Virtual design on the heat pump refrigeration cycle: challenges and approaches

Virtual product design (VPD) of the refrigeration cycle has long been a major subject of many engineers and manufacturers. Issues should be the question of how simulation gets close to the real world in virtual ways. It is especially true when we consider variable refrigerant flow (VRF) heat pumps,...

Full description

Saved in:
Bibliographic Details
Published inInternational Journal of Air-Conditioning and Refrigeration Vol. 32; no. 1; pp. 8 - 17
Main Authors Hwang, Yoon Jei, Park, Noma
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 19.04.2024
Springer Nature B.V
Springer
대한설비공학회
Subjects
Online AccessGet full text
ISSN2010-1333
2010-1325
2010-1333
DOI10.1007/s44189-024-00052-0

Cover

More Information
Summary:Virtual product design (VPD) of the refrigeration cycle has long been a major subject of many engineers and manufacturers. Issues should be the question of how simulation gets close to the real world in virtual ways. It is especially true when we consider variable refrigerant flow (VRF) heat pumps, having various types of indoor unit combinations, long and complicated piping configurations, and simultaneous cooling and heating functions under extreme weather conditions. In this regard, model-based systems engineering (MBSE) or model-based design (MBD) guides a methodology to make a virtual model easily. Now, there are plenty of engineering platforms and tools to make a strong simulation model, which provides interfacing technology among multiple physics, different dimensions, and codes in different languages. In the study, the authors share their experience in the virtual design for a VRF heat pump system including the architecture, multiple physics, and the connection with the control SW. Modelica, an acausal and object-oriented modeling language, constructs the backbone of the model to describe the dynamic behavior of refrigerants and to combine external components in the form of functional mock-up units (FMUs). The developed virtual model is validated against measured data, showing it can reproduce all the essential physics of interest both in qualitative and quantitative ways.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
https://link.springer.com/article/10.1007/s44189-024-00052-0
ISSN:2010-1333
2010-1325
2010-1333
DOI:10.1007/s44189-024-00052-0