A Spectral Signature Shape-Based Algorithm for Landsat Image Classification

Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received consid...

Full description

Saved in:
Bibliographic Details
Published inISPRS international journal of geo-information Vol. 5; no. 9; p. 154
Main Authors Chen, Yuanyuan, Wang, Quanfang, Wang, Yanlong, Duan, Si-Bo, Xu, Miaozhong, Li, Zhao-Liang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 26.08.2016
MDPI
Subjects
Online AccessGet full text
ISSN2220-9964
2220-9964
DOI10.3390/ijgi5090154

Cover

Abstract Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received considerable attention for most classification methods, while the spectral curve shape has seldom been used because it is difficult to be quantified. This study presents a classification method based on the observation that the spectral curve is composed of segments and certain extreme values. The presented classification method quantifies the spectral curve shape and takes full use of the spectral shape differences among land covers to classify remotely sensed images. Using this method, classification maps from TM (Thematic mapper) data were obtained with an overall accuracy of 0.834 and 0.854 for two respective test areas. The approach presented in this paper, which differs from previous image classification methods that were mostly concerned with spectral “value” similarity characteristics, emphasizes the "shape" similarity characteristics of the spectral curve. Moreover, this study will be helpful for classification research on hyperspectral and multi-temporal images.
AbstractList Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received considerable attention for most classification methods, while the spectral curve shape has seldom been used because it is difficult to be quantified. This study presents a classification method based on the observation that the spectral curve is composed of segments and certain extreme values. The presented classification method quantifies the spectral curve shape and takes full use of the spectral shape differences among land covers to classify remotely sensed images. Using this method, classification maps from TM (Thematic mapper) data were obtained with an overall accuracy of 0.834 and 0.854 for two respective test areas. The approach presented in this paper, which differs from previous image classification methods that were mostly concerned with spectral "value" similarity characteristics, emphasizes the "shape" similarity characteristics of the spectral curve. Moreover, this study will be helpful for classification research on hyperspectral and multi-temporal images.
Author Xu, Miaozhong
Chen, Yuanyuan
Wang, Yanlong
Wang, Quanfang
Duan, Si-Bo
Li, Zhao-Liang
Author_xml – sequence: 1
  givenname: Yuanyuan
  surname: Chen
  fullname: Chen, Yuanyuan
– sequence: 2
  givenname: Quanfang
  surname: Wang
  fullname: Wang, Quanfang
– sequence: 3
  givenname: Yanlong
  surname: Wang
  fullname: Wang, Yanlong
– sequence: 4
  givenname: Si-Bo
  surname: Duan
  fullname: Duan, Si-Bo
– sequence: 5
  givenname: Miaozhong
  orcidid: 0000-0002-8434-8009
  surname: Xu
  fullname: Xu, Miaozhong
– sequence: 6
  givenname: Zhao-Liang
  surname: Li
  fullname: Li, Zhao-Liang
BackLink https://hal.science/hal-04290620$$DView record in HAL
BookMark eNqFks1u1DAURiNUJErpiheIxAYEAf8mznI6aumIkVgMrK0b5zrjkScOdgbUtydpECoVUr2xdXV87O_aL7OzPvSYZa8p-ch5TT65Q-ckqQmV4ll2zhgjRV2X4uzB-kV2mdKBTKOmXAlynn1Z5bsBzRjB5zvX9TCeIua7PQxYXEHCNl_5LkQ37o-5DTHfQt8mGPPNETrM1x5SctYZGF3oX2XPLfiEl3_mi-z7zfW39W2x_fp5s15tCyNKMRaGG0sEQ0NaVVmoeFNBCzUCUtnKhrWlJZVAUCAUTnkYlSgsYlMpKxSh_CLbLN42wEEP0R0h3ukATt8XQuw0xNEZj5rWrDUNSMmACUVrRZrFIevGmopPrg-L69QPcPcLvP8rpETPfdUP-jrh7xZ8D_6fk29XWz3XpmA1KRn5OV_z7cIOMfw4YRr10SWD3kOP4ZQ040TSkgnKn0SpElJRwdVsffMIPYRT7Kd-T9QUl1eSz9T7hTIxpBTRPpGKPqKNG--fdPoXzv93z2-N8sA-
CitedBy_id crossref_primary_10_1007_s11042_022_12928_7
crossref_primary_10_1007_s42452_020_2961_3
crossref_primary_10_1016_j_engappai_2023_106697
crossref_primary_10_1155_2022_7416046
crossref_primary_10_24057_2071_9388_2020_117
Cites_doi 10.1016/j.rse.2014.04.031
10.1080/01431161.2014.980922
10.1016/j.rse.2011.01.009
10.1145/2339530.2339579
10.1080/01431160110087944
10.1016/j.isprsjprs.2014.07.002
10.1016/S0034-4257(02)00078-0
10.1016/j.rse.2008.10.008
