Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders
The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication synd...
Saved in:
Published in | Neurobiology of disease Vol. 201; p. 106669 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Inc
15.10.2024
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0969-9961 1095-953X 1095-953X |
DOI | 10.1016/j.nbd.2024.106669 |
Cover
Abstract | The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies.
•Genetic defects of the imprinted gene UBE3A cause neurodevelopmental disorders.•UBE3A critically regulate the function of distinct neuronal circuits and behaviors.•The molecular diversity of UBE3A is a key determinant of disease pathophysiology.•UBE3A operates during precise temporal windows to regulate neurodevelopment. |
---|---|
AbstractList | The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies. The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies.The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies. The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development. Genetic defects of UBE3A cause severe neurodevelopmental disorders, namely the Angelman syndrome (AS) and the 15q11.2-q13.3 duplication syndrome (Dup15q). In the last two decades, the development of in vitro and in vivo models of AS and Dup15q were fundamental to improve the understanding of UBE3A function in the brain. However, the pathogenic mechanisms of these diseases remain elusive and effective treatments are lacking. Recent evidence suggests that UBE3A functions are both spatially and temporally specific, varying across subcellular compartments, brain regions, and neuronal circuits. In the present review, we summarize current knowledge on the role of UBE3A in neuronal pathophysiology under this spatio-temporal perspective. Additionally, we propose key research questions that will be instrumental to better understand the pathogenic mechanisms underpinning AS and Dup15q disorders and provide the rationale to develop novel therapies. •Genetic defects of the imprinted gene UBE3A cause neurodevelopmental disorders.•UBE3A critically regulate the function of distinct neuronal circuits and behaviors.•The molecular diversity of UBE3A is a key determinant of disease pathophysiology.•UBE3A operates during precise temporal windows to regulate neurodevelopment. |
ArticleNumber | 106669 |
Author | Baronchelli, Federica Biagioni, Martina Fossati, Matteo |
Author_xml | – sequence: 1 givenname: Martina surname: Biagioni fullname: Biagioni, Martina organization: IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy – sequence: 2 givenname: Federica surname: Baronchelli fullname: Baronchelli, Federica organization: CNR - Institute of Neuroscience, Section of Milano, via Manzoni 56, Rozzano 20089, MI, Italy – sequence: 3 givenname: Matteo surname: Fossati fullname: Fossati, Matteo email: matteo.fossati@cnr.it organization: IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano 20089, MI, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39293689$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUFv1DAQhS1URLeFH8AF5cglWztOnFicStVCpSIuVOJmTezx4iWxg52tlH9fLyk9cICLR7beeyN_74yc-OCRkLeMbhll4mK_9b3ZVrSq810IIV-QDaOyKWXDv5-QDZVCllIKdkrOUtpTylgj21fklMtKctHJDbFfDsPskoYBizTB7EI54ziFCENhFg-j06kItrj_eM0vix16LJwv-gj5nH4syYUh7JYCvCk8HmIw-IBDmEb08zHBpRANxvSavLQwJHzzNM_J_c31t6vP5d3XT7dXl3elrkU9lwCSU5BWM8ag7421nDFqgLLOSNb0aKoKhLCthh4siIZZ2tkOWGvbSnaan5PbNdcE2KspuhHiogI49fshxJ2CODs9oGKirlqJfR59XTPRZ05c5z0aDM_BOev9mjXF8OuAaVZjBoXDAB7DISmembecU95m6bsn6aEf0Twv_sM5C9gq0DGkFNE-SxhVxy7VXuUu1bFLtXaZPR9WD2ZgDw6jStqh12hcRD3nH7l_uuVfbj0473LRP3H5j_cRtS66LQ |
Cites_doi | 10.1073/pnas.1004487107 10.1523/JNEUROSCI.4162-11.2011 10.1126/science.aav5386 10.1016/j.biopsych.2012.01.021 10.1073/pnas.91.19.8797 10.1172/jci.insight.158953 10.1016/j.nbd.2010.08.002 10.1038/nn.2741 10.1038/s41598-021-82319-9 10.1523/JNEUROSCI.23-07-02634.2003 10.1074/jbc.M401302200 10.1073/pnas.1302792110 10.1177/0883073814538669 10.1038/s41586-020-2835-2 10.1002/cne.24063 10.1016/j.neuroimage.2011.07.067 10.1371/annotation/f32bc670-c9cf-4bb0-9376-cd8cfd1053c1 10.1523/ENEURO.0137-20.2020 10.1523/JNEUROSCI.2246-15.2015 10.1002/cne.23507 10.1523/JNEUROSCI.1846-13.2014 10.1126/science.1112066 10.1016/j.cell.2015.06.045 10.3389/fnmol.2022.826679 10.1016/j.neuron.2012.03.036 10.1016/S0387-7604(03)00160-8 10.1038/ncomms15038 10.1523/JNEUROSCI.1930-11.2013 10.1126/scitranslmed.3004655 10.1074/jbc.M110.205211 10.1186/s13229-018-0231-7 10.1016/S0896-6273(00)80596-6 10.1038/s41380-023-02038-7 10.1136/jmg.30.6.529 10.1016/j.biopsych.2022.11.016 10.1038/s41467-020-15073-7 10.1186/s40478-015-0241-z 10.1016/j.ymthe.2023.01.013 10.1016/j.nbd.2020.105180 10.1038/s41598-017-08825-x 10.1016/0092-8674(93)90384-3 10.1038/nn1845 10.1002/aur.1284 10.1016/j.nbd.2008.08.011 10.1016/j.ejpn.2023.07.008 10.1016/j.nbd.2020.104812 10.1172/JCI80554 10.1093/hmg/ddab050 10.1172/jci.insight.166073 10.1186/s13229-020-00376-9 10.1523/JNEUROSCI.0083-18.2018 10.1186/s13229-019-0277-1 10.1016/j.biopsych.2021.07.018 10.3389/fnhum.2013.00609 10.1038/s41598-023-45769-x 10.1126/science.286.5443.1321 10.1159/000328837 10.1038/s41380-020-0858-6 10.1016/j.expneurol.2023.114358 10.1038/nn.2327 10.1038/s41593-019-0425-0 10.1016/j.yebeh.2016.04.001 10.1038/nature13975 10.1523/JNEUROSCI.0037-17.2017 10.1371/journal.pgen.1004039 10.1038/s41380-022-01484-z 10.1016/j.celrep.2015.06.023 10.1523/ENEURO.0345-20.2020 10.1016/j.nbd.2019.104585 10.1186/s13229-019-0293-1 10.1172/JCI142574 10.1016/j.cell.2010.09.038 10.1155/2022/3923384 10.1016/j.nbd.2010.04.012 10.1038/s41386-020-00907-1 10.1016/j.neulet.2009.06.079 10.1128/MCB.19.2.1182 10.1016/S1097-2765(03)00090-X 10.1016/j.neuroimage.2018.12.001 10.1038/nbt.4201 10.1016/j.celrep.2013.07.005 10.1186/s11689-017-9195-8 10.1016/j.cub.2014.12.047 10.1038/nature10726 10.1093/hmg/ddm288 10.1016/j.nbd.2012.04.002 10.1126/scitranslmed.3002627 10.1126/scitranslmed.abf4077 10.1002/ajmg.a.38457 10.1523/JNEUROSCI.2509-12.2013 10.1523/JNEUROSCI.2828-17.2018 10.1093/hmg/ddx289 10.1038/s41398-020-0720-2 10.1002/brb3.1937 10.1523/JNEUROSCI.4276-14.2015 10.3389/fnbeh.2022.837523 10.1073/pnas.1003108107 10.1371/journal.pone.0043030 10.1038/nature21678 10.1038/s41583-023-00675-z 10.1111/febs.15258 10.1073/pnas.0805291105 10.1093/hmg/dds130 10.1016/j.nbd.2010.12.001 10.1093/hmg/ddr614 10.1523/JNEUROSCI.2194-15.2015 10.1074/jbc.274.26.18785 10.15252/embj.2023113796 10.1016/j.neuron.2016.02.040 10.1210/me.2005-0110 10.3389/fncel.2017.00418 10.1523/JNEUROSCI.4204-15.2016 10.1172/jci.insight.144712 10.1038/nrneurol.2016.133 10.1007/s12035-020-02275-9 10.3174/ajnr.A6531 10.3389/fnins.2015.00322 10.1074/jbc.M117.788448 |
ContentType | Journal Article |
Copyright | 2024 The Authors Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
Copyright_xml | – notice: 2024 The Authors – notice: Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
DBID | 6I. AAFTH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 DOA |
DOI | 10.1016/j.nbd.2024.106669 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Anatomy & Physiology |
EISSN | 1095-953X |
ExternalDocumentID | oai_doaj_org_article_164279eb642b4416b9613c8d9cad351f 39293689 10_1016_j_nbd_2024_106669 S0969996124002699 |
Genre | Research Support, Non-U.S. Gov't Journal Article Review |
GroupedDBID | --- --K --M .1- .FO .~1 0R~ 123 1B1 1P~ 1~. 1~5 4.4 457 4G. 5RE 5VS 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAXLA AAXUO AAYWO ABBQC ABCQJ ABFRF ABJNI ABMAC ABMZM ABTEW ACDAQ ACGFO ACGFS ACIEU ACRLP ACVFH ADBBV ADCNI ADEZE ADVLN AEBSH AEFWE AEIPS AEKER AENEX AEUPX AEVXI AFJKZ AFPUW AFRHN AFTJW AFXIZ AGCQF AGHFR AGUBO AGWIK AGYEJ AIEXJ AIGII AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR BKOJK BLXMC BNPGV CS3 DM4 DU5 EBS EFBJH EFKBS EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU G-Q GBLVA GROUPED_DOAJ HVGLF IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OK1 OP~ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SDP SES SEW SSH SSN SSZ T5K Z5R ZU3 ~G- 0SF 6I. AACTN AAFTH AFCTW AFKWA AJOXV AMFUW NCXOZ .55 .GJ 29N 53G AAQFI AAQXK AAYXX ABFNM ABWVN ABXDB ACRPL ADFGL ADMUD ADNMO ADXHL AGQPQ AGRNS ASPBG AVWKF AZFZN CAG CITATION COF EJD FGOYB HZ~ K-O R2- RIG X7M XPP ZGI ZMT CGR CUY CVF ECM EIF NPM 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c464t-aa930a9fc111abbdff3110da018d915bed22a66f7cabafa651f08f8a17f7298c3 |
IEDL.DBID | DOA |
ISSN | 0969-9961 1095-953X |
IngestDate | Wed Aug 27 01:25:12 EDT 2025 Sun Sep 28 07:25:53 EDT 2025 Thu Aug 28 04:42:20 EDT 2025 Tue Jul 01 03:07:41 EDT 2025 Tue Dec 03 03:44:31 EST 2024 Tue Aug 26 16:34:33 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Neuronal circuits Neurodevelopmental disorders Synapses Protein ubiquitination Developmental trajectories of disease |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-aa930a9fc111abbdff3110da018d915bed22a66f7cabafa651f08f8a17f7298c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://doaj.org/article/164279eb642b4416b9613c8d9cad351f |
PMID | 39293689 |
PQID | 3106733037 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_164279eb642b4416b9613c8d9cad351f proquest_miscellaneous_3106733037 pubmed_primary_39293689 crossref_primary_10_1016_j_nbd_2024_106669 elsevier_sciencedirect_doi_10_1016_j_nbd_2024_106669 elsevier_clinicalkey_doi_10_1016_j_nbd_2024_106669 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-10-15 |
PublicationDateYYYYMMDD | 2024-10-15 |
PublicationDate_xml | – month: 10 year: 2024 text: 2024-10-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neurobiology of disease |
PublicationTitleAlternate | Neurobiol Dis |
