A Spectral Signature Shape-Based Algorithm for Landsat Image Classification
Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received consid...
Saved in:
| Published in | ISPRS international journal of geo-information Vol. 5; no. 9; p. 154 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
26.08.2016
MDPI |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2220-9964 2220-9964 |
| DOI | 10.3390/ijgi5090154 |
Cover
| Abstract | Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received considerable attention for most classification methods, while the spectral curve shape has seldom been used because it is difficult to be quantified. This study presents a classification method based on the observation that the spectral curve is composed of segments and certain extreme values. The presented classification method quantifies the spectral curve shape and takes full use of the spectral shape differences among land covers to classify remotely sensed images. Using this method, classification maps from TM (Thematic mapper) data were obtained with an overall accuracy of 0.834 and 0.854 for two respective test areas. The approach presented in this paper, which differs from previous image classification methods that were mostly concerned with spectral “value” similarity characteristics, emphasizes the "shape" similarity characteristics of the spectral curve. Moreover, this study will be helpful for classification research on hyperspectral and multi-temporal images. |
|---|---|
| AbstractList | Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from remotely sensed data using image classification methods. However, in processes of image classification, spectral values have received considerable attention for most classification methods, while the spectral curve shape has seldom been used because it is difficult to be quantified. This study presents a classification method based on the observation that the spectral curve is composed of segments and certain extreme values. The presented classification method quantifies the spectral curve shape and takes full use of the spectral shape differences among land covers to classify remotely sensed images. Using this method, classification maps from TM (Thematic mapper) data were obtained with an overall accuracy of 0.834 and 0.854 for two respective test areas. The approach presented in this paper, which differs from previous image classification methods that were mostly concerned with spectral "value" similarity characteristics, emphasizes the "shape" similarity characteristics of the spectral curve. Moreover, this study will be helpful for classification research on hyperspectral and multi-temporal images. |
| Author | Xu, Miaozhong Chen, Yuanyuan Wang, Yanlong Wang, Quanfang Duan, Si-Bo Li, Zhao-Liang |
| Author_xml | – sequence: 1 givenname: Yuanyuan surname: Chen fullname: Chen, Yuanyuan – sequence: 2 givenname: Quanfang surname: Wang fullname: Wang, Quanfang – sequence: 3 givenname: Yanlong surname: Wang fullname: Wang, Yanlong – sequence: 4 givenname: Si-Bo surname: Duan fullname: Duan, Si-Bo – sequence: 5 givenname: Miaozhong orcidid: 0000-0002-8434-8009 surname: Xu fullname: Xu, Miaozhong – sequence: 6 givenname: Zhao-Liang surname: Li fullname: Li, Zhao-Liang |
