Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming

•Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids....

Full description

Saved in:
Bibliographic Details
Published inApplied energy Vol. 210; pp. 944 - 963
Main Authors Nemati, Mohsen, Braun, Martin, Tenbohlen, Stefan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 15.01.2018
Subjects
Online AccessGet full text
ISSN0306-2619
1872-9118
DOI10.1016/j.apenergy.2017.07.007

Cover

Abstract •Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids. Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together.
AbstractList Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together.
•Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic dispatch.•Aging model of the Li-Ion battery based on an event-driven method.•Mixed integer linear programming for optimal power flow of microgrids. Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy revolution. Optimal resource dispatch tasks must be handled with specific regard to the addition of new resource types and the adoption of novel modeling considerations. In addition, due to the comprehensive changes concerning the multi cell grid structure, new policies should be fulfilled via microgrids’ EMS. At the same time achieving a variety of (conflicting) goals in different microgrids requires a universal and a multi criteria optimization tool. Few of recent works in this area have considered the different perspectives of network operation with high amount of constraints and decision criteria. In this paper two dispatch-optimizers for a centralized EMS (CEMS) as a universal tool are introduced. An improved real-coded genetic algorithm and an enhanced mixed integer linear programming (MILP) based method have been developed to schedule the unit commitment and economic dispatch of microgrid units. In the proposed methods, network restrictions like voltages and equipment loadings and unit constraints have been considered. The adopted genetic algorithm features a highly flexible set of sub-functions, intelligent convergence behavior, as well as diversified searching approaches and penalty methods for constraint violations. Moreover, a novel method has been introduced to deal with the limitations of the MILP algorithm for handling the non-linear network topology constraints. A new aging model of a Lithium-Ion battery based on an event-driven aging behavior has been introduced. Ultimately, the developed GA-based and MILP-based optimizers have been applied to a test microgrid model under different operation policies, and the functionality of each method has been evaluated and compared together.
Author Nemati, Mohsen
Tenbohlen, Stefan
Braun, Martin
Author_xml – sequence: 1
  givenname: Mohsen
  surname: Nemati
  fullname: Nemati, Mohsen
  email: mohsen.nemati@siemens.com
  organization: Siemens AG, Humboldt Street 59, 90443 Nuremberg, Germany
– sequence: 2
  givenname: Martin
  surname: Braun
  fullname: Braun, Martin
  email: martin.braun@uni-kassel.de
  organization: Fraunhofer IWES, University of Kassel, Kassel, Germany
– sequence: 3
  givenname: Stefan
  surname: Tenbohlen
  fullname: Tenbohlen, Stefan
  email: stefan.tenbohlen@ieh.uni-stuttgart.de
  organization: University of Stuttgart-IEH, Stuttgart, Germany
BookMark eNqFkM9rFTEQx4O04GvrvyA5etlnkrc_wYNSrBUKveg5zCaz23lskjXJE-vVf9y8vnrxUhgIId_PzORzwc588MjYWym2Usj2_X4LK3qM8-NWCdltRSnRvWIb2XeqGqTsz9hG7ERbqVYOr9lFSnshhJJKbNif-zWTo9-QKXgeJn7wlLkJzlF26DMHbzma4IMjwy2lFbJ54OR5uccwR7KJj5DQ8sLPZY9ccrDMIVJ-cE-4o1_lmXzGGSNfyCNEvh5hKGP8fMXOJ1gSvnk-L9n3m8_frm-ru_svX68_3VWmbutcGVRKmKYfsG6mEXcwNhM2cjKy7QHspBAUSJjG1tbdOCCqrq2lGI21ZlBG7C7Zu1PfMvvHAVPWjpLBZQGP4ZC0Klaaoq5XJfrhFC1_TCnipA3lJ0c5Ai1aCn10r_f6n3t9dK9FKdEVvP0PXyM5iI8vgx9PIBYPPwmjTobQG7QU0WRtA73U4i9MUKoT
CitedBy_id crossref_primary_10_1016_j_apenergy_2020_115045
crossref_primary_10_1109_TSG_2021_3097047
crossref_primary_10_1016_j_apenergy_2020_115960
crossref_primary_10_1109_TSG_2024_3403897
crossref_primary_10_1007_s41660_021_00193_4
crossref_primary_10_1109_TSG_2018_2859821
crossref_primary_10_1016_j_seta_2025_104185
crossref_primary_10_1002_2050_7038_12732
crossref_primary_10_1016_j_socl_2021_100016
crossref_primary_10_1016_j_energy_2019_03_129
crossref_primary_10_35378_gujs_942680
crossref_primary_10_3390_en17174463
crossref_primary_10_1016_j_ijepes_2022_108671
crossref_primary_10_1002_2050_7038_12177
crossref_primary_10_1016_j_ijepes_2019_105380
crossref_primary_10_1016_j_egyr_2022_06_064
crossref_primary_10_22495_jgrv12i4siart16
crossref_primary_10_1155_2022_1227981
crossref_primary_10_48084_etasr_3795
crossref_primary_10_1016_j_segan_2021_100479
crossref_primary_10_2339_politeknik_1348672
crossref_primary_10_1016_j_matpr_2020_06_568
crossref_primary_10_3390_electronics9010108
crossref_primary_10_1016_j_ecmx_2024_100724
crossref_primary_10_1109_ACCESS_2021_3108973
crossref_primary_10_1016_j_epsr_2022_107935
crossref_primary_10_1016_j_renene_2023_119406
crossref_primary_10_3390_pr10061214
crossref_primary_10_1016_j_enpol_2020_111740
crossref_primary_10_1109_TIA_2021_3100321
crossref_primary_10_1016_j_epsr_2023_109158
crossref_primary_10_1016_j_aej_2023_03_017
crossref_primary_10_1016_j_rineng_2023_101354
crossref_primary_10_1016_j_seta_2022_102066
crossref_primary_10_1109_ACCESS_2024_3415548
crossref_primary_10_4018_IJAMC_2020040109
crossref_primary_10_3390_su13126776
crossref_primary_10_1016_j_egyr_2021_12_044
crossref_primary_10_1016_j_heliyon_2024_e27489
crossref_primary_10_1016_j_apenergy_2021_118170
crossref_primary_10_1016_j_renene_2023_118903
crossref_primary_10_1016_j_swevo_2023_101256
crossref_primary_10_1109_ACCESS_2020_3010275
crossref_primary_10_1016_j_rser_2019_109523
crossref_primary_10_3390_app12083980
crossref_primary_10_1002_spy2_214
crossref_primary_10_1016_j_apenergy_2019_113859
crossref_primary_10_1016_j_seppur_2021_120130
crossref_primary_10_1016_j_rser_2022_112356
crossref_primary_10_1016_j_ijepes_2019_02_037
crossref_primary_10_37394_23202_2023_22_37
crossref_primary_10_1109_ACCESS_2020_2995260
crossref_primary_10_1016_j_energy_2018_12_213
crossref_primary_10_1016_j_ijepes_2021_107196
crossref_primary_10_1016_j_applthermaleng_2023_121871
crossref_primary_10_1186_s42162_024_00430_3
crossref_primary_10_1109_JSYST_2020_2990633
crossref_primary_10_1016_j_est_2020_101457
crossref_primary_10_1016_j_ifacol_2018_11_720
crossref_primary_10_3390_pr10020366
crossref_primary_10_1049_iet_gtd_2019_1542
crossref_primary_10_3390_en17030720
crossref_primary_10_1002_cpe_5486
crossref_primary_10_3390_math11020271
crossref_primary_10_1016_j_scitotenv_2024_174632
crossref_primary_10_2298_YJOR240315018K
crossref_primary_10_1007_s00202_021_01297_3
crossref_primary_10_1016_j_epsr_2020_106538
crossref_primary_10_1002_2050_7038_13060
crossref_primary_10_1016_j_eswa_2022_117411
crossref_primary_10_1109_JIOT_2021_3072840
crossref_primary_10_3390_en16176111
crossref_primary_10_1109_TSTE_2021_3061776
crossref_primary_10_1155_2019_5831362
crossref_primary_10_1007_s11269_022_03302_1
crossref_primary_10_1016_j_epsr_2020_106412
crossref_primary_10_3390_math11071610
crossref_primary_10_1016_j_cja_2020_10_029
crossref_primary_10_1016_j_epsr_2022_109089
crossref_primary_10_1155_2020_2865929
crossref_primary_10_1109_ACCESS_2022_3167037
crossref_primary_10_1016_j_energy_2018_10_087
crossref_primary_10_3390_su14148788
crossref_primary_10_1002_jnm_2798
crossref_primary_10_1016_j_rser_2022_112215
crossref_primary_10_1016_j_apenergy_2018_08_014
crossref_primary_10_1038_s41598_024_54333_0
crossref_primary_10_3390_en14185976
crossref_primary_10_1016_j_apenergy_2024_123548
crossref_primary_10_1371_journal_pone_0261709
crossref_primary_10_1080_15567036_2019_1587067
crossref_primary_10_1093_ce_zkad061
crossref_primary_10_1016_j_apenergy_2018_10_121
crossref_primary_10_14710_ijred_2021_34656
crossref_primary_10_3390_en12142712
crossref_primary_10_1109_ACCESS_2023_3313259
crossref_primary_10_1016_j_ijepes_2024_110022
crossref_primary_10_1109_TNSE_2021_3062846
crossref_primary_10_1016_j_egyr_2021_07_052
crossref_primary_10_1016_j_ifacol_2020_12_801
crossref_primary_10_1016_j_egyr_2023_04_360
crossref_primary_10_1109_ACCESS_2019_2941914
crossref_primary_10_1109_TIA_2021_3057008
crossref_primary_10_3390_su141711002
crossref_primary_10_1109_TPEL_2021_3074964
crossref_primary_10_1109_ACCESS_2022_3150857
crossref_primary_10_1016_j_ijepes_2022_108149
crossref_primary_10_1016_j_seta_2023_103404
crossref_primary_10_14710_ijred_2021_38909
crossref_primary_10_3390_en11061387
crossref_primary_10_1109_ACCESS_2020_2988530
crossref_primary_10_1016_j_apenergy_2018_08_112
crossref_primary_10_1186_s42162_024_00357_9
crossref_primary_10_1155_2022_6461690
crossref_primary_10_1049_cth2_12027
crossref_primary_10_1016_j_energy_2018_06_141
crossref_primary_10_1016_j_apenergy_2022_118715
crossref_primary_10_1016_j_ijhydene_2024_08_405
crossref_primary_10_1016_j_apenergy_2019_01_067
crossref_primary_10_1109_ACCESS_2023_3313998
crossref_primary_10_3390_en17153807
crossref_primary_10_3390_sym13091707
crossref_primary_10_1109_TSG_2019_2933502
crossref_primary_10_1016_j_scs_2018_09_037
crossref_primary_10_1007_s13369_019_04310_x
crossref_primary_10_1016_j_apenergy_2024_125139
crossref_primary_10_3390_en12061124
crossref_primary_10_1002_er_8444
crossref_primary_10_3390_electronics13224563
crossref_primary_10_3390_en15186785
crossref_primary_10_1016_j_enconman_2019_112090
crossref_primary_10_1109_TPWRS_2021_3095266
crossref_primary_10_1049_gtd2_12391
crossref_primary_10_1109_TCSI_2024_3351942
crossref_primary_10_1016_j_applthermaleng_2019_02_053
crossref_primary_10_1016_j_epsr_2024_110971
crossref_primary_10_1016_j_segan_2024_101427
crossref_primary_10_3390_en14248489
crossref_primary_10_3390_su16062422
crossref_primary_10_1002_er_4512
crossref_primary_10_3390_app10175862
crossref_primary_10_1016_j_enbuild_2019_06_010
crossref_primary_10_1109_TSG_2023_3266761
crossref_primary_10_1049_rpg2_13195
crossref_primary_10_1002_2050_7038_12581
crossref_primary_10_1016_j_apenergy_2021_116830
crossref_primary_10_1021_acs_iecr_3c02232
crossref_primary_10_1016_j_aei_2022_101848
crossref_primary_10_3390_en16062720
crossref_primary_10_3390_en16165920
crossref_primary_10_1016_j_apenergy_2018_06_060
crossref_primary_10_1109_ACCESS_2021_3062840
crossref_primary_10_3390_electronics8111371
crossref_primary_10_1007_s40031_021_00634_1
crossref_primary_10_1016_j_energy_2021_120386
crossref_primary_10_1051_e3sconf_202123802001
crossref_primary_10_1016_j_epsr_2020_106232
crossref_primary_10_3390_en12153004
crossref_primary_10_1016_j_egyr_2021_04_006
crossref_primary_10_1016_j_esr_2024_101298
crossref_primary_10_1016_j_energy_2020_118434
crossref_primary_10_1016_j_eng_2022_11_010
crossref_primary_10_1016_j_energy_2019_02_145
crossref_primary_10_1016_j_ijhydene_2022_02_231
crossref_primary_10_1016_j_jclepro_2019_119082
crossref_primary_10_1109_ACCESS_2020_3045754
crossref_primary_10_1080_21681015_2021_1974963
crossref_primary_10_1007_s00202_024_02912_9
crossref_primary_10_3390_en13051096
crossref_primary_10_3390_su16010336
crossref_primary_10_1016_j_apenergy_2024_122875
crossref_primary_10_3390_su132011429
crossref_primary_10_3390_en14010168
crossref_primary_10_1109_ACCESS_2018_2815547
crossref_primary_10_1007_s13369_021_05975_z
crossref_primary_10_1016_j_asoc_2019_105786
crossref_primary_10_3390_en11092468
crossref_primary_10_1049_iet_gtd_2019_0973
crossref_primary_10_3390_app9050829
crossref_primary_10_1016_j_jobe_2023_106113
crossref_primary_10_3390_en17133281
crossref_primary_10_1109_TSG_2023_3253886
crossref_primary_10_3390_en15041555
crossref_primary_10_1016_j_energy_2019_07_173
crossref_primary_10_1016_j_apenergy_2018_07_047
crossref_primary_10_1007_s00376_024_4214_7
crossref_primary_10_1016_j_ifacol_2020_12_2265
crossref_primary_10_1016_j_enconman_2020_112471
crossref_primary_10_1007_s10098_021_02088_x
crossref_primary_10_1016_j_apenergy_2019_113689
crossref_primary_10_3389_fenrg_2024_1385839
crossref_primary_10_1016_j_entcs_2020_09_018
crossref_primary_10_1016_j_scs_2022_103727
crossref_primary_10_1155_2024_8100507
crossref_primary_10_1049_ccs2_12068
crossref_primary_10_1016_j_apenergy_2020_115256
crossref_primary_10_1155_2022_7265308
crossref_primary_10_1109_ACCESS_2023_3274674
crossref_primary_10_1016_j_segan_2022_100897
crossref_primary_10_1177_0958305X221117519
crossref_primary_10_1109_JESTPE_2020_2975904
crossref_primary_10_1155_2022_3960120
crossref_primary_10_1007_s10586_024_04669_z
crossref_primary_10_1016_j_petsci_2021_12_029
crossref_primary_10_1016_j_apenergy_2021_118018
crossref_primary_10_1111_coin_12238
crossref_primary_10_3390_en14144166
crossref_primary_10_1007_s11831_019_09353_9
crossref_primary_10_1016_j_energy_2019_04_108
crossref_primary_10_1016_j_coal_2019_103231
crossref_primary_10_1016_j_conengprac_2021_105018
crossref_primary_10_1016_j_egyr_2020_12_007
crossref_primary_10_3390_en12081476
crossref_primary_10_1016_j_asoc_2023_110413
crossref_primary_10_1016_j_epsr_2020_106958
crossref_primary_10_1088_1755_1315_431_1_012010
crossref_primary_10_1016_j_epsr_2023_109880
crossref_primary_10_1155_2021_9983104
crossref_primary_10_1016_j_est_2024_112708
crossref_primary_10_1515_ijeeps_2022_0222
crossref_primary_10_1016_j_apenergy_2018_07_034
crossref_primary_10_1016_j_egyr_2024_05_049
crossref_primary_10_1016_j_rser_2021_111327
crossref_primary_10_1155_2018_3208934
crossref_primary_10_1016_j_heliyon_2023_e14748
crossref_primary_10_1016_j_jclepro_2019_119041
crossref_primary_10_1016_j_ifacol_2020_12_2132
crossref_primary_10_1016_j_foreco_2021_119828
crossref_primary_10_1080_23311916_2020_1766394
crossref_primary_10_1016_j_scs_2022_103936
crossref_primary_10_3390_en12112143
crossref_primary_10_1016_j_apenergy_2021_118487
crossref_primary_10_1016_j_energy_2021_121704
crossref_primary_10_1109_ACCESS_2020_2990454
crossref_primary_10_1016_j_apenergy_2018_02_142
crossref_primary_10_1109_TVT_2020_3030280
Cites_doi 10.1109/TPWRS.2004.841233
10.1016/j.ijepes.2009.11.003
10.1109/ICSET.2010.5684943
10.1016/j.rser.2006.07.011
10.1109/PTC.2015.7232801
10.1002/9780470225868
10.1109/SURV.2011.101911.00087
10.1016/j.tej.2012.09.010
10.1109/TPWRS.2013.2241795
10.3390/en7042027
10.1109/TCST.2013.2295737
10.1109/59.260861
10.1109/ISGTEurope.2012.6465822
10.1016/j.rser.2014.07.198
10.1115/1.1762904
10.1016/j.energy.2014.05.101
10.1016/j.jpowsour.2007.08.057
10.1109/PES.2011.6039527
10.1016/j.rser.2014.07.138
10.1016/j.apenergy.2016.12.038
10.1016/j.apenergy.2016.09.035
10.1109/60.658207
10.1016/j.apenergy.2016.07.080
10.1109/TPWRS.2003.811000
10.24846/v22i2y201301
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.apenergy.2017.07.007
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Environmental Sciences
EISSN 1872-9118
EndPage 963
ExternalDocumentID 10_1016_j_apenergy_2017_07_007
S0306261917308723
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
~02
~G-
AAHBH
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SEW
WUQ
ZY4
~HD
7S9
L.6
ID FETCH-LOGICAL-c464t-ce220c589e45fbe3ab5fe51fc168aadf2ea2a1afb6d47b9ee276410bcddc92c03
IEDL.DBID .~1
ISSN 0306-2619
IngestDate Sun Sep 28 08:13:38 EDT 2025
Thu Apr 24 23:04:05 EDT 2025
Thu Oct 09 00:33:46 EDT 2025
Fri Feb 23 02:45:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Economic dispatch
Mixed integer linear programming
Genetic algorithm
Microgrids
Unit commitment
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-ce220c589e45fbe3ab5fe51fc168aadf2ea2a1afb6d47b9ee276410bcddc92c03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 2000500782
PQPubID 24069
PageCount 20
ParticipantIDs proquest_miscellaneous_2000500782
crossref_citationtrail_10_1016_j_apenergy_2017_07_007
crossref_primary_10_1016_j_apenergy_2017_07_007
elsevier_sciencedirect_doi_10_1016_j_apenergy_2017_07_007
PublicationCentury 2000
PublicationDate 2018-01-15
PublicationDateYYYYMMDD 2018-01-15
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-01-15
  day: 15
PublicationDecade 2010
PublicationTitle Applied energy
PublicationYear 2018
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Nemati, Eberlein, Tao, Müller, Braun, Tenbohlen (b0220) 2014
Wang (b0070) 2017
Deshmukh, Deshmukh (b0110) 2008; 12
Indradip, Degner, Braun (b0200) 2008; 18
Farret, Simões (b0160) 2006
Strompreisanalyse, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015.
