Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming
•Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids....
Saved in:
| Published in | Applied energy Vol. 210; pp. 944 - 963 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.01.2018
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0306-2619 1872-9118 |
| DOI | 10.1016/j.apenergy.2017.07.007 |
Cover
| Abstract | •Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids.
Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together. |
|---|---|
| AbstractList | Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together. •Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids. Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together. |
| Author | Nemati, Mohsen Tenbohlen, Stefan Braun, Martin |
| Author_xml | – sequence: 1 givenname: Mohsen surname: Nemati fullname: Nemati, Mohsen email: mohsen.nemati@siemens.com organization: Siemens AG, Humboldt Street 59, 90443 Nuremberg, Germany – sequence: 2 givenname: Martin surname: Braun fullname: Braun, Martin email: martin.braun@uni-kassel.de organization: Fraunhofer IWES, University of Kassel, Kassel, Germany – sequence: 3 givenname: Stefan surname: Tenbohlen fullname: Tenbohlen, Stefan email: stefan.tenbohlen@ieh.uni-stuttgart.de organization: University of Stuttgart-IEH, Stuttgart, Germany |
| BookMark | eNqFkM9rFTEQx4O04GvrvyA5etlnkrc_wYNSrBUKveg5zCaz23lskjXJE-vVf9y8vnrxUhgIId_PzORzwc588MjYWym2Usj2_X4LK3qM8-NWCdltRSnRvWIb2XeqGqTsz9hG7ERbqVYOr9lFSnshhJJKbNif-zWTo9-QKXgeJn7wlLkJzlF26DMHbzma4IMjwy2lFbJ54OR5uccwR7KJj5DQ8sLPZY9ccrDMIVJ-cE-4o1_lmXzGGSNfyCNEvh5hKGP8fMXOJ1gSvnk-L9n3m8_frm-ru_svX68_3VWmbutcGVRKmKYfsG6mEXcwNhM2cjKy7QHspBAUSJjG1tbdOCCqrq2lGI21ZlBG7C7Zu1PfMvvHAVPWjpLBZQGP4ZC0Klaaoq5XJfrhFC1_TCnipA3lJ0c5Ai1aCn10r_f6n3t9dK9FKdEVvP0PXyM5iI8vgx9PIBYPPwmjTobQG7QU0WRtA73U4i9MUKoT |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2020_115045 crossref_primary_10_1109_TSG_2021_3097047 crossref_primary_10_1016_j_apenergy_2020_115960 crossref_primary_10_1109_TSG_2024_3403897 crossref_primary_10_1007_s41660_021_00193_4 crossref_primary_10_1109_TSG_2018_2859821 crossref_primary_10_1016_j_seta_2025_104185 crossref_primary_10_1002_2050_7038_12732 crossref_primary_10_1016_j_socl_2021_100016 crossref_primary_10_1016_j_energy_2019_03_129 crossref_primary_10_35378_gujs_942680 crossref_primary_10_3390_en17174463 crossref_primary_10_1016_j_ijepes_2022_108671 crossref_primary_10_1002_2050_7038_12177 crossref_primary_10_1016_j_ijepes_2019_105380 crossref_primary_10_1016_j_egyr_2022_06_064 crossref_primary_10_22495_jgrv12i4siart16 crossref_primary_10_1155_2022_1227981 crossref_primary_10_48084_etasr_3795 crossref_primary_10_1016_j_segan_2021_100479 crossref_primary_10_2339_politeknik_1348672 crossref_primary_10_1016_j_matpr_2020_06_568 crossref_primary_10_3390_electronics9010108 crossref_primary_10_1016_j_ecmx_2024_100724 crossref_primary_10_1109_ACCESS_2021_3108973 crossref_primary_10_1016_j_epsr_2022_107935 crossref_primary_10_1016_j_renene_2023_119406 crossref_primary_10_3390_pr10061214 crossref_primary_10_1016_j_enpol_2020_111740 crossref_primary_10_1109_TIA_2021_3100321 crossref_primary_10_1016_j_epsr_2023_109158 crossref_primary_10_1016_j_aej_2023_03_017 crossref_primary_10_1016_j_rineng_2023_101354 crossref_primary_10_1016_j_seta_2022_102066 crossref_primary_10_1109_ACCESS_2024_3415548 crossref_primary_10_4018_IJAMC_2020040109 crossref_primary_10_3390_su13126776 crossref_primary_10_1016_j_egyr_2021_12_044 crossref_primary_10_1016_j_heliyon_2024_e27489 crossref_primary_10_1016_j_apenergy_2021_118170 crossref_primary_10_1016_j_renene_2023_118903 crossref_primary_10_1016_j_swevo_2023_101256 crossref_primary_10_1109_ACCESS_2020_3010275 crossref_primary_10_1016_j_rser_2019_109523 crossref_primary_10_3390_app12083980 crossref_primary_10_1002_spy2_214 crossref_primary_10_1016_j_apenergy_2019_113859 crossref_primary_10_1016_j_seppur_2021_120130 crossref_primary_10_1016_j_rser_2022_112356 crossref_primary_10_1016_j_ijepes_2019_02_037 crossref_primary_10_37394_23202_2023_22_37 crossref_primary_10_1109_ACCESS_2020_2995260 crossref_primary_10_1016_j_energy_2018_12_213 crossref_primary_10_1016_j_ijepes_2021_107196 crossref_primary_10_1016_j_applthermaleng_2023_121871 crossref_primary_10_1186_s42162_024_00430_3 crossref_primary_10_1109_JSYST_2020_2990633 crossref_primary_10_1016_j_est_2020_101457 crossref_primary_10_1016_j_ifacol_2018_11_720 crossref_primary_10_3390_pr10020366 crossref_primary_10_1049_iet_gtd_2019_1542 crossref_primary_10_3390_en17030720 crossref_primary_10_1002_cpe_5486 crossref_primary_10_3390_math11020271 crossref_primary_10_1016_j_scitotenv_2024_174632 crossref_primary_10_2298_YJOR240315018K crossref_primary_10_1007_s00202_021_01297_3 crossref_primary_10_1016_j_epsr_2020_106538 crossref_primary_10_1002_2050_7038_13060 crossref_primary_10_1016_j_eswa_2022_117411 