10.1016/j.rse.2005.05.008
10.1016/j.rse.2006.11.021
10.3390/rs8020088
10.1016/j.rse.2012.04.021
10.1016/j.envsoft.2008.11.012
10.1007/978-3-642-04146-4_31
10.3390/rs71215820
10.1016/j.rse.2007.02.009
10.1016/j.isprsjprs.2009.06.004
10.1080/01431161.2014.978035
10.1016/j.rse.2013.10.012
10.1016/j.rse.2006.04.001
10.1109/TGRS.2003.817267
10.1080/0143116031000115111
10.1016/S0306-4573(96)00069-6
10.1016/j.rse.2012.02.022
10.1016/j.rse.2007.07.002
10.3390/rs5116026
10.1080/014311600210209
10.1080/01431160600746456
10.1016/j.rse.2012.09.005
ContentType Journal Article
Copyright Copyright MDPI AG 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright MDPI AG 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7UA
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
H96
HCIFZ
JQ2
KR7
L.G
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7S9
L.6
1XC
VOOES
ADTOC
UNPAY
DOA
DOI 10.3390/ijgi5090154
DatabaseName CrossRef
Computer and Information Systems Abstracts
Water Resources Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection (ProQuest)
Natural Science Collection
Earth, Atmospheric & Aquatic Science
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
Engineering Database
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Publicly Available Content Database
CrossRef

AGRICOLA
Civil Engineering Abstracts
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Visual Arts
Computer Science
EISSN 2220-9964
EndPage 154
ExternalDocumentID oai_doaj_org_article_192dcba552a2481980bf4801359bfc73
10.3390/ijgi5090154
oai:HAL:hal-04290620v1
4181287071
10_3390_ijgi5090154
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ABJCF
ADBBV
ADMLS
AENEX
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IPNFZ
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
RIG
ZBA
7SC
7UA
8FD
ABUWG
AZQEC
C1K
DWQXO
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
7S9
L.6
1XC
VOOES
ADTOC
IAO
ITC
UNPAY
ID FETCH-LOGICAL-c464t-c3cf042ec0d87fa73b7ada9eae15d5b2d6f074ea8a48e090215e4feeb78f48013
IEDL.DBID UNPAY
ISSN 2220-9964
IngestDate Fri Oct 03 12:26:56 EDT 2025
Sun Oct 26 04:16:38 EDT 2025
Tue Oct 14 20:21:10 EDT 2025
Tue Oct 21 13:34:08 EDT 2025
Thu Sep 04 15:41:21 EDT 2025
Fri Jul 25 11:47:25 EDT 2025
Thu Apr 24 22:58:26 EDT 2025
Thu Oct 16 04:40:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-c3cf042ec0d87fa73b7ada9eae15d5b2d6f074ea8a48e090215e4feeb78f48013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-8434-8009
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/5/9/154/pdf?version=1472201225
PQID 1819237531
PQPubID 2032387
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_192dcba552a2481980bf4801359bfc73
unpaywall_primary_10_3390_ijgi5090154
hal_primary_oai_HAL_hal_04290620v1
proquest_miscellaneous_2305162413
proquest_miscellaneous_1845814381
proquest_journals_1819237531
crossref_primary_10_3390_ijgi5090154
crossref_citationtrail_10_3390_ijgi5090154
PublicationCentury 2000
PublicationDate 20160826
PublicationDateYYYYMMDD 2016-08-26
PublicationDate_xml – month: 08
  year: 2016
  text: 20160826
  day: 26
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle ISPRS international journal of geo-information
PublicationYear 2016
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Lu (ref_31) 2007; 28
Colditz (ref_1) 2012; 123
Li (ref_14) 2015; 7
Mehtre (ref_29) 1997; 33
Erener (ref_35) 2013; 21
Arcidiacono (ref_33) 2012; 10
Hu (ref_16) 2013; 5
Foody (ref_9) 2006; 103
Barandela (ref_4) 2002; 23
Comber (ref_30) 2012; 127
Belgiu (ref_5) 2014; 96
Denham (ref_32) 2009; 113
Friedl (ref_2) 2002; 83
Sun (ref_18) 2013; 21
Caetano (ref_8) 2008; 112
Xu (ref_11) 2005; 97
Wardlow (ref_20) 2007; 108
Lin (ref_25) 2009; 37
Namdar (ref_13) 2014; 35
Amarsaikhan (ref_3) 2004; 25
Blaschke (ref_12) 2010; 65
Momeni (ref_34) 2016; 8
Kavzoglu (ref_6) 2009; 24
Padma (ref_15) 2014; 32
ref_24
Verbesselt (ref_19) 2012; 123
Li (ref_23) 2003; 41
Hansen (ref_10) 2000; 21
Dennison (ref_21) 2007; 109
Oyama (ref_27) 2015; 157
ref_28
ref_26
Xu (ref_7) 2014; 141
Ngugi (ref_17) 2011; 115
Shanmugam (ref_22) 2014; 35
References_xml – volume: 10
  start-page: 1071
  year: 2012
  ident: ref_33
  article-title: Accuracy of crop-shelter thematic maps: A case study of maps obtained by spectral and textural classification of high-resolution satellite images
  publication-title: J. Food Agric. Environ.
