gov/pubmed/32507204 https://www.proquest.com/docview/2410727549 https://www.proquest.com/docview/2440699372 |
Volume | 241 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwED5BGWBBvCkvGYk1lMRu4o5VBSogmEDqZsWPlqKSVCUdGOC3cxcnPAZAYkzkiyzf6e774nsAnOjQtaOU2uM5hwQFlwUyMnTLjmBC8BQ5BRUK39zG_XtxNWgPFqBX18JQWmXl-71PL7119aZVnWZrOh63KC1JSArAZLOhHCzCUoTRXjZgqXt53b_94pDLpgS0PiCBz0Ke1iOywJme5nQJEZH_iLkQP4WonyBoGYou1mC1wpCs67e5Dgsu24DlXj26bRNeuxMat1A4VhaGIKhkFL_8bz-WjpBjj0qNsHzIRvnEsizNcjOZU9eEZ4Y4lvkOz2PDpg95UVZpPaGor9Z6YWlmmSubT2DMYjNHnzU0gIJsaAvuL87vev2gmrMQGBGLIrA8skkSdqzgyJ-06KRJaM90klgea-ukMTy0aSyRmgjpeIIsRBOP0q7T0WLI-TY0sjxzu8Askm2prTVclL3tZRhaG-koQeQxbFvZBFEfrTJVE3KahTFRdbbZo6o0okgjymukCacfYlPfheMvAVnrTX0zJ4WR4i_R41rPCtVG9ydp5vL5s0Kwc4ZwDxn1b2uolBgxX9SEHW8kHzvmCDdpJtDe_ze3Dyv05DMQD6BRzObuEFFRoY9g8fQtPKps_x3cAAz6 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9tAEB7R5JBeUGkLBErZSr2aYO_G3hyjqCiUJCci5bbyPhKCgh0F58CB_86M1w7tgSL1au9YK8945vu88wD4qUPXjVJqj-ccEhRcFsjI0Ck7ggnBU-QUVCg8nsTDqfg96872YFDXwlBaZeX7vU8vvXV1pVO9zc56uexQWpKQFIDJZkM5-wBNQUOtG9DsX98MJ3845LIpAa0PSOC1kKdzjyxwo9c5HUJE5D9iLsRbIeotCFqGoqtPsF9hSNb32zyAPZd9htagHt32BZ77Kxq3UDhWFoYgqGQUv_xvP5YukGMvSo2wfM4W-cqyLM1ys9pS14RHhjiW-Q7PS8PWd3lRVmk9oKiv1npiaWaZK5tPYMxiG0ePNTSAgmzoK0yvft0OhkE1ZyEwIhZFYHlkkyTsWcGRP2nRS5PQXuoksTzW1kljeGjTWCI1EdLxBFmIJh6lXa-nxZzzQ2hkeeaOgVkk21Jba7goe9vLMLQ20lGCyGPetbINon61ylRNyGkWxkrV2Wb3qtKIIo0or5E2XOzE1r4Lx3sCstab-sucFEaK90R_1HpWqDY6P0kzl28fFYKdS4R7yKj_tYZKiRHzRW048kay2zFHuEkzgU7-f3Pn0BrejkdqdD25OYWPdMdnI36DRrHZujNESIX-Xn0BLzCjDuA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Alginate+mediated+functional+aggregation+of+gold+nanoclusters+for+systemic+photothermal+therapy+and+efficient+renal+clearance&rft.jtitle=Carbohydrate+polymers&rft.au=Zhao%2C+Pin&rft.au=Liu%2C+Shuwei&rft.au=Wang%2C+Lu&rft.au=Liu%2C+Guojian&rft.date=2020-08-01&rft.issn=0144-8617&rft.volume=241+p.116344-&rft_id=info:doi/10.1016%2Fj.carbpol.2020.116344&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0144-8617&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0144-8617&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0144-8617&client=summon |