crossref_primary_10_1109_JIOT_2021_3072840 crossref_primary_10_3390_en16176111 crossref_primary_10_1109_TSTE_2021_3061776 crossref_primary_10_1155_2019_5831362 crossref_primary_10_1007_s11269_022_03302_1 crossref_primary_10_1016_j_epsr_2020_106412 crossref_primary_10_3390_math11071610 crossref_primary_10_1016_j_cja_2020_10_029 crossref_primary_10_1016_j_epsr_2022_109089 crossref_primary_10_1155_2020_2865929 crossref_primary_10_1109_ACCESS_2022_3167037 crossref_primary_10_1016_j_energy_2018_10_087 crossref_primary_10_3390_su14148788 crossref_primary_10_1002_jnm_2798 crossref_primary_10_1016_j_rser_2022_112215 crossref_primary_10_1016_j_apenergy_2018_08_014 crossref_primary_10_1038_s41598_024_54333_0 crossref_primary_10_3390_en14185976 crossref_primary_10_1016_j_apenergy_2024_123548 crossref_primary_10_1371_journal_pone_0261709 crossref_primary_10_1080_15567036_2019_1587067 crossref_primary_10_1093_ce_zkad061 crossref_primary_10_1016_j_apenergy_2018_10_121 crossref_primary_10_14710_ijred_2021_34656 crossref_primary_10_3390_en12142712 crossref_primary_10_1109_ACCESS_2023_3313259 crossref_primary_10_1016_j_ijepes_2024_110022 crossref_primary_10_1109_TNSE_2021_3062846 crossref_primary_10_1016_j_egyr_2021_07_052 crossref_primary_10_1016_j_ifacol_2020_12_801 crossref_primary_10_1016_j_egyr_2023_04_360 crossref_primary_10_1109_ACCESS_2019_2941914 crossref_primary_10_1109_TIA_2021_3057008 crossref_primary_10_3390_su141711002 crossref_primary_10_1109_TPEL_2021_3074964 crossref_primary_10_1109_ACCESS_2022_3150857 crossref_primary_10_1016_j_ijepes_2022_108149 crossref_primary_10_1016_j_seta_2023_103404 crossref_primary_10_14710_ijred_2021_38909 crossref_primary_10_3390_en11061387 crossref_primary_10_1109_ACCESS_2020_2988530 crossref_primary_10_1016_j_apenergy_2018_08_112 crossref_primary_10_1186_s42162_024_00357_9 crossref_primary_10_1155_2022_6461690 crossref_primary_10_1049_cth2_12027 crossref_primary_10_1016_j_energy_2018_06_141 crossref_primary_10_1016_j_apenergy_2022_118715 crossref_primary_10_1016_j_ijhydene_2024_08_405 crossref_primary_10_1016_j_apenergy_2019_01_067 crossref_primary_10_1109_ACCESS_2023_3313998 crossref_primary_10_3390_en17153807 crossref_primary_10_3390_sym13091707 crossref_primary_10_1109_TSG_2019_2933502 crossref_primary_10_1016_j_scs_2018_09_037 crossref_primary_10_1007_s13369_019_04310_x crossref_primary_10_1016_j_apenergy_2024_125139 crossref_primary_10_3390_en12061124 crossref_primary_10_1002_er_8444 crossref_primary_10_3390_electronics13224563 crossref_primary_10_3390_en15186785 crossref_primary_10_1016_j_enconman_2019_112090 crossref_primary_10_1109_TPWRS_2021_3095266 crossref_primary_10_1049_gtd2_12391 crossref_primary_10_1109_TCSI_2024_3351942 crossref_primary_10_1016_j_applthermaleng_2019_02_053 crossref_primary_10_1016_j_epsr_2024_110971 crossref_primary_10_1016_j_segan_2024_101427 crossref_primary_10_3390_en14248489 crossref_primary_10_3390_su16062422 crossref_primary_10_1002_er_4512 crossref_primary_10_3390_app10175862 crossref_primary_10_1016_j_enbuild_2019_06_010 crossref_primary_10_1109_TSG_2023_3266761 crossref_primary_10_1049_rpg2_13195 crossref_primary_10_1002_2050_7038_12581 crossref_primary_10_1016_j_apenergy_2021_116830 crossref_primary_10_1021_acs_iecr_3c02232 crossref_primary_10_1016_j_aei_2022_101848 crossref_primary_10_3390_en16062720 crossref_primary_10_3390_en16165920 crossref_primary_10_1016_j_apenergy_2018_06_060 crossref_primary_10_1109_ACCESS_2021_3062840 crossref_primary_10_3390_electronics8111371 crossref_primary_10_1007_s40031_021_00634_1 crossref_primary_10_1016_j_energy_2021_120386 crossref_primary_10_1051_e3sconf_202123802001 crossref_primary_10_1016_j_epsr_2020_106232 crossref_primary_10_3390_en12153004 crossref_primary_10_1016_j_egyr_2021_04_006 crossref_primary_10_1016_j_esr_2024_101298 crossref_primary_10_1016_j_energy_2020_118434 crossref_primary_10_1016_j_eng_2022_11_010 crossref_primary_10_1016_j_energy_2019_02_145 crossref_primary_10_1016_j_ijhydene_2022_02_231 crossref_primary_10_1016_j_jclepro_2019_119082 crossref_primary_10_1109_ACCESS_2020_3045754 crossref_primary_10_1080_21681015_2021_1974963 crossref_primary_10_1007_s00202_024_02912_9 crossref_primary_10_3390_en13051096 crossref_primary_10_3390_su16010336 crossref_primary_10_1016_j_apenergy_2024_122875 crossref_primary_10_3390_su132011429 crossref_primary_10_3390_en14010168 crossref_primary_10_1109_ACCESS_2018_2815547 crossref_primary_10_1007_s13369_021_05975_z crossref_primary_10_1016_j_asoc_2019_105786 crossref_primary_10_3390_en11092468 crossref_primary_10_1049_iet_gtd_2019_0973 crossref_primary_10_3390_app9050829 crossref_primary_10_1016_j_jobe_2023_106113 crossref_primary_10_3390_en17133281 crossref_primary_10_1109_TSG_2023_3253886 crossref_primary_10_3390_en15041555 crossref_primary_10_1016_j_energy_2019_07_173 