– volume: 37
  start-page: 77
  year: 2009
  ident: ref_25
  article-title: A description and recognition method of curve configuration and its application
  publication-title: J. South China Univ. Technol. (Nat. Sci. Ed.)
– volume: 157
  start-page: 35
  year: 2015
  ident: ref_27
  article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2014.04.031
– volume: 35
  start-page: 8217
  year: 2014
  ident: ref_22
  article-title: Spectral matching approaches in hyperspectral image processing
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.980922
– volume: 115
  start-page: 1301
  year: 2011
  ident: ref_17
  article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2011.01.009
– volume: 21
  start-page: 409
  year: 2013
  ident: ref_18
  article-title: Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– ident: ref_26
– ident: ref_28
  doi: 10.1145/2339530.2339579
– volume: 23
  start-page: 4965
  year: 2002
  ident: ref_4
  article-title: Supervised classification of remotely sensed data with ongoing learning capability
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160110087944
– volume: 96
  start-page: 67
  year: 2014
  ident: ref_5
  article-title: Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2014.07.002
– volume: 21
  start-page: 397
  year: 2013
  ident: ref_35
  article-title: Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 83
  start-page: 287
  year: 2002
  ident: ref_2
  article-title: Global land cover mapping from MODIS algorithms and early results
  publication-title: Remote Sens. Environ.
  doi: 10.1016/S0034-4257(02)00078-0
– volume: 113
  start-page: 371
  year: 2009
  ident: ref_32
  article-title: Bayesian analysis of thematic map accuracy data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2008.10.008
– volume: 97
  start-page: 322
  year: 2005
  ident: ref_11
  article-title: Decision tree regression for soft classification of remote sensing data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2005.05.008
– volume: 108
  start-page: 290
  year: 2007
  ident: ref_20
  article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.11.021
– volume: 8
  start-page: 88
  year: 2016
  ident: ref_34
  article-title: Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach
  publication-title: Remote Sens.
  doi: 10.3390/rs8020088
– volume: 123
  start-page: 541
  year: 2012
  ident: ref_1
  article-title: Generation and analysis of the 2005 land cover map for Mexico using 250 m MODIS data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.04.021
– volume: 24
  start-page: 850
  year: 2009
  ident: ref_6
  article-title: Increasing the accuracy of neural network classification using refined training data
  publication-title: Environ. Modell. Softw.
  doi: 10.1016/j.envsoft.2008.11.012
– ident: ref_24
  doi: 10.1007/978-3-642-04146-4_31
– volume: 7
  start-page: 16091
  year: 2015
  ident: ref_14
  article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data
  publication-title: Remote Sens.
  doi: 10.3390/rs71215820
– volume: 109
  start-page: 510
  year: 2007
  ident: ref_21
  article-title: Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.02.009
– volume: 65
  start-page: 2
  year: 2010
  ident: ref_12
  article-title: Object based image analysis for remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2009.06.004
– volume: 35
  start-page: 8057
  year: 2014
  ident: ref_13
  article-title: Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431161.2014.978035
– volume: 141
  start-page: 14
  year: 2014
  ident: ref_7
  article-title: A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2013.10.012
– volume: 103
  start-page: 179
  year: 2006
  ident: ref_9
  article-title: The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2006.04.001
– volume: 41
  start-page: 2466
  year: 2003
  ident: ref_23
  article-title: A shape-based approach to change detection of lakes using time series remote sensing images
  publication-title: IEEE Trans. Geosci. Remote
  doi: 10.1109/TGRS.2003.817267
– volume: 25
  start-page: 3529
  year: 2004
  ident: ref_3
  article-title: Data fusion and multisource image classification
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/0143116031000115111
– volume: 33
  start-page: 319
  year: 1997
  ident: ref_29
  article-title: Shape measurement for content based image retrieval: A comparison
  publication-title: Inf. Process. Manag.