Li, Pedroni, Zio (b0235) 2013
Soshinskaya, Crijns-Graus, Guerrero, Vasquez (b0010) 2014; 40
Staffell (b0135) 2009
Liang, Zhuang (b0020) 2014; 7
Logenthiran Thillainathan, et al. Multi-Agent System (MAS) for short-term generation scheduling of a microgrid. In: IEEE International Conference Sustainable Energy Technologies (ICSET); 2010.
Küpper (b0180) 2012
Boroojeni (b0050) 2016
Wu X, Wang X, Bie Z. Optimal generation scheduling of a microgrid. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)
Walters, Sheble (b0130) 1993; 8
Sauer, Wenzl (b0195) 2008; 176
Zhang (b0065) 2016; 183
Chedid, Akiki, Rahman (b0115) 1998; 13
Soares, Antunes, Oliveira, Gomes (b0025) 2014; 77
Deb, Agrawal (b0230) 1994; 9
Jin (b0045) 2017; 194
Faisal M. Microgrid modelling and online management; 2008.
Parisio, Rikos, Glielmo (b0085) 2014; 22
Standardlastprofile, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015.
Farhat IA. Economic and economic-emission operation of all-thermal and hydro-thermal power generation systems using bacterial foraging optimization (Doctoral dissertation). Dalhousie University Halifax; 2012.
Zhu (b0120) 2015
Amini (b0030) 2015
Gerschler JB. Ortsaufgelöste Modellbildung von Lithium-Ionen-Systemen unter spezieller Berücksichtigung der Batteriealterung, Aachen: Shaker, ISBN 978-3-8440-1307-8; 2012.
Technical Brochure 635, “Microgrids”, first report of WG C6.22; 2015.
Nemati M, Bennimar K, Tao L, Müller H, Braun M, Tenbohlen S. Optimization of microgrids short term operation based on an enhanced genetic algorithm. In: IEEE PES Powertech conference, Eindhoven; 2015.
Campanari, Macchi (b0155) 2004; 126
Quaschning (b0105) 2015
Rigo-Mariani, Sareni, Roboam, Turpin (b0040) 2014; 40
Kabza A. Fuel Cell Formulary; 2013.
Olivares, Cañizares, Kazerani (b0090) 2011
Weston, Seidman, James (b0170) 2001
Senjyu, Shimabukuro, Uezato, Funabashi (b0225) 2003; 18
Liu, Zhang, Zeng, Niu, Zhang, Xiao (b0240) 2014
(1–7); 2012.
Fang, Misra, Xue, Yang (b0005) 2012; 14
Lasnier, Ang (b0100) 1990
Mohamed, Koivo (b0150) 2010; 32
Li (b0145) 2012
Pipattanasomporn, Willingham, Rahman (b0165) 2005; 20
Braun, Strauss (b0015) 2008; 4
El-Sehiemy, El-Hosseini, Hassanien (b0035) 2013; 22
Nemati, Zöller, Tao, Müller, Braun, Tenbohlen (b0215) 2015
Lee KY, El-Sharkawi MA., Editors. Modern heuristic optimization techniques: theory and applications to power systems. vol. 39. John Wiley & Sons; 2008.
Su, Wang (b0185) 2012; 25
Badey, Cherouvrier, Reynier, Duffault, Franger (b0190) 2011; 16
Li, Roche, Miraoui (b0080) 2017; 188
Senjyu (10.1016/j.apenergy.2017.07.007_b0225) 2003; 18
10.1016/j.apenergy.2017.07.007_b0060
10.1016/j.apenergy.2017.07.007_b0140
Soshinskaya (10.1016/j.apenergy.2017.07.007_b0010) 2014; 40
Küpper (10.1016/j.apenergy.2017.07.007_b0180) 2012
Jin (10.1016/j.apenergy.2017.07.007_b0045) 2017; 194
Deshmukh (10.1016/j.apenergy.2017.07.007_b0110) 2008; 12
Pipattanasomporn (10.1016/j.apenergy.2017.07.007_b0165) 2005; 20
Zhang (10.1016/j.apenergy.2017.07.007_b0065) 2016; 183
Liang (10.1016/j.apenergy.2017.07.007_b0020) 2014; 7
Walters (10.1016/j.apenergy.2017.07.007_b0130) 1993; 8
Staffell (10.1016/j.apenergy.2017.07.007_b0135) 2009
Nemati (10.1016/j.apenergy.2017.07.007_b0215) 2015
10.1016/j.apenergy.2017.07.007_b0095
Nemati (10.1016/j.apenergy.2017.07.007_b0220) 2014
10.1016/j.apenergy.2017.07.007_b0250
10.1016/j.apenergy.2017.07.007_b0175
10.1016/j.apenergy.2017.07.007_b0055
Deb (10.1016/j.apenergy.2017.07.007_b0230) 1994; 9
Weston (10.1016/j.apenergy.2017.07.007_b0170) 2001
10.1016/j.apenergy.2017.07.007_b0210
Li (10.1016/j.apenergy.2017.07.007_b0145) 2012
Wang (10.1016/j.apenergy.2017.07.007_b0070) 2017
Zhu (10.1016/j.apenergy.2017.07.007_b0120) 2015
Li (10.1016/j.apenergy.2017.07.007_b0235) 2013
Sauer (10.1016/j.apenergy.2017.07.007_b0195) 2008; 176
Soares (10.1016/j.apenergy.2017.07.007_b0025) 2014; 77
Lasnier (10.1016/j.apenergy.2017.07.007_b0100) 1990
Indradip (10.1016/j.apenergy.2017.07.007_b0200) 2008; 18
Farret (10.1016/j.apenergy.2017.07.007_b0160) 2006
Fang (10.1016/j.apenergy.2017.07.007_b0005) 2012; 14
El-Sehiemy (10.1016/j.apenergy.2017.07.007_b0035) 2013; 22
10.1016/j.apenergy.2017.07.007_b0245
10.1016/j.apenergy.2017.07.007_b0125
10.1016/j.apenergy.2017.07.007_b0205
Su (10.1016/j.apenergy.2017.07.007_b0185) 2012; 25
Badey (10.1016/j.apenergy.2017.07.007_b0190) 2011; 16
Li (10.1016/j.apenergy.2017.07.007_b0080) 2017; 188
Chedid (10.1016/j.apenergy.2017.07.007_b0115) 1998; 13
Liu (10.1016/j.apenergy.2017.07.007_b0240) 2014
Parisio (10.1016/j.apenergy.2017.07.007_b0085) 2014; 22
Amini (10.1016/j.apenergy.2017.07.007_b0030) 2015
Mohamed (10.1016/j.apenergy.2017.07.007_b0150) 2010; 32
10.1016/j.apenergy.2017.07.007_b0075
Quaschning (10.1016/j.apenergy.2017.07.007_b0105) 2015
Rigo-Mariani (10.1016/j.apenergy.2017.07.007_b0040) 2014; 40
Campanari (10.1016/j.apenergy.2017.07.007_b0155) 2004; 126
Braun (10.1016/j.apenergy.2017.07.007_b0015) 2008; 4
Olivares (10.1016/j.apenergy.2017.07.007_b0090) 2011
Boroojeni (10.1016/j.apenergy.2017.07.007_b0050) 2016
References_xml – year: 2012
  ident: b0180
  article-title: Flexibles Batteriemanagementsystem für Lithium-Ionen-Traktionsbatterien in Hybrid- und Elektrofahrzeuganwendungen
– year: 2014
  ident: b0240
  article-title: An environmental-economic dispatch method for smart microgrids using VSS_QGA
  publication-title: J Appl Math
– year: 2015
  ident: b0120
  article-title: Optimization of power system operation
– volume: 8
  start-page: 1325
  year: 1993
  end-page: 1332
  ident: b0130
  article-title: Genetic algorthm solution of economic dispatch with valve point loading
  publication-title: IEEE Trans Power Syst
– reference: Standardlastprofile, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015.
– volume: 14
  start-page: 944
  year: 2012
  end-page: 980
  ident: b0005
  article-title: Smart grid—the new and improved power grid: a survey
  publication-title: IEEE Commun Surv Tutorials
– volume: 7
  start-page: 2027
  year: 2014
  end-page: 2050
  ident: b0020
  article-title: Stochastic modeling and optimization in a microgrid: a survey
  publication-title: Energies
– volume: 18
  start-page: 6
  year: 2008
  end-page: 20
  ident: b0200
  article-title: Distributed generation and microgrids for small island electrification in developing countries: a review
  publication-title: Sol Energy Soc India
– reference: Strompreisanalyse, BDEW Bundesverband der Energie- und Wasserwirtschaft e.V; 2015.
– volume: 22
  start-page: 113
  year: 2013
  end-page: 122
  ident: b0035
  article-title: Multiobjective real-coded genetic algorithm for economic/environmental dispatch problem
  publication-title: Stud Inform Control
– volume: 77
  start-page: 144
  year: 2014
  end-page: 152
  ident: b0025
  article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system
  publication-title: Energy
– volume: 176
  start-page: 534
  year: 2008
  end-page: 546
  ident: b0195
  article-title: Comparison of different approaches for lifetime prediction of electrochemical systems—using lead-acid batteries as example
  publication-title: J Power Sources
– volume: 18
  start-page: 882
  year: 2003
  end-page: 888
  ident: b0225
  article-title: A fast technique for unit commitment problem by extended priority list
  publication-title: IEEE Trans Power Syst
– volume: 194
  start-page: 386
  year: 2017
  end-page: 398
  ident: b0045
  article-title: Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system
  publication-title: Appl Energy
– volume: 22
  start-page: 1813
  year: 2014
  end-page: 1827
  ident: b0085
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans Control Syst Technol
– year: 2012
  ident: b0145
  article-title: Understanding the design and performance of distributed tri-generation systems for home and neighborhood refueling
– reference: Lee KY, El-Sharkawi MA., Editors. Modern heuristic optimization techniques: theory and applications to power systems. vol. 39. John Wiley & Sons; 2008.
– volume: 16
  start-page: 65
  year: 2011
  end-page: 79
  ident: b0190
  article-title: Ageing forecast of lithium-Ion batteries for electric and hybrid vehicles
  publication-title: Curr Top Electrochem
– volume: 12
  start-page: 235
  year: 2008
  end-page: 249
  ident: b0110
  article-title: Modeling of hybrid renewable energy systems
  publication-title: Renew Sustain Energy Rev
– reference: Logenthiran Thillainathan, et al. Multi-Agent System (MAS) for short-term generation scheduling of a microgrid. In: IEEE International Conference Sustainable Energy Technologies (ICSET); 2010.
– volume: 9
  start-page: 1
  year: 1994
  end-page: 15
  ident: b0230
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– year: 2006
  ident: b0160
  article-title: Integration of alternative sources of energy
– reference: Faisal M. Microgrid modelling and online management; 2008.
– volume: 40
  start-page: 649
  year: 2014
  end-page: 658
  ident: b0040
  article-title: Optimal power dispatching strategies in smart-microgrids with storage”
  publication-title: Renew Sustain Energy Rev
– year: 2014
  ident: b0220
  article-title: Optimale Einsatzplanung dezentraler Anlagen in Mikrostromnetzen mittels genetischem Algorithmus
– volume: 126
  start-page: 581
  year: 2004
  end-page: 589
  ident: b0155
  article-title: Technical and tariff scenarios effect on microturbine trigenerative applications
  publication-title: J Eng Gas Turb Power
– year: 2015
  ident: b0030
  article-title: Distributed security constrained economic dispatch
  publication-title: 2015 IEEE Innovative Smart Grid Technologies-Asia (ISGT ASIA)
– volume: 40
  start-page: 659
  year: 2014
  end-page: 672
  ident: b0010
  article-title: Microgrids: experiences, barriers and success factors
  publication-title: Renew Sustain Energy Rev
– year: 2015
  ident: b0215
  article-title: Optimal energy management system for future microgrids with tight operating constraints
– volume: 20
  start-page: 206
  year: 2005
  end-page: 212
  ident: b0165
  article-title: Implications of on-site distributed generation for commercial/industrial facilities
  publication-title: IEEE Trans Power Syst
– year: 2009
  ident: b0135
  article-title: A review of small stationary fuel cell performance
– reference: (1–7); 2012.
– start-page: 1
  year: 2016
  end-page: 25
  ident: b0050
  article-title: An economic dispatch algorithm for congestion management of smart power networks
  publication-title: Energy Syst
– reference: Kabza A. Fuel Cell Formulary; 2013.
– volume: 188
  start-page: 547
  year: 2017
  end-page: 562
  ident: b0080
  article-title: Microgrid sizing with combined evolutionary algorithm and MILP unit commitment
  publication-title: Appl Energy
– reference: Wu X, Wang X, Bie Z. Optimal generation scheduling of a microgrid. In: 2012 3rd IEEE PES Innovative Smart Grid Technologies Europe (ISGT Europe)
– volume: 32
  start-page: 398
  year: 2010
  end-page: 407
  ident: b0150
  article-title: System modelling and online optimal management of microgrid using mesh adaptive direct search
  publication-title: Int J Electric Power Energy Syst
– volume: 13
  start-page: 76
  year: 1998
  end-page: 83
  ident: b0115
  article-title: A decision support technique for the design of hybrid solar–wind power systems
  publication-title: IEEE Trans Energy Convers
– year: 2011
  ident: b0090
  article-title: centralized optimal energy management system for microgrids
  publication-title: IEEE Power Energy Soc General Meeting
– reference: Farhat IA. Economic and economic-emission operation of all-thermal and hydro-thermal power generation systems using bacterial foraging optimization (Doctoral dissertation). Dalhousie University Halifax; 2012.
– volume: 183
  start-page: 791
  year: 2016
  end-page: 804
  ident: b0065
  article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints
  publication-title: Appl Energy
– volume: 25
  start-page: 45
  year: 2012
  end-page: 60
  ident: b0185
  article-title: Energy management systems in microgrid operations
  publication-title: Electricity J
– year: 2001
  ident: b0170
  article-title: Model Regulations for the output of specified air emissions from smaller-scale Electric Generation Resources.
  publication-title: Regul Assist Project
– volume: 4
  start-page: 297
  year: 2008
  end-page: 319
  ident: b0015
  article-title: A review on aggregation approaches of controllable distributed energy units in electrical power systems
  publication-title: Int J Distrib Energy Resources
– year: 1990
  ident: b0100
  article-title: Photovoltaic engineering handbook
– reference: Technical Brochure 635, “Microgrids”, first report of WG C6.22; 2015.
– reference: Nemati M, Bennimar K, Tao L, Müller H, Braun M, Tenbohlen S. Optimization of microgrids short term operation based on an enhanced genetic algorithm. In: IEEE PES Powertech conference, Eindhoven; 2015.
– year: 2015
  ident: b0105
  article-title: Regenerative energiesysteme: technologie-berechnung-simulation
  publication-title: Carl Hanser Verlag GmbH Co KG
– start-page: 2660
  year: 2013
  end-page: 2669
  ident: b0235
  article-title: A memetic evolutionary multi-objective optimization method for environmental power unit commitment
  publication-title: IEEE Transac-tions Power Systems
– year: 2017
  ident: b0070
  article-title: Integrated scheduling of energy supply and demand in microgrids under uncertainty: a robust multi-objective optimization approach
  publication-title: Energy
– reference: Gerschler JB. Ortsaufgelöste Modellbildung von Lithium-Ionen-Systemen unter spezieller Berücksichtigung der Batteriealterung, Aachen: Shaker, ISBN 978-3-8440-1307-8; 2012.
– ident: 10.1016/j.apenergy.2017.07.007_b0175
– year: 2015
  ident: 10.1016/j.apenergy.2017.07.007_b0120
– volume: 20
  start-page: 206
  issue: 1
  year: 2005
  ident: 10.1016/j.apenergy.2017.07.007_b0165
  article-title: Implications of on-site distributed generation for commercial/industrial facilities
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2004.841233
– year: 2015
  ident: 10.1016/j.apenergy.2017.07.007_b0215
– year: 2015
  ident: 10.1016/j.apenergy.2017.07.007_b0030
  article-title: Distributed security constrained economic dispatch
– volume: 32
  start-page: 398
  issue: 5
  year: 2010
  ident: 10.1016/j.apenergy.2017.07.007_b0150
  article-title: System modelling and online optimal management of microgrid using mesh adaptive direct search
  publication-title: Int J Electric Power Energy Syst
  doi: 10.1016/j.ijepes.2009.11.003
– ident: 10.1016/j.apenergy.2017.07.007_b0055
  doi: 10.1109/ICSET.2010.5684943
– volume: 12
  start-page: 235
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2017.07.007_b0110
  article-title: Modeling of hybrid renewable energy systems
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2006.07.011
– year: 1990
  ident: 10.1016/j.apenergy.2017.07.007_b0100
– ident: 10.1016/j.apenergy.2017.07.007_b0210
  doi: 10.1109/PTC.2015.7232801
– year: 2009
  ident: 10.1016/j.apenergy.2017.07.007_b0135
– ident: 10.1016/j.apenergy.2017.07.007_b0075
  doi: 10.1002/9780470225868
– year: 2012
  ident: 10.1016/j.apenergy.2017.07.007_b0145
– volume: 14
  start-page: 944
  issue: 4
  year: 2012
  ident: 10.1016/j.apenergy.2017.07.007_b0005
  article-title: Smart grid—the new and improved power grid: a survey
  publication-title: IEEE Commun Surv Tutorials
  doi: 10.1109/SURV.2011.101911.00087
– year: 2006
  ident: 10.1016/j.apenergy.2017.07.007_b0160
– volume: 25
  start-page: 45
  issue: 8
  year: 2012
  ident: 10.1016/j.apenergy.2017.07.007_b0185
  article-title: Energy management systems in microgrid operations
  publication-title: Electricity J
  doi: 10.1016/j.tej.2012.09.010
– start-page: 2660
  year: 2013
  ident: 10.1016/j.apenergy.2017.07.007_b0235
  article-title: A memetic evolutionary multi-objective optimization method for environmental power unit commitment
  publication-title: IEEE Transac-tions Power Systems
  doi: 10.1109/TPWRS.2013.2241795
– volume: 7
  start-page: 2027
  issue: 4
  year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0020
  article-title: Stochastic modeling and optimization in a microgrid: a survey
  publication-title: Energies
  doi: 10.3390/en7042027
– volume: 22
  start-page: 1813
  issue: 5
  year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0085
  article-title: A model predictive control approach to microgrid operation optimization
  publication-title: IEEE Trans Control Syst Technol
  doi: 10.1109/TCST.2013.2295737
– year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0220
– volume: 8
  start-page: 1325
  issue: 3
  year: 1993
  ident: 10.1016/j.apenergy.2017.07.007_b0130
  article-title: Genetic algorthm solution of economic dispatch with valve point loading
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/59.260861
– ident: 10.1016/j.apenergy.2017.07.007_b0245
– ident: 10.1016/j.apenergy.2017.07.007_b0095
  doi: 10.1109/ISGTEurope.2012.6465822
– ident: 10.1016/j.apenergy.2017.07.007_b0205
– volume: 16
  start-page: 65
  year: 2011
  ident: 10.1016/j.apenergy.2017.07.007_b0190
  article-title: Ageing forecast of lithium-Ion batteries for electric and hybrid vehicles
  publication-title: Curr Top Electrochem
– volume: 18
  start-page: 6
  issue: 1
  year: 2008
  ident: 10.1016/j.apenergy.2017.07.007_b0200
  article-title: Distributed generation and microgrids for small island electrification in developing countries: a review
  publication-title: Sol Energy Soc India
– ident: 10.1016/j.apenergy.2017.07.007_b0060
– ident: 10.1016/j.apenergy.2017.07.007_b0140
– year: 2001
  ident: 10.1016/j.apenergy.2017.07.007_b0170
  article-title: Model Regulations for the output of specified air emissions from smaller-scale Electric Generation Resources.
  publication-title: Regul Assist Project
– volume: 40
  start-page: 659
  year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0010
  article-title: Microgrids: experiences, barriers and success factors
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.198
– ident: 10.1016/j.apenergy.2017.07.007_b0125
– year: 2012
  ident: 10.1016/j.apenergy.2017.07.007_b0180
– year: 2015
  ident: 10.1016/j.apenergy.2017.07.007_b0105
  article-title: Regenerative energiesysteme: technologie-berechnung-simulation
  publication-title: Carl Hanser Verlag GmbH Co KG
– volume: 126
  start-page: 581
  year: 2004
  ident: 10.1016/j.apenergy.2017.07.007_b0155
  article-title: Technical and tariff scenarios effect on microturbine trigenerative applications
  publication-title: J Eng Gas Turb Power
  doi: 10.1115/1.1762904
– volume: 77
  start-page: 144
  year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0025
  article-title: A multi-objective genetic approach to domestic load scheduling in an energy management system
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.101
– year: 2017
  ident: 10.1016/j.apenergy.2017.07.007_b0070
  article-title: Integrated scheduling of energy supply and demand in microgrids under uncertainty: a robust multi-objective optimization approach
  publication-title: Energy
– volume: 176
  start-page: 534
  issue: 2
  year: 2008
  ident: 10.1016/j.apenergy.2017.07.007_b0195
  article-title: Comparison of different approaches for lifetime prediction of electrochemical systems—using lead-acid batteries as example
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2007.08.057
– start-page: 1
  year: 2016
  ident: 10.1016/j.apenergy.2017.07.007_b0050
  article-title: An economic dispatch algorithm for congestion management of smart power networks
  publication-title: Energy Syst
– issue: 1–6
  year: 2011
  ident: 10.1016/j.apenergy.2017.07.007_b0090
  article-title: centralized optimal energy management system for microgrids
  publication-title: IEEE Power Energy Soc General Meeting
  doi: 10.1109/PES.2011.6039527
– volume: 40
  start-page: 649
  year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0040
  article-title: Optimal power dispatching strategies in smart-microgrids with storage”
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2014.07.138
– volume: 188
  start-page: 547
  year: 2017
  ident: 10.1016/j.apenergy.2017.07.007_b0080
  article-title: Microgrid sizing with combined evolutionary algorithm and MILP unit commitment
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.12.038
– volume: 183
  start-page: 791
  year: 2016
  ident: 10.1016/j.apenergy.2017.07.007_b0065
  article-title: A hybrid harmony search algorithm with differential evolution for day-ahead scheduling problem of a microgrid with consideration of power flow constraints
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.09.035
– volume: 4
  start-page: 297
  year: 2008
  ident: 10.1016/j.apenergy.2017.07.007_b0015
  article-title: A review on aggregation approaches of controllable distributed energy units in electrical power systems
  publication-title: Int J Distrib Energy Resources
– volume: 13
  start-page: 76
  issue: 1
  year: 1998
  ident: 10.1016/j.apenergy.2017.07.007_b0115
  article-title: A decision support technique for the design of hybrid solar–wind power systems
  publication-title: IEEE Trans Energy Convers
  doi: 10.1109/60.658207
– volume: 194
  start-page: 386
  year: 2017
  ident: 10.1016/j.apenergy.2017.07.007_b0045
  article-title: Dynamic economic dispatch of a hybrid energy microgrid considering building based virtual energy storage system
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2016.07.080
– volume: 18
  start-page: 882
  issue: 2
  year: 2003
  ident: 10.1016/j.apenergy.2017.07.007_b0225
  article-title: A fast technique for unit commitment problem by extended priority list
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2003.811000
– ident: 10.1016/j.apenergy.2017.07.007_b0250
– volume: 22
  start-page: 113
  issue: 2
  year: 2013
  ident: 10.1016/j.apenergy.2017.07.007_b0035
  article-title: Multiobjective real-coded genetic algorithm for economic/environmental dispatch problem
  publication-title: Stud Inform Control
  doi: 10.24846/v22i2y201301
– volume: 9
  start-page: 1
  issue: 3
  year: 1994
  ident: 10.1016/j.apenergy.2017.07.007_b0230
  article-title: Simulated binary crossover for continuous search space
  publication-title: Complex Syst
– year: 2014
  ident: 10.1016/j.apenergy.2017.07.007_b0240
  article-title: An environmental-economic dispatch method for smart microgrids using VSS_QGA
  publication-title: J Appl Math
SSID ssj0002120
Score 2.6399596
Snippet •Day-ahead dispatching of the renewable energy resources inside a microgrid.•Genetic algorithm based optimizer for solving unit commitment and economic...
Energy Management System (EMS) applications of modern power networks like microgrids have to respond to a number of stringent challenges due to current energy...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 944
SubjectTerms algorithms
Economic dispatch
electric power
energy
Genetic algorithm
issues and policy
linear programming
lithium batteries
Microgrids
Mixed integer linear programming
Unit commitment
Title Optimization of unit commitment and economic dispatch in microgrids based on genetic algorithm and mixed integer linear programming
URI https://dx.doi.org/10.1016/j.apenergy.2017.07.007
https://www.proquest.com/docview/2000500782
Volume 210
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-9118
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002120
  issn: 0306-2619
  databaseCode: AKRWK
  dateStart: 19750101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T-QwELYQNFCg4yUeBzISbdjE2MmmXCHQ3iGgACS6yI8JBJHsKrsrXUXDH78Zr8PjdBIFXR6eyPHYM2P5m28YO0KrqFMl0PrlEiIpXRxp9PIRCE_3RRxXtFG8vEqHd_L3vbpfYKddLgzBKoPtn9t0b63Dk14Yzd64qno3FO1S_J9kxGoniPFTyoyqGBy_vMM8RKBmxMYRtf6QJfx0rMfgM-wI4pV5Ek8qK_t_B_WPqfb-5_wHWw2BIx_M-7bGFqBZZysf6ATX2dbZe9YaNg3LdrLBXq_RMNQh45KPSj7Dhczxl-vKg8y5bhyHkKLMXYVWBpXJq4bXhNd7aCs34eTvHEd5nHKU-cj188OoraaPtRevqz_42rNPQMspeNUtD-ivGru3ye7Oz25Ph1GovhBZmcppZEGI2Kp-DlKVBk60USWopLRJ2tfalQK00IkuTepkZnIAkaUyiY11zubCxidbbLEZNbDNuOwLk_Vjh9FmKQU4Y6XBC50Bbqi0TXeY6oa8sIGanCpkPBcdBu2p6FRVkKqKmE7Nsx3We5Mbz8k5vpTIO40Wn6ZZgR7kS9nDbgoUuAbpYEU3MJpNqJRnrHywtfuN7--xZbwjaGGUqJ9scdrOYB8jnqk58FP6gC0Nfl0Mr_4CSoEFmQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYoHFoOFdAiaEtxpV7DJl472RwrBNqWRw8FiZvlxwSCSHaV3ZV64sIf74zXKbSqxKG3KPFYjseeGcvffMPYZ7SKJlcCrV8pIZHSp4lBL5-ACHRfxHFFB8Wz83x8Kb9dqasVdtjnwhCsMtr-pU0P1jq-GcTZHEzrevCDol2K_7OCWO3E8AVbk9g_ncAO7h9xHiJyM2LrhJo_SRO-PTBTCCl2hPEqAosn1ZX9t4f6y1YHB3S8wV7HyJF_WQ5uk61Au8XWn_AJbrHto8e0NWwa9-3sDXv4jpahiSmXfFLxBe5kjv_c1AFlzk3rOcQcZe5rNDOoTV63vCHA3nVX-xknh-c5yuOao9RHbu6uJ109v2mCeFP_xM-BfgI6TtGr6XiEfzU4vLfs8vjo4nCcxPILiZO5nCcOhEidGpUgVWVhaKyqQGWVy_KRMb4SYITJTGVzLwtbAogil1lqnfeuFC4dbrPVdtLCDuNyJGwxSj2Gm5UU4K2TFh9MAXiiMi7fZaqfcu0iNzmVyLjTPQjtVveq0qQqndK1ebHLBr_lpkt2jmclyl6j-o91ptGFPCv7qV8CGjch3ayYFiaLGdXyTFWItt79R__77OX44uxUn349P3nPXuEXwhkmmfrAVufdAvYw_Jnbj2F5_wI-Hgcu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+of+unit+commitment+and+economic+dispatch+in+microgrids+based+on+genetic+algorithm+and+mixed+integer+linear+programming&rft.jtitle=Applied+energy&rft.au=Nemati%2C+Mohsen&rft.au=Braun%2C+Martin&rft.au=Tenbohlen%2C+Stefan&rft.date=2018-01-15&rft.pub=Elsevier+Ltd&rft.issn=0306-2619&rft.eissn=1872-9118&rft.volume=210&rft.spage=944&rft.epage=963&rft_id=info:doi/10.1016%2Fj.apenergy.2017.07.007&rft.externalDocID=S0306261917308723
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0306-2619&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0306-2619&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0306-2619&client=summon