crossref_primary_10_1016_j_apenergy_2018_07_047 crossref_primary_10_1007_s00376_024_4214_7 crossref_primary_10_1016_j_ifacol_2020_12_2265 crossref_primary_10_1016_j_enconman_2020_112471 crossref_primary_10_1007_s10098_021_02088_x crossref_primary_10_1016_j_apenergy_2019_113689 crossref_primary_10_3389_fenrg_2024_1385839 crossref_primary_10_1016_j_entcs_2020_09_018 crossref_primary_10_1016_j_scs_2022_103727 crossref_primary_10_1155_2024_8100507 crossref_primary_10_1049_ccs2_12068 crossref_primary_10_1016_j_apenergy_2020_115256 crossref_primary_10_1155_2022_7265308 crossref_primary_10_1109_ACCESS_2023_3274674 crossref_primary_10_1016_j_segan_2022_100897 crossref_primary_10_1177_0958305X221117519 crossref_primary_10_1109_JESTPE_2020_2975904 crossref_primary_10_1155_2022_3960120 crossref_primary_10_1007_s10586_024_04669_z crossref_primary_10_1016_j_petsci_2021_12_029 crossref_primary_10_1016_j_apenergy_2021_118018 crossref_primary_10_1111_coin_12238 crossref_primary_10_3390_en14144166 crossref_primary_10_1007_s11831_019_09353_9 crossref_primary_10_1016_j_energy_2019_04_108 crossref_primary_10_1016_j_coal_2019_103231 crossref_primary_10_1016_j_conengprac_2021_105018 crossref_primary_10_1016_j_egyr_2020_12_007 crossref_primary_10_3390_en12081476 crossref_primary_10_1016_j_asoc_2023_110413 crossref_primary_10_1016_j_epsr_2020_106958 crossref_primary_10_1088_1755_1315_431_1_012010 crossref_primary_10_1016_j_epsr_2023_109880 crossref_primary_10_1155_2021_9983104 crossref_primary_10_1016_j_est_2024_112708 crossref_primary_10_1515_ijeeps_2022_0222 crossref_primary_10_1016_j_apenergy_2018_07_034 crossref_primary_10_1016_j_egyr_2024_05_049 crossref_primary_10_1016_j_rser_2021_111327 crossref_primary_10_1155_2018_3208934 crossref_primary_10_1016_j_heliyon_2023_e14748 crossref_primary_10_1016_j_jclepro_2019_119041 crossref_primary_10_1016_j_ifacol_2020_12_2132 crossref_primary_10_1016_j_foreco_2021_119828 crossref_primary_10_1080_23311916_2020_1766394 crossref_primary_10_1016_j_scs_2022_103936 crossref_primary_10_3390_en12112143 crossref_primary_10_1016_j_apenergy_2021_118487 crossref_primary_10_1016_j_energy_2021_121704 crossref_primary_10_1109_ACCESS_2020_2990454 crossref_primary_10_1016_j_apenergy_2018_02_142 crossref_primary_10_1109_TVT_2020_3030280 |
| Cites_doi | 10.1109/TPWRS.2004.841233 10.1016/j.ijepes.2009.11.003 10.1109/ICSET.2010.5684943 10.1016/j.rser.2006.07.011 10.1109/PTC.2015.7232801 10.1002/9780470225868 10.1109/SURV.2011.101911.00087 10.1016/j.tej.2012.09.010 10.1109/TPWRS.2013.2241795 10.3390/en7042027 10.1109/TCST.2013.2295737 10.1109/59.260861 10.1109/ISGTEurope.2012.6465822 10.1016/j.rser.2014.07.198 10.1115/1.1762904 10.1016/j.energy.2014.05.101 10.1016/j.jpowsour.2007.08.057 10.1109/PES.2011.6039527 10.1016/j.rser.2014.07.138 10.1016/j.apenergy.2016.12.038 10.1016/j.apenergy.2016.09.035 10.1109/60.658207 10.1016/j.apenergy.2016.07.080 10.1109/TPWRS.2003.811000 10.24846/v22i2y201301 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Ltd |
| Copyright_xml | – notice: 2017 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.apenergy.2017.07.007 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Environmental Sciences |
| EISSN | 1872-9118 |
| EndPage | 963 |
| ExternalDocumentID | 10_1016_j_apenergy_2017_07_007 S0306261917308723 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSR SST SSZ T5K TN5 ~02 ~G- AAHBH AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SEW WUQ ZY4 ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c464t-ce220c589e45fbe3ab5fe51fc168aadf2ea2a1afb6d47b9ee276410bcddc92c03 |
| IEDL.DBID | .~1 |
| ISSN | 0306-2619 |
| IngestDate | Sun Sep 28 08:13:38 EDT 2025 Thu Apr 24 23:04:05 EDT 2025 Thu Oct 09 00:33:46 EDT 2025 Fri Feb 23 02:45:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Economic dispatch Mixed integer linear programming Genetic algorithm Microgrids Unit commitment |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c464t-ce220c589e45fbe3ab5fe51fc168aadf2ea2a1afb6d47b9ee276410bcddc92c03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 2000500782 |
| PQPubID | 24069 |
| PageCount | 20 |
| ParticipantIDs | proquest_miscellaneous_2000500782 crossref_citationtrail_10_1016_j_apenergy_2017_07_007 crossref_primary_10_1016_j_apenergy_2017_07_007 elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_07_007 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-01-15 |
| PublicationDateYYYYMMDD | 2018-01-15 |
| PublicationDate_xml | – month: 01 year: 2018 text: 2018-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied energy |