  doi: 10.1016/S0306-4573(96)00069-6
– volume: 123
  start-page: 98
  year: 2012
  ident: ref_19
  article-title: Near real-time disturbance detection using satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.02.022
– volume: 112
  start-page: 986
  year: 2008
  ident: ref_8
  article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2007.07.002
– volume: 5
  start-page: 6026
  year: 2013
  ident: ref_16
  article-title: Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping
  publication-title: Remote Sens.
  doi: 10.3390/rs5116026
– volume: 21
  start-page: 1331
  year: 2000
  ident: ref_10
  article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/014311600210209
– volume: 28
  start-page: 823
  year: 2007
  ident: ref_31
  article-title: A survey of image classification methods and techniques for improving classification performance
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600746456
– volume: 32
  start-page: 138
  year: 2014
  ident: ref_15
  article-title: Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 127
  start-page: 237
  year: 2012
  ident: ref_30
  article-title: Spatial analysis of remote sensing image classification accuracy
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2012.09.005
SSID ssj0000913840
Score 2.066189
Snippet Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from...
SourceID doaj
unpaywall
hal
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 154
SubjectTerms algorithms
Classification
Computer Science
data collection
Data Structures and Algorithms
Earth system science
Image classification
Land cover
Landsat
quantification
Remote sensing
shape
Similarity
Spectra
spectral curve
Spectral signatures
thematic maps
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXgoHBAWEoaAFlQuSVdv79DFFVAEqLqWoN2ufiavUiRqHqv--M7YbuRIqF472jix79vF9szv-hpAD4WQ0LlOp57hbZVVIrWUstRroddCcxdBl-f6U0zP-_Vycj0p9YU5YLw_cO-4QGIh31ghRmIIDfOnMRpQ8YaK00alO5zPT5SiY6tbgMmcQuvQ_5DGI6w_ri1kN4IiU4R4EdUr9ACxzzIMckczdTbMyN9dmsRjhzfEz8nQginTSv-Bz8ig0e2R3qFk-v9kjT37X601vsX5BfkwolpLHfQt6Ws96vU56OjerkB4BUnk6WcyWV3U7v6TAU-kJ_uJrWvrtEhYU2pXGxKShrp9ekrPjr7--TNOhUELquORt6piLMPmCy7xW0ShmlfGmDCbkwgtbeBmBKQSjDdcBEzFzEXgMwSrd-_IV2WmWTXhNqAXM1DqW3EjALe9NjFIVXmVwHYsoE_L5zneVG1TEsZjFooJoAh1djRydkIOt8aoXz_i72RF2wtYEFa-7GzAOqmEcVP8aBwn5CF147xnTyUmF9xBzM1lkf_KE7N_1cDXM1XWVoyYcg7ANmj9sm2GW4dGJacJygzZcaKwU_4ANBHMil3hOmZBP29Hz0Ie_-R8f_pY8BhIncZ-7kPtkp73ahHdAlFr7vpsTt17uDsI