| BackLink | https://hal.science/hal-04290620$$DView record in HAL |
| BookMark | eNqFks1u1DAURiNUJErpiheIxAYEAf8mznI6aumIkVgMrK0b5zrjkScOdgbUtydpECoVUr2xdXV87O_aL7OzPvSYZa8p-ch5TT65Q-ckqQmV4ll2zhgjRV2X4uzB-kV2mdKBTKOmXAlynn1Z5bsBzRjB5zvX9TCeIua7PQxYXEHCNl_5LkQ37o-5DTHfQt8mGPPNETrM1x5SctYZGF3oX2XPLfiEl3_mi-z7zfW39W2x_fp5s15tCyNKMRaGG0sEQ0NaVVmoeFNBCzUCUtnKhrWlJZVAUCAUTnkYlSgsYlMpKxSh_CLbLN42wEEP0R0h3ukATt8XQuw0xNEZj5rWrDUNSMmACUVrRZrFIevGmopPrg-L69QPcPcLvP8rpETPfdUP-jrh7xZ8D_6fk29XWz3XpmA1KRn5OV_z7cIOMfw4YRr10SWD3kOP4ZQ040TSkgnKn0SpElJRwdVsffMIPYRT7Kd-T9QUl1eSz9T7hTIxpBTRPpGKPqKNG--fdPoXzv93z2-N8sA- |
| CitedBy_id | crossref_primary_10_1007_s11042_022_12928_7 crossref_primary_10_1007_s42452_020_2961_3 crossref_primary_10_1016_j_engappai_2023_106697 crossref_primary_10_1155_2022_7416046 crossref_primary_10_24057_2071_9388_2020_117 |
| Cites_doi | 10.1016/j.rse.2014.04.031 10.1080/01431161.2014.980922 10.1016/j.rse.2011.01.009 10.1145/2339530.2339579 10.1080/01431160110087944 10.1016/j.isprsjprs.2014.07.002 10.1016/S0034-4257(02)00078-0 10.1016/j.rse.2008.10.008 10.1016/j.rse.2005.05.008 10.1016/j.rse.2006.11.021 10.3390/rs8020088 10.1016/j.rse.2012.04.021 10.1016/j.envsoft.2008.11.012 10.1007/978-3-642-04146-4_31 10.3390/rs71215820 10.1016/j.rse.2007.02.009 10.1016/j.isprsjprs.2009.06.004 10.1080/01431161.2014.978035 10.1016/j.rse.2013.10.012 10.1016/j.rse.2006.04.001 10.1109/TGRS.2003.817267 10.1080/0143116031000115111 10.1016/S0306-4573(96)00069-6 10.1016/j.rse.2012.02.022 10.1016/j.rse.2007.07.002 10.3390/rs5116026 10.1080/014311600210209 10.1080/01431160600746456 10.1016/j.rse.2012.09.005 |
| ContentType | Journal Article |
| Copyright | Copyright MDPI AG 2016 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright MDPI AG 2016 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 7SC 7UA 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 H96 HCIFZ JQ2 KR7 L.G L6V L7M L~C L~D M7S P5Z P62 PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7S9 L.6 1XC VOOES ADTOC UNPAY DOA |
| DOI | 10.3390/ijgi5090154 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection (ProQuest) Natural Science Collection Earth, Atmospheric & Aquatic Science Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection AGRICOLA AGRICOLA - Academic Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Publicly Available Content Database CrossRef AGRICOLA Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Visual Arts Computer Science |
| EISSN | 2220-9964 |
| EndPage | 154 |
| ExternalDocumentID | oai_doaj_org_article_192dcba552a2481980bf4801359bfc73 10.3390/ijgi5090154 oai:HAL:hal-04290620v1 4181287071 10_3390_ijgi5090154 |
| GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAHBH AAYXX ABJCF ADBBV ADMLS AENEX AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION GROUPED_DOAJ HCIFZ IPNFZ KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PHGZM PHGZT PIMPY PQGLB PROAC PTHSS RIG ZBA 7SC 7UA 8FD ABUWG AZQEC C1K DWQXO F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS PUEGO 7S9 L.6 1XC VOOES ADTOC IAO ITC UNPAY |
| ID | FETCH-LOGICAL-c464t-c3cf042ec0d87fa73b7ada9eae15d5b2d6f074ea8a48e090215e4feeb78f48013 |
| IEDL.DBID | UNPAY |
| ISSN | 2220-9964 |
| IngestDate | Fri Oct 03 12:26:56 EDT 2025 Sun Oct 26 04:16:38 EDT 2025 Tue Oct 14 20:21:10 EDT 2025 Tue Oct 21 13:34:08 EDT 2025 Thu Sep 04 15:41:21 EDT 2025 Fri Jul 25 11:47:25 EDT 2025 Thu Apr 24 22:58:26 EDT 2025 Thu Oct 16 04:40:46 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c464t-c3cf042ec0d87fa73b7ada9eae15d5b2d6f074ea8a48e090215e4feeb78f48013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-8434-8009 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.mdpi.com/2220-9964/5/9/154/pdf?version=1472201225 |
| PQID | 1819237531 |
| PQPubID | 2032387 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_192dcba552a2481980bf4801359bfc73 unpaywall_primary_10_3390_ijgi5090154 hal_primary_oai_HAL_hal_04290620v1 proquest_miscellaneous_2305162413 proquest_miscellaneous_1845814381 proquest_journals_1819237531 crossref_primary_10_3390_ijgi5090154 crossref_citationtrail_10_3390_ijgi5090154 |
| PublicationCentury | 2000 |
| PublicationDate | 20160826 |
| PublicationDateYYYYMMDD | 2016-08-26 |
| PublicationDate_xml | – month: 08 year: 2016 text: 20160826 day: 26 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | ISPRS international journal of geo-information |
| PublicationYear | 2016 |
| Publisher | MDPI AG MDPI |
| Publisher_xml | – name: MDPI AG – name: MDPI |
| References | Lu (ref_31) 2007; 28 Colditz (ref_1) 2012; 123 Li (ref_14) 2015; 7 Mehtre (ref_29) 1997; 33 Erener (ref_35) 2013; 21 Arcidiacono (ref_33) 2012; 10 Hu (ref_16) 2013; 5 Foody (ref_9) 2006; 103 Barandela (ref_4) 2002; 23 Comber (ref_30) 2012; 127 Belgiu (ref_5) 2014; 96 Denham (ref_32) 2009; 113 Friedl (ref_2) 2002; 83 Sun (ref_18) 2013; 21 Caetano (ref_8) 2008; 112 Xu (ref_11) 2005; 97 Wardlow (ref_20) 2007; 108 Lin (ref_25) 2009; 37 Namdar (ref_13) 2014; 35 Amarsaikhan (ref_3) 2004; 25 Blaschke (ref_12) 2010; 65 Momeni (ref_34) 2016; 8 Kavzoglu (ref_6) 2009; 24 Padma (ref_15) 2014; 32 ref_24 Verbesselt (ref_19) 2012; 123 Li (ref_23) 2003; 41 Hansen (ref_10) 2000; 21 Dennison (ref_21) 2007; 109 Oyama (ref_27) 2015; 157 ref_28 ref_26 Xu (ref_7) 2014; 141 Ngugi (ref_17) 2011; 115 Shanmugam (ref_22) 2014; 35 |
| References_xml | – volume: 10 start-page: 1071 year: 2012 ident: ref_33 article-title: Accuracy of crop-shelter thematic maps: A case study of maps obtained by spectral and textural classification of high-resolution satellite images publication-title: J. Food Agric. Environ. – volume: 37 start-page: 77 year: 2009 ident: ref_25 article-title: A description and recognition method of curve configuration and its application publication-title: J. South China Univ. Technol. (Nat. Sci. Ed.) – volume: 157 start-page: 35 year: 2015 ident: ref_27 article-title: Distinguishing surface cyanobacterial blooms and aquatic macrophytes using Landsat/TM and ETM+ shortwave infrared bands publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2014.04.031 – volume: 35 start-page: 8217 year: 2014 ident: ref_22 article-title: Spectral matching approaches in hyperspectral image processing publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.980922 – volume: 115 start-page: 1301 year: 2011 ident: ref_17 article-title: Object-based crop identification using multiple vegetation indices, textural features and crop phenology publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2011.01.009 – volume: 21 start-page: 409 year: 2013 ident: ref_18 article-title: Quantifying different types of urban growth and the change dynamic in Guangzhou using multi-temporal remote sensing data publication-title: Int. J. Appl. Earth Obs. Geoinf. – ident: ref_26 – ident: ref_28 doi: 10.1145/2339530.2339579 – volume: 23 start-page: 4965 year: 2002 ident: ref_4 article-title: Supervised classification of remotely sensed data with ongoing learning capability publication-title: Int. J. Remote Sens. doi: 10.1080/01431160110087944 – volume: 96 start-page: 67 year: 2014 ident: ref_5 article-title: Comparing supervised and unsupervised multiresolution segmentation approaches for extracting buildings from very high resolution imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2014.07.002 – volume: 21 start-page: 397 year: 2013 ident: ref_35 article-title: Classification method, spectral diversity, band combination and accuracy assessment evaluation for urban feature detection publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 83 start-page: 287 year: 2002 ident: ref_2 article-title: Global land cover mapping from MODIS algorithms and early results publication-title: Remote Sens. Environ. doi: 10.1016/S0034-4257(02)00078-0 – volume: 113 start-page: 371 year: 2009 ident: ref_32 article-title: Bayesian analysis of thematic map accuracy data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2008.10.008 – volume: 97 start-page: 322 year: 2005 ident: ref_11 article-title: Decision tree regression for soft classification of remote sensing data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2005.05.008 – volume: 108 start-page: 290 year: 2007 ident: ref_20 article-title: Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.11.021 – volume: 8 start-page: 88 year: 2016 ident: ref_34 article-title: Mapping complex urban land cover from spaceborne imagery: The influence of spatial resolution, spectral band set and classification approach publication-title: Remote Sens. doi: 10.3390/rs8020088 – volume: 123 start-page: 541 year: 2012 ident: ref_1 article-title: Generation and analysis of the 2005 land cover map for Mexico using 250 m MODIS data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.04.021 – volume: 24 start-page: 850 year: 2009 ident: ref_6 article-title: Increasing the accuracy of neural network classification using refined training data publication-title: Environ. Modell. Softw. doi: 10.1016/j.envsoft.2008.11.012 – ident: ref_24 doi: 10.1007/978-3-642-04146-4_31 – volume: 7 start-page: 16091 year: 2015 ident: ref_14 article-title: Object-based crop classification with Landsat-MODIS enhanced time-series data publication-title: Remote Sens. doi: 10.3390/rs71215820 – volume: 109 start-page: 510 year: 2007 ident: ref_21 article-title: Spectral shape-based temporal compositing algorithms for MODIS surface reflectance data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.02.009 – volume: 65 start-page: 2 year: 2010 ident: ref_12 article-title: Object based image analysis for remote sensing publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2009.06.004 – volume: 35 start-page: 8057 year: 2014 ident: ref_13 article-title: Land-use and