| PublicationYear | 2018 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Nemati, Eberlein, Tao, Müller, Braun, Tenbohlen (b0220) 2014 Wang (b0070) 2017 Deshmukh, Deshmukh (b0110) 2008; 12 Indradip, Degner, Braun (b0200) 2008; 18 Farret, Simões (b0160) 2006 Strompreisanalyse, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015. Li, Pedroni, Zio (b0235) 2013 Soshinskaya, Crijns-Graus, Guerrero, Vasquez (b0010) 2014; 40 Staffell (b0135) 2009 Liang, Zhuang (b0020) 2014; 7 Logenthiran Thillainathan, et al. Multi-Agent System (MAS) for short-term generation scheduling of a microgrid. In: IEEE International Conference Sustainable Energy Technologies (ICSET); 2010. Küpper (b0180) 2012 Boroojeni (b0050) 2016 Wu X, Wang X, Bie Z. Optimal generation scheduling of a microgrid. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) Walters, Sheble (b0130) 1993; 8 Sauer, Wenzl (b0195) 2008; 176 Zhang (b0065) 2016; 183 Chedid, Akiki, Rahman (b0115) 1998; 13 Soares, Antunes, Oliveira, Gomes (b0025) 2014; 77 Deb, Agrawal (b0230) 1994; 9 Jin (b0045) 2017; 194 Faisal M. Microgrid modelling and online management; 2008. Parisio, Rikos, Glielmo (b0085) 2014; 22 Standardlastprofile, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015. Farhat IA. Economic and economic-emission operation of all-thermal and hydro-thermal power generation systems using bacterial foraging optimization (Doctoral dissertation). Dalhousie University Halifax; 2012. Zhu (b0120) 2015 Amini (b0030) 2015 Gerschler JB. Ortsaufgelöste Modellbildung von Lithium-Ionen-Systemen unter spezieller Berücksichtigung der Batteriealterung, Aachen: Shaker, ISBN 978-3-8440-1307-8; 2012. Technical Brochure 635, “Microgrids”, first report of WG C6.22; 2015. Nemati M, Bennimar K, Tao L, Müller H, Braun M, Tenbohlen S. Optimization of microgrids short term operation based on an enhanced genetic algorithm. In: IEEE PES Powertech conference, Eindhoven; 2015. Campanari, Macchi (b0155) 2004; 126 Quaschning (b0105) 2015 Rigo-Mariani, Sareni, Roboam, Turpin (b0040) 2014; 40 Kabza A. Fuel Cell Formulary; 2013. Olivares, Cañizares, Kazerani (b0090) 2011 Weston, Seidman, James (b0170) 2001 Senjyu, Shimabukuro, Uezato, Funabashi (b0225) 2003; 18 Liu, Zhang, Zeng, Niu, Zhang, Xiao (b0240) 2014 (1–7); 2012. Fang, Misra, Xue, Yang (b0005) 2012; 14 Lasnier, Ang (b0100) 1990 Mohamed, Koivo (b0150) 2010; 32 Li (b0145) 2012 Pipattanasomporn, Willingham, Rahman (b0165) 2005; 20 Braun, Strauss (b0015) 2008; 4 El-Sehiemy, El-Hosseini, Hassanien (b0035) 2013; 22 Nemati, Zöller, Tao, Müller, Braun, Tenbohlen (b0215) 2015 Lee KY, El-Sharkawi MA., Editors. Modern heuristic optimization techniques: theory and applications to power systems. vol. 39. John Wiley & Sons; 2008. Su, Wang (b0185) 2012; 25 Badey, Cherouvrier, Reynier, Duffault, Franger (b0190) 2011; 16 Li, Roche, Miraoui (b0080) 2017; 188 Senjyu (10.1016/j.apenergy.2017.07.007_b0225) 2003; 18 10.1016/j.apenergy.2017.07.007_b0060 10.1016/j.apenergy.2017.07.007_b0140 Soshinskaya (10.1016/j.apenergy.2017.07.007_b0010) 2014; 40 Küpper (10.1016/j.apenergy.2017.07.007_b0180) 2012 Jin (10.1016/j.apenergy.2017.07.007_b0045) 2017; 194 Deshmukh (10.1016/j.apenergy.2017.07.007_b0110) 2008; 12 Pipattanasomporn (10.1016/j.apenergy.2017.07.007_b0165) 2005; 20 Zhang (10.1016/j.apenergy.2017.07.007_b0065) 2016; 183 Liang (10.1016/j.apenergy.2017.07.007_b0020) 2014; 7 Walters (10.1016/j.apenergy.2017.07.007_b0130) 1993; 8 Staffell (10.1016/j.apenergy.2017.07.007_b0135) 2009 Nemati (10.1016/j.apenergy.2017.07.007_b0215) 2015 10.1016/j.apenergy.2017.07.007_b0095 Nemati (10.1016/j.apenergy.2017.07.007_b0220) 2014 10.1016/j.apenergy.2017.07.007_b0250 10.1016/j.apenergy.2017.07.007_b0175 10.1016/j.apenergy.2017.07.007_b0055 Deb (10.1016/j.apenergy.2017.07.007_b0230) 1994; 9 Weston (10.1016/j.apenergy.2017.07.007_b0170) 2001 10.1016/j.apenergy.2017.07.007_b0210 Li (10.1016/j.apenergy.2017.07.007_b0145) 2012 Wang (10.1016/j.apenergy.2017.07.007_b0070) 2017 Zhu (10.1016/j.apenergy.2017.07.007_b0120) 2015 Li (10.1016/j.apenergy.2017.07.007_b0235) 2013 Sauer (10.1016/j.apenergy.2017.07.007_b0195) 2008; 176 Soares (10.1016/j.apenergy.2017.07.007_b0025) 2014; 77 Lasnier (10.1016/j.apenergy.2017.07.007_b0100) 1990 Indradip (10.1016/j.apenergy.2017.07.007_b0200) 2008; 18 Farret (10.1016/j.apenergy.2017.07.007_b0160) 2006 Fang (10.1016/j.apenergy.2017.07.007_b0005) 2012; 14 El-Sehiemy (10.1016/j.apenergy.2017.07.007_b0035) 2013; 22 10.1016/j.apenergy.2017.07.007_b0245 10.1016/j.apenergy.2017.07.007_b0125 10.1016/j.apenergy.2017.07.007_b0205 Su (10.1016/j.apenergy.2017.07.007_b0185) 2012; 25 Badey (10.1016/j.apenergy.2017.07.007_b0190) 2011; 16 Li (10.1016/j.apenergy.2017.07.007_b0080) 2017; 188 Chedid (10.1016/j.apenergy.2017.07.007_b0115) 1998; 13 Liu (10.1016/j.apenergy.2017.07.007_b0240) 2014 Parisio (10.1016/j.apenergy.2017.07.007_b0085) 2014; 22 Amini (10.1016/j.apenergy.2017.07.007_b0030) 2015 Mohamed (10.1016/j.apenergy.2017.07.007_b0150) 2010; 32 10.1016/j.apenergy.2017.07.007_b0075 Quaschning (10.1016/j.apenergy.2017.07.007_b0105) 2015 Rigo-Mariani (10.1016/j.apenergy.2017.07.007_b0040) 2014; 40 Campanari (10.1016/j.apenergy.2017.07.007_b0155) 2004; 126 Braun (10.1016/j.apenergy.2017.07.007_b0015) 2008; 4 Olivares (10.1016/j.apenergy.2017.07.007_b0090) 2011 Boroojeni (10.1016/j.apenergy.2017.07.007_b0050) 2016 |