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9FA4oFJANRRkULkgWfVjvd4cEEqqVgGqCFGKerP2mQSlTmgcUP89M36RSihHr0fWemd2Z3Z29vsAjlPNndRhFhhG2SqV2UCpJAmUwPDaCpY4W1X5jvnoin2-Tq93YNzehaGyynZNrBZqs9CUIz-JCLkrweA6-rj8FRBrFJ2uthQasqFWMB8qiLEHsBsTMlYPdodn46_fuqwLoWDilqa-qJfgfv9k9nMyQ6dJocQ911Qh-KPDmVJ95EbwubculvLuj5zPN_zQ-T48bgJIf1Br_Ans2OIA9hou8-ndATz6MVuta4nVU_gy8IlinvIZ_uVsUuN4-pdTubTBED2Y8QfzCf5nOb3xMX71L-jqryz9Tze40PgVZSYVE1X6ewZX52ffT0dBQ6AQaMZZGehEO5yUVodGZE5micqkkX0rbZSaVMWGO4wgrBSSCUsFmlFqmbNWZcIRrEzyHHrForCH4Cv0pUK4PpMc_Zkx0jmexSYL8dnFjnvwvh27XDfo4kRyMc9xl0EDnW8MtAfHnfCyBtX4v9iQlNCJEBJ21bC4neTNxMrRKoxWMk1jGTO0ERGquu9pXzmdJR68RRXe-8ZocJFTG_nikMfh78iDo1bDeTOHV_k_i_PgTfcaZx8dqcjCLtYkw1JBDPJbZHCTl0aczi89eNdZz7Yff7G9Oy_hIYZtnDLbMT-CXnm7tq8wNCrV68be_wL1HA1v
  priority: 102
  providerName: ProQuest
Title A Spectral Signature Shape-Based Algorithm for Landsat Image Classification
URI https://www.proquest.com/docview/1819237531
https://www.proquest.com/docview/1845814381
https://www.proquest.com/docview/2305162413
https://hal.science/hal-04290620
https://www.mdpi.com/2220-9964/5/9/154/pdf?version=1472201225
https://doaj.org/article/192dcba552a2481980bf4801359bfc73
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: KQ8
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: ADMLS
  dateStart: 20120901
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: BENPR
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2220-9964
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913840
  issn: 2220-9964
  databaseCode: 8FG
  dateStart: 20120301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY-zB4GDCY6BhVQOMFKWt-2I77hFq0UmCqJkbReIrs2G4DXVo16dD467lL0qpDaEI8JrlEiXz299358h0hxyzhViZe5GqK2SoVGVepMHSVAHptBA2tKat8R3w4ph8v2WVdm5PXZZUQiqflIg3Y5blAyGmHdbodAPvOQtu313UiyUedQ9wZYjukyRlQ8QZpjkfnvW_YUG59a_VPXgihfSf9PkkBH5E13EKhUqwfsGWKpZBbPHN3lS3kzU85m21BzuBh1Vc1L5UKsdLkx8mqUCfJrz90HP_7ax6RvZqMOr3Kex6TeybbJ7t1X_TpzT558DXNV5VF_oR86jnYrh5zI85FOqk0QZ2LqVwYtw9oqJ3ebDJfpsX0ygEu7Jzhb8SycD5cwaLllO03sTCp9IWnZDw4_fJu6NbNGNyEclq4SZhYmOAm8bSIrIxCFUktu0Yan2mmAs0tsBEjhaTCYLGnzwy1xqhIWJSoCQ9II5tn5hlxFOCyELZLJQds1Fpay6NARx4c28DyFnmzHpw4qZXKsWHGLIaIBUcy3hrJFjneGC8qgY6_m_VxlDcmqKpdnpgvJ3E9SWNguzpRkrFABhSokvBU9e6sq2wShS3yCnzk1jOGvbMYzyGuezzwrv0WOVq7UFyvB3nso-5cCKEhXH65uQwzGbdnZGbmK7ShTGA3-jtsIGBkPse90BZ5vXHPuz788B_tnpP74H4c0-UBPyKNYrkyL4BvFapNdsTgfZs0-6ej88_tMmvRrmfab_B0J7Q