land-cover classification in semi-arid regions using independent component analysis (ICA) and expert classification publication-title: Int. J. Remote Sens. doi: 10.1080/01431161.2014.978035 – volume: 141 start-page: 14 year: 2014 ident: ref_7 article-title: A comparative study of different classification techniques for marine oil spill identification using RADARSAT-1 imagery publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2013.10.012 – volume: 103 start-page: 179 year: 2006 ident: ref_9 article-title: The use of small training sets containing mixed pixels for accurate hard image classification: Training on mixed spectral responses for classification by a SVM publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2006.04.001 – volume: 41 start-page: 2466 year: 2003 ident: ref_23 article-title: A shape-based approach to change detection of lakes using time series remote sensing images publication-title: IEEE Trans. Geosci. Remote doi: 10.1109/TGRS.2003.817267 – volume: 25 start-page: 3529 year: 2004 ident: ref_3 article-title: Data fusion and multisource image classification publication-title: Int. J. Remote Sens. doi: 10.1080/0143116031000115111 – volume: 33 start-page: 319 year: 1997 ident: ref_29 article-title: Shape measurement for content based image retrieval: A comparison publication-title: Inf. Process. Manag. doi: 10.1016/S0306-4573(96)00069-6 – volume: 123 start-page: 98 year: 2012 ident: ref_19 article-title: Near real-time disturbance detection using satellite image time series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.02.022 – volume: 112 start-page: 986 year: 2008 ident: ref_8 article-title: Contribution of multispectral and multitemporal information from MODIS images to land cover classification publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2007.07.002 – volume: 5 start-page: 6026 year: 2013 ident: ref_16 article-title: Exploring the use of Google Earth imagery and object-based methods in land use/cover mapping publication-title: Remote Sens. doi: 10.3390/rs5116026 – volume: 21 start-page: 1331 year: 2000 ident: ref_10 article-title: Global land cover classification at 1 km spatial resolution using a classification tree approach publication-title: Int. J. Remote Sens. doi: 10.1080/014311600210209 – volume: 28 start-page: 823 year: 2007 ident: ref_31 article-title: A survey of image classification methods and techniques for improving classification performance publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600746456 – volume: 32 start-page: 138 year: 2014 ident: ref_15 article-title: Jeffries Matusita based mixed-measure for improved spectral matching in hyperspectral image analysis publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 127 start-page: 237 year: 2012 ident: ref_30 article-title: Spatial analysis of remote sensing image classification accuracy publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2012.09.005 |
| SSID | ssj0000913840 |
| Score | 2.066189 |
| Snippet | Land-cover datasets are crucial for earth system modeling and human-nature interaction research at local, regional and global scales. They can be obtained from... |
| SourceID | doaj unpaywall hal proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 154 |
| SubjectTerms | algorithms Classification Computer Science data collection Data Structures and Algorithms Earth system science Image classification Land cover Landsat quantification Remote sensing shape Similarity Spectra spectral curve Spectral signatures thematic maps |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF6hXgoHBAWEoaAFlQuSVdv79DFFVAEqLqWoN2ufiavUiRqHqv--M7YbuRIqF472jix79vF9szv-hpAD4WQ0LlOp57hbZVVIrWUstRroddCcxdBl-f6U0zP-_Vycj0p9YU5YLw_cO-4QGIh31ghRmIIDfOnMRpQ8YaK00alO5zPT5SiY6tbgMmcQuvQ_5DGI6w_ri1kN4IiU4R4EdUr9ACxzzIMckczdTbMyN9dmsRjhzfEz8nQginTSv-Bz8ig0e2R3qFk-v9kjT37X601vsX5BfkwolpLHfQt6Ws96vU56OjerkB4BUnk6WcyWV3U7v6TAU-kJ_uJrWvrtEhYU2pXGxKShrp9ekrPjr7--TNOhUELquORt6piLMPmCy7xW0ShmlfGmDCbkwgtbeBmBKQSjDdcBEzFzEXgMwSrd-_IV2WmWTXhNqAXM1DqW3EjALe9NjFIVXmVwHYsoE_L5zneVG1TEsZjFooJoAh1djRydkIOt8aoXz_i72RF2wtYEFa-7GzAOqmEcVP8aBwn5CF147xnTyUmF9xBzM1lkf_KE7N_1cDXM1XWVoyYcg7ANmj9sm2GW4dGJacJygzZcaKwU_4ANBHMil3hOmZBP29Hz0Ie_-R8f_pY8BhIncZ-7kPtkp73ahHdAlFr7vpsTt17uDsI priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9NAEB6V9FA4oFJANRRkULkgWfVjvd4cEEqqVgGqCFGKerP2mQSlTmgcUP89M36RSihHr0fWemd2Z3Z29vsAjlPNndRhFhhG2SqV2UCpJAmUwPDaCpY4W1X5jvnoin2-Tq93YNzehaGyynZNrBZqs9CUIz-JCLkrweA6-rj8FRBrFJ2uthQasqFWMB8qiLEHsBsTMlYPdodn46_fuqwLoWDilqa-qJfgfv9k9nMyQ6dJocQ911Qh-KPDmVJ95EbwubculvLuj5zPN_zQ-T48bgJIf1Br_Ans2OIA9hou8-ndATz6MVuta4nVU_gy8IlinvIZ_uVsUuN4-pdTubTBED2Y8QfzCf5nOb3xMX71L-jqryz9Tze40PgVZSYVE1X6ewZX52ffT0dBQ6AQaMZZGehEO5yUVodGZE5micqkkX0rbZSaVMWGO4wgrBSSCUsFmlFqmbNWZcIRrEzyHHrForCH4Cv0pUK4PpMc_Zkx0jmexSYL8dnFjnvwvh27XDfo4kRyMc9xl0EDnW8MtAfHnfCyBtX4v9iQlNCJEBJ21bC4neTNxMrRKoxWMk1jGTO0ERGquu9pXzmdJR68RRXe-8ZocJFTG_nikMfh78iDo1bDeTOHV_k_i_PgTfcaZx8dqcjCLtYkw1JBDPJbZHCTl0aczi89eNdZz7Yff7G9Oy_hIYZtnDLbMT-CXnm7tq8wNCrV68be_wL1HA1v priority: 102 providerName: ProQuest |
| Title | A Spectral Signature Shape-Based Algorithm for Landsat Image Classification |
| URI | https://www.proquest.com/docview/1819237531 https://www.proquest.com/docview/1845814381 https://www.proquest.com/docview/2305162413 https://hal.science/hal-04290620 https://www.mdpi.com/2220-9964/5/9/154/pdf?version=1472201225 https://doaj.org/article/192dcba552a2481980bf4801359bfc73 |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: ADMLS dateStart: 20120901 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: BENPR dateStart: 20120301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2220-9964 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913840 issn: 2220-9964 databaseCode: 8FG dateStart: 20120301 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY-zB4GDCY6BhVQOMFKWt-2I77hFq0UmCqJkbReIrs2G4DXVo16dD467lL0qpDaEI8JrlEiXz299358h0hxyzhViZe5GqK2SoVGVepMHSVAHptBA2tKat8R3w4ph8v2WVdm5PXZZUQiqflIg3Y5blAyGmHdbodAPvOQtu313UiyUedQ9wZYjukyRlQ8QZpjkfnvW_YUG59a_VPXgihfSf9PkkBH5E13EKhUqwfsGWKpZBbPHN3lS3kzU85m21BzuBh1Vc1L5UKsdLkx8mqUCfJrz90HP_7ax6RvZqMOr3Kex6TeybbJ7t1X_TpzT558DXNV5VF_oR86jnYrh5zI85FOqk0QZ2LqVwYtw9oqJ3ebDJfpsX0ygEu7Jzhb8SycD5cwaLllO03sTCp9IWnZDw4_fJu6NbNGNyEclq4SZhYmOAm8bSIrIxCFUktu0Yan2mmAs0tsBEjhaTCYLGnzwy1xqhIWJSoCQ9II5tn5hlxFOCyELZLJQds1Fpay6NARx4c28DyFnmzHpw4qZXKsWHGLIaIBUcy3hrJFjneGC8qgY6_m_VxlDcmqKpdnpgvJ3E9SWNguzpRkrFABhSokvBU9e6sq2wShS3yCnzk1jOGvbMYzyGuezzwrv0WOVq7UFyvB3nso-5cCKEhXH65uQwzGbdnZGbmK7ShTGA3-jtsIGBkPse90BZ5vXHPuz788B_tnpP74H4c0-UBPyKNYrkyL4BvFapNdsTgfZs0-6ej88_tMmvRrmfab_B0J7Q |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Rb9MwED6N7aHwgGCACAwwaHtBipbEjpM-TKiFTR0tFWIb2luwY7st6tqytkz9c_w27pK0dBLq2x6TnKLkfPZ3dz7fB7Af59KpPEh8IyhbpRPra825r1N0r20quLNFlW9Xti7E58v4cgv-LM_CUFnlck0sFmozzilHfhhS5y6OznX4YfLLJ9Yo2l1dUmioilrBHBUtxqqDHW27uMEQbnp0-gnH-yCKTo7PP7b8imXAz4UUMz_nuUPLtXlg0sSphOtEGVW3yoaxiXVkpEOYtSpVIrVUxRjGVjhrdZI66r3C8b33YEdwUcfgb6d53P36bZXloa6bGEKVBwM5rweHg5-9AYI0uS63oLBgDECA61M95pqzW5uPJmpxo4bDNdw7eQQPK4eVNUoLewxbdrQLtYo7vb_YhQffB9N5KTF9Au0GI0p7yp-ws0Gv7BvKzvpqYv0mIqZhjWEP9TrrXzH0l1mHjhqrGTu9woWNFRSdVLxU2MtTuLgTVT6D7dF4ZJ8D04jdaerqQknET2OUczKJTBLgtYuc9OD9UndZXnUzJ1KNYYZRDSk6W1O0B_sr4UnZxOP_Yk0ahJUIdd4uboyve1k1kTO0QpNrFceRigTaZBro8tvjunZ5wj14h0N46x2tRieje4T9gYyC36EHe8sRzqo1Y5r9s3AP3q4e42ynLRw1suM5yYg4Jcb6DTIYVMahpP1SDw5W1rPpx19s_pw3UGudf-lkndNu-yXcR5dRUlY9knuwPbue21fols3068r2Gfy46-n2F84MTAc |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwED-NITH2gGCAyBhg0PaCFDWfTvqAUMcoLa0mpDG0t8yO7baoS8uaMvVf46_jLl90EurbHuOcrOT8s-98Pt8P4DBMuRGpE9kqoGiVjLQtpe_bMkb3WseBb3SR5XvKe-fB14vwYgv-1HdhKK2yXhOLhVrNUoqRt1yq3OWjc-22TJUW8e2k-3H-yyYGKTpprek0SogM9OoGt2-LD_0THOsjz-t-_v6pZ1cMA3Ya8CC3Uz81iFqdOiqOjIh8GQkl2lpoN1Sh9BQ3aGK1iEUQa8pgdEMdGK1lFBuqu-Jjv_fgfkRV3OmWevdLE9-hepu4eSqvBPp-22lNfo4maJ7JabllBAuuADRtY8rEXHNzd5bZXKxuxHS6ZvG6j-FR5aqyTomtJ7Clsz3YqVjTx6s92P0xWSxLicVTGHQYkdlT5ISdTUZlxVB2NhZzbR-jrVSsMx2hFvPxFUNPmQ3pkrHIWf8KlzRWkHNS2lKBlGdwfieKfA7b2SzTL4BJtNpxbNqB4Gg5lRLG8MhTkYPPxjPcgve17pK0qmNOdBrTBPczpOhkTdEWHDbC87J8x__FjmkQGhGquV00zK5HSTWFE8SfSqUIQ094AaIxdmT57WFbmjTyLXiHQ3irj15nmFAbWX2He85v14KDeoSTarVYJP-wbcHb5jXOczq8EZmeLUkmCGPiqt8gg9vJ0OV0UmrBUYOeTT--v_lz3sADnGTJsH86eAkP0VfkFE73-AFs59dL_Qr9sVy-LoDP4PKuZ9pfwCZJoQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELagexg8DBhMZAxk0HhByvLLdtInlCGmAtOENIrGU2THdhvo0qpJhsZfz12SVh1CE-Ix9iVK5LO_7-zLd4Qc8lxYmfuxqxnuVqnYuEpFkasSoNcmYZE1bZbvmRiN2ccLftHn5lR9WiWE4kW7SAN2-S4QcuZxb-gB2HsLbd9e9RtJAeoc4skQv0u2BAcqPiBb47PP6TcsKLe6tfsnL4LQ3iu-TwrAR2QNN1CoFesHbJliKuQGz9xuyoW8_ilnsw3IOXnQ1VWtWqVCzDT5cdTU6ij_9YeO439_zUOy05NRmnbe84jcMeUu2e7rok-vd8n9r0XVdBbVY_IppViuHvdG6Hkx6TRB6flULox7DGioaTqbzJdFPb2kwIXpKf5GLGv64RIWLdqW38TEpNYXnpDxyfsv70ZuX4zBzZlgtZtHuYUJbnJfJ7GVcaRiqeXQSBNwzVWohQU2YmQiWWIw2TPghlljVJxYlKiJ9signJfmKaEKcDlJ7JBJAdiotbRWxKGOfbi2oRUOebManCzvlcqxYMYsg4gFRzLbGEmHHK6NF51Ax9_NjnGU1yaoqt02zJeTrJ-kGbBdnSvJeShDBlQp8VX37nyobB5HDnkFPnLjGaP0NMM2xHVfhP5V4JCDlQtl_XpQZQHqzkUQGkL3y3U3zGQ8npGlmTdow3iC1ehvsYGAkQcCz0Id8nrtnrd9-P4_2j0j98D9BG6Xh-KADOplY54D36rVi35W_QYBZCQ_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Spectral+Signature+Shape-Based+Algorithm+for+Landsat+Image+Classification&rft.jtitle=ISPRS+international+journal+of+geo-information&rft.au=Chen%2C+Yuanyuan&rft.au=Wang%2C+Quanfang&rft.au=Wang%2C+Yanlong&rft.au=Duan%2C+Si-Bo&rft.date=2016-08-26&rft.issn=2220-9964&rft.eissn=2220-9964&rft.volume=5&rft.issue=9&rft.spage=154&rft_id=info:doi/10.3390%2Fijgi5090154&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ijgi5090154 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2220-9964&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2220-9964&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2220-9964&client=summon |