PublicationYear | 2024 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Santini, Turner, Ramaraj, Murphy, Klann, Kaphzan (bb0415) 2015; 35 van Woerden, Harris, Hojjati, Gustin, Qiu, de Avila Freire, Jiang, Elgersma, Weeber (bb0550) 2007; 10 Sun, Liu, Moreno, Baudry, Bi (bb0505) 2015; 35 Sun, Liu, Hao, Baudry, Bi (bb0525) 2022; 2022 Vanderhaeghen, Polleux (bb0555) 2023 Kaphzan, Hernandez, Jung, Cowansage, Deinhardt, Chao, Abel, Klann (bb0240) 2012; 72 Shi, Bichell, Ihrie, Johnson (bb0435) 2015; 25 Silva-santos, Van Woerden, Bruinsma, Mientjes (bb0455) 2015; 125 Kühnle, Kogel, Glockzin, Marquardt, Ciechanover, Matentzoglu, Scheffner (bb0275) 2011; 286 Viho, Punt, Distel, Houtman, Kroon, Elgersma, Meijer (bb0560) 2023; 24 Yi, Paranjape, Walker, Choudhury, Wolter, Fragola, Emanuele, Major, Zylka (bb0605) 2017; 292 Chamberlain, Chen, Ng, Bourgois-Rocha, Lemtiri-Chlieh, Levine, Lalande (bb0085) 2010; 107 Su, Liu, Lam, Hao, Baudry, Bi (bb0500) 2023; 13 Zampeta, Sonzogni, Niggl, Lendemeijer, Smeenk, de Vrij, Kushner, Distel, Elgersma (bb0620) 2020; 1–5 Urraca, Cleary, Brewer, Pivnick, McVicar, Thibert, Schanen, Esmer, Lamport, Reiter (bb0545) 2013; 6 Sun, Zhu, Liu, Standley, Ji, Tunuguntla, Wang, Claus, Luo, Baudry, Bi (bb0510) 2015; 12 Copping, Christian, Ritter, Islam, Buscher, Zolkowska, Pride, Berg, LaSalle, Ellegood, Lerch, Reiter, Silverman, Dindot (bb0110) 2017; 26 Avagliano Trezza, Punt, Mientjes, van den Berg, Zampeta, de Graaf, van der Weegen, Demmers, Elgersma, Distel (bb0020) 2021; 11 Wang, Wang, Wang, Mao, Tang, Vanderklish, Liao, Xiong, Liao (bb0575) 2019; 132 Baudry, Kramar, Xu, Zadran, Moreno, Lynch, Gall, Bi (bb0025) 2012; 47 Born, Dao, Levine, Lee, Mehta, Mehra, Weeber, Anderson (bb0035) 2017; 7 Weeber, Jiang, Elgersma, Varga, Carrasquillo, Brown, Christian, Mirnikjoo, Silva, Beaudet, Sweatt (bb0580) 2003; 23 Tiwari, Jeong, Wilson, Behen, Chugani, Sundaram (bb0535) 2012; 59 Wallace, Burette, Weinberg, Philpot (bb0565) 2012; 74 Judson, Burette, Thaxton, Pribisko, Shen, Rumple, del Cid, Paniagua, Styner, Weinberg, Philpot (bb0225) 2017; 37 O’Geen, Beitnere, Garcia, Adhikari, Cameron, Fenton, Copping, Deng, Lock, Halmai, Villegas, Liu, Wang, Fink, Silverman, Segal (bib629) 2023; 31 Wolter, Mao, Fragola, Simon, Krantz, Bazick, Oztemiz, Stein, Zylka (bib631) 2020; 587 Kaphzan, Buffington, Ramaraj, Lingrel, Rasband, Santini, Klann (bb0245) 2013; 4 Sonzogni, Zhai, Mientjes, Van Woerden, Elgersma (bb0490) 2020; 11 Moreira-de-Sá, Gonçalves, Lopes, Silva, Tomé, Cunha, Canas (bb0330) 2021 Sirois, Bloom, Fink, Gorka, Keller, Germain, Levine, Chamberlain (bb0470) 2020; 1–25 Schmid, Ralf, Deng, Panikker, Msackyi, Breton, Wilson (bib634) 2021; 131 Buiting, Williams, Horsthemke (bb0070) 2016; 12 Reid, Hübner, Métivier, Brand, Denger, Manu, Beaudouin, Ellenberg, Gannon (bb0400) 2003; 11 Huang, Allen, Mabb, King, Miriyala, Taylor-Blake, Sciaky, Dutton, Lee, Chen, Jin, Bridges, Zylka, Roth, Philpot (bib627) 2012; 481 Miao, Chen, Ye, Tan, Li, Zhang, Jiang, Xiong (bb0325) 2013; 33 Smith, Zhou, Zhang, Jin, Stoppel, Anderson (bb0475) 2011; 3 Yashiro, Riday, Condon, Roberts, Bernardo, Prakash, Weinberg, Ehlers, Philpot (bb0595) 2009; 12 Judson, Shyng, Simon, Davis, Punt, Salmon, Miller, Ritola, Elgersma, Amaral, Gray, Philpot (bb0230) 2021; 6 Yi, Berrios, Newbern, Snider, Philpot, Hahn, Zylka (bb0600) 2015; 162 Farook, DeCuypere, Hyland, Takumi, LeDoux, Reiter (bb0140) 2012; 7 Fink, Robinson, Germain, Sirois, Bolduc, Ward, Rigo, Chamberlain, Levine (bb0150) 2017; 8 Kumar, Talis, Howley (bb0285) 1999; 274 Mahjoory, Cesnaite, Hohlefeld, Villringer, Nikulin (bb0290) 2019; 188 Sidorov, Deck, Dolatshahi, Thibert, Bird, Chu, Philpot (bb0445) 2017; 9 Condon, Ho, Robinson, Hanus, Ehlers (bb0095) 2013; 33 Penzes, Cahill, Jones, Vanleeuwen, Woolfrey (bb0375) 2011; 14 Zikopoulos, Barbas (bb0625) 2013; 7 Shi, Mahoney, Houdek, Zhao, Anderson, Zhuo, Beaudet, Sumova, Scammell, Johnson (bb0440) 2022; 16 Sell, Margolis (bb0430) 2015; 9 Hogart, Wu, LaSalle, Schanen (bb0200) 2010; 38 Sonzogni, Hakonen, Bernabé Kleijn, Silva-Santos, Judson, Philpot, Van Woerden, Elgersma (bb0485) 2019; 10 Margolis, Salogiannis, Lipton, Mandel-Brehm, Wills, Mardinly, Hu, Greer, Bikoff, Ho, Soskis, Sahin, Greenberg (bb0300) 2010; 143 Rayi, Bagrov, Kaphzan (bb0395) 2021; 46 Gustin, Bichell, Bubser, Daily, Filonova, Mrelashvili, Deutch, Colbran, Weeber, Haas (bb0190) 2010; 39 Fink, Schreiner, Bloom, James, Baker, Robinson, Lieberman, Loew, Chamberlain, Levine (bb0155) 2021; 90 Pelc, Cheron, Dan (bb0370) 2008; 4 Hao, Sun, Zhong, Baudry, Bi (bb0195) 2023; 363 Vihma, Li, Welton-Arndt, Smith, Bettadapur, Gilmore, Gao, Cotney, Huang, Collins, Chamberlain, Lee, Aubé, Philpot (bib632) 2024 Ferdousy, Bodeen, Summers, Doherty, Wright, Elsisi, Hilliard, O’Donnell, Reiter (bb0145) 2011; 41 Scheffner, Huibregtse, Vierstra, Howley (bb0420) 1993; 75 Avagliano Trezza, Sonzogni, Bossuyt, Zampeta, Punt, van den Berg, Rotaru, Koene, Munshi, Stedehouder, Kros, Williams, Heussler, de Vrij, Mientjes, van Woerden, Kushner, Distel, Elgersma (bb0015) 2019; 22 Bruni, Ferri, D’Agostino, Miano, Roccella, Elia (bb0060) 2004; 26 Buel, Chen, Chari, O’Neill, Ebelle, Jenkins, Sridharan, Tarasov, Tarasova, Andresson, Walters (bb0065) 2020; 11 Musi, Agrò, Buccarello, Camuso, Borsello (bb0340) 2020; 140 Scheffner, Huibregtse, Howley (bb0425) 1994; 91 Sonzogni, Wallaard, Santos, Kingma, Du Mee, Van Woerden, Elgersma (bb0480) 2018; 9 Egawa, Kitagawa, Inoue, Takayama, Takayama, Saitoh, Kishino, Kitagawa, Fukuda (bb0125) 2012; 4 Keary, Bird, de Wit, Hatti, Heimer, Heussler, Kolevzon, Mathews, Ochoa-Lubinoff, Tan, Yan, Adams (bb0250) 2023; 47 Pandya, Meier, Tyanova, Terrigno, Wang, Punt, Mientjes, Vautheny, Distel, Kremer, Elgersma, Jagasia (bb0355) 2022; 27 Huang, Kinnucan, Wang, Beaudenon, Howley, Huibregtse, Pavletich (bb0205) 1999; 1979 Kühnle, Mothes, Matentzoglu, Scheffner (bb0280) 2013; 110 Mulherkar, Jana (bb0335) 2010; 40 Cao, Rioult-Pedotti, Migani, Yu, Tiwari, Parang, Spaller, Goebel, Marshall (bb0080) 2013; 11 Panov, Kaphzan (bb0365) 2021; 148 Tan, Bird, Sadhwani, Barbieri-Welge, Skinner, Horowitz, Bacino, Noll, Fu, Hundley, Wink, Erickson, Barnes, Slavotinek, Jeremy, Rotenberg, Kothare, Olson, Poduri, Nespeca, Chu, Willen, Haas, Weeber, Rufo (bb0530) 2018; 176 Burette, Judson, Burette, Phend, Philpot, Weinberg (bb0075) 2017; 525 Jiang, Hui Armstrong, Albrecht, Atkins, Noebels, Eichele, Sweatt, Beaudet (bb0210) 1998; 21 Khan, Fu, Ismail, Srinivasan, Cao, Tu, Lu, Nawaz (bb0260) 2006; 20 Meng, Ward, Chun, Bennett, Beaudet, Rigo (bib628) 2015; 518 Finucane, Lusk, Arkilo, Chamberlain, Devinsky, Dindot, Jeste, LaSalle, Reiter, Schanen, Spence, Thibert, Calvert, Luchsinger, Cook (bb0160) 2016 Maranga, Fernandes, Bekman, da Rocha (bb0295) 2020 Rotaru, Wallaard, de Vries, van der Bie, Elgersma (bb0410) 2023; 8 Nawaz, Lonard, Smith, Lev-Lehman, Tsai, Tsai, O’Malley (bb0345) 1999; 19 Judson, Wallace, Sidorov, Burette, Gu, van Woerden, King, Han, Zylka, Elgersma, Weinberg, Philpot (bb0220) 2016; 90 Judson, Sosa-Pagan, Del Cid, Han, Philpot (bb0215) 2014; 522 Sun, Yuan, Fukuda, Yu, Yan, Lim, Nai, D’Agostino, Tran, Itahana, Wang, Lokman, Itahana, Lim, Tang, Chang, Zhang, Cook, Rackham, Lim, Tan, Ng, Lim, Jiang, Je (bb0515) 2019; 1979 Wu, Bolduc, Bell, Tully, Fang, Sehgal, Fischer (bb0590) 2008; 105 Perrino, Chamberlain, Eigsti, Fitch (bb0380) 2021; 11 Dagli, Buiting, Williams (bb0115) 2012; 2 Kim, Kunz, Mooney, Philpot, Smith (bb0265) 2016; 36 Su, Fan, Coskun, Vesa, Gold, Jiang, Potluri, Procaccio, Acab, Weiss, Wallace, Kimonis (bb0495) 2011; 487 Dindot, Antalffy, Bhattacharjee, Beaudet (bb0120) 2008; 17 Aria, Pandey, Alberini (bb0010) 2023 Branon, Bosch, Sanchez, Udeshi, Svinkina, Carr, Feldman, Perrimon, Ting (bb0055) 2018; 36 Folci, Mirabella, Fossati (bb0165) 2020; 7 Keute, Miller, Krishnan, Sadhwani, Chamberlain, Thibert, Tan, Bird, Hipp (bb0255) 2021; 26 Meng, Person, Beaudet (bb0315) 2012; 21 Antoine (bb0005) 2022 Dindot, Christian, Murphy, Berent, Panagoulias, Schlafer, Ballard, Radeva, Robinson, Myers, Jepp, Shaheen, Hillman, Konganti, Hillhouse, Bredemeyer, Black, Douville (bib626) 2023; 15 Kaphzan, Buffington, Jung, Rasband, Klann (bb0235) 2011; 31 Meng, Person, Huang, Zhu, Costa-Mattioli, Beaudet (bb0320) 2013; 9 Zaaroor-Regev, de Bie, Scheffner, Noy, Shemer, Heled, Stein, Pikarsky, Ciechanover (bb0615) 2010; 107 Elamin, Dumarchey, Stoddard, Robinson, Cowie, Gorka, Chamberlain, Levine (bb0135) 2023 Berg, Pride, Petkova, Lee, Copping, Shen, Adhikari, Fenton, Pedersen, Noakes, Nieman, Lerch, Harris, Born, Peters, Deng, Cameron, Fink, Beitnere, O’Geen, Anderson, Dindot, Nash, Weeber, Wöhr, Ellegood, Segal, Silverman (bb0030) 2020; 10 Gu, Carstens, Judson, Dalton, Rougié, Clark, Dudek, Philpot (bb0185) 2019; 129 Matteoli, Pozzi, Fossati, Menna (bb0310) 2023; 42 Simchi, Gupta, Feuermann, Kaphzan (bb0465) 2023 Ehlen, Jones, Pinckney, Gray, Burette, Weinberg, Evans, Brager, Zylka, Paul, Philpot, DeBruyne (bb0130) 2015; 35 Frohlich, Reiter, Saravanapandian, Distefano, Huberty, Hyde, Chamberlain, Bearden, Golshani, Irimia, Olsen, Hipp, Jeste (bb0175) 2019; 10 Bossuyt, Punt, de Graaf, van den Burg, Williams, Heussler, Elgersma, Distel (bb0050) 2021; 30 Clayton-Smith, Webb, Cheng, Pembrey, Malcolm (bb0090) 1993; 30 Tonazzini, Van Woerden, Masciullo, Mientjes, Elgersma, Cecchini (bb0540) 2019; 10 Wegiel, Flory, Schanen, Cook, Nowicki, Kuchna, Imaki, Ma, Wegiel, London, Casanova, Wisniewski, Brown (bb0585) 2015; 3 Cooper, Hudson, Amos, Wagstaff, Howley (bb0105) 2004; 279 Punt, Judson, Sidorov, Williams, Johnson, Belder, den Hertog, Davis, Feygin, Lang, Jolfaei, Curran, van IJcken, Elgersma, Philpot (bb0390) 2022; 7 Godavarthi, Dey, Maheshwari, Ranjan Jana (bb0180) 2012; 21 Panksepp (bb0360) 2005; 1979 Wang, van Woerden, Elgersma, Borst (bb0570) 2018; 11 Boronat, Mehan, Shaaya, Thibert, Caruso (bb0045) 2015; 30 Sun, Liu, Zhu, Cato, Hao, Qian, Lin, Adhikari, Luo, Baudry, Bi (bb0520) 2020; 10 Born, Martinez, Levine, Harris, Mehra, Lee, Dindot, Nash, Silverman, Segal, Weeber, Anderson (bb0040) 2021; 8 Sidorov, Judson, Kim, Rougie, Ferrer, Nikolova, Riddick, Moy, Philpot (bb0450) 2018; 38 Friedman, T Khan (10.1016/j.nbd.2024.106669_bb0260) 2006; 20 Sonzogni (10.1016/j.nbd.2024.106669_bb0490) 2020; 11 Shi (10.1016/j.nbd.2024.106669_bb0440) 2022; 16 Baudry (10.1016/j.nbd.2024.106669_bb0025) 2012; 47 Sun (10.1016/j.nbd.2024.106669_bb0515) 2019; 1979 Gu (10.1016/j.nbd.2024.106669_bb0185) 2019; 129 Cao (10.1016/j.nbd.2024.106669_bb0080) 2013; 11 Yashiro (10.1016/j.nbd.2024.106669_bb0595) 2009; 12 Pignatelli (10.1016/j.nbd.2024.106669_bb0385) 2014; 34 Margolis (10.1016/j.nbd.2024.106669_bb0300) 2010; 143 Friedman (10.1016/j.nbd.2024.106669_bb0170) 2016; 61 Nawaz (10.1016/j.nbd.2024.106669_bb0345) 1999; 19 Schmid (10.1016/j.nbd.2024.106669_bib634) 2021; 131 Sun (10.1016/j.nbd.2024.106669_bb0520) 2020; 10 Huang (10.1016/j.nbd.2024.106669_bib627) 2012; 481 Rotaru (10.1016/j.nbd.2024.106669_bb0405) 2018; 38 Fink (10.1016/j.nbd.2024.106669_bb0150) 2017; 8 Meng (10.1016/j.nbd.2024.106669_bib628) 2015; 518 Perrino (10.1016/j.nbd.2024.106669_bb0380) 2021; 11 Kaphzan (10.1016/j.nbd.2024.106669_bb0245) 2013; 4 Huang (10.1016/j.nbd.2024.106669_bb0205) 1999; 1979 Pelc (10.1016/j.nbd.2024.106669_bb0370) 2008; 4 Keary (10.1016/j.nbd.2024.106669_bb0250) 2023; 47 Shi (10.1016/j.nbd.2024.106669_bb0435) 2015; 25 Egawa (10.1016/j.nbd.2024.106669_bb0125) 2012; 4 Viho (10.1016/j.nbd.2024.106669_bb0560) 2023; 24 Mulherkar (10.1016/j.nbd.2024.106669_bb0335) 2010; 40 Rotaru (10.1016/j.nbd.2024.106669_bb0410) 2023; 8 Sun (10.1016/j.nbd.2024.106669_bb0510) 2015; 12 Sonzogni (10.1016/j.nbd.2024.106669_bb0485) 2019; 10 Su (10.1016/j.nbd.2024.106669_bb0495) 2011; 487 Avagliano Trezza (10.1016/j.nbd.2024.106669_bb0015) 2019; 22 Simchi (10.1016/j.nbd.2024.106669_bb0465) 2023 O’Geen (10.1016/j.nbd.2024.106669_bib629) 2023; 31 Wallace (10.1016/j.nbd.2024.106669_bb0565) 2012; 74 Chamberlain (10.1016/j.nbd.2024.106669_bb0085) 2010; 107 Urraca (10.1016/j.nbd.2024.106669_bb0545) 2013; 6 Judson (10.1016/j.nbd.2024.106669_bb0220) 2016; 90 Hogart (10.1016/j.nbd.2024.106669_bb0200) 2010; 38 Matteoli (10.1016/j.nbd.2024.106669_bb0310) 2023; 42 Sidorov (10.1016/j.nbd.2024.106669_bb0450) 2018; 38 Yoon (10.1016/j.nbd.2024.106669_bb0610) 