| References_xml | – year: 2012 ident: b0180 article-title: Flexibles Batteriemanagementsystem für Lithium-Ionen-Traktionsbatterien in Hybrid- und Elektrofahrzeuganwendungen – year: 2014 ident: b0240 article-title: An environmental-economic dispatch method for smart microgrids using VSS_QGA publication-title: J Appl Math – year: 2015 ident: b0120 article-title: Optimization of power system operation – volume: 8 start-page: 1325 year: 1993 end-page: 1332 ident: b0130 article-title: Genetic algorthm solution of economic dispatch with valve point loading publication-title: IEEE Trans Power Syst – reference: Standardlastprofile, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015. – volume: 14 start-page: 944 year: 2012 end-page: 980 ident: b0005 article-title: Smart grid—the new and improved power grid: a survey publication-title: IEEE Commun Surv Tutorials – volume: 7 start-page: 2027 year: 2014 end-page: 2050 ident: b0020 article-title: Stochastic modeling and optimization in a microgrid: a survey publication-title: Energies – volume: 18 start-page: 6 year: 2008 end-page: 20 ident: b0200 article-title: Distributed generation and microgrids for small island electrification in developing countries: a review publication-title: Sol Energy Soc India – reference: Strompreisanalyse, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015. – volume: 22 start-page: 113 year: 2013 end-page: 122 ident: b0035 article-title: Multiobjective real-coded genetic algorithm for economic/environmental dispatch problem publication-title: Stud Inform Control – volume: 77 start-page: 144 year: 2014 end-page: 152 ident: b0025 article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system publication-title: Energy – volume: 176 start-page: 534 year: 2008 end-page: 546 ident: b0195 article-title: Comparison of different approaches for lifetime prediction of electrochemical systems—using lead-acid batteries as example publication-title: J Power Sources – volume: 18 start-page: 882 year: 2003 end-page: 888 ident: b0225 article-title: A fast technique for unit commitment problem by extended priority list publication-title: IEEE Trans Power Syst – volume: 194 start-page: 386 year: 2017 end-page: 398 ident: b0045 article-title: Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system publication-title: Appl Energy – volume: 22 start-page: 1813 year: 2014 end-page: 1827 ident: b0085 article-title: A model predictive control approach to microgrid operation optimization publication-title: IEEE Trans Control Syst Technol – year: 2012 ident: b0145 article-title: Understanding the design and performance of distributed tri-generation systems for home and neighborhood refueling – reference: Lee KY, El-Sharkawi MA., Editors. Modern heuristic optimization techniques: theory and applications to power systems. vol. 39. John Wiley & Sons; 2008. – volume: 16 start-page: 65 year: 2011 end-page: 79 ident: b0190 article-title: Ageing forecast of lithium-Ion batteries for electric and hybrid vehicles publication-title: Curr Top Electrochem – volume: 12 start-page: 235 year: 2008 end-page: 249 ident: b0110 article-title: Modeling of hybrid renewable energy systems publication-title: Renew Sustain Energy Rev – reference: Logenthiran Thillainathan, et al. Multi-Agent System (MAS) for short-term generation scheduling of a microgrid. In: IEEE International Conference Sustainable Energy Technologies (ICSET); 2010. – volume: 9 start-page: 1 year: 1994 end-page: 15 ident: b0230 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – year: 2006 ident: b0160 article-title: Integration of alternative sources of energy – reference: Faisal M. Microgrid modelling and online management; 2008. – volume: 40 start-page: 649 year: 2014 end-page: 658 ident: b0040 article-title: Optimal power dispatching strategies in smart-microgrids with storage” publication-title: Renew Sustain Energy Rev – year: 2014 ident: b0220 article-title: Optimale Einsatzplanung dezentraler Anlagen in Mikrostromnetzen mittels genetischem Algorithmus – volume: 126 start-page: 581 year: 2004 end-page: 589 ident: b0155 article-title: Technical and tariff scenarios effect on microturbine trigenerative applications publication-title: J Eng Gas Turb Power – year: 2015 ident: b0030 article-title: Distributed security constrained economic dispatch publication-title: 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA) – volume: 40 start-page: 659 year: 2014 end-page: 672 ident: b0010 article-title: Microgrids: experiences, barriers and success factors publication-title: Renew Sustain Energy Rev – year: 2015 ident: b0215 article-title: Optimal energy management system for future microgrids with tight operating constraints – volume: 20 start-page: 206 year: 2005 end-page: 212 ident: b0165 article-title: Implications of on-site distributed generation for commercial/industrial facilities publication-title: IEEE Trans Power Syst – year: 2009 ident: b0135 article-title: A review of small stationary fuel cell performance – reference: (1–7); 2012. – start-page: 1 year: 2016 end-page: 25 ident: b0050 article-title: An economic dispatch algorithm for congestion management of smart power networks publication-title: Energy Syst – reference: Kabza A. Fuel Cell Formulary; 2013. – volume: 188 start-page: 547 year: 2017 end-page: 562 ident: b0080 article-title: Microgrid sizing with combined evolutionary algorithm and MILP unit commitment publication-title: Appl Energy – reference: Wu X, Wang X, Bie Z. Optimal generation scheduling of a microgrid. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe) – volume: 32 start-page: 398 year: 2010 end-page: 407 ident: b0150 article-title: System modelling and online optimal management of microgrid using mesh adaptive direct search publication-title: Int J Electric Power Energy Syst – volume: 13 start-page: 76 year: 1998 end-page: 83 ident: b0115 article-title: A decision support technique for the design of hybrid solar–wind power systems publication-title: IEEE Trans Energy Convers – year: 2011 ident: b0090 article-title: centralized optimal energy management system for microgrids publication-title: IEEE Power Energy Soc General Meeting – reference: Farhat IA. Economic and economic-emission operation of all-thermal and hydro-thermal power generation systems using bacterial foraging optimization (Doctoral dissertation). Dalhousie University Halifax; 2012. – volume: 183 start-page: 791 year: 2016 end-page: 804 ident: b0065 article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints publication-title: Appl Energy – volume: 25 start-page: 45 year: 2012 end-page: 60 ident: b0185 article-title: Energy management systems in microgrid operations publication-title: Electricity J – year: 2001 ident: b0170 article-title: Model Regulations for the output of specified air emissions from smaller-scale Electric Generation Resources. publication-title: Regul Assist Project – volume: 4 start-page: 297 year: 2008 end-page: 319 ident: b0015 article-title: A review on aggregation approaches of controllable distributed energy units in electrical power systems publication-title: Int J Distrib Energy Resources – year: 1990 ident: b0100 article-title: Photovoltaic engineering handbook – reference: Technical Brochure 635, “Microgrids”, first report of WG C6.22; 2015. – reference: Nemati M, Bennimar K, Tao L, Müller H, Braun M, Tenbohlen S. Optimization of microgrids short term operation based on an enhanced genetic algorithm. In: IEEE PES Powertech conference, Eindhoven; 2015. – year: 2015 ident: b0105 article-title: Regenerative energiesysteme: technologie-berechnung-simulation publication-title: Carl Hanser Verlag GmbH Co KG – start-page: 2660 year: 2013 end-page: 2669 ident: b0235 article-title: A memetic evolutionary multi-objective optimization method for environmental power unit commitment publication-title: IEEE Transac-tions Power Systems – year: 2017 ident: b0070 article-title: Integrated scheduling of energy supply and demand in microgrids under uncertainty: a robust multi-objective optimization approach publication-title: Energy – reference: Gerschler JB. Ortsaufgelöste Modellbildung von Lithium-Ionen-Systemen unter spezieller Berücksichtigung der Batteriealterung, Aachen: Shaker, ISBN 978-3-8440-1307-8; 2012. – ident: 10.1016/j.apenergy.2017.07.007_b0175 – year: 2015 ident: 10.1016/j.apenergy.2017.07.007_b0120 – volume: 20 start-page: 206 issue: 1 year: 2005 ident: 10.1016/j.apenergy.2017.07.007_b0165 article-title: Implications of on-site distributed generation for commercial/industrial facilities publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2004.841233 – year: 2015 ident: 10.1016/j.apenergy.2017.07.007_b0215 – year: 2015 ident: 10.1016/j.apenergy.2017.07.007_b0030 article-title: Distributed security constrained economic dispatch – volume: 32 start-page: 398 issue: 5 year: 2010 ident: 10.1016/j.apenergy.2017.07.007_b0150 article-title: System modelling and online optimal management of microgrid using mesh adaptive direct search publication-title: Int J Electric Power Energy Syst doi: 10.1016/j.ijepes.2009.11.003 – ident: 10.1016/j.apenergy.2017.07.007_b0055 doi: 10.1109/ICSET.2010.5684943 – volume: 12 start-page: 235 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2017.07.007_b0110 article-title: Modeling of hybrid renewable energy systems publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2006.07.011 – year: 1990 ident: 10.1016/j.apenergy.2017.07.007_b0100 – ident: 10.1016/j.apenergy.2017.07.007_b0210 doi: 10.1109/PTC.2015.7232801 – year: 2009 ident: 10.1016/j.apenergy.2017.07.007_b0135 – ident: 10.1016/j.apenergy.2017.07.007_b0075 doi: 10.1002/9780470225868 – year: 2012 ident: 10.1016/j.apenergy.2017.07.007_b0145 – volume: 14 start-page: 944 issue: 4 year: 2012 ident: 10.1016/j.apenergy.2017.07.007_b0005 article-title: Smart grid—the new and improved power grid: a survey publication-title: IEEE Commun Surv Tutorials doi: 10.1109/SURV.2011.101911.00087 – year: 2006 ident: 10.1016/j.apenergy.2017.07.007_b0160 – volume: 25 start-page: 45 issue: 8 year: 2012 ident: 10.1016/j.apenergy.2017.07.007_b0185 article-title: Energy management systems in microgrid operations publication-title: Electricity J doi: 10.1016/j.tej.2012.09.010 – start-page: 2660 year: 2013 ident: 10.1016/j.apenergy.2017.07.007_b0235 article-title: A memetic evolutionary multi-objective optimization method for environmental power unit commitment publication-title: IEEE Transac-tions Power Systems doi: 10.1109/TPWRS.2013.2241795 – volume: 7 start-page: 2027 issue: 4 year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0020 article-title: Stochastic modeling and optimization in a microgrid: a survey publication-title: Energies doi: 10.3390/en7042027 – volume: 22 start-page: 1813 issue: 5 year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0085 article-title: A model predictive control approach to microgrid operation optimization publication-title: IEEE Trans Control Syst Technol doi: 10.1109/TCST.2013.2295737 – year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0220 – volume: 8 start-page: 1325 issue: 3 year: 1993 ident: 10.1016/j.apenergy.2017.07.007_b0130 article-title: Genetic algorthm solution of economic dispatch with valve point loading publication-title: IEEE Trans Power Syst doi: 10.1109/59.260861 – ident: 10.1016/j.apenergy.2017.07.007_b0245 – ident: 10.1016/j.apenergy.2017.07.007_b0095 doi: 10.1109/ISGTEurope.2012.6465822 – ident: 10.1016/j.apenergy.2017.07.007_b0205 – volume: 16 start-page: 65 year: 2011 ident: 10.1016/j.apenergy.2017.07.007_b0190 article-title: Ageing forecast of lithium-Ion batteries for electric and hybrid vehicles publication-title: Curr Top Electrochem – volume: 18 start-page: 6 issue: 1 year: 2008 ident: 10.1016/j.apenergy.2017.07.007_b0200 article-title: Distributed generation and microgrids for small island electrification in developing countries: a review publication-title: Sol Energy Soc India – ident: 10.1016/j.apenergy.2017.07.007_b0060 – ident: 10.1016/j.apenergy.2017.07.007_b0140 – year: 2001 ident: 10.1016/j.apenergy.2017.07.007_b0170 article-title: Model Regulations for the output of specified air emissions from smaller-scale Electric Generation Resources. publication-title: Regul Assist Project – volume: 40 start-page: 659 year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0010 article-title: Microgrids: experiences, barriers and success factors publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.198 – ident: 10.1016/j.apenergy.2017.07.007_b0125 – year: 2012 ident: 10.1016/j.apenergy.2017.07.007_b0180 – year: 2015 ident: 10.1016/j.apenergy.2017.07.007_b0105 article-title: Regenerative energiesysteme: technologie-berechnung-simulation publication-title: Carl Hanser Verlag GmbH Co KG – volume: 126 start-page: 581 year: 2004 ident: 10.1016/j.apenergy.2017.07.007_b0155 article-title: Technical and tariff scenarios effect on microturbine trigenerative applications publication-title: J Eng Gas Turb Power doi: 10.1115/1.1762904 – volume: 77 start-page: 144 year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0025 article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system publication-title: Energy doi: 10.1016/j.energy.2014.05.101 – year: 2017 ident: 10.1016/j.apenergy.2017.07.007_b0070 article-title: Integrated scheduling of energy supply and demand in microgrids under uncertainty: a robust multi-objective optimization approach publication-title: Energy – volume: 176 start-page: 534 issue: 2 year: 2008 ident: 10.1016/j.apenergy.2017.07.007_b0195 article-title: Comparison of different approaches for lifetime prediction of electrochemical systems—using lead-acid batteries as example publication-title: J Power Sources doi: 10.1016/j.jpowsour.2007.08.057 – start-page: 1 year: 2016 ident: 10.1016/j.apenergy.2017.07.007_b0050 article-title: An economic dispatch algorithm for congestion management of smart power networks publication-title: Energy Syst – issue: 1–6 year: 2011 ident: 10.1016/j.apenergy.2017.07.007_b0090 article-title: centralized optimal energy management system for microgrids publication-title: IEEE Power Energy Soc General Meeting doi: 10.1109/PES.2011.6039527 – volume: 40 start-page: 649 year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0040 article-title: Optimal power dispatching strategies in smart-microgrids with storage” publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2014.07.138 – volume: 188 start-page: 547 year: 2017 ident: 10.1016/j.apenergy.2017.07.007_b0080 article-title: Microgrid sizing with combined evolutionary algorithm and MILP unit commitment publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.12.038 – volume: 183 start-page: 791 year: 2016 ident: 10.1016/j.apenergy.2017.07.007_b0065 article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.09.035 – volume: 4 start-page: 297 year: 2008 ident: 10.1016/j.apenergy.2017.07.007_b0015 article-title: A review on aggregation approaches of controllable distributed energy units in electrical power systems publication-title: Int J Distrib Energy Resources – volume: 13 start-page: 76 issue: 1 year: 1998 ident: 10.1016/j.apenergy.2017.07.007_b0115 article-title: A decision support technique for the design of hybrid solar–wind power systems publication-title: IEEE Trans Energy Convers doi: 10.1109/60.658207 – volume: 194 start-page: 386 year: 2017 ident: 10.1016/j.apenergy.2017.07.007_b0045 article-title: Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system publication-title: Appl Energy doi: 10.1016/j.apenergy.2016.07.080 – volume: 18 start-page: 882 issue: 2 year: 2003 ident: 10.1016/j.apenergy.2017.07.007_b0225 article-title: A fast technique for unit commitment problem by extended priority list publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2003.811000 – ident: 10.1016/j.apenergy.2017.07.007_b0250 – volume: 22 start-page: 113 issue: 2 year: 2013 ident: 10.1016/j.apenergy.2017.07.007_b0035 article-title: Multiobjective real-coded genetic algorithm for economic/environmental dispatch problem publication-title: Stud Inform Control doi: 10.24846/v22i2y201301 – volume: 9 start-page: 1 issue: 3 year: 1994 ident: 10.1016/j.apenergy.2017.07.007_b0230 article-title: Simulated binary crossover for continuous search space publication-title: Complex Syst – year: 2014 ident: 10.1016/j.apenergy.2017.07.007_b0240 article-title: An environmental-economic dispatch method for smart microgrids using VSS_QGA publication-title: J Appl Math |
| SSID | ssj0002120 |
| Score | 2.6399596 |
| Snippet | •Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic... Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 944 |
| SubjectTerms | algorithms Economic dispatch electric power energy Genetic algorithm issues and policy linear programming lithium batteries Microgrids Mixed integer linear programming Unit commitment |
| Title | Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming |
| URI | https://dx.doi.org/10.1016/j.apenergy.2017.07.007 https://www.proquest.com/docview/2000500782 |
| Volume | 210 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-9118 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002120 issn: 0306-2619 databaseCode: AKRWK dateStart: 19750101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNFCg4yUeBzISbdjE2MmmXCHQ3iGgACS6yI8JBJHsKrsrXUXDH78Zr8PjdBIFXR6eyPHYM2P5m28YO0KrqFMl0PrlEiIpXRxp9PIRCE_3RRxXtFG8vEqHd_L3vbpfYKddLgzBKoPtn9t0b63Dk14Yzd64qno3FO1S_J9kxGoniPFTyoyqGBy_vMM8RKBmxMYRtf6QJfx0rMfgM-wI4pV5Ek8qK_t_B_WPqfb-5_wHWw2BIx_M-7bGFqBZZysf6ATX2dbZe9YaNg3LdrLBXq_RMNQh45KPSj7Dhczxl-vKg8y5bhyHkKLMXYVWBpXJq4bXhNd7aCs34eTvHEd5nHKU-cj188OoraaPtRevqz_42rNPQMspeNUtD-ivGru3ye7Oz25Ph1GovhBZmcppZEGI2Kp-DlKVBk60USWopLRJ2tfalQK00IkuTepkZnIAkaUyiY11zubCxidbbLEZNbDNuOwLk_Vjh9FmKQU4Y6XBC50Bbqi0TXeY6oa8sIGanCpkPBcdBu2p6FRVkKqKmE7Nsx3We5Mbz8k5vpTIO40Wn6ZZgR7kS9nDbgoUuAbpYEU3MJpNqJRnrHywtfuN7--xZbwjaGGUqJ9scdrOYB8jnqk58FP6gC0Nfl0Mr_4CSoEFmQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHFoOFdAiaEtxpV7DJl472RwrBNqWRw8FiZvlxwSCSHaV3ZV64sIf74zXKbSqxKG3KPFYjseeGcvffMPYZ7SKJlcCrV8pIZHSp4lBL5-ACHRfxHFFB8Wz83x8Kb9dqasVdtjnwhCsMtr-pU0P1jq-GcTZHEzrevCDol2K_7OCWO3E8AVbk9g_ncAO7h9xHiJyM2LrhJo_SRO-PTBTCCl2hPEqAosn1ZX9t4f6y1YHB3S8wV7HyJF_WQ5uk61Au8XWn_AJbrHto8e0NWwa9-3sDXv4jpahiSmXfFLxBe5kjv_c1AFlzk3rOcQcZe5rNDOoTV63vCHA3nVX-xknh-c5yuOao9RHbu6uJ109v2mCeFP_xM-BfgI6TtGr6XiEfzU4vLfs8vjo4nCcxPILiZO5nCcOhEidGpUgVWVhaKyqQGWVy_KRMb4SYITJTGVzLwtbAogil1lqnfeuFC4dbrPVdtLCDuNyJGwxSj2Gm5UU4K2TFh9MAXiiMi7fZaqfcu0iNzmVyLjTPQjtVveq0qQqndK1ebHLBr_lpkt2jmclyl6j-o91ptGFPCv7qV8CGjch3ayYFiaLGdXyTFWItt79R__77OX44uxUn349P3nPXuEXwhkmmfrAVufdAvYw_Jnbj2F5_wI-Hgcu |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+unit+commitment+and+economic+dispatch+in+microgrids+based+on+genetic+algorithm+and+mixed+integer+linear+programming&rft.jtitle=Applied+energy&rft.au=Nemati%2C+Mohsen&rft.au=Braun%2C+Martin&rft.au=Tenbohlen%2C+Stefan&rft.date=2018-01-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=210&rft.spage=944&rft.epage=963&rft_id=info:doi/10.1016%2Fj.apenergy.2017.07.007&rft.externalDocID=S0306261917308723 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon |