Controlling the learning process of real-time heuristic search

Real-time search provides an attractive framework for intelligent autonomous agents, as it allows us to model an agent's ability to improve its performance through experience. However, the behavior of real-time search agents is far from rational during the learning (convergence) process, in tha...

Full description

Saved in:
Bibliographic Details
Published inArtificial Intelligence Vol. 146; no. 1; pp. 1 - 41
Main Authors Shimbo, Masashi, Ishida, Toru
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.05.2003
Elsevier BV
Subjects
Online AccessGet full text
ISSN0004-3702
1872-7921
DOI10.1016/S0004-3702(03)00012-2

Cover

Abstract Real-time search provides an attractive framework for intelligent autonomous agents, as it allows us to model an agent's ability to improve its performance through experience. However, the behavior of real-time search agents is far from rational during the learning (convergence) process, in that they fail to balance the efforts to achieve a short-term goal (i.e., to safely arrive at a goal state in the present problem solving trial) and a long-term goal (to find better solutions through repeated trials). As a remedy, we introduce two techniques for controlling the amount of exploration, both overall and per trial. The weighted real-time search reduces the overall amount of exploration and accelerates convergence. It sacrifices admissibility but provides a nontrivial bound on the converged solution cost. The real-time search with upper bounds insures solution quality in each trial when the state space is undirected. These techniques result in a convergence process more stable compared with that of the Learning Real-Time A ∗ algorithm.
AbstractList Real-time search provides an attractive framework for intelligent autonomous agents, as it allows the modelling of an agent's ability to improve its performance through experience. However, the behaviour of real-time search agents is far from rational during the learning (convergence) process, in that they fail to balance the efforts to achieve short-term and long-term goals. As a remedy, introduces two techniques for controlling the amount of exploration, both overall and per trial. The weighted real-time search reduces the overall amount of exploration and accelerates convergence. It sacrifices admissibility but provides a nontrivial bound on the converged solution cost. The real-time search with upper bounds insures solution quality in each trial when the state space is undirected. These techniques result in a convergence process more stable compared with that of the Learning Real-Time A* algorithm. (Original abstract - amended)
Real-time search provides an attractive framework for intelligent autonomous agents, as it allows us to model an agent's ability to improve its performance through experience. However, the behavior of real-time search agents is far from rational during the learning (convergence) process, in that they fail to balance the efforts to achieve a short-term goal (i.e. to safely arrive at a goal state in the present problem solving trial) and a long-term goal (to find better solutions through repeated trials). As a remedy, we introduce two techniques for controlling the amount of exploration, both overall and per trial. The weighted real-time search@ reduces the overall amount of exploration and accelerates convergence. It sacrifices admissibility but provides a nontrivial bound on the converged solution cost. The real-time search with upper bounds@ insures solution quality in each trial when the state space is undirected. These techniques result in a convergence process more stable compared with that of the Learning Real-Time A'@ algorithm.
Real-time search provides an attractive framework for intelligent autonomous agents, as it allows us to model an agent's ability to improve its performance through experience. However, the behavior of real-time search agents is far from rational during the learning (convergence) process, in that they fail to balance the efforts to achieve a short-term goal (i.e., to safely arrive at a goal state in the present problem solving trial) and a long-term goal (to find better solutions through repeated trials). As a remedy, we introduce two techniques for controlling the amount of exploration, both overall and per trial. The weighted real-time search reduces the overall amount of exploration and accelerates convergence. It sacrifices admissibility but provides a nontrivial bound on the converged solution cost. The real-time search with upper bounds insures solution quality in each trial when the state space is undirected. These techniques result in a convergence process more stable compared with that of the Learning Real-Time A ∗ algorithm.
Author Ishida, Toru
Shimbo, Masashi
Author_xml – sequence: 1
  givenname: Masashi
  surname: Shimbo
  fullname: Shimbo, Masashi
  email: shimbo@is.aist-nara.ac.jp
  organization: Graduate School of Information Science, Nara Institute of Science and Technology, Nara 630-0192, Japan
– sequence: 2
  givenname: Toru
  surname: Ishida
  fullname: Ishida, Toru
  organization: Department of Social Informatics, Kyoto University, Kyoto 606-8501, Japan
BackLink https://cir.nii.ac.jp/crid/1872835442575673856$$DView record in CiNii
BookMark eNqFkUtLAzEYRYNUsK3-BGEWIroYzWPyGARFii8ouFDXYSb9YiPTmZqkgv_eTEdcuOkm4cK5-ZKTCRq1XQsIHRN8QTARly8Y4yJnEtMzzM5TIDSne2hMlKS5LCkZofEfcoAmIXykyMqSjNH1rGuj75rGte9ZXELWQOXbPqx9ZyCErLOZh6rJo1tBtoSNdyE6k4XEmeUh2rdVE-Dod5-it_u719ljPn9-eJrdznNTiCLmRghFpATOamkJ4wteYMyZLamRwEpSl0LWVFlmiZWWMyEop7w0dUHAALVsik6Hc9OtPjcQol65YKBpqha6TdBccsY5VTtBKhVRQuEEXg2g8V0IHqw2LlbR9Toq12iCdS9Xb-Xq3pzGTG_lapra_F977d2q8t87eydDr3UuDezX_pcU40VB0yOEZIqLhN0MGCSnXw68DsZBa2DhPJioF53bMegH0eab3A
CitedBy_id crossref_primary_10_1016_j_eswa_2016_12_003
crossref_primary_10_1155_2017_1850678
crossref_primary_10_1007_s11276_006_7791_8
crossref_primary_10_1111_itor_12196
crossref_primary_10_3390_ma17184544
crossref_primary_10_1007_s10458_009_9102_0
crossref_primary_10_1016_j_artint_2015_03_008
crossref_primary_10_1145_1541895_1541907
crossref_primary_10_1007_s10732_008_9084_0
crossref_primary_10_1016_j_patrec_2016_10_004
crossref_primary_10_1016_j_robot_2016_04_009
crossref_primary_10_1007_s10489_006_0023_1
crossref_primary_10_1155_2009_745219
crossref_primary_10_1007_s11704_016_5370_4
crossref_primary_10_1111_coin_12092
crossref_primary_10_1016_j_eswa_2018_07_001
crossref_primary_10_1016_j_dss_2006_11_001
crossref_primary_10_1016_j_engappai_2006_01_002
crossref_primary_10_1007_s10614_010_9237_8
crossref_primary_10_1080_0740817X_2013_803639
crossref_primary_10_1109_TCIAIG_2012_2230632
crossref_primary_10_1016_j_compenvurbsys_2010_04_001
crossref_primary_10_1109_TSMCC_2007_900663
Cites_doi 10.1016/S0004-3702(01)00108-4
10.1016/0004-3702(93)90045-D
10.1016/0004-3702(94)00011-O
10.1109/34.387507
10.1016/0004-3702(70)90007-X
10.1109/TSSC.1968.300136
10.1007/BF00993104
10.1016/0004-3702(94)90066-3
10.1016/0004-3702(90)90054-4
10.1016/S0004-3702(01)00103-5
10.1016/0004-3702(85)90084-0
10.1016/S0304-3975(98)00093-0
10.1016/S0747-7171(08)80001-6
10.1016/0004-3702(74)90014-9
ContentType Journal Article
Copyright 2003 Elsevier Science B.V.
Copyright_xml – notice: 2003 Elsevier Science B.V.
DBID 6I.
AAFTH
RYH
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
E3H
F2A
DOI 10.1016/S0004-3702(03)00012-2
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CiNii Complete
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
Library and Information Science Abstracts (LISA)
DatabaseTitleList Library and Information Science Abstracts (LISA)
Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7921
EndPage 41
ExternalDocumentID 10_1016_S0004_3702_03_00012_2
S0004370203000122
GroupedDBID --K
--M
--Z
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
6I.
6J9
6TJ
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AAKPC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACWUS
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AECPX
AEFWE
AEKER
AENEX
AETEA
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
E3Z
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
IXB
J1W
JJJVA
KOM
KQ8
LG9
LY7
M41
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
TR2
TWZ
UPT
UQL
VQA
WH7
WUQ
XFK
XJE
XJT
XPP
XSW
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFPUW
AFXIZ
AGCQF
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
RYH
SSH
77I
AAYXX
ABDPE
ACLOT
AFJKZ
AGQPQ
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
E3H
F2A
ID FETCH-LOGICAL-c464t-c668177e53b7f135d540053f92c7e391b967b28f3f1f7f536625259cb41ece2f3
IEDL.DBID AIKHN
ISSN 0004-3702
IngestDate Thu Oct 02 10:40:27 EDT 2025
Sun Sep 28 10:32:46 EDT 2025
Wed Oct 01 04:03:54 EDT 2025
Thu Apr 24 22:52:59 EDT 2025
Fri Jun 27 00:32:12 EDT 2025
Fri Feb 23 02:27:15 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Adaptive learning
Convergence process
Rational agent
Resource-boundedness
Real-time heuristic search
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-c668177e53b7f135d540053f92c7e391b967b28f3f1f7f536625259cb41ece2f3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ORCID 0000-0002-0479-4990
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0004370203000122
PQID 27818680
PQPubID 23500
PageCount 41
ParticipantIDs proquest_miscellaneous_57535528
proquest_miscellaneous_27818680
crossref_citationtrail_10_1016_S0004_3702_03_00012_2
crossref_primary_10_1016_S0004_3702_03_00012_2
nii_cinii_1872835442575673856
elsevier_sciencedirect_doi_10_1016_S0004_3702_03_00012_2
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2003-05-01
PublicationDateYYYYMMDD 2003-05-01
PublicationDate_xml – month: 05
  year: 2003
  text: 2003-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Artificial Intelligence
PublicationYear 2003
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ishida, Korf (BIB016) 1991
Furcy, Koenig (BIB011) 2001
Pearl (BIB027) 1984
Ishida (BIB015) 1997
Pohl (BIB028) 1970
Koenig (BIB020) 2001; 129
Pohl (BIB029) 1970; 1
Edelkamp, Eckerle (BIB008) 1997
Korf (BIB023) 1993; 62
Dorf, Bishop (BIB007) 1995
Ishida, Shimbo (BIB018) 1996
Yoshizumi, Miura, Ishida (BIB034) 2000
Bertsekas, Tsitsiklis (BIB002) 1989
Korf (BIB021) 1985; 27
Russell, Wefald (BIB031) 1991
Mizuno, Ishida (BIB025) 1995; 10
Bonet, Geffner (BIB003) 1998
Barto, Bradtke, Singh (BIB001) 1995; 72
Harris (BIB012) 1974; 5
Ratner, Warmuth (BIB030) 1990; 10
Ishida, Korf (BIB017) 1995; 17
Shimbo, Ishida (BIB032) 2000
Bonet, Geffner (BIB004) 2001; 129
Furcy, Koenig (BIB009) 2000
Moore, Atkeson (BIB026) 1993; 13
Davis, Bramanti-Gregor, Wang (BIB006) 1988
Hart, Nilsson, Raphael (BIB013) 1968; 4
Miura, Ishida (BIB024) 1998
Korf (BIB022) 1990; 42
Dasgupta, Chakrabarti, DeSarkar (BIB005) 1994; 71
S. Koenig, The complexity of real-time search, Technical Report CMU-CS-92-145, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1992
Simon (BIB033) 1996
D. Furcy, S. Koenig, Speeding up the convergence of real-time search: empirical setup and proofs, Technical Report GIT-COGSCI-2000/01, College of Computing, Georgia Institute of Technology, Atlanta, GA, 2000
Ikeda, Imai (BIB014) 1999; 210
Pohl (10.1016/S0004-3702(03)00012-2_BIB028) 1970
Ratner (10.1016/S0004-3702(03)00012-2_BIB030) 1990; 10
Dorf (10.1016/S0004-3702(03)00012-2_BIB007) 1995
Yoshizumi (10.1016/S0004-3702(03)00012-2_BIB034) 2000
Barto (10.1016/S0004-3702(03)00012-2_BIB001) 1995; 72
Davis (10.1016/S0004-3702(03)00012-2_BIB006) 1988
Bonet (10.1016/S0004-3702(03)00012-2_BIB003) 1998
Moore (10.1016/S0004-3702(03)00012-2_BIB026) 1993; 13
Hart (10.1016/S0004-3702(03)00012-2_BIB013) 1968; 4
Pearl (10.1016/S0004-3702(03)00012-2_BIB027) 1984
10.1016/S0004-3702(03)00012-2_BIB010
Korf (10.1016/S0004-3702(03)00012-2_BIB022) 1990; 42
Ishida (10.1016/S0004-3702(03)00012-2_BIB017) 1995; 17
Simon (10.1016/S0004-3702(03)00012-2_BIB033) 1996
Ishida (10.1016/S0004-3702(03)00012-2_BIB016) 1991
Shimbo (10.1016/S0004-3702(03)00012-2_BIB032) 2000
10.1016/S0004-3702(03)00012-2_BIB019
Dasgupta (10.1016/S0004-3702(03)00012-2_BIB005) 1994; 71
Ikeda (10.1016/S0004-3702(03)00012-2_BIB014) 1999; 210
Bertsekas (10.1016/S0004-3702(03)00012-2_BIB002) 1989
Korf (10.1016/S0004-3702(03)00012-2_BIB023) 1993; 62
Mizuno (10.1016/S0004-3702(03)00012-2_BIB025) 1995; 10
Ishida (10.1016/S0004-3702(03)00012-2_BIB018) 1996
Ishida (10.1016/S0004-3702(03)00012-2_BIB015) 1997
Russell (10.1016/S0004-3702(03)00012-2_BIB031) 1991
Miura (10.1016/S0004-3702(03)00012-2_BIB024) 1998
Furcy (10.1016/S0004-3702(03)00012-2_BIB011) 2001
Harris (10.1016/S0004-3702(03)00012-2_BIB012) 1974; 5
Edelkamp (10.1016/S0004-3702(03)00012-2_BIB008) 1997
Koenig (10.1016/S0004-3702(03)00012-2_BIB020) 2001; 129
Bonet (10.1016/S0004-3702(03)00012-2_BIB004) 2001; 129
Furcy (10.1016/S0004-3702(03)00012-2_BIB009) 2000
Korf (10.1016/S0004-3702(03)00012-2_BIB021) 1985; 27
Pohl (10.1016/S0004-3702(03)00012-2_BIB029) 1970; 1
References_xml – volume: 210
  start-page: 341
  year: 1999
  end-page: 374
  ident: BIB014
  article-title: Enhanced
  publication-title: Theoret. Comput. Sci.
– volume: 62
  start-page: 41
  year: 1993
  end-page: 78
  ident: BIB023
  article-title: Linear-space best-first search
  publication-title: Artificial Intelligence
– reference: S. Koenig, The complexity of real-time search, Technical Report CMU-CS-92-145, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 1992
– start-page: 891
  year: 2000
  end-page: 897
  ident: BIB009
  article-title: Speeding up the convergence of real-time search
  publication-title: Proc. AAAI-2000, Austin, TX
– volume: 5
  start-page: 217
  year: 1974
  end-page: 234
  ident: BIB012
  article-title: The heuristic search under conditions of error
  publication-title: Artificial Intelligence
– year: 1997
  ident: BIB015
  article-title: Real-Time Search for Learning Autonomous Agents
– volume: 42
  start-page: 189
  year: 1990
  end-page: 211
  ident: BIB022
  article-title: Real-time heuristic search
  publication-title: Artificial Intelligence
– year: 1995
  ident: BIB007
  article-title: Modern Control Systems
– year: 2001
  ident: BIB011
  article-title: Combining two fast-learning real-time search algorithms yields even faster learning
  publication-title: Proc. Sixth European Conference on Planning (ECP-01), Toledo, Spain
– volume: 129
  start-page: 5
  year: 2001
  end-page: 33
  ident: BIB004
  article-title: Planning as heuristic search
  publication-title: Artificial Intelligence
– volume: 17
  start-page: 609
  year: 1995
  end-page: 619
  ident: BIB017
  article-title: Moving-target search: A real-time search for changing goals
  publication-title: IEEE Trans. Pattern Anal. Machine Intelligence (PAMI)
– volume: 27
  start-page: 97
  year: 1985
  end-page: 109
  ident: BIB021
  article-title: Depth-first iterative-deepening: An optimal admissible tree search
  publication-title: Artificial Intelligence
– year: 1984
  ident: BIB027
  article-title: Heuristics: Intelligent Search Strategies for Computer Problem Solving
– volume: 13
  start-page: 103
  year: 1993
  end-page: 130
  ident: BIB026
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Machine Learning
– volume: 10
  start-page: 111
  year: 1990
  end-page: 137
  ident: BIB030
  article-title: The (
  publication-title: J. Symbolic Comput.
– volume: 1
  start-page: 193
  year: 1970
  end-page: 204
  ident: BIB029
  article-title: Heuristic search viewed as path finding in a graph
  publication-title: Artificial Intelligence
– reference: D. Furcy, S. Koenig, Speeding up the convergence of real-time search: empirical setup and proofs, Technical Report GIT-COGSCI-2000/01, College of Computing, Georgia Institute of Technology, Atlanta, GA, 2000
– start-page: 609
  year: 2000
  end-page: 613
  ident: BIB032
  article-title: Towards real-time search with inadmissible heuristics
  publication-title: Proc. Fourteenth European Conference on Artificial Intelligence (ECAI'2000), Berlin, Germany
– year: 1989
  ident: BIB002
  publication-title: Parallel and Distributed Computation: Numerical Methods
– start-page: 923
  year: 2000
  end-page: 929
  ident: BIB034
  publication-title: Proc. AAAI-2000, Austin, TX
– year: 1996
  ident: BIB033
  article-title: The Sciences of the Artificial
– start-page: 305
  year: 1996
  end-page: 310
  ident: BIB018
  article-title: Improving the learning efficiencies of real-time search
  publication-title: Proc. AAAI-96, Vol. 1, Portland, OR
– start-page: 73
  year: 1998
  end-page: 81
  ident: BIB003
  article-title: Learning sorting and decision trees with POMDPs
  publication-title: Proc. Fifteenth International Conference on Machine Learning (ICML'98)
– start-page: 30
  year: 1997
  end-page: 35
  ident: BIB008
  article-title: New strategies in learning real time heuristic search
  publication-title: On-line Search: Papers from AAAI Workshop, Providence, RI, AAAI Press
– volume: 72
  start-page: 81
  year: 1995
  end-page: 138
  ident: BIB001
  article-title: Learning to act using real-time dynamic programming
  publication-title: Artificial Intelligence
– volume: 129
  start-page: 165
  year: 2001
  end-page: 197
  ident: BIB020
  article-title: Mini-max real-time search
  publication-title: Artificial Intelligence
– start-page: 219
  year: 1970
  end-page: 236
  ident: BIB028
  article-title: First results on the effect of error in heuristic search
  publication-title: Machine Intelligence, Vol. 5
– start-page: 204
  year: 1991
  end-page: 210
  ident: BIB016
  article-title: Moving-target search
  publication-title: Proc. IJCAI-91, Sydney, Australia
– volume: 10
  start-page: 306
  year: 1995
  end-page: 313
  ident: BIB025
  article-title: Evaluation on learning efficiencies of real-time search
  publication-title: J. Japan. Soc. Artificial Intelligence
– start-page: 450
  year: 1998
  end-page: 459
  ident: BIB024
  article-title: Stochastic node caching for efficient memory-bounded search
  publication-title: Proc. AAAI-98, Madison, WI
– start-page: 19
  year: 1988
  end-page: 28
  ident: BIB006
  article-title: The advantages of using depth and breadth components in heuristic search
  publication-title: Proceedings of the Third International Symposium on Methodologies for Intelligent Systems, Turin, Italy
– volume: 4
  start-page: 100
  year: 1968
  end-page: 107
  ident: BIB013
  article-title: A formal basis for the heuristic determination of minimum cost path
  publication-title: IEEE Trans. Systems Sci. Cybernet. (SSC)
– year: 1991
  ident: BIB031
  article-title: Do the Right Thing: Studies in Limited Rationality
– volume: 71
  start-page: 195
  year: 1994
  end-page: 208
  ident: BIB005
  article-title: Agent search in a tree and the optimality of iterative deepening
  publication-title: Artificial Intelligence
– ident: 10.1016/S0004-3702(03)00012-2_BIB010
– volume: 129
  start-page: 5
  issue: 1–2
  year: 2001
  ident: 10.1016/S0004-3702(03)00012-2_BIB004
  article-title: Planning as heuristic search
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(01)00108-4
– volume: 62
  start-page: 41
  year: 1993
  ident: 10.1016/S0004-3702(03)00012-2_BIB023
  article-title: Linear-space best-first search
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(93)90045-D
– start-page: 204
  year: 1991
  ident: 10.1016/S0004-3702(03)00012-2_BIB016
  article-title: Moving-target search
– year: 1991
  ident: 10.1016/S0004-3702(03)00012-2_BIB031
– volume: 72
  start-page: 81
  issue: 1–2
  year: 1995
  ident: 10.1016/S0004-3702(03)00012-2_BIB001
  article-title: Learning to act using real-time dynamic programming
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)00011-O
– volume: 17
  start-page: 609
  issue: 6
  year: 1995
  ident: 10.1016/S0004-3702(03)00012-2_BIB017
  article-title: Moving-target search: A real-time search for changing goals
  publication-title: IEEE Trans. Pattern Anal. Machine Intelligence (PAMI)
  doi: 10.1109/34.387507
– start-page: 450
  year: 1998
  ident: 10.1016/S0004-3702(03)00012-2_BIB024
  article-title: Stochastic node caching for efficient memory-bounded search
– start-page: 30
  year: 1997
  ident: 10.1016/S0004-3702(03)00012-2_BIB008
  article-title: New strategies in learning real time heuristic search
– start-page: 891
  year: 2000
  ident: 10.1016/S0004-3702(03)00012-2_BIB009
  article-title: Speeding up the convergence of real-time search
– start-page: 609
  year: 2000
  ident: 10.1016/S0004-3702(03)00012-2_BIB032
  article-title: Towards real-time search with inadmissible heuristics
– volume: 1
  start-page: 193
  year: 1970
  ident: 10.1016/S0004-3702(03)00012-2_BIB029
  article-title: Heuristic search viewed as path finding in a graph
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(70)90007-X
– volume: 4
  start-page: 100
  issue: 2
  year: 1968
  ident: 10.1016/S0004-3702(03)00012-2_BIB013
  article-title: A formal basis for the heuristic determination of minimum cost path
  publication-title: IEEE Trans. Systems Sci. Cybernet. (SSC)
  doi: 10.1109/TSSC.1968.300136
– year: 1996
  ident: 10.1016/S0004-3702(03)00012-2_BIB033
– year: 2001
  ident: 10.1016/S0004-3702(03)00012-2_BIB011
  article-title: Combining two fast-learning real-time search algorithms yields even faster learning
– start-page: 73
  year: 1998
  ident: 10.1016/S0004-3702(03)00012-2_BIB003
  article-title: Learning sorting and decision trees with POMDPs
– volume: 13
  start-page: 103
  year: 1993
  ident: 10.1016/S0004-3702(03)00012-2_BIB026
  article-title: Prioritized sweeping: Reinforcement learning with less data and less time
  publication-title: Machine Learning
  doi: 10.1007/BF00993104
– volume: 71
  start-page: 195
  year: 1994
  ident: 10.1016/S0004-3702(03)00012-2_BIB005
  article-title: Agent search in a tree and the optimality of iterative deepening
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(94)90066-3
– volume: 10
  start-page: 306
  issue: 2
  year: 1995
  ident: 10.1016/S0004-3702(03)00012-2_BIB025
  article-title: Evaluation on learning efficiencies of real-time search
  publication-title: J. Japan. Soc. Artificial Intelligence
– ident: 10.1016/S0004-3702(03)00012-2_BIB019
– volume: 42
  start-page: 189
  issue: 2–3
  year: 1990
  ident: 10.1016/S0004-3702(03)00012-2_BIB022
  article-title: Real-time heuristic search
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(90)90054-4
– year: 1989
  ident: 10.1016/S0004-3702(03)00012-2_BIB002
– volume: 129
  start-page: 165
  issue: 1–2
  year: 2001
  ident: 10.1016/S0004-3702(03)00012-2_BIB020
  article-title: Mini-max real-time search
  publication-title: Artificial Intelligence
  doi: 10.1016/S0004-3702(01)00103-5
– volume: 27
  start-page: 97
  year: 1985
  ident: 10.1016/S0004-3702(03)00012-2_BIB021
  article-title: Depth-first iterative-deepening: An optimal admissible tree search
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(85)90084-0
– start-page: 219
  year: 1970
  ident: 10.1016/S0004-3702(03)00012-2_BIB028
  article-title: First results on the effect of error in heuristic search
– start-page: 923
  year: 2000
  ident: 10.1016/S0004-3702(03)00012-2_BIB034
  article-title: A∗ with partial expansion for large branching factor problems
– volume: 210
  start-page: 341
  issue: 2
  year: 1999
  ident: 10.1016/S0004-3702(03)00012-2_BIB014
  article-title: Enhanced A∗ algorithms for multiple alignments: Optimal alignments for several sequences and k-opt approximate alignments for large cases
  publication-title: Theoret. Comput. Sci.
  doi: 10.1016/S0304-3975(98)00093-0
– volume: 10
  start-page: 111
  year: 1990
  ident: 10.1016/S0004-3702(03)00012-2_BIB030
  article-title: The (n2−1)-puzzle and related relocation problems
  publication-title: J. Symbolic Comput.
  doi: 10.1016/S0747-7171(08)80001-6
– start-page: 305
  year: 1996
  ident: 10.1016/S0004-3702(03)00012-2_BIB018
  article-title: Improving the learning efficiencies of real-time search
– year: 1984
  ident: 10.1016/S0004-3702(03)00012-2_BIB027
– year: 1997
  ident: 10.1016/S0004-3702(03)00012-2_BIB015
– start-page: 19
  year: 1988
  ident: 10.1016/S0004-3702(03)00012-2_BIB006
  article-title: The advantages of using depth and breadth components in heuristic search
– year: 1995
  ident: 10.1016/S0004-3702(03)00012-2_BIB007
– volume: 5
  start-page: 217
  issue: 3
  year: 1974
  ident: 10.1016/S0004-3702(03)00012-2_BIB012
  article-title: The heuristic search under conditions of error
  publication-title: Artificial Intelligence
  doi: 10.1016/0004-3702(74)90014-9
SSID ssj0003991
ssib006541605
ssib006541606
ssib005900617
ssib050600746
ssib017383215
ssib009944011
ssib027715717
ssib002802382
Score 1.9906936
Snippet Real-time search provides an attractive framework for intelligent autonomous agents, as it allows us to model an agent's ability to improve its performance...
Real-time search provides an attractive framework for intelligent autonomous agents, as it allows the modelling of an agent's ability to improve its...
SourceID proquest
crossref
nii
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Adaptive learning
Artificial Intelligence
Convergence process
Rational agent
Real-time heuristic search
Resource-boundedness
Title Controlling the learning process of real-time heuristic search
URI https://dx.doi.org/10.1016/S0004-3702(03)00012-2
https://cir.nii.ac.jp/crid/1872835442575673856
https://www.proquest.com/docview/27818680
https://www.proquest.com/docview/57535528
Volume 146
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211103
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211103
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7921
  dateEnd: 20211031
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7921
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003991
  issn: 0004-3702
  databaseCode: AKRWK
  dateStart: 19700301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NSxwxFA-6Xnrph7V0W7U59NAeopNJJslcCrpUVpd6kIp7C5tMogsyu7S71_7tvjfJKCIi9DIDYV4IL3m_9zLvi5CvhVMgfioyKRvBZG0iM54rpnkwopg1wleYjfzrXI0v5dm0mm6QUZ8Lg2GVGfsTpndonUcOMzcPl_M55vhiXR70pHW_UwCHt0D_GDMgW0enk_H5PSCDDs6N8yRDgodEnjRJN_itEN-7eVj5nIrabOfzJ5Dd6aGTt-R1NiDpUVrjO7IR2m3ypm_OQLOsvic_RikIHdPNKVh5NPeHuKbLlBtAF5GCxXjLsL08vQnrVLOZprO_Qy5Pfv4ejVlulsC8VHLFvFKGax0q4XTkomrAFAMBi3XpdRA1d7XSrjRRRB51rISCiw9cfbyTPPhQRvGBDNpFGz4SKsoaoMc1HKvPw5WwdnHWFC7MlKp9bMyQyJ4_1udK4tjQ4tY-hIwBWy2y1RYi-bdtOSQH92TLVErjJQLTM98-OhMW4P4l0j3YLFgdPrnRWFVOIjxV2OW0UkPypd9GC_KETpJZGxbrv7bUWOPPFM9_AZOAkVaaT_-_vM_kVRcU2AVO7pLB6s867IFxs3L7ZPPgH9_PRxjfk4urCYyeTo_vAPmh8AE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07TxwxELYIFEkTIA_lAgQXKZLCsH6s7W2Q0Al0SYAKJDrr7LWTk9DeCe7a_PbMrL05RQghpdnCsi1r7Pk8s56Zj5DPldegfjoxpVrJVGMTs4FrZni0spq2MtSYjXx5pSc36vttfbtBxkMuDIZVFuzPmN6jdWk5LtI8XsxmmOOLdXnwJa3_nQI4vKVqYdADO_q9jvOAG7jQ5imG3ddpPHmKvvFLJb_2szDx1AX1opvNHgF2fwud75DXxXykp3mFu2Qjdm_I9kDNQIumviUn4xyCjsnmFGw8WtghftJFzgyg80TBXrxjSC5Pf8VVrthM88l_R27Oz67HE1aoElhQWi1Z0NpyY2ItvUlc1i0YYqBeqRHBRNlw32jjhU0y8WRSLTW4PeD4BK94DFEk-Z5sdvMufiBUigaAx7cca8-DQ9j4NG0rH6daNyG1dkTUIB8XSh1xpLO4c-uAMRCrQ7G6SubXbSdG5OjvsEUupPHcADsI3_1zIhyA_XNDD2CzYHX45dZgTTmF4FQjx2mtR-Rw2EYH2oRPJNMuzlcPThis8Gerp3vAJGCiCfvx_5d3SF5Ori8v3MW3qx975FUfHtiHUO6TzeX9Kh6AmbP0n_pj_AfSC-4i
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Controlling+the+learning+process+of+real-time+heuristic+search&rft.jtitle=Artificial+intelligence&rft.au=Shimbo%2C+Masashi&rft.au=Ishida%2C+Toru&rft.date=2003-05-01&rft.issn=0004-3702&rft.volume=146&rft.issue=1&rft.spage=1&rft.epage=41&rft_id=info:doi/10.1016%2FS0004-3702%2803%2900012-2&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_S0004_3702_03_00012_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-3702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-3702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-3702&client=summon