2020; 41 Kaphzan (10.1016/j.nbd.2024.106669_bb0240) 2012; 72 Aria (10.1016/j.nbd.2024.106669_bb0010) 2023 Dindot (10.1016/j.nbd.2024.106669_bb0120) 2008; 17 Judson (10.1016/j.nbd.2024.106669_bb0225) 2017; 37 Silva-santos (10.1016/j.nbd.2024.106669_bb0455) 2015; 125 Kühnle (10.1016/j.nbd.2024.106669_bb0275) 2011; 286 Sonzogni (10.1016/j.nbd.2024.106669_bb0480) 2018; 9 Zikopoulos (10.1016/j.nbd.2024.106669_bb0625) 2013; 7 Wegiel (10.1016/j.nbd.2024.106669_bb0585) 2015; 3 Miao (10.1016/j.nbd.2024.106669_bb0325) 2013; 33 Antoine (10.1016/j.nbd.2024.106669_bb0005) 2022 Sirois (10.1016/j.nbd.2024.106669_bb0470) 2020; 1–25 Panksepp (10.1016/j.nbd.2024.106669_bb0360) 2005; 1979 Ferdousy (10.1016/j.nbd.2024.106669_bb0145) 2011; 41 Fink (10.1016/j.nbd.2024.106669_bb0155) 2021; 90 Buel (10.1016/j.nbd.2024.106669_bb0065) 2020; 11 Kaphzan (10.1016/j.nbd.2024.106669_bb0235) 2011; 31 Mahjoory (10.1016/j.nbd.2024.106669_bb0290) 2019; 188 Tan (10.1016/j.nbd.2024.106669_bb0530) 2018; 176 Matsuda (10.1016/j.nbd.2024.106669_bb0305) 2024 Finucane (10.1016/j.nbd.2024.106669_bb0160) 2016 Kumar (10.1016/j.nbd.2024.106669_bb0285) 1999; 274 van Woerden (10.1016/j.nbd.2024.106669_bb0550) 2007; 10 Clayton-Smith (10.1016/j.nbd.2024.106669_bb0090) 1993; 30 Sidorov (10.1016/j.nbd.2024.106669_bb0445) 2017; 9 Born (10.1016/j.nbd.2024.106669_bb0040) 2021; 8 Weeber (10.1016/j.nbd.2024.106669_bb0580) 2003; 23 Scheffner (10.1016/j.nbd.2024.106669_bb0420) 1993; 75 Su (10.1016/j.nbd.2024.106669_bb0500) 2023; 13 Born (10.1016/j.nbd.2024.106669_bb0035) 2017; 7 Krishnan (10.1016/j.nbd.2024.106669_bb0270) 2017; 543 Berg (10.1016/j.nbd.2024.106669_bb0030) 2020; 10 Maranga (10.1016/j.nbd.2024.106669_bb0295) 2020 Wang (10.1016/j.nbd.2024.106669_bb0575) 2019; 132 Zampeta (10.1016/j.nbd.2024.106669_bb0620) 2020; 1–5 Keute (10.1016/j.nbd.2024.106669_bb0255) 2021; 26 Kühnle (10.1016/j.nbd.2024.106669_bb0280) 2013; 110 Scheffner (10.1016/j.nbd.2024.106669_bb0425) 1994; 91 Tiwari (10.1016/j.nbd.2024.106669_bb0535) 2012; 59 Dindot (10.1016/j.nbd.2024.106669_bib626) 2023; 15 Yi (10.1016/j.nbd.2024.106669_bb0600) 2015; 162 Condon (10.1016/j.nbd.2024.106669_bb0095) 2013; 33 Smith (10.1016/j.nbd.2024.106669_bb0475) 2011; 3 Branon (10.1016/j.nbd.2024.106669_bb0055) 2018; 36 Cook (10.1016/j.nbd.2024.106669_bb0100) 1997; 60 Zaaroor-Regev (10.1016/j.nbd.2024.106669_bb0615) 2010; 107 Wolter (10.1016/j.nbd.2024.106669_bib631) 2020; 587 Gustin (10.1016/j.nbd.2024.106669_bb0190) 2010; 39 Wu (10.1016/j.nbd.2024.106669_bb0590) 2008; 105 Bruni (10.1016/j.nbd.2024.106669_bb0060) 2004; 26 Sun (10.1016/j.nbd.2024.106669_bb0525) 2022; 2022 Tonazzini (10.1016/j.nbd.2024.106669_bb0540) 2019; 10 Yi (10.1016/j.nbd.2024.106669_bb0605) 2017; 292 Elamin (10.1016/j.nbd.2024.106669_bb0135) 2023 Farook (10.1016/j.nbd.2024.106669_bb0140) 2012; 7 Moreira-de-Sá (10.1016/j.nbd.2024.106669_bb0330) 2021 Boronat (10.1016/j.nbd.2024.106669_bb0045) 2015; 30 Kim (10.1016/j.nbd.2024.106669_bb0265) 2016; 36 Vihma (10.1016/j.nbd.2024.106669_bib632) 2024 Judson (10.1016/j.nbd.2024.106669_bb0215) 2014; 522 Meng (10.1016/j.nbd.2024.106669_bb0315) 2012; 21 Panov (10.1016/j.nbd.2024.106669_bb0365) 2021; 148 Wang (10.1016/j.nbd.2024.106669_bb0570) 2018; 11 Judson (10.1016/j.nbd.2024.106669_bb0230) 2021; 6 Godavarthi (10.1016/j.nbd.2024.106669_bb0180) 2012; 21 Bossuyt (10.1016/j.nbd.2024.106669_bb0050) 2021; 30 Punt (10.1016/j.nbd.2024.106669_bb0390) 2022; 7 Avagliano Trezza (10.1016/j.nbd.2024.106669_bb0020) 2021; 11 Jiang (10.1016/j.nbd.2024.106669_bb0210) 1998; 21 Reid (10.1016/j.nbd.2024.106669_bb0400) 2003; 11 Sun (10.1016/j.nbd.2024.106669_bb0505) 2015; 35 Sell (10.1016/j.nbd.2024.106669_bb0430) 2015; 9 Folci (10.1016/j.nbd.2024.106669_bb0165) 2020; 7 Santini (10.1016/j.nbd.2024.106669_bb0415) 2015; 35 Penzes (10.1016/j.nbd.2024.106669_bb0375) 2011; 14 Copping (10.1016/j.nbd.2024.106669_bb0110) 2017; 26 Meng (10.1016/j.nbd.2024.106669_bb0320) 2013; 9 Musi (10.1016/j.nbd.2024.106669_bb0340) 2020; 140 Pandya (10.1016/j.nbd.2024.106669_bb0355) 2022; 27 Vanderhaeghen (10.1016/j.nbd.2024.106669_bb0555) 2023 Hao (10.1016/j.nbd.2024.106669_bb0195) 2023; 363 Buiting (10.1016/j.nbd.2024.106669_bb0070) 2016; 12 Frohlich (10.1016/j.nbd.2024.106669_bb0175) 2019; 10 Ehlen (10.1016/j.nbd.2024.106669_bb0130) 2015; 35 Cooper (10.1016/j.nbd.2024.106669_bb0105) 2004; 279 Dagli (10.1016/j.nbd.2024.106669_bb0115) 2012; 2 Rayi (10.1016/j.nbd.2024.106669_bb0395) 2021; 46 Burette (10.1016/j.nbd.2024.106669_bb0075) 2017; 525 Pandya (10.1016/j.nbd.2024.106669_bb0350) 2021; 2 |
References_xml | – volume: 26 start-page: 3995 year: 2017 end-page: 4010 ident: bb0110 article-title: Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome publication-title: Hum. Mol. Genet. – volume: 10 year: 2020 ident: bb0520 article-title: PKA and Ube3a regulate SK2 channel trafficking to promote synaptic plasticity in hippocampus: implications for Angelman syndrome publication-title: Sci. Rep. – volume: 12 start-page: 584 year: 2016 end-page: 593 ident: bb0070 article-title: Angelman syndrome — insights into a rare neurogenetic disorder publication-title: Nat. Rev. Neurol. – year: 2024 ident: bb0305 article-title: Systematic analysis of protein stability associated with species-specific developmental tempo publication-title: bioRxiv – volume: 7 start-page: 8451 year: 2017 ident: bb0035 article-title: Strain-dependence of the Angelman syndrome phenotypes in Ube3a maternal deficiency mice publication-title: Sci. Rep. – volume: 274 start-page: 18785 year: 1999 end-page: 18792 ident: bb0285 article-title: Identification of HHR23A as a substrate for E6-associated protein- mediated ubiquitination publication-title: J. Biol. Chem. – volume: 518 start-page: 409 year: 2015 end-page: 412 ident: bib628 article-title: Towards a therapy for Angelman syndrome by targeting a long non-coding RNA publication-title: Nature – volume: 91 start-page: 8797 year: 1994 end-page: 8801 ident: bb0425 article-title: Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53 publication-title: Proc. Natl. Acad. Sci. USA – volume: 25 start-page: 537 year: 2015 end-page: 545 ident: bb0435 article-title: Ube3a imprinting impairs circadian robustness in Angelman syndrome models publication-title: Curr. Biol. – volume: 11 year: 2020 ident: bb0490 article-title: Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome publication-title: Mol. Autism. – volume: 11 start-page: 1291 year: 2020 ident: bb0065 article-title: Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10 publication-title: Nat. Commun. – volume: 41 start-page: 889 year: 2020 end-page: 897 ident: bb0610 article-title: Disrupted functional and structural connectivity in Angelman syndrome publication-title: Am. J. Neuroradiol. – volume: 39 start-page: 283 year: 2010 end-page: 291 ident: bb0190 article-title: Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. – volume: 7 year: 2012 ident: bb0140 article-title: Altered serotonin, dopamine and Norepinepherine levels in 15q duplication and Angelman syndrome mouse models publication-title: PLoS One – volume: 9 start-page: 1 year: 2015 end-page: 6 ident: bb0430 article-title: From UBE3A to Angelman syndrome: a substrate perspective publication-title: Front. Neurosci. – volume: 481 start-page: 185 year: 2012 end-page: 191 ident: bib627 article-title: Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons publication-title: Nature – volume: 11 year: 2021 ident: bb0380 article-title: Communication-related assessments in an Angelman syndrome mouse model publication-title: Brain Behav. – volume: 35 start-page: 13587 year: 2015 end-page: 13598 ident: bb0130 article-title: Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact publication-title: J. Neurosci. – volume: 11 year: 2018 ident: bb0570 article-title: Enhanced transmission at the Calyx of held synapse in a mouse model for Angelman syndrome publication-title: Front. Cell. Neurosci. – volume: 4 start-page: 577 year: 2008 end-page: 584 ident: bb0370 article-title: Behavior and neuropsychiatric manifestations in Angelman syndrome publication-title: Neuropsychiatr. Dis. Treat. – volume: 26 start-page: 3625 year: 2021 end-page: 3633 ident: bb0255 article-title: Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment publication-title: Mol. Psychiatry – volume: 46 start-page: 654 year: 2021 end-page: 664 ident: bb0395 article-title: Chronic α1-Na/K-ATPase inhibition reverses the elongation of the axon initial segment of the hippocampal CA1 pyramidal neurons in Angelman syndrome model mice publication-title: Neuropsychopharmacology – volume: 13 year: 2023 ident: bb0500 article-title: Contextual fear memory impairment in Angelman syndrome model mice is associated with altered transcriptional responses publication-title: Sci. Rep. – volume: 10 start-page: 41 year: 2019 ident: bb0540 article-title: The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons publication-title: Mol. Autism. – volume: 543 start-page: 507 year: 2017 end-page: 512 ident: bb0270 article-title: Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1 publication-title: Nature – volume: 140 year: 2020 ident: bb0340 article-title: JNK signaling activation in the Ube3a maternal deficient mouse model: its specific inhibition prevents post-synaptic protein-enriched fraction alterations and cognitive deficits in Angelman syndrome model publication-title: Neurobiol. Dis. – year: 2016 ident: bb0160 article-title: 15q Duplication Syndrome and Related Disorders. GeneReviews® 1–23 – volume: 36 start-page: 4888 year: 2016 end-page: 4894 ident: bb0265 article-title: Maternal loss of Ube3a impairs experience-driven dendritic spine maintenance in the developing visual cortex publication-title: J. Neurosci. – volume: 279 start-page: 41208 year: 2004 end-page: 41217 ident: bb0105 article-title: Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein publication-title: J. Biol. Chem. – volume: 24 year: 2023 ident: bb0560 article-title: The hippocampal response to acute corticosterone elevation is altered in a mouse model for Angelman syndrome publication-title: Int. J. Mol. Sci. – volume: 525 start-page: 233 year: 2017 end-page: 251 ident: bb0075 article-title: Subcellular organization of UBE3A in neurons publication-title: J. Comp. Neurol. – volume: 176 start-page: 1099 year: 2018 end-page: 1107 ident: bb0530 article-title: A randomized controlled trial of levodopa in patients with Angelman syndrome publication-title: Am. J. Med. Genet. A – volume: 8 year: 2021 ident: bb0040 article-title: Early developmental eeg and seizure phenotypes in a full gene deletion of ubiquitin protein ligase e3a rat model of angelman syndrome publication-title: eNeuro – volume: 47 start-page: 210 year: 2012 end-page: 215 ident: bb0025 article-title: Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. – volume: 8 year: 2023 ident: bb0410 article-title: UBE3A expression during early postnatal brain development is required for proper dorsomedial striatal maturation publication-title: JCI Insight – year: 2023 ident: bb0135 article-title: The Role of UBE3A in the Autism and Epilepsy-Related Dup15q Syndrome Using Patient-Derived, CRISPR-Corrected Neurons – volume: 17 start-page: 111 year: 2008 end-page: 118 ident: bb0120 article-title: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology publication-title: Hum. Mol. Genet. – volume: 27 start-page: 2590 year: 2022 end-page: 2601 ident: bb0355 article-title: A cross-species spatiotemporal proteomic analysis identifies UBE3A-dependent signaling pathways and targets publication-title: Mol. Psychiatry – year: 2023 ident: bb0010 article-title: Excessive protein accumulation and impaired autophagy in the Hippocampus of Angelman syndrome modeled in mice publication-title: Biol. Psychiatry – volume: 1–5 year: 2020 ident: bb0620 article-title: Conserved UBE3A subcellular distribution between human and mice is facilitated by non-homologous isoforms publication-title: Hum. Mol. Genet. – year: 2020 ident: bb0295 article-title: Angelman syndrome: a journey through the brain publication-title: FEBS J. – volume: 11 start-page: 1 year: 2021 end-page: 14 ident: bb0020 article-title: Mono-ubiquitination of Rabphilin 3A by UBE3A serves a non-degradative function publication-title: Sci. Rep. – volume: 61 start-page: 1 year: 2016 end-page: 5 ident: bb0170 article-title: Mortality in isodicentric chromosome 15 syndrome: the role of SUDEP publication-title: Epilepsy Behav. – volume: 42 year: 2023 ident: bb0310 article-title: Immune synaptopathies: how maternal immune activation impacts synaptic function during development publication-title: EMBO J. – volume: 35 start-page: 16213 year: 2015 end-page: 16220 ident: bb0415 article-title: Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman syndrome model mice publication-title: J. Neurosci. – volume: 10 year: 2019 ident: bb0175 article-title: Mechanisms underlying the EEG biomarker in Dup15q syndrome publication-title: Mol. Autism. – volume: 125 start-page: 2069 year: 2015 end-page: 2076 ident: bb0455 article-title: Ube3a reinstatement identifies distinct treatment windows in Angelman syndrome model mice publication-title: J. Clin. Invest. – volume: 148 year: 2021 ident: bb0365 article-title: Bioinformatics analyses show dysregulation of calcium-related genes in Angelman syndrome mouse model publication-title: Neurobiol. Dis. – volume: 23 start-page: 2634 year: 2003 end-page: 2644 ident: bb0580 article-title: Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome publication-title: J. Neurosci. – volume: 33 start-page: 327 year: 2013 end-page: 333 ident: bb0325 article-title: The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons publication-title: J. Neurosci. – volume: 131 year: 2021 ident: bib634 article-title: CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice publication-title: J. Clin. Investig. – volume: 35 start-page: 4706 year: 2015 end-page: 4718 ident: bb0505 article-title: Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of angelman syndrome mice impairs motor function publication-title: J. Neurosci. – volume: 38 start-page: 181 year: 2010 end-page: 191 ident: bb0200 article-title: The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13 publication-title: Neurobiol. Dis. – volume: 38 start-page: 2671 year: 2018 end-page: 2682 ident: bb0450 article-title: Enhanced operant extinction and prefrontal excitability in a mouse model of Angelman syndrome publication-title: J. Neurosci. – volume: 37 start-page: 7347 year: 2017 end-page: 7361 ident: bb0225 article-title: Decreased axon caliber underlies loss of fiber tract integrity, disproportional reductions in white matter volume, and microcephaly in angelman syndrome model mice publication-title: J. Neurosci. – volume: 11 start-page: 695 year: 2003 end-page: 707 ident: bb0400 article-title: Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling publication-title: Mol. Cell – volume: 60 start-page: 928 year: 1997 end-page: 934 ident: bb0100 article-title: Autism or atypical autism in maternally but not paternally derived proximal 15q duplication publication-title: Am. J. Hum. Genet. – volume: 105 start-page: 12399 year: 2008 end-page: 12404 ident: bb0590 article-title: A Drosophila model for Angelman syndrome publication-title: Proc. Natl. Acad. Sci. USA – volume: 107 start-page: 6788 year: 2010 end-page: 6793 ident: bb0615 article-title: Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome publication-title: Proc. Natl. Acad. Sci. – volume: 10 year: 2020 ident: bb0030 article-title: Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome publication-title: Transl. Psychiatry – volume: 162 start-page: 795 year: 2015 end-page: 807 ident: bb0600 article-title: An autism-linked mutation disables phosphorylation control of UBE3A publication-title: Cell – volume: 107 start-page: 17668 year: 2010 end-page: 17673 ident: bb0085 article-title: Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes publication-title: Proc. Natl. Acad. Sci. USA – volume: 10 year: 2019 ident: bb0485 article-title: Delayed loss of UBE3A reduces the expression of Angelman syndrome-associated phenotypes publication-title: Mol. Autism. – year: 2023 ident: bb0465 article-title: Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells publication-title: Mol. Psychiatry – volume: 34 start-page: 4558 year: 2014 end-page: 4566 ident: bb0385 article-title: Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to Homer proteins in the Hippocampus of Ube3A hemizygous mice modeling Angelman syndrome publication-title: J. Neurosci. – volume: 522 start-page: 1874 year: 2014 end-page: 1896 ident: bb0215 article-title: Allelic specificity of Ube3a expression in the mouse brain during postnatal development publication-title: J. Comp. Neurol. – volume: 11 year: 2013 ident: bb0080 article-title: Impairment of TrkB-PSD-95 signaling in Angelman syndrome publication-title: PLoS Biol. – volume: 292 start-page: 12503 year: 2017 end-page: 12515 ident: bb0605 article-title: The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome publication-title: J. Biol. Chem. – volume: 8 start-page: 15038 year: 2017 ident: bb0150 article-title: Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells publication-title: Nat. Commun. – volume: 20 start-page: 544 year: 2006 end-page: 559 ident: bb0260 article-title: Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland publication-title: Mol. Endocrinol. – year: 2021 ident: bb0330 article-title: Motor deficits coupled to cerebellar and striatal alterations in Ube3am−/p+ mice modelling Angelman syndrome are attenuated by adenosine A2A receptor blockade publication-title: Mol. Neurobiol. – volume: 31 start-page: 1088 year: 2023 end-page: 1105 ident: bib629 article-title: Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model publication-title: Molecular Therapy – year: 2023 ident: bb0555 article-title: Developmental mechanisms underlying the evolution of human cortical circuits publication-title: Nat. Rev. Neurosci. – volume: 30 start-page: 333 year: 2015 end-page: 338 ident: bb0045 article-title: Hippocampal abnormalities in magnetic resonance imaging (MRI) of 15q duplication syndromes publication-title: J. Child Neurol. – volume: 21 start-page: 3001 year: 2012 end-page: 3012 ident: bb0315 article-title: Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a publication-title: Hum. Mol. Genet. – volume: 72 start-page: 182 year: 2012 end-page: 190 ident: bb0240 article-title: Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors publication-title: Biol. Psychiatry – volume: 2022 year: 2022 ident: bb0525 article-title: Lack of UBE3A-mediated regulation of synaptic SK2 channels contributes to learning and memory impairment in the female mouse model of Angelman syndrome publication-title: Neural. Plast. – volume: 6 start-page: 268 year: 2013 end-page: 279 ident: bb0545 article-title: The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature publication-title: Autism Res. – volume: 3 start-page: 63 year: 2015 ident: bb0585 article-title: Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications publication-title: Acta Neuropathol. Commun. – volume: 74 start-page: 793 year: 2012 end-page: 800 ident: bb0565 article-title: Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects publication-title: Neuron – volume: 10 start-page: 280 year: 2007 end-page: 282 ident: bb0550 article-title: Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation publication-title: Nat. Neurosci. – volume: 9 start-page: 17 year: 2017 ident: bb0445 article-title: Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis publication-title: J. Neurodev. Disord. – volume: 16 year: 2022 ident: bb0440 article-title: Circadian rhythms and sleep are dependent upon expression levels of key ubiquitin ligase Ube3a publication-title: Front. Behav. Neurosci. – volume: 9 year: 2013 ident: bb0320 article-title: Truncation of Ube3a-ATS Unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model publication-title: PLoS Genet. – volume: 31 start-page: 17637 year: 2011 end-page: 17648 ident: bb0235 article-title: Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome publication-title: J. Neurosci. – volume: 26 start-page: 233 year: 2004 end-page: 240 ident: bb0060 article-title: Sleep disturbances in Angelman syndrome: a questionnaire study publication-title: Brain and Development – volume: 7 year: 2022 ident: bb0390 article-title: Molecular and behavioral consequences of Ube3a gene overdosage in mice publication-title: JCI Insight – year: 2024 ident: bib632 article-title: Ube3a unsilencer for the potential treatment of Angelman syndrome publication-title: Nat Commun – volume: 7 year: 2020 ident: bb0165 article-title: Ubiquitin and ubiquitin-like proteins in the critical equilibrium between synapse physiology and intellectual disability publication-title: eNeuro – volume: 3 year: 2011 ident: bb0475 article-title: Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice publication-title: Sci. Transl. Med. – volume: 30 start-page: 529 year: 1993 end-page: 531 ident: bb0090 article-title: Duplication of chromosome 15 in the region 15q11-13 in a patient with developmental delay and ataxia with similarities to Angelman syndrome publication-title: J. Med. Genet. – volume: 12 start-page: 449 year: 2015 end-page: 461 ident: bb0510 article-title: UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis publication-title: Cell Rep. – volume: 129 year: 2019 ident: bb0185 article-title: Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice publication-title: J. Clin. Invest. – volume: 90 start-page: 756 year: 2021 end-page: 765 ident: bb0155 article-title: Hyperexcitable Phenotypes in Induced Pluripotent Stem Cell–Derived Neurons From Patients With 15q11-q13 Duplication Syndrome, a Genetic Form of Autism publication-title: Biol. Psychiatry – volume: 110 start-page: 8888 year: 2013 end-page: 8893 ident: bb0280 article-title: Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein arc publication-title: Proc. Natl. Acad. Sci. USA – volume: 143 start-page: 442 year: 2010 end-page: 455 ident: bb0300 article-title: EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation publication-title: Cell – volume: 188 start-page: 135 year: 2019 end-page: 144 ident: bb0290 article-title: Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control publication-title: Neuroimage – volume: 1979 start-page: 1486 year: 2019 end-page: 1492 ident: bb0515 article-title: Potassium channel dysfunction in human neuronal models of Angelman syndrome publication-title: Science – volume: 286 start-page: 19410 year: 2011 end-page: 19416 ident: bb0275 article-title: Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2 publication-title: J. Biol. Chem. – volume: 4 start-page: 405 year: 2013 end-page: 412 ident: bb0245 article-title: Genetic reduction of the α1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in angelman syndrome publication-title: Cell Rep. – volume: 1979 start-page: 1321 year: 1999 end-page: 1326 ident: bb0205 article-title: Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme Cascade publication-title: Science – volume: 90 start-page: 56 year: 2016 end-page: 69 ident: bb0220 article-title: GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility publication-title: Neuron – volume: 47 start-page: 6 year: 2023 end-page: 12 ident: bb0250 article-title: Gaboxadol in angelman syndrome: a double-blind, parallel-group, randomized placebo-controlled phase 3 study publication-title: Eur. J. Paediatr. Neurol. – volume: 12 start-page: 777 year: 2009 end-page: 783 ident: bb0595 article-title: Ube3a is required for experience-dependent maturation of the neocortex publication-title: Nat. Neurosci. – volume: 132 year: 2019 ident: bb0575 article-title: HAP1 is an in vivo UBE3A target that augments autophagy in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. – year: 2022 ident: bb0005 article-title: Paradoxical Hyperexcitability in disorders of neurodevelopment publication-title: Front. Mol. Neurosci. – volume: 9 year: 2018 ident: bb0480 article-title: A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants publication-title: Mol. Autism. – volume: 7 year: 2013 ident: bb0625 article-title: Altered neural connectivity in excitatory and inhibitory cortical circuits in autism publication-title: Front. Hum. Neurosci. – volume: 36 start-page: 880 year: 2018 end-page: 887 ident: bb0055 article-title: Efficient proximity labeling in living cells and organisms with TurboID publication-title: Nat. Biotechnol. – volume: 14 start-page: 285 year: 2011 end-page: 293 ident: bb0375 article-title: Dendritic spine pathology in neuropsychiatric disorders publication-title: Nat. Neurosci. – volume: 22 start-page: 1235 year: 2019 end-page: 1247 ident: bb0015 article-title: Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome publication-title: Nat. Neurosci. – volume: 2 start-page: 100 year: 2012 end-page: 112 ident: bb0115 article-title: Molecular and clinical aspects of Angelman syndrome publication-title: Mol. Syndromol. – volume: 41 start-page: 669 year: 2011 end-page: 677 ident: bb0145 article-title: Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism publication-title: Neurobiol. Dis. – volume: 1979 start-page: 62 year: 2005 end-page: 63 ident: bb0360 article-title: Beyond a joke: from animal laughter to human joy? publication-title: Science – volume: 75 start-page: 495 year: 1993 end-page: 505 ident: bb0420 article-title: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 publication-title: Cell – volume: 487 start-page: 129 year: 2011 end-page: 133 ident: bb0495 article-title: Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome publication-title: Neurosci. Lett. – volume: 59 start-page: 349 year: 2012 end-page: 355 ident: bb0535 article-title: Relationship between aberrant brain connectivity and clinical features in Angelman syndrome: a new method using tract based spatial statistics of DTI color-coded orientation maps publication-title: Neuroimage – volume: 587 start-page: 281 year: 2020 end-page: 284 ident: bib631 article-title: Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA publication-title: Nature – volume: 1–25 year: 2020 ident: bb0470 article-title: Abundance and localization of human UBE3A protein isoforms publication-title: Hum. Mol. Genet. – volume: 40 start-page: 586 year: 2010 end-page: 592 ident: bb0335 article-title: Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome publication-title: Neurobiol. Dis. – volume: 363 year: 2023 ident: bb0195 article-title: UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways publication-title: Exp. Neurol. – volume: 2 year: 2021 ident: bb0350 article-title: Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology publication-title: Cell Rep. Med. – volume: 15 start-page: 1 year: 2023 end-page: 12 ident: bib626 article-title: An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript publication-title: Sci Transl Med – volume: 30 start-page: 430 year: 2021 end-page: 442 ident: bb0050 article-title: Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations publication-title: Hum. Mol. Genet. – volume: 19 start-page: 1182 year: 1999 end-page: 1189 ident: bb0345 article-title: The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily publication-title: Mol. Cell. Biol. – volume: 21 start-page: 1824 year: 2012 end-page: 1834 ident: bb0180 article-title: Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome publication-title: Hum. Mol. Genet. – volume: 4 year: 2012 ident: bb0125 article-title: Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome publication-title: Sci. Transl. Med. – volume: 6 year: 2021 ident: bb0230 article-title: Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice publication-title: JCI Insight – volume: 33 start-page: 3799 year: 2013 end-page: 3814 ident: bb0095 article-title: The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation publication-title: J. Neurosci. – volume: 21 start-page: 799 year: 1998 end-page: 811 ident: bb0210 article-title: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation publication-title: Neuron – volume: 38 start-page: 8011 year: 2018 end-page: 8030 ident: bb0405 article-title: Adult Ube3a gene reinstatement restores the electrophysiological deficits of prefrontal cortex layer 5 neurons in a mouse model of angelman syndrome publication-title: J. Neurosci. – issue: 15. year: 2024 ident: 10.1016/j.nbd.2024.106669_bib632 article-title: Ube3a unsilencer for the potential treatment of Angelman syndrome publication-title: Nat Commun – volume: 107 start-page: 17668 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0085 article-title: Induced pluripotent stem cell models of the genomic imprinting disorders Angelman and Prader-Willi syndromes publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1004487107 – volume: 31 start-page: 17637 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0235 article-title: Alterations in intrinsic membrane properties and the axon initial segment in a mouse model of Angelman syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4162-11.2011 – volume: 1979 start-page: 1486 issue: 366 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0515 article-title: Potassium channel dysfunction in human neuronal models of Angelman syndrome publication-title: Science doi: 10.1126/science.aav5386 – volume: 72 start-page: 182 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0240 article-title: Reversal of impaired hippocampal long-term potentiation and contextual fear memory deficits in Angelman syndrome model mice by ErbB inhibitors publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2012.01.021 – volume: 91 start-page: 8797 year: 1994 ident: 10.1016/j.nbd.2024.106669_bb0425 article-title: Identification of a human ubiquitin-conjugating enzyme that mediates the E6-AP-dependent ubiquitination of p53 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.91.19.8797 – volume: 7 year: 2022 ident: 10.1016/j.nbd.2024.106669_bb0390 article-title: Molecular and behavioral consequences of Ube3a gene overdosage in mice publication-title: JCI Insight doi: 10.1172/jci.insight.158953 – volume: 40 start-page: 586 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0335 article-title: Loss of dopaminergic neurons and resulting behavioural deficits in mouse model of Angelman syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.08.002 – volume: 24 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0560 article-title: The hippocampal response to acute corticosterone elevation is altered in a mouse model for Angelman syndrome publication-title: Int. J. Mol. Sci. – volume: 14 start-page: 285 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0375 article-title: Dendritic spine pathology in neuropsychiatric disorders publication-title: Nat. Neurosci. doi: 10.1038/nn.2741 – volume: 11 start-page: 1 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0020 article-title: Mono-ubiquitination of Rabphilin 3A by UBE3A serves a non-degradative function publication-title: Sci. Rep. doi: 10.1038/s41598-021-82319-9 – volume: 23 start-page: 2634 year: 2003 ident: 10.1016/j.nbd.2024.106669_bb0580 article-title: Derangements of hippocampal calcium/calmodulin-dependent protein kinase II in a mouse model for Angelman mental retardation syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.23-07-02634.2003 – volume: 1–25 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0470 article-title: Abundance and localization of human UBE3A protein isoforms publication-title: Hum. Mol. Genet. – volume: 279 start-page: 41208 year: 2004 ident: 10.1016/j.nbd.2024.106669_bb0105 article-title: Biochemical analysis of Angelman syndrome-associated mutations in the E3 ubiquitin ligase E6-associated protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.M401302200 – volume: 110 start-page: 8888 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0280 article-title: Role of the ubiquitin ligase E6AP/UBE3A in controlling levels of the synaptic protein arc publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1302792110 – volume: 30 start-page: 333 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0045 article-title: Hippocampal abnormalities in magnetic resonance imaging (MRI) of 15q duplication syndromes publication-title: J. Child Neurol. doi: 10.1177/0883073814538669 – volume: 587 start-page: 281 year: 2020 ident: 10.1016/j.nbd.2024.106669_bib631 article-title: Cas9 gene therapy for Angelman syndrome traps Ube3a-ATS long non-coding RNA publication-title: Nature doi: 10.1038/s41586-020-2835-2 – volume: 525 start-page: 233 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0075 article-title: Subcellular organization of UBE3A in neurons publication-title: J. Comp. Neurol. doi: 10.1002/cne.24063 – volume: 59 start-page: 349 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0535 article-title: Relationship between aberrant brain connectivity and clinical features in Angelman syndrome: a new method using tract based spatial statistics of DTI color-coded orientation maps publication-title: Neuroimage doi: 10.1016/j.neuroimage.2011.07.067 – volume: 11 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0080 article-title: Impairment of TrkB-PSD-95 signaling in Angelman syndrome publication-title: PLoS Biol. doi: 10.1371/annotation/f32bc670-c9cf-4bb0-9376-cd8cfd1053c1 – volume: 7 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0165 article-title: Ubiquitin and ubiquitin-like proteins in the critical equilibrium between synapse physiology and intellectual disability publication-title: eNeuro doi: 10.1523/ENEURO.0137-20.2020 – volume: 35 start-page: 16213 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0415 article-title: Mitochondrial superoxide contributes to hippocampal synaptic dysfunction and memory deficits in Angelman syndrome model mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2246-15.2015 – volume: 522 start-page: 1874 year: 2014 ident: 10.1016/j.nbd.2024.106669_bb0215 article-title: Allelic specificity of Ube3a expression in the mouse brain during postnatal development publication-title: J. Comp. Neurol. doi: 10.1002/cne.23507 – volume: 34 start-page: 4558 year: 2014 ident: 10.1016/j.nbd.2024.106669_bb0385 article-title: Changes in mGlu5 receptor-dependent synaptic plasticity and coupling to Homer proteins in the Hippocampus of Ube3A hemizygous mice modeling Angelman syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1846-13.2014 – volume: 1979 start-page: 62 issue: 308 year: 2005 ident: 10.1016/j.nbd.2024.106669_bb0360 article-title: Beyond a joke: from animal laughter to human joy? publication-title: Science doi: 10.1126/science.1112066 – volume: 162 start-page: 795 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0600 article-title: An autism-linked mutation disables phosphorylation control of UBE3A publication-title: Cell doi: 10.1016/j.cell.2015.06.045 – year: 2022 ident: 10.1016/j.nbd.2024.106669_bb0005 article-title: Paradoxical Hyperexcitability in disorders of neurodevelopment publication-title: Front. Mol. Neurosci. doi: 10.3389/fnmol.2022.826679 – volume: 74 start-page: 793 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0565 article-title: Maternal loss of Ube3a produces an excitatory/inhibitory imbalance through neuron type-specific synaptic defects publication-title: Neuron doi: 10.1016/j.neuron.2012.03.036 – volume: 26 start-page: 233 year: 2004 ident: 10.1016/j.nbd.2024.106669_bb0060 article-title: Sleep disturbances in Angelman syndrome: a questionnaire study publication-title: Brain and Development doi: 10.1016/S0387-7604(03)00160-8 – volume: 8 start-page: 15038 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0150 article-title: Disrupted neuronal maturation in Angelman syndrome-derived induced pluripotent stem cells publication-title: Nat. Commun. doi: 10.1038/ncomms15038 – volume: 4 start-page: 577 year: 2008 ident: 10.1016/j.nbd.2024.106669_bb0370 article-title: Behavior and neuropsychiatric manifestations in Angelman syndrome publication-title: Neuropsychiatr. Dis. Treat. – volume: 33 start-page: 3799 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0095 article-title: The Angelman syndrome protein Ube3a/E6AP is required for Golgi acidification and surface protein sialylation publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.1930-11.2013 – year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0135 – volume: 4 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0125 article-title: Decreased tonic inhibition in cerebellar granule cells causes motor dysfunction in a mouse model of Angelman syndrome publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3004655 – volume: 286 start-page: 19410 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0275 article-title: Physical and functional interaction of the HECT ubiquitin-protein ligases E6AP and HERC2 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.205211 – volume: 9 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0480 article-title: A behavioral test battery for mouse models of Angelman syndrome: a powerful tool for testing drugs and novel Ube3a mutants publication-title: Mol. Autism. doi: 10.1186/s13229-018-0231-7 – volume: 21 start-page: 799 year: 1998 ident: 10.1016/j.nbd.2024.106669_bb0210 article-title: Mutation of the Angelman ubiquitin ligase in mice causes increased cytoplasmic p53 and deficits of contextual learning and long-term potentiation publication-title: Neuron doi: 10.1016/S0896-6273(00)80596-6 – year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0465 article-title: Elevated ROS levels during the early development of Angelman syndrome alter the apoptotic capacity of the developing neural precursor cells publication-title: Mol. Psychiatry doi: 10.1038/s41380-023-02038-7 – volume: 30 start-page: 529 year: 1993 ident: 10.1016/j.nbd.2024.106669_bb0090 article-title: Duplication of chromosome 15 in the region 15q11-13 in a patient with developmental delay and ataxia with similarities to Angelman syndrome publication-title: J. Med. Genet. doi: 10.1136/jmg.30.6.529 – year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0010 article-title: Excessive protein accumulation and impaired autophagy in the Hippocampus of Angelman syndrome modeled in mice publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2022.11.016 – volume: 11 start-page: 1291 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0065 article-title: Structure of E3 ligase E6AP with a proteasome-binding site provided by substrate receptor hRpn10 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15073-7 – volume: 3 start-page: 63 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0585 article-title: Significant neuronal soma volume deficit in the limbic system in subjects with 15q11.2-q13 duplications publication-title: Acta Neuropathol. Commun. doi: 10.1186/s40478-015-0241-z – volume: 31 start-page: 1088 year: 2023 ident: 10.1016/j.nbd.2024.106669_bib629 article-title: Transcriptional reprogramming restores UBE3A brain-wide and rescues behavioral phenotypes in an Angelman syndrome mouse model publication-title: Molecular Therapy doi: 10.1016/j.ymthe.2023.01.013 – volume: 148 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0365 article-title: Bioinformatics analyses show dysregulation of calcium-related genes in Angelman syndrome mouse model publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.105180 – volume: 7 start-page: 8451 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0035 article-title: Strain-dependence of the Angelman syndrome phenotypes in Ube3a maternal deficiency mice publication-title: Sci. Rep. doi: 10.1038/s41598-017-08825-x – volume: 75 start-page: 495 year: 1993 ident: 10.1016/j.nbd.2024.106669_bb0420 article-title: The HPV-16 E6 and E6-AP complex functions as a ubiquitin-protein ligase in the ubiquitination of p53 publication-title: Cell doi: 10.1016/0092-8674(93)90384-3 – volume: 10 start-page: 280 year: 2007 ident: 10.1016/j.nbd.2024.106669_bb0550 article-title: Rescue of neurological deficits in a mouse model for Angelman syndrome by reduction of αCaMKII inhibitory phosphorylation publication-title: Nat. Neurosci. doi: 10.1038/nn1845 – volume: 6 start-page: 268 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0545 article-title: The interstitial duplication 15q11.2-q13 syndrome includes autism, mild facial anomalies and a characteristic EEG signature publication-title: Autism Res. doi: 10.1002/aur.1284 – volume: 38 start-page: 181 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0200 article-title: The comorbidity of autism with the genomic disorders of chromosome 15q11.2-q13 publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2008.08.011 – volume: 47 start-page: 6 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0250 article-title: Gaboxadol in angelman syndrome: a double-blind, parallel-group, randomized placebo-controlled phase 3 study publication-title: Eur. J. Paediatr. Neurol. doi: 10.1016/j.ejpn.2023.07.008 – volume: 140 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0340 article-title: JNK signaling activation in the Ube3a maternal deficient mouse model: its specific inhibition prevents post-synaptic protein-enriched fraction alterations and cognitive deficits in Angelman syndrome model publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2020.104812 – volume: 125 start-page: 2069 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0455 article-title: Ube3a reinstatement identifies distinct treatment windows in Angelman syndrome model mice publication-title: J. Clin. Invest. doi: 10.1172/JCI80554 – volume: 30 start-page: 430 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0050 article-title: Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddab050 – year: 2024 ident: 10.1016/j.nbd.2024.106669_bb0305 article-title: Systematic analysis of protein stability associated with species-specific developmental tempo publication-title: bioRxiv – volume: 8 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0410 article-title: UBE3A expression during early postnatal brain development is required for proper dorsomedial striatal maturation publication-title: JCI Insight doi: 10.1172/jci.insight.166073 – volume: 11 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0490 article-title: Assessing the requirements of prenatal UBE3A expression for rescue of behavioral phenotypes in a mouse model for Angelman syndrome publication-title: Mol. Autism. doi: 10.1186/s13229-020-00376-9 – volume: 38 start-page: 8011 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0405 article-title: Adult Ube3a gene reinstatement restores the electrophysiological deficits of prefrontal cortex layer 5 neurons in a mouse model of angelman syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0083-18.2018 – volume: 10 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0485 article-title: Delayed loss of UBE3A reduces the expression of Angelman syndrome-associated phenotypes publication-title: Mol. Autism. doi: 10.1186/s13229-019-0277-1 – volume: 90 start-page: 756 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0155 article-title: Hyperexcitable Phenotypes in Induced Pluripotent Stem Cell–Derived Neurons From Patients With 15q11-q13 Duplication Syndrome, a Genetic Form of Autism publication-title: Biol. Psychiatry doi: 10.1016/j.biopsych.2021.07.018 – volume: 7 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0625 article-title: Altered neural connectivity in excitatory and inhibitory cortical circuits in autism publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2013.00609 – volume: 13 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0500 article-title: Contextual fear memory impairment in Angelman syndrome model mice is associated with altered transcriptional responses publication-title: Sci. Rep. doi: 10.1038/s41598-023-45769-x – volume: 2 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0350 article-title: Secreted retrovirus-like GAG-domain-containing protein PEG10 is regulated by UBE3A and is involved in Angelman syndrome pathophysiology publication-title: Cell Rep. Med. – volume: 1979 start-page: 1321 issue: 286 year: 1999 ident: 10.1016/j.nbd.2024.106669_bb0205 article-title: Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme Cascade publication-title: Science doi: 10.1126/science.286.5443.1321 – volume: 2 start-page: 100 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0115 article-title: Molecular and clinical aspects of Angelman syndrome publication-title: Mol. Syndromol. doi: 10.1159/000328837 – volume: 26 start-page: 3625 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0255 article-title: Angelman syndrome genotypes manifest varying degrees of clinical severity and developmental impairment publication-title: Mol. Psychiatry doi: 10.1038/s41380-020-0858-6 – volume: 363 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0195 article-title: UBE3A deficiency-induced autophagy is associated with activation of AMPK-ULK1 and p53 pathways publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2023.114358 – volume: 12 start-page: 777 year: 2009 ident: 10.1016/j.nbd.2024.106669_bb0595 article-title: Ube3a is required for experience-dependent maturation of the neocortex publication-title: Nat. Neurosci. doi: 10.1038/nn.2327 – year: 2016 ident: 10.1016/j.nbd.2024.106669_bb0160 – volume: 22 start-page: 1235 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0015 article-title: Loss of nuclear UBE3A causes electrophysiological and behavioral deficits in mice and is associated with Angelman syndrome publication-title: Nat. Neurosci. doi: 10.1038/s41593-019-0425-0 – volume: 61 start-page: 1 year: 2016 ident: 10.1016/j.nbd.2024.106669_bb0170 article-title: Mortality in isodicentric chromosome 15 syndrome: the role of SUDEP publication-title: Epilepsy Behav. doi: 10.1016/j.yebeh.2016.04.001 – volume: 518 start-page: 409 year: 2015 ident: 10.1016/j.nbd.2024.106669_bib628 article-title: Towards a therapy for Angelman syndrome by targeting a long non-coding RNA publication-title: Nature doi: 10.1038/nature13975 – volume: 37 start-page: 7347 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0225 article-title: Decreased axon caliber underlies loss of fiber tract integrity, disproportional reductions in white matter volume, and microcephaly in angelman syndrome model mice publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.0037-17.2017 – volume: 9 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0320 article-title: Truncation of Ube3a-ATS Unsilences paternal Ube3a and ameliorates behavioral defects in the Angelman syndrome mouse model publication-title: PLoS Genet. doi: 10.1371/journal.pgen.1004039 – volume: 27 start-page: 2590 year: 2022 ident: 10.1016/j.nbd.2024.106669_bb0355 article-title: A cross-species spatiotemporal proteomic analysis identifies UBE3A-dependent signaling pathways and targets publication-title: Mol. Psychiatry doi: 10.1038/s41380-022-01484-z – volume: 12 start-page: 449 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0510 article-title: UBE3A regulates synaptic plasticity and learning and memory by controlling SK2 channel endocytosis publication-title: Cell Rep. doi: 10.1016/j.celrep.2015.06.023 – volume: 8 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0040 article-title: Early developmental eeg and seizure phenotypes in a full gene deletion of ubiquitin protein ligase e3a rat model of angelman syndrome publication-title: eNeuro doi: 10.1523/ENEURO.0345-20.2020 – volume: 132 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0575 article-title: HAP1 is an in vivo UBE3A target that augments autophagy in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2019.104585 – volume: 129 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0185 article-title: Ube3a reinstatement mitigates epileptogenesis in Angelman syndrome model mice publication-title: J. Clin. Invest. – volume: 10 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0520 article-title: PKA and Ube3a regulate SK2 channel trafficking to promote synaptic plasticity in hippocampus: implications for Angelman syndrome publication-title: Sci. Rep. – volume: 10 start-page: 41 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0540 article-title: The role of ubiquitin ligase E3A in polarized contact guidance and rescue strategies in UBE3A-deficient hippocampal neurons publication-title: Mol. Autism. doi: 10.1186/s13229-019-0293-1 – volume: 131 year: 2021 ident: 10.1016/j.nbd.2024.106669_bib634 article-title: CRISPR/Cas9 directed to the Ube3a antisense transcript improves Angelman syndrome phenotype in mice publication-title: J. Clin. Investig. doi: 10.1172/JCI142574 – volume: 143 start-page: 442 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0300 article-title: EphB-mediated degradation of the RhoA GEF Ephexin5 relieves a developmental brake on excitatory synapse formation publication-title: Cell doi: 10.1016/j.cell.2010.09.038 – volume: 2022 year: 2022 ident: 10.1016/j.nbd.2024.106669_bb0525 article-title: Lack of UBE3A-mediated regulation of synaptic SK2 channels contributes to learning and memory impairment in the female mouse model of Angelman syndrome publication-title: Neural. Plast. doi: 10.1155/2022/3923384 – volume: 39 start-page: 283 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0190 article-title: Tissue-specific variation of Ube3a protein expression in rodents and in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.04.012 – volume: 46 start-page: 654 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0395 article-title: Chronic α1-Na/K-ATPase inhibition reverses the elongation of the axon initial segment of the hippocampal CA1 pyramidal neurons in Angelman syndrome model mice publication-title: Neuropsychopharmacology doi: 10.1038/s41386-020-00907-1 – volume: 487 start-page: 129 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0495 article-title: Mitochondrial dysfunction in CA1 hippocampal neurons of the UBE3A deficient mouse model for Angelman syndrome publication-title: Neurosci. Lett. doi: 10.1016/j.neulet.2009.06.079 – volume: 19 start-page: 1182 year: 1999 ident: 10.1016/j.nbd.2024.106669_bb0345 article-title: The Angelman syndrome-associated protein, E6-AP, is a coactivator for the nuclear hormone receptor superfamily publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.19.2.1182 – volume: 11 start-page: 695 year: 2003 ident: 10.1016/j.nbd.2024.106669_bb0400 article-title: Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00090-X – volume: 188 start-page: 135 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0290 article-title: Power and temporal dynamics of alpha oscillations at rest differentiate cognitive performance involving sustained and phasic cognitive control publication-title: Neuroimage doi: 10.1016/j.neuroimage.2018.12.001 – volume: 36 start-page: 880 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0055 article-title: Efficient proximity labeling in living cells and organisms with TurboID publication-title: Nat. Biotechnol. doi: 10.1038/nbt.4201 – volume: 4 start-page: 405 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0245 article-title: Genetic reduction of the α1 subunit of Na/K-ATPase corrects multiple hippocampal phenotypes in angelman syndrome publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.07.005 – volume: 9 start-page: 17 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0445 article-title: Delta rhythmicity is a reliable EEG biomarker in Angelman syndrome: a parallel mouse and human analysis publication-title: J. Neurodev. Disord. doi: 10.1186/s11689-017-9195-8 – volume: 25 start-page: 537 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0435 article-title: Ube3a imprinting impairs circadian robustness in Angelman syndrome models publication-title: Curr. Biol. doi: 10.1016/j.cub.2014.12.047 – volume: 481 start-page: 185 year: 2012 ident: 10.1016/j.nbd.2024.106669_bib627 article-title: Topoisomerase inhibitors unsilence the dormant allele of Ube3a in neurons publication-title: Nature doi: 10.1038/nature10726 – volume: 17 start-page: 111 year: 2008 ident: 10.1016/j.nbd.2024.106669_bb0120 article-title: The Angelman syndrome ubiquitin ligase localizes to the synapse and nucleus, and maternal deficiency results in abnormal dendritic spine morphology publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddm288 – volume: 47 start-page: 210 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0025 article-title: Ampakines promote spine actin polymerization, long-term potentiation, and learning in a mouse model of Angelman syndrome publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2012.04.002 – volume: 3 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0475 article-title: Increased gene dosage of Ube3a results in autism traits and decreased glutamate synaptic transmission in mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.3002627 – volume: 15 start-page: 1 year: 2023 ident: 10.1016/j.nbd.2024.106669_bib626 article-title: An ASO therapy for Angelman syndrome that targets an evolutionarily conserved region at the start of the UBE3A-AS transcript publication-title: Sci Transl Med doi: 10.1126/scitranslmed.abf4077 – volume: 176 start-page: 1099 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0530 article-title: A randomized controlled trial of levodopa in patients with Angelman syndrome publication-title: Am. J. Med. Genet. A doi: 10.1002/ajmg.a.38457 – volume: 33 start-page: 327 year: 2013 ident: 10.1016/j.nbd.2024.106669_bb0325 article-title: The Angelman syndrome protein Ube3a is required for polarized dendrite morphogenesis in pyramidal neurons publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2509-12.2013 – volume: 38 start-page: 2671 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0450 article-title: Enhanced operant extinction and prefrontal excitability in a mouse model of Angelman syndrome publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2828-17.2018 – volume: 26 start-page: 3995 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0110 article-title: Neuronal overexpression of Ube3a isoform 2 causes behavioral impairments and neuroanatomical pathology relevant to 15q11.2-q13.3 duplication syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddx289 – volume: 10 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0030 article-title: Translational outcomes in a full gene deletion of ubiquitin protein ligase E3A rat model of Angelman syndrome publication-title: Transl. Psychiatry doi: 10.1038/s41398-020-0720-2 – volume: 11 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0380 article-title: Communication-related assessments in an Angelman syndrome mouse model publication-title: Brain Behav. doi: 10.1002/brb3.1937 – volume: 35 start-page: 4706 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0505 article-title: Imbalanced mechanistic target of rapamycin C1 and C2 activity in the cerebellum of angelman syndrome mice impairs motor function publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4276-14.2015 – volume: 16 year: 2022 ident: 10.1016/j.nbd.2024.106669_bb0440 article-title: Circadian rhythms and sleep are dependent upon expression levels of key ubiquitin ligase Ube3a publication-title: Front. Behav. Neurosci. doi: 10.3389/fnbeh.2022.837523 – volume: 107 start-page: 6788 year: 2010 ident: 10.1016/j.nbd.2024.106669_bb0615 article-title: Regulation of the polycomb protein Ring1B by self-ubiquitination or by E6-AP may have implications to the pathogenesis of Angelman syndrome publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1003108107 – volume: 7 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0140 article-title: Altered serotonin, dopamine and Norepinepherine levels in 15q duplication and Angelman syndrome mouse models publication-title: PLoS One doi: 10.1371/journal.pone.0043030 – volume: 543 start-page: 507 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0270 article-title: Autism gene Ube3a and seizures impair sociability by repressing VTA Cbln1 publication-title: Nature doi: 10.1038/nature21678 – year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0555 article-title: Developmental mechanisms underlying the evolution of human cortical circuits publication-title: Nat. Rev. Neurosci. doi: 10.1038/s41583-023-00675-z – year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0295 article-title: Angelman syndrome: a journey through the brain publication-title: FEBS J. doi: 10.1111/febs.15258 – volume: 105 start-page: 12399 year: 2008 ident: 10.1016/j.nbd.2024.106669_bb0590 article-title: A Drosophila model for Angelman syndrome publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0805291105 – volume: 21 start-page: 3001 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0315 article-title: Ube3a-ATS is an atypical RNA polymerase II transcript that represses the paternal expression of Ube3a publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/dds130 – volume: 41 start-page: 669 year: 2011 ident: 10.1016/j.nbd.2024.106669_bb0145 article-title: Drosophila Ube3a regulates monoamine synthesis by increasing GTP cyclohydrolase I activity via a non-ubiquitin ligase mechanism publication-title: Neurobiol. Dis. doi: 10.1016/j.nbd.2010.12.001 – volume: 21 start-page: 1824 year: 2012 ident: 10.1016/j.nbd.2024.106669_bb0180 article-title: Defective glucocorticoid hormone receptor signaling leads to increased stress and anxiety in a mouse model of Angelman syndrome publication-title: Hum. Mol. Genet. doi: 10.1093/hmg/ddr614 – volume: 35 start-page: 13587 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0130 article-title: Maternal Ube3a loss disrupts sleep homeostasis but leaves circadian rhythmicity largely intact publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.2194-15.2015 – volume: 274 start-page: 18785 year: 1999 ident: 10.1016/j.nbd.2024.106669_bb0285 article-title: Identification of HHR23A as a substrate for E6-associated protein- mediated ubiquitination publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.26.18785 – volume: 42 year: 2023 ident: 10.1016/j.nbd.2024.106669_bb0310 article-title: Immune synaptopathies: how maternal immune activation impacts synaptic function during development publication-title: EMBO J. doi: 10.15252/embj.2023113796 – volume: 90 start-page: 56 year: 2016 ident: 10.1016/j.nbd.2024.106669_bb0220 article-title: GABAergic neuron-specific loss of Ube3a causes Angelman syndrome-like EEG abnormalities and enhances seizure susceptibility publication-title: Neuron doi: 10.1016/j.neuron.2016.02.040 – volume: 20 start-page: 544 year: 2006 ident: 10.1016/j.nbd.2024.106669_bb0260 article-title: Multifunction steroid receptor coactivator, E6-associated protein, is involved in development of the prostate gland publication-title: Mol. Endocrinol. doi: 10.1210/me.2005-0110 – volume: 11 year: 2018 ident: 10.1016/j.nbd.2024.106669_bb0570 article-title: Enhanced transmission at the Calyx of held synapse in a mouse model for Angelman syndrome publication-title: Front. Cell. Neurosci. doi: 10.3389/fncel.2017.00418 – volume: 36 start-page: 4888 year: 2016 ident: 10.1016/j.nbd.2024.106669_bb0265 article-title: Maternal loss of Ube3a impairs experience-driven dendritic spine maintenance in the developing visual cortex publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.4204-15.2016 – volume: 1–5 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0620 article-title: Conserved UBE3A subcellular distribution between human and mice is facilitated by non-homologous isoforms publication-title: Hum. Mol. Genet. – volume: 6 year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0230 article-title: Dual-isoform hUBE3A gene transfer improves behavioral and seizure outcomes in Angelman syndrome model mice publication-title: JCI Insight doi: 10.1172/jci.insight.144712 – volume: 12 start-page: 584 year: 2016 ident: 10.1016/j.nbd.2024.106669_bb0070 article-title: Angelman syndrome — insights into a rare neurogenetic disorder publication-title: Nat. Rev. Neurol. doi: 10.1038/nrneurol.2016.133 – year: 2021 ident: 10.1016/j.nbd.2024.106669_bb0330 article-title: Motor deficits coupled to cerebellar and striatal alterations in Ube3am−/p+ mice modelling Angelman syndrome are attenuated by adenosine A2A receptor blockade publication-title: Mol. Neurobiol. doi: 10.1007/s12035-020-02275-9 – volume: 60 start-page: 928 year: 1997 ident: 10.1016/j.nbd.2024.106669_bb0100 article-title: Autism or atypical autism in maternally but not paternally derived proximal 15q duplication publication-title: Am. J. Hum. Genet. – volume: 10 year: 2019 ident: 10.1016/j.nbd.2024.106669_bb0175 article-title: Mechanisms underlying the EEG biomarker in Dup15q syndrome publication-title: Mol. Autism. – volume: 41 start-page: 889 year: 2020 ident: 10.1016/j.nbd.2024.106669_bb0610 article-title: Disrupted functional and structural connectivity in Angelman syndrome publication-title: Am. J. Neuroradiol. doi: 10.3174/ajnr.A6531 – volume: 9 start-page: 1 year: 2015 ident: 10.1016/j.nbd.2024.106669_bb0430 article-title: From UBE3A to Angelman syndrome: a substrate perspective publication-title: Front. Neurosci. doi: 10.3389/fnins.2015.00322 – volume: 292 start-page: 12503 year: 2017 ident: 10.1016/j.nbd.2024.106669_bb0605 article-title: The autism-linked UBE3A T485A mutant E3 ubiquitin ligase activates the Wnt/β-catenin pathway by inhibiting the proteasome publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.788448 |
SSID | ssj0011597 |
Score | 2.4577706 |
SecondaryResourceType | review_article |
Snippet | The UBE3A gene, located in the chromosomal region 15q11-13, is subject to neuron-specific genomic imprinting and it plays a critical role in brain development.... |
SourceID | doaj proquest pubmed crossref elsevier |
SourceType | Open Website Aggregation Database Index Database Publisher |
StartPage | 106669 |
SubjectTerms | Angelman Syndrome - genetics Animals Brain - metabolism Chromosomes, Human, Pair 15 - genetics Developmental trajectories of disease Humans Neurodevelopmental disorders Neurodevelopmental Disorders - genetics Neuronal circuits Neurons - metabolism Protein ubiquitination Synapses Ubiquitin-Protein Ligases - genetics Ubiquitin-Protein Ligases - metabolism |
SummonAdditionalLinks | – databaseName: ScienceDirect Journal Collection dbid: AIKHN link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VVEJcELQ8wkuLhDggWbG9fh7TqlUAtReI1Ntq9oVSgRM16aH_vjPrtVEOgMTJD3nXjr_xzLeZ2W8BPkhvLIuwJIhpnRQ5chEAFglWZF6m8cY4zuheXFaLZfHlqrw6gNNhLgyXVUbf3_v04K3jmVl8m7PNajX7RuSb2XrGVZA57T6Aw5yifTOBw_nnr4vLMZlAETvMmqbrE24wJDdDmVenWS80L-iYmHy7F56Civ9elPoTCw3R6PwJPI40Usz7J30KB647guN5R0PoX3fiowiFneEf8yN4eBHz58fgw3zbLeHixDbUUidRm-qnsP3a9Fux9mJ5cibngmzLiVUnNC8jITZjlwI7K4IQpv1dcsQ9RCXP7TNYnp99P10kcaWFxBRVsSOgWpli6w15PtTaei-JFlhMs8a2WamdzXOsKl8b1OixKjOfNr7BrPZEzhsjn8OkW3fuJQhXal0bQrqmwRc6QyMml0rfNgSTtlhO4dPwgtWmF9RQQ6XZtSI0FKOhejSmcMIQjBeyFnY4sb75oaIxKBrw5XXrNG00kbtKE8RkZrY1aCU96RTyAUA1TDclB0kdrf5252JstGeP_2r2frAQRd8pJ1-wc-vbrZKs1SeJMNRTeNGbzvizmKPKqmlf_d9NX8MjPuKImpVvYLK7uXVviSrt9Lv4KdwDUhcQyA priority: 102 providerName: Elsevier |
Title | Multiscale spatio-temporal dynamics of UBE3A gene in brain physiology and neurodevelopmental disorders |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0969996124002699 https://dx.doi.org/10.1016/j.nbd.2024.106669 https://www.ncbi.nlm.nih.gov/pubmed/39293689 https://www.proquest.com/docview/3106733037 https://doaj.org/article/164279eb642b4416b9613c8d9cad351f |
Volume | 201 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwEB7xkCouiDdbYGUk1ANS2iTOy8cFgRYQnLoSN2v8kkCQRWQ59NLf3rGTLHCgXDhFiWLHnhl7PmfGnwGOuNPGk7BEiHEZZSn6JADMIizIvHTltLY-ont9U4wn2eVtfvvmqC-fE9bSA7eC-0VwPi2FVXRR5LoLJcgB6coIjYbnifOzbyzifjHVxQ_ISZd9DDNkc9XK04KmGd0TYBfvvFAg63_njD4Cm8HpnK_BaocW2aht5Tos2HoDNkc1rZQf_7AfLORvhh_jG_DtuguTb4IL22obEr9lTUiZjjoKqgdm2iPoGzZ1bHJyxkeMTMiyu5opf1oEe5pXybA2LPBdmtfMIl9DR9jZbMHk_Oz36TjqDlSIdFZkM9KH4DEKp2mCQ6WMc5y8v8E4IXkmubImTbEoXKlRocOCxBtXrsKkdITBK823Yame1nYXmM2VKjUptKQ1FlpNCyMbcycqQgjKYD6A417A8qnlzZB9Qtm9JG1Irw3ZamMAJ14F8xc95XV4QIYgO0OQnxnCANJegbLfVUrzIFV0978vZ_NCHeRoocRnxQ57C5E0HH2MBWs7fWkk95R8nHBBOYCd1nTm3fJQlBeV-P4V3d2DFd8g70aTfB-WZs8v9oDw0UwNYfHn32QIy6OLq_HNMAyMf2XID5I |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtRAEC2FIAEXBAnLsDYS4oBkxnZ7PU6iRANkciEj5daq3qJB4BnFkwMXvp2q9oLmAEicvLXbyytXv3ZXvwJ4K72xLMISIcZllKXIQQCYRViQeZnKG-N4RHdxXsyX2afL_HIPjoe5MBxW2fv-zqcHb93vmfZvc7pZraZfiHwzW084CjKl1VtwO-M0B2TUH36OcR7EeEKGFS4dcfFhaDMEeTWa1ULTjLaJx9c7jVPQ8N9po_7EQUNbdPoA7vckUsy6-3wIe645gMNZQx3o7z_EOxHCOsP_8gO4s-hHzw_Bh9m2LaHiRBsiqaNemeqbsF1m-lasvVgenciZIMtyYtUIzUkkxGasUmBjRZDBtL8DjriGXsezfQTL05OL43nU51mITFZkW4KpljHW3pDfQ62t95JIgcU4qWyd5NrZNMWi8KVBjR6LPPFx5StMSk_UvDLyMew368Y9BeFyrUtDOJfU9UJnqL_kYunrikDSFvMJvB9esNp0chpqiDP7qggNxWioDo0JHDEEY0FWwg471tdXqjcFRd29tKydpoUmaldogpiMzNYGraQ7nUA6AKiGyabkHqmi1d-unI0n7Vjjv057M1iIoq-Uh16wceubVklW6pNEF8oJPOlMZ3wsZqiyqOpn_3fR13B3frE4U2cfzz8_h3t8hNvWJH8B-9vrG_eSSNNWvwofxS_t3RKI |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiscale+spatio-temporal+dynamics+of+UBE3A+gene+in+brain+physiology+and+neurodevelopmental+disorders&rft.jtitle=Neurobiology+of+disease&rft.au=Biagioni%2C+Martina&rft.au=Baronchelli%2C+Federica&rft.au=Fossati%2C+Matteo&rft.date=2024-10-15&rft.eissn=1095-953X&rft.volume=201&rft.spage=106669&rft_id=info:doi/10.1016%2Fj.nbd.2024.106669&rft_id=info%3Apmid%2F39293689&rft.externalDocID=39293689 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0969-9961&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0969-9961&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0969-9961&client=summon |