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6N7aHwgGCACAwwaHtBipbEjpM-TKiFTR0tFWIb2luwY7st6tqytkz9c_w27pK0dBLq2x6TnKLkfPZ3dz7fB7Af59KpPEh8IyhbpRPra825r1N0r20quLNFlW9Xti7E58v4cgv-LM_CUFnlck0sFmozzilHfhhS5y6OznX4YfLLJ9Yo2l1dUmioilrBHBUtxqqDHW27uMEQbnp0-gnH-yCKTo7PP7b8imXAz4UUMz_nuUPLtXlg0sSphOtEGVW3yoaxiXVkpEOYtSpVIrVUxRjGVjhrdZI66r3C8b33YEdwUcfgb6d53P36bZXloa6bGEKVBwM5rweHg5-9AYI0uS63oLBgDECA61M95pqzW5uPJmpxo4bDNdw7eQQPK4eVNUoLewxbdrQLtYo7vb_YhQffB9N5KTF9Au0GI0p7yp-ws0Gv7BvKzvpqYv0mIqZhjWEP9TrrXzH0l1mHjhqrGTu9woWNFRSdVLxU2MtTuLgTVT6D7dF4ZJ8D04jdaerqQknET2OUczKJTBLgtYuc9OD9UndZXnUzJ1KNYYZRDSk6W1O0B_sr4UnZxOP_Yk0ahJUIdd4uboyve1k1kTO0QpNrFceRigTaZBro8tvjunZ5wj14h0N46x2tRieje4T9gYyC36EHe8sRzqo1Y5r9s3AP3q4e42ynLRw1suM5yYg4Jcb6DTIYVMahpP1SDw5W1rPpx19s_pw3UGudf-lkndNu-yXcR5dRUlY9knuwPbue21fols3068r2Gfy46-n2F84MTAc
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITH2gGCAyBhg0PaCFDWfTvqAUMcoLa0mpDG0t8yO7baoS8uaMvVf46_jLl90EurbHuOcrOT8s-98Pt8P4DBMuRGpE9kqoGiVjLQtpe_bMkb3WseBb3SR5XvKe-fB14vwYgv-1HdhKK2yXhOLhVrNUoqRt1yq3OWjc-22TJUW8e2k-3H-yyYGKTpprek0SogM9OoGt2-LD_0THOsjz-t-_v6pZ1cMA3Ya8CC3Uz81iFqdOiqOjIh8GQkl2lpoN1Sh9BQ3aGK1iEUQa8pgdEMdGK1lFBuqu-Jjv_fgfkRV3OmWevdLE9-hepu4eSqvBPp-22lNfo4maJ7JabllBAuuADRtY8rEXHNzd5bZXKxuxHS6ZvG6j-FR5aqyTomtJ7Clsz3YqVjTx6s92P0xWSxLicVTGHQYkdlT5ISdTUZlxVB2NhZzbR-jrVSsMx2hFvPxFUNPmQ3pkrHIWf8KlzRWkHNS2lKBlGdwfieKfA7b2SzTL4BJtNpxbNqB4Gg5lRLG8MhTkYPPxjPcgve17pK0qmNOdBrTBPczpOhkTdEWHDbC87J8x__FjmkQGhGquV00zK5HSTWFE8SfSqUIQ094AaIxdmT57WFbmjTyLXiHQ3irj15nmFAbWX2He85v14KDeoSTarVYJP-wbcHb5jXOczq8EZmeLUkmCGPiqt8gg9vJ0OV0UmrBUYOeTT--v_lz3sADnGTJsH86eAkP0VfkFE73-AFs59dL_Qr9sVy-LoDP4PKuZ9pfwCZJoQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagexg8DBhMZAxk0HhByvLLdtInlCGmAtOENIrGU2THdhvo0qpJhsZfz12SVh1CE-Ix9iVK5LO_7-zLd4Qc8lxYmfuxqxnuVqnYuEpFkasSoNcmYZE1bZbvmRiN2ccLftHn5lR9WiWE4kW7SAN2-S4QcuZxb-gB2HsLbd9e9RtJAeoc4skQv0u2BAcqPiBb47PP6TcsKLe6tfsnL4LQ3iu-TwrAR2QNN1CoFesHbJliKuQGz9xuyoW8_ilnsw3IOXnQ1VWtWqVCzDT5cdTU6ij_9YeO439_zUOy05NRmnbe84jcMeUu2e7rok-vd8n9r0XVdBbVY_IppViuHvdG6Hkx6TRB6flULox7DGioaTqbzJdFPb2kwIXpKf5GLGv64RIWLdqW38TEpNYXnpDxyfsv70ZuX4zBzZlgtZtHuYUJbnJfJ7GVcaRiqeXQSBNwzVWohQU2YmQiWWIw2TPghlljVJxYlKiJ9signJfmKaEKcDlJ7JBJAdiotbRWxKGOfbi2oRUOebManCzvlcqxYMYsg4gFRzLbGEmHHK6NF51Ax9_NjnGU1yaoqt02zJeTrJ-kGbBdnSvJeShDBlQp8VX37nyobB5HDnkFPnLjGaP0NMM2xHVfhP5V4JCDlQtl_XpQZQHqzkUQGkL3y3U3zGQ8npGlmTdow3iC1ehvsYGAkQcCz0Id8nrtnrd9-P4_2j0j98D9BG6Xh-KADOplY54D36rVi35W_QYBZCQ_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Signature+Shape-Based+Algorithm+for+Landsat+Image+Classification&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Chen%2C+Yuanyuan&rft.au=Wang%2C+Quanfang&rft.au=Wang%2C+Yanlong&rft.au=Duan%2C+Si-Bo&rft.date=2016-08-26&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=5&rft.issue=9&rft.spage=154&rft_id=info:doi/10.3390%2Fijgi5090154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi5090154
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon