Plasma-based water purification: Challenges and prospects for the future

Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment...

Full description

Saved in:
Bibliographic Details
Published inPhysics of plasmas Vol. 24; no. 5
Main Author Foster, John E.
Format Journal Article
LanguageEnglish
Published United States American Institute of Physics (AIP) 01.05.2017
Subjects
Online AccessGet full text
ISSN1070-664X
1089-7674
DOI10.1063/1.4977921

Cover

Abstract Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification.
AbstractList Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse.
Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification.
Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification.
Author Foster, John E.
Author_xml – sequence: 1
  givenname: John E.
  surname: Foster
  fullname: Foster, John E.
  organization: Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA
BackLink https://www.osti.gov/servlets/purl/1465690$$D View this record in Osti.gov
BookMark eNp9kMFLwzAYxYNMcJse_A-CN4VuX9o0abzJUCcM9KDgLaRp4iJdW5JM8b-3c1NBxdP3HX7v8d4boUHTNgahYwITAiybkgkVnIuU7KEhgUIknHE62PwcEsbo4wEahfAMAJTlxRDN72oVViopVTAVflXReNytvbNOq-ja5hzPlqquTfNkAlZNhTvfhs7oGLBtPY5Lg-06rr05RPtW1cEc7e4YPVxd3s_myeL2-mZ2sUg0ZTQmPM-rEvIKskJrELQUjGvBU8JKWnECmhWEk4xnllujlc1TQUqRcQNgQOsiG6OTrW8bopNBu2j0UrdN02eSpC_FBPTQdAvpPm3wxsqe--gTvXK1JCA3a0kid2v1itMfis67lfJvf7JnWzZ8un7BL63_BmVX2f_g387voiWHKg
CODEN PHPAEN
CitedBy_id crossref_primary_10_1140_epjd_e2017_80329_9
crossref_primary_10_1016_j_jece_2024_113541
crossref_primary_10_1134_S1063780X21060131
crossref_primary_10_1002_cphc_202300143
crossref_primary_10_1039_D4NR02498B
crossref_primary_10_1088_1361_6463_abca2a
crossref_primary_10_1134_S1063780X24601238
crossref_primary_10_1134_S0018143920030108
crossref_primary_10_1088_1361_6595_ac3ba3
crossref_primary_10_1007_s11090_019_09970_z
crossref_primary_10_1088_1402_4896_acc704
crossref_primary_10_1016_j_ijthermalsci_2022_107908
crossref_primary_10_1134_S0018143921060096
crossref_primary_10_3390_pr12091846
crossref_primary_10_1002_pen_26594
crossref_primary_10_1016_j_jwpe_2024_105915
crossref_primary_10_1088_1361_6463_ab324a
crossref_primary_10_1021_acs_est_4c10363
crossref_primary_10_1134_S1063780X22010081
crossref_primary_10_3390_plasma5020021
crossref_primary_10_1109_TPS_2018_2805882
crossref_primary_10_4028_www_scientific_net_KEM_786_409
crossref_primary_10_1007_s11090_019_10036_3
crossref_primary_10_1063_5_0044261
crossref_primary_10_1088_2058_6272_ab9170
crossref_primary_10_1063_5_0157985
crossref_primary_10_1088_2058_6272_ad2b38
crossref_primary_10_1134_S1027451024702082
crossref_primary_10_1016_j_jece_2025_115459
crossref_primary_10_1109_TPS_2024_3516487
crossref_primary_10_1116_6_0002064
crossref_primary_10_1016_j_cej_2022_140304
crossref_primary_10_3390_ijerph21081107
crossref_primary_10_3389_fenvc_2024_1416702
crossref_primary_10_1007_s00253_021_11715_y
crossref_primary_10_3390_antibiotics11060747
crossref_primary_10_1088_1361_6595_ad5ebb
crossref_primary_10_1088_1361_6463_ac09ba
crossref_primary_10_1002_ppap_202000003
crossref_primary_10_1109_TPS_2022_3161425
crossref_primary_10_7567_JJAP_57_026201
crossref_primary_10_1063_5_0173873
crossref_primary_10_1002_ppap_202400105
crossref_primary_10_1016_j_ceja_2022_100435
crossref_primary_10_1088_1361_6595_ab51bf
crossref_primary_10_1039_D4CP04272G
crossref_primary_10_1016_j_cclet_2019_03_051
crossref_primary_10_1007_s00396_023_05161_7
crossref_primary_10_3390_su13084327
crossref_primary_10_1007_s11356_021_12395_x
crossref_primary_10_1002_ppap_201900001
crossref_primary_10_1088_1361_6463_ad2b22
crossref_primary_10_1002_ppap_201700238
crossref_primary_10_1016_j_elstat_2017_07_001
crossref_primary_10_1021_acsestengg_4c00166
crossref_primary_10_1088_1361_6595_ab25d8
crossref_primary_10_1063_5_0190348
crossref_primary_10_1007_s11090_019_10014_9
crossref_primary_10_1063_1_5092296
crossref_primary_10_1088_1755_1315_385_1_012056
crossref_primary_10_1088_1361_6463_ad7bc4
crossref_primary_10_1088_1361_6595_aab6d4
crossref_primary_10_1088_1361_6463_aac816
crossref_primary_10_1016_j_chemosphere_2017_05_134
crossref_primary_10_1088_1361_6463_ac74f8
crossref_primary_10_1002_ppsc_201700365
crossref_primary_10_1016_j_ijleo_2018_03_018
crossref_primary_10_1038_s41598_018_30540_4
crossref_primary_10_1088_1361_6463_acfb1b
crossref_primary_10_1088_2058_6272_abf47f
crossref_primary_10_1088_1361_6463_aa7570
crossref_primary_10_1116_6_0001992
crossref_primary_10_1002_ppap_202100051
crossref_primary_10_1063_1_5063761
crossref_primary_10_1134_S0018143924700723
crossref_primary_10_1016_j_ceja_2022_100421
crossref_primary_10_1088_1361_6595_aaa5da
crossref_primary_10_1063_1_5018331
crossref_primary_10_1088_1361_6463_acc958
crossref_primary_10_1016_j_scitotenv_2024_171369
crossref_primary_10_1007_s11090_020_10076_0
crossref_primary_10_1016_j_chemosphere_2018_07_012
crossref_primary_10_1063_5_0042945
crossref_primary_10_1016_j_ultsonch_2023_106535
crossref_primary_10_3390_app13020772
crossref_primary_10_1063_5_0035186
crossref_primary_10_1111_jfpe_14312
crossref_primary_10_3390_pr11082292
crossref_primary_10_1002_ppap_202000028
crossref_primary_10_1016_j_foodres_2022_111246
crossref_primary_10_1063_1_5008779
crossref_primary_10_1016_j_surfin_2023_103162
crossref_primary_10_1007_s11356_018_1392_9
crossref_primary_10_1016_j_hydromet_2020_105483
crossref_primary_10_1088_1361_6595_abf71d
crossref_primary_10_1088_1361_6463_ab16a6
crossref_primary_10_1016_j_eti_2021_102032
crossref_primary_10_1016_j_ijhydene_2022_02_015
crossref_primary_10_1088_1361_6463_ac5eef
crossref_primary_10_3390_pr10102063
crossref_primary_10_1088_2058_6272_ac66bb
crossref_primary_10_3390_pr8060667
crossref_primary_10_1002_ceat_202000171
crossref_primary_10_1017_jfm_2020_751
crossref_primary_10_1039_D2JA00063F
crossref_primary_10_1088_2058_6272_aafbc6
crossref_primary_10_1002_ctpp_202300080
crossref_primary_10_1063_1_5134787
crossref_primary_10_1063_5_0208701
crossref_primary_10_1016_j_jece_2020_104504
crossref_primary_10_3390_plasma2030020
crossref_primary_10_1088_1361_6595_ab8e49
crossref_primary_10_1016_j_jwpe_2024_105942
crossref_primary_10_1088_1361_6463_abb048
crossref_primary_10_1063_5_0164607
crossref_primary_10_1109_TPS_2024_3371647
crossref_primary_10_14233_ajchem_2021_23010
crossref_primary_10_1007_s12649_019_00928_y
crossref_primary_10_1002_ppap_201800124
crossref_primary_10_1021_envhealth_4c00100
crossref_primary_10_14233_ajchem_2021_23255
crossref_primary_10_35848_1882_0786_abf80e
crossref_primary_10_7567_JJAP_57_0102BE
crossref_primary_10_1016_j_psep_2024_05_009
crossref_primary_10_1016_j_chemosphere_2023_140820
crossref_primary_10_1140_epjd_e2018_90138_3
crossref_primary_10_1039_C8CP05983G
crossref_primary_10_1063_5_0044905
crossref_primary_10_3390_electronics8101137
crossref_primary_10_1007_s11090_023_10322_1
crossref_primary_10_1109_TPS_2019_2929513
crossref_primary_10_1021_acs_est_8b00586
crossref_primary_10_1038_s41378_022_00373_3
crossref_primary_10_1063_5_0021948
crossref_primary_10_1109_TPS_2022_3198826
crossref_primary_10_1016_j_jcou_2021_101557
crossref_primary_10_1002_ppap_202000030
crossref_primary_10_1088_1361_6463_abecb1
crossref_primary_10_1088_1755_1315_109_1_012004
crossref_primary_10_1063_5_0141059
crossref_primary_10_1088_1361_6595_aaa578
crossref_primary_10_1088_1361_6595_acb812
crossref_primary_10_1088_1361_6463_ad9c8f
crossref_primary_10_1088_1361_6595_ab8f76
crossref_primary_10_3390_pr11030873
crossref_primary_10_1016_j_jece_2019_103476
crossref_primary_10_1088_1361_6463_aad428
crossref_primary_10_1016_j_jece_2021_107090
crossref_primary_10_1088_1361_6463_ab81cf
crossref_primary_10_1021_acsomega_2c07810
crossref_primary_10_1109_TPS_2019_2939683
crossref_primary_10_1016_j_ultsonch_2024_107110
crossref_primary_10_1088_1361_6463_ad1221
crossref_primary_10_1063_5_0123892
crossref_primary_10_1088_1361_6463_aab8b9
crossref_primary_10_1088_1361_6595_aabd17
crossref_primary_10_1088_1361_6595_ad6fce
crossref_primary_10_1016_j_scitotenv_2022_161194
crossref_primary_10_1063_1_5020511
crossref_primary_10_1016_j_rinp_2022_105215
crossref_primary_10_1088_1361_6463_ab4c9d
crossref_primary_10_1109_TPS_2022_3209312
crossref_primary_10_1002_ppap_201900192
crossref_primary_10_1007_s11356_024_34475_4
crossref_primary_10_1016_j_foodcont_2024_110530
crossref_primary_10_1134_S1063780X1809009X
crossref_primary_10_1088_1361_6595_abc830
crossref_primary_10_1063_1_5091815
crossref_primary_10_1063_5_0042355
crossref_primary_10_1007_s11090_018_9918_y
crossref_primary_10_1007_s10904_019_01371_1
crossref_primary_10_1080_01932691_2022_2059506
crossref_primary_10_1016_j_jhazmat_2017_09_025
crossref_primary_10_2174_0115734129247763231224172204
crossref_primary_10_1016_j_ifset_2019_102256
crossref_primary_10_1109_TPS_2019_2933767
crossref_primary_10_3390_plasma7010002
crossref_primary_10_1007_s11090_025_10540_9
crossref_primary_10_1016_j_watres_2021_117321
crossref_primary_10_1007_s11090_018_9905_3
crossref_primary_10_1049_hve2_12189
crossref_primary_10_1088_2058_6272_ab9ddd
crossref_primary_10_1016_j_jece_2023_109855
crossref_primary_10_1088_1361_6595_aba7ef
crossref_primary_10_1088_1757_899X_543_1_012093
crossref_primary_10_1063_1_5030099
crossref_primary_10_1063_5_0059100
crossref_primary_10_1088_1361_6595_abc815
crossref_primary_10_1016_j_chemosphere_2023_139972
crossref_primary_10_1002_ppap_202400077
crossref_primary_10_1002_chem_202302090
crossref_primary_10_1088_1361_6463_aad175
crossref_primary_10_1016_j_sab_2021_106307
crossref_primary_10_1109_TPS_2019_2908781
crossref_primary_10_1134_S0018143919030032
crossref_primary_10_1109_TPS_2024_3508668
crossref_primary_10_1063_1_5019961
crossref_primary_10_1088_1361_6595_ab006b
crossref_primary_10_1088_2516_1067_ab69d7
crossref_primary_10_1039_D0LC00001A
crossref_primary_10_1016_j_seppur_2019_03_043
crossref_primary_10_3390_ijms23105423
crossref_primary_10_1016_j_seppur_2024_127431
crossref_primary_10_1007_s11090_023_10418_8
crossref_primary_10_1016_j_cattod_2019_11_021
crossref_primary_10_3390_plasma5040030
crossref_primary_10_7498_aps_73_20231881
crossref_primary_10_1016_j_cap_2022_06_017
crossref_primary_10_1088_2058_6272_ac6e34
crossref_primary_10_1039_D0EW00388C
crossref_primary_10_1088_1402_4896_ace856
crossref_primary_10_1007_s11686_023_00691_0
crossref_primary_10_1016_j_fuel_2021_121469
crossref_primary_10_1088_2058_6272_ab66e9
crossref_primary_10_1134_S1063780X24600877
crossref_primary_10_2139_ssrn_4118494
crossref_primary_10_1002_ppap_202100215
crossref_primary_10_1016_j_jes_2020_09_003
crossref_primary_10_1557_adv_2018_42
crossref_primary_10_1088_2058_6272_aaffa2
crossref_primary_10_1088_1361_6595_ace95d
crossref_primary_10_1002_cnma_201900676
crossref_primary_10_51368_1996_0948_2021_3_5_10
crossref_primary_10_1140_epjd_e2019_100099_2
crossref_primary_10_1088_1361_6463_aadfad
crossref_primary_10_4236_jwarp_2021_138034
crossref_primary_10_1016_j_ceja_2023_100443
crossref_primary_10_1007_s00344_020_10275_1
crossref_primary_10_1016_j_pnsc_2024_11_008
crossref_primary_10_1109_ACCESS_2019_2947632
crossref_primary_10_1016_j_chemosphere_2020_126864
crossref_primary_10_1149_1945_7111_ac41f5
crossref_primary_10_1007_s11090_019_09975_8
crossref_primary_10_1016_j_watres_2022_118047
crossref_primary_10_1134_S0018143920030029
crossref_primary_10_1088_1361_6595_adac0b
crossref_primary_10_3389_fmicb_2022_1100102
crossref_primary_10_1063_5_0039264
crossref_primary_10_1063_5_0022534
crossref_primary_10_3390_ma11060891
crossref_primary_10_1088_2058_6272_ad6706
crossref_primary_10_3390_plasma7030036
crossref_primary_10_1088_1361_6595_ab7089
crossref_primary_10_1515_hf_2020_0182
crossref_primary_10_1088_1361_6463_abc502
crossref_primary_10_1088_1361_6463_aa7ef1
crossref_primary_10_1088_1361_6463_ab522a
crossref_primary_10_1002_ppap_202200159
crossref_primary_10_1016_j_ijleo_2018_09_056
crossref_primary_10_1063_5_0033846
crossref_primary_10_3390_app132312631
crossref_primary_10_1016_j_chemosphere_2024_142689
crossref_primary_10_1038_s41598_024_68337_3
crossref_primary_10_1016_j_chemosphere_2022_133606
crossref_primary_10_1088_2058_6272_ac0008
crossref_primary_10_1016_j_cej_2017_12_107
crossref_primary_10_1063_5_0068129
crossref_primary_10_5004_dwt_2021_27084
crossref_primary_10_1088_1402_4896_ad6bd2
crossref_primary_10_1016_j_seppur_2025_131758
crossref_primary_10_1088_1361_6463_ac570a
crossref_primary_10_1088_1361_6463_aabea2
crossref_primary_10_1088_1361_6463_ab208e
crossref_primary_10_1021_acs_langmuir_4c00639
crossref_primary_10_1088_1361_6595_ad8216
crossref_primary_10_1002_ppap_201900159
crossref_primary_10_1016_j_jece_2018_01_029
crossref_primary_10_1109_TPS_2020_3041839
crossref_primary_10_1007_s41614_022_00077_1
crossref_primary_10_3390_app11083372
crossref_primary_10_1016_j_cej_2021_133916
crossref_primary_10_1088_1361_6463_ac0840
crossref_primary_10_1016_j_jwpe_2023_104294
crossref_primary_10_3389_fphy_2021_748113
crossref_primary_10_1140_epjd_s10053_024_00843_5
crossref_primary_10_1021_acs_inorgchem_4c03260
crossref_primary_10_1088_1361_6595_ab7987
crossref_primary_10_1088_1361_6463_aba21a
crossref_primary_10_1016_j_jenvman_2021_113885
crossref_primary_10_3390_w15010077
crossref_primary_10_1088_2058_6272_ac742b
crossref_primary_10_1140_epjd_s10053_021_00283_5
crossref_primary_10_1016_j_jenvman_2024_122574
crossref_primary_10_1063_1_5116063
crossref_primary_10_1088_1361_6463_ac9538
crossref_primary_10_1109_TPS_2019_2942576
crossref_primary_10_3390_antibiotics12091371
crossref_primary_10_3103_S1068375522050039
crossref_primary_10_3390_polym13111678
crossref_primary_10_21467_ajgr_10_1_23_32
crossref_primary_10_1016_j_elstat_2019_03_001
crossref_primary_10_1063_5_0078076
crossref_primary_10_1002_ppap_201800198
crossref_primary_10_1088_1361_6463_ad8004
crossref_primary_10_1134_S1063780X22040043
crossref_primary_10_1088_1361_6463_aac7cd
crossref_primary_10_1063_5_0005197
crossref_primary_10_1088_1361_6463_ac113b
crossref_primary_10_1063_5_0083766
crossref_primary_10_1063_5_0040163
crossref_primary_10_3390_su16020605
crossref_primary_10_1002_ppap_202400139
crossref_primary_10_1016_j_seppur_2024_127741
crossref_primary_10_1002_ppap_202400257
crossref_primary_10_1088_1361_6463_ad172a
crossref_primary_10_1016_j_jece_2021_105758
crossref_primary_10_1021_acs_est_3c07162
Cites_doi 10.1088/0022-3727/47/5/055202
10.1088/0022-3727/46/46/464001
10.1088/0963-0252/20/3/034004
10.1016/j.jhazmat.2010.06.021
10.1109/TPS.2006.881891
10.1016/j.watres.2014.08.053
10.1080/01919518708552148
10.1039/cs9912000001
10.1070/PU1995v038n06ABEH000089
10.1080/09593330802318894
10.1007/s11090-012-9425-5
10.1023/A:1022470901385
10.1063/1.1792391
10.1016/j.desal.2005.04.068
10.1088/0022-3727/41/21/215201
10.1016/j.cej.2013.09.090
10.1063/1.2437675
10.1088/0963-0252/12/2/301
10.1002/ppap.200700154
10.1016/j.watres.2009.09.029
10.1080/02508060008686817
10.1016/j.crte.2004.09.018
10.1007/s11090-009-9207-x
10.1109/TPS.2002.804220
10.1080/19443994.2015.1024752
10.1016/j.elstat.2005.11.004
10.1109/TDEI.2012.6311503
10.1016/j.watres.2015.05.037
10.1109/TPS.2011.2158324
10.1038/nchem.580
10.1016/S0920-5861(99)00102-9
10.1016/j.scitotenv.2013.05.034
10.1061/(ASCE)0733-9372(2004)130:1(17)
10.1109/PLASMA.2013.6633242
10.1021/es950850s
10.1088/1367-2630/13/5/053025
10.1088/0022-3727/45/41/415203
10.1088/0022-3727/48/42/424004
10.1051/epjap/2009110
10.1088/0963-0252/24/5/055005
10.1088/0963-0252/9/3/315
10.1109/TPS.2016.2567322
10.1021/es025896h
10.1002/ppap.200900044
10.1088/0022-3727/42/5/053001
10.1088/0022-3727/38/22/010
10.1515/jaots-2005-0117
10.1109/TPS.2014.2328793
10.1109/94.689419
10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
10.7567/JJAP.54.086201
10.1007/s11090-009-9202-2
10.1016/j.sab.2005.10.003
10.1088/0022-3727/39/14/017
10.1088/0963-0252/23/1/015020
10.1088/0022-3727/18/4/009
10.3176/chem.2001.2.01
10.1063/1.2172926
10.1088/0963-0252/19/4/045025
10.1109/TPS.2011.2180028
10.1007/s11269-006-9111-6
10.1016/S1383-5866(03)00166-7
10.1016/j.watres.2012.09.041
10.1088/0963-0252/20/3/034003
10.1088/0022-3727/48/35/355203
10.1088/0963-0252/16/2/003
10.1088/0963-0252/23/5/054010
10.1109/TPS.2011.2109402
10.1021/ie050981u
10.1016/j.ultsonch.2009.09.005
10.1007/s11090-008-9155-x
10.1143/APEX.2.036001
10.1109/TIA.1987.4504897
10.1088/0022-3727/48/42/424008
10.1021/ie048807d
10.1088/0022-3727/41/23/234007
10.1088/1367-2630/11/11/115011
10.1088/0022-3727/28/1/025
10.1088/0963-0252/19/2/025001
10.1016/j.seppur.2012.07.025
10.1088/0022-3727/33/20/315
10.1088/0963-0252/10/1/311
10.1109/TPS.2013.2245426
10.1126/science.289.5477.284
10.1088/0963-0252/17/2/025006
10.1088/0022-3727/48/42/424007
10.1109/94.879360
10.1021/ja00880a025
10.1039/b107616g
10.1063/1.1789274
10.1002/(SICI)1097-4660(199808)72:4%3C289::AID-JCTB905%3E3.0.CO;2-#
10.1021/jp3128516
10.1088/0022-3727/46/10/105201
10.1016/j.dyepig.2004.03.005
10.1109/TPS.2014.2325977
10.1021/es104287n
10.1109/94.775622
10.1016/j.watres.2014.10.027
10.1021/ie0203328
10.1063/1.1921338
10.1088/0963-0252/18/3/035010
10.1088/0022-3727/44/8/082001
10.1002/ppap.200900070
10.1038/srep23737
10.1016/j.jece.2016.03.013
10.1088/0963-0252/25/5/053002
10.1088/0022-3727/43/12/124005
10.1038/ncomms8248
10.1007/s00128-013-1048-x
10.1088/0022-3727/45/25/253001
10.1063/1.3143781
10.1007/s11090-014-9545-1
10.1088/0022-3727/45/26/263001
10.1088/0022-3727/49/9/093001
10.1016/j.techfore.2006.05.021
10.1002/app.13714
10.1038/nchem.604
10.1109/27.842901
ContentType Journal Article
Copyright Author(s)
Copyright_xml – notice: Author(s)
CorporateAuthor Univ. of Michigan, Ann Arbor, MI (United States)
CorporateAuthor_xml – name: Univ. of Michigan, Ann Arbor, MI (United States)
DBID AAYXX
CITATION
OIOZB
OTOTI
DOI 10.1063/1.4977921
DatabaseName CrossRef
OSTI.GOV - Hybrid
OSTI.GOV
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1089-7674
ExternalDocumentID 1465690
10_1063_1_4977921
pop
GrantInformation_xml – fundername: U.S. Department of Energy (DOE)
  grantid: DE-SC0001939
  funderid: http://dx.doi.org/10.13039/100000015
– fundername: National Science Foundation (NSF)
  grantid: 1336375; 1519117
  funderid: http://dx.doi.org/10.13039/100000001
GroupedDBID -~X
0ZJ
123
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABEFF
ABJNI
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACXMS
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
EBS
EJD
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
N9A
NEUPN
NPSNA
O-B
P2P
RDFOP
RIP
RNS
ROL
RQS
T9H
TN5
WH7
XFK
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
ABPTK
AGIHO
AQWKA
OIOZB
OTOTI
UE8
ID FETCH-LOGICAL-c464t-755db05d038cc094b967c97216b4d710c68171373f7fecaf5291b937e00e0cc83
ISSN 1070-664X
IngestDate Thu May 18 22:32:20 EDT 2023
Thu Apr 24 23:10:12 EDT 2025
Tue Jul 01 00:34:51 EDT 2025
Fri Jun 21 00:14:40 EDT 2024
Sun Jul 14 11:29:19 EDT 2019
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License 1070-664X/2017/24(5)/055501/16/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c464t-755db05d038cc094b967c97216b4d710c68171373f7fecaf5291b937e00e0cc83
Notes SC0001939
USDOE Office of Science (SC)
OpenAccessLink https://www.osti.gov/servlets/purl/1465690
PageCount 16
ParticipantIDs osti_scitechconnect_1465690
crossref_primary_10_1063_1_4977921
crossref_citationtrail_10_1063_1_4977921
scitation_primary_10_1063_1_4977921
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-05-01
PublicationDateYYYYMMDD 2017-05-01
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Physics of plasmas
PublicationYear 2017
Publisher American Institute of Physics (AIP)
Publisher_xml – name: American Institute of Physics (AIP)
References Korus, Burbach (c3) 2009
Pimentel, Berger, Filiberto, Newton, Wolfe, Karbabinakis, Clark, Poon, Abbett, Nanagopal (c5) 2004
Foster, Adamovsky, Gucker, Blankson (c114) 2013
Foster, Weatherford, Gillman, Yee (c89) 2010
Fridman, Friedman, Gutsol, Shekhter, Vasilets, Fridman (c58) 2008
Akiyama (c116) 2002
Fujioka, Khan, Poussade, Drewes, Nghiem (c34) 2012
Sommers, Foster (c97) 2012
Vandeivere, Bianchi, Verstraete (c105) 1998
Magureanu, Piroi, Gherendi, Mandache, Parvulescu (c111) 2008
Bruggeman, Verreycken, Gonzalez, Walsh, Kong, Leys, Schram (c160) 2010
Gucker, Foster, Garcia (c52) 2015
Jiang, Zheng, Qiu, Wu, Zhang, Yan, Xue (c124) 2014
Margot, Kienle, Weil, Rossi, Alencastro, Abegglen, Thonney, Chèvre, Schärer, Barry (c33) 2013
Kawasaki, Masaki, Hamada, Wakabayashi, Abe, Kihara (c151) 2015
Graves (c158) 2012
Sano, Kawashima, Fujikawa, Fujimoto, Kitai, Kanki, Toyoda (c117) 2002
Daughton (c14) 2005
Hung, Chang, Chi, Chang (c120) 2010
Vorosmarty, Green, Salisbury, Lammers (c2) 2000
Lisitsyn, Nomlyama, Katsuki (c86) 1999
Malik (c134) 2010
Munter (c39) 2001
Drake, Doblin, Dobbs (c21) 2007
Jin, Xia, Zhang, Wang (c113) 2011
Willberg, Lang, Hochemer, Kratel, Hoffmann (c122) 1996
Kolb, Joshi, Xiao, Schoenbach (c74) 2008
Liu, Liu, Chen, Yang, Li, Rong, Chen, Kong (c139) 2015
Shirai, Ibuka, Ishii (c154) 2009
Ibrahim, El-Naggar (c24) 2012
Miller (c29) 2006
Franclemont, Fan, Thagard (c127) 2015
Bolton, Bircher, Tumas, Tolman (c135) 1996
Grabowski, Veldhuizen, Pemem, Rutgers (c83) 2007
Foster, Sommer, Gucker, Blankson, Adamovsky (c44) 2012
Laux, Spence, Kruger, Zare (c163) 2003
Kunhardt (c53) 2000
Held, Becchi, Setzer, Vecchi, Dixon (c10) 2007
Wetz, Mankowski, Dickens, Kristiansen (c98) 2006
Rosenblum, Sitterley, Thurman, Ferrer, Linden (c28) 2016
Andreozzi, Caprio, Insola, Marotta (c40) 1999
Montijn, Ebert (c64) 2006
Cabane, Vuilleumier (c100) 2005
Kwak, Panton (c102) 1985
Dobrynin, Guaitella, Rousseau, Starikovskaia (c104) 2013
Garg, Amita, Kumar, Gupta (c108) 2004
Ono (c164) 2016
Dang, Denat, Lesaint, Telssedre (c82) 2009
Huber, Canonica, Park, Gunten (c38) 2003
Siefermann, Liu, Lugovoy, Link, Faubel, Buck, Winter, Abel (c69) 2010
Locke, Sato, Sunka, Hoffmann, Chang (c43) 2006
Hart, Anbar (c71) 1962
Iglesias, Garrote, Flores, Moneo (c12) 2007
Birkin, Watson, Leighton (c147) 2001
Bruggeman, Leys (c45) 2009
Joshi, Qian, Zhao, Kolb, Schoenbach, Schamiloglu, Gaudet (c92) 2004
Shneider (c103) 2012
Hu, Bai, Yu, Zhang, Chen (c123) 2013
Bruggeman, Brandenburg (c159) 2013
Zhang, Huang, Ke, Yang, Wang, Yu (c132) 2012
van Rens, Schoof, Ummelen, van Vught, Bruggeman, van Veldhuizen (c150) 2014
Shih, Locke (c80) 2009
Mesyats (c84) 1995
Xiong, Yang, Bruggeman (c161) 2015
Staack, Farouck, Gutsol, Fridman (c60) 2009
Shih, Locke (c48) 2010
Bruggeman, Schram (c46) 2010
Hoeben, Veldhuizen, Rutgers, Cramers, Koesen (c118) 2000
Klimiuk, Kabardo, Gusiatin, Filipkowska (c106) 2005
Johnson, Bzdek, Fahrenbruck, Chandler, Bisha, Goodridge, Hybertson (c142) 2016
Laroussi (c55) 2002
Qian (c94) 2005
Samukawa, Hori, Rauf, Tachibana, Bruggeman, Kroesen, Whitehead, Murphy, Gutsol, Starikovskaia, Kortshagen, Boeuf, Sommerer, Kushner, Czarnetzki, Mason (c50) 2012
Lukes, Locke (c115) 2005
Lindsay, Anderson, Slikboer, Shannon, Graves (c49) 2015
Mingos, Bahhurst (c77) 1991
Morfill, Kong, Zimmermann (c57) 2009
An, Baumung, Bluhm (c76) 2007
Neumark (c70) 2010
Sahni, Finney, Locke (c121) 2016
Lewis (c101) 1998
Manolache, Shamamian, Denes (c143) 2004
Shirai, Uchida, Tochikubo, Ishii (c155) 2011
Mahamuni, Adewuyi (c41) 2010
Rumbach, Bartels, Sankaran, Go (c72) 2015
Joshi, Qian, Schoenbach, Schamailoglu (c93) 2004
Liu, Sun, Bai, Tian, Zhou, Wei, Zhou, Zhang, Zhu, Becker, Fang (c131) 2010
Kirkpatrick, Locke (c81) 2005
Kogelshatz (c63) 2003
Shimizu, Iwafuchi, Morfill, Sato (c149) 2011
Petrie, Barden, Hordern (c15) 2015
Jones, Kundhardt (c73) 1995
Clements, Sato, Davis (c109) 1987
Gerrity, Stanford, Trenholm, Snyder (c141) 2010
Garcia, Gucker, Foster (c162) 2015
Schaper, Stalder, Graham (c87) 2011
Sommers, Foster (c99) 2014
Magureanu, Mandache, Parvulescu (c128) 2015
Sommers, Foster, Kushner (c148) 2011
Wong, Szeto, Cheung, McKay (c107) 2004
Tian, Tachibana, Kushner (c51) 2014
Bunkin, Bunkin (c91) 1992
Shirai, Uchida, Tochikubo (c153) 2014
Gaffney, Cristina, Almeida, Rodrigues, Ferreira, Benoliel, Cardoso (c17) 2015
Malik, Ghaffar, Malik (c42) 2001
Peters, Meybeck (c7) 2000
Glaze, Kang, Chapin (c37) 1987
Bruggeman, Kushner, Locke, Gardeniers, Graham, Graves, Hofman-Caris, Maric, Reid, Ceriani, Fernandez Rivas, Foster, Garrick, Gorbanev, Hamaguchi, Iza, Kolb, Krcma, Lukes, Macha-la, Marinov, Mariotti, Thagard, Minakata, Neyts, Pawlat, Petrovic, Pfieger, Reuter, Schram, Schroter, Shiraiwa, Tarabová, Tresp, Tsai, Verlet, von Woedtke, Vyhnankova, Wilson, Yasui, Zvereva (c67) 2016
Abdelmelek, Geaves, Ishida, Cooper, Song (c35) 2011
Wang, Li, Quan (c110) 2006
Fischer, Tubiello, Velthuizen, Wilberg (c11) 2007
Foster, Lai (c138) 2016
Nakamura (c78) 2003
Bruggeman, Liu, Degroote, Kong, Vierendeels, Leys (c156) 2008
Schaper, Stalder, Graham (c88) 2011
Aoki, Kitano, Hamaguchi (c112) 2008
Machheret, Shneider, Murray (c61) 2006
Banaschik, Koch, Juergen, Weltmann (c126) 2014
Tendero, Tixier, Trisant, Desmaison, Leprince (c54) 2006
Joshi, Thagard (c75) 2013
Yusupov, Boaerts, Huygh, Snoeckx, Duin, Neyts (c129) 2013
Chen, Liu, Liu, Yang, Chen, Shama, Kong (c47) 2014
Chung, Ku, Gregory (c32) 2008
Babaeva, Kushner (c95) 2009
Gibalov, Pietsch (c62) 2000
Sano, Kawashima, Fujikawa, Fujimoto, Kawashima, Yammamoto, Kanki, Toyoda (c119) 2004
2023080501410869200_c8
(2023080501410869200_c112) 2008; 17
2023080501410869200_c6
(2023080501410869200_c109) 1987; IA-23
2023080501410869200_c4
(2023080501410869200_c57) 2009; 11
(2023080501410869200_c95) 2009; 18
2023080501410869200_c1
(2023080501410869200_c93) 2004; 96
(2023080501410869200_c64) 2006; 39
(2023080501410869200_c110) 2006; 64
(2023080501410869200_c11) 2007; 74
(2023080501410869200_c29) 2006; 187
(2023080501410869200_c105) 1998; 72
(2023080501410869200_c147) 2001
(2023080501410869200_c163) 2003; 12
(2023080501410869200_c10) 2007; 1
(2023080501410869200_c37) 1987; 9
(2023080501410869200_c41) 2010; 17
(2023080501410869200_c14) 2005; 23
2023080501410869200_c66
(2023080501410869200_c18) 2006
(2023080501410869200_c38) 2003; 37
(2023080501410869200_c78) 2003; 54
2023080501410869200_c152
(2023080501410869200_c104) 2013; 46
(2023080501410869200_c113) 2011; 39
(2023080501410869200_c146) 1997
(2023080501410869200_c75) 2013; 33
(2023080501410869200_c97) 2012; 45
(2023080501410869200_c129) 2013; 117
(2023080501410869200_c137) 2011
(2023080501410869200_c157) 2016
(2023080501410869200_c7) 2000; 25
(2023080501410869200_c17) 2015; 72
(2023080501410869200_c127) 2015; 48
(2023080501410869200_c123) 2013; 91
(2023080501410869200_c2) 2000; 289
(2023080501410869200_c65) 2000
(2023080501410869200_c90) 2003
(2023080501410869200_c85) 2008
(2023080501410869200_c61) 2006; 13
(2023080501410869200_c117) 2002; 41
(2023080501410869200_c43) 2006; 45
(2023080501410869200_c52) 2015; 24
2023080501410869200_c56
(2023080501410869200_c121) 2016; 8
(2023080501410869200_c141) 2010; 44
(2023080501410869200_c12) 2007; 21
(2023080501410869200_c45) 2009; 42
(2023080501410869200_c51) 2014; 47
(2023080501410869200_c139) 2015; 6
(2023080501410869200_c151) 2015; 54
(2023080501410869200_c39) 2001; 50
2023080501410869200_c136
(2023080501410869200_c108) 2004; 63
(2023080501410869200_c40) 1999; 53
(2023080501410869200_c99) 2014; 23
(2023080501410869200_c114) 2013; 41
(2023080501410869200_c149) 2011; 13
(2023080501410869200_c155) 2011; 39
(2023080501410869200_c76) 2007; 101
(2023080501410869200_c77) 1991; 20
(2023080501410869200_c148) 2011; 44
(2023080501410869200_c36) 2005
(2023080501410869200_c48) 2010; 30
(2023080501410869200_c107) 2004; 92
(2023080501410869200_c153) 2014; 23
(2023080501410869200_c131) 2010; 7
(2023080501410869200_c82) 2009; 47
(2023080501410869200_c79) 1998
2023080501410869200_c144
(2023080501410869200_c34) 2012; 98
(2023080501410869200_c92) 2004; 96
(2023080501410869200_c120) 2010; 182
(2023080501410869200_c116) 2002; 7
(2023080501410869200_c42) 2001; 10
(2023080501410869200_c69) 2010; 2
(2023080501410869200_c63) 2003; 23
(2023080501410869200_c32) 2008; 29
(2023080501410869200_c21) 2007; 55
(2023080501410869200_c70) 2010; 2
2023080501410869200_c140
(2023080501410869200_c24) 2012; 12
(2023080501410869200_c50) 2012; 45
(2023080501410869200_c15) 2015; 72
(2023080501410869200_c102) 1985; 18
(2023080501410869200_c58) 2008; 5
(2023080501410869200_c156) 2008; 41
(2023080501410869200_c87) 2011; 20
(2023080501410869200_c98) 2006; 34
(2023080501410869200_c115) 2005; 38
(2023080501410869200_c164) 2016; 49
(2023080501410869200_c119) 2004; 37
(2023080501410869200_c68) 1999
(2023080501410869200_c101) 1998; 5
(2023080501410869200_c161) 2015; 48
(2023080501410869200_c19) 2013
(2023080501410869200_c81) 2005; 44
2023080501410869200_c25
2023080501410869200_c27
2023080501410869200_c22
(2023080501410869200_c126) 2014; 42
(2023080501410869200_c150) 2014; 42
2023080501410869200_c23
(2023080501410869200_c5) 2004; 54
(2023080501410869200_c106) 2005; 14
(2023080501410869200_c142) 2016; 57
(2023080501410869200_c130) 2008
(2023080501410869200_c28) 2016; 4
(2023080501410869200_c118) 2000; 9
(2023080501410869200_c96) 2014
(2023080501410869200_c60) 2009; 106
(2023080501410869200_c143) 2004; 130
(2023080501410869200_c46) 2010; 19
(2023080501410869200_c94) 2005; 97
(2023080501410869200_c124) 2014; 236
(2023080501410869200_c54) 2006; 61
(2023080501410869200_c135) 1996; 1
(2023080501410869200_c133) 2015
(2023080501410869200_c30) 2012
(2023080501410869200_c16) 2010
(2023080501410869200_c72) 2015; 6
(2023080501410869200_c74) 2008; 41
(2023080501410869200_c62) 2000; 33
(2023080501410869200_c125) 2016
(2023080501410869200_c83) 2007; 16
(2023080501410869200_c13) 2014
(2023080501410869200_c53) 2000; 28
(2023080501410869200_c55) 2002; 30
(2023080501410869200_c73) 1995; 28
(2023080501410869200_c145) 2016
(2023080501410869200_c86) 1999; 6
(2023080501410869200_c160) 2010; 43
(2023080501410869200_c122) 1996; 30
(2023080501410869200_c33) 2013; 461–462
(2023080501410869200_c47) 2014; 34
(2023080501410869200_c154) 2009; 2
(2023080501410869200_c159) 2013; 46
(2023080501410869200_c128) 2015; 81
(2023080501410869200_c162) 2015; 48
(2023080501410869200_c26) 2009
(2023080501410869200_c3) 2009; 19
(2023080501410869200_c67) 2016; 25
(2023080501410869200_c35) 2011; 45
(2023080501410869200_c138) 2016; 44
(2023080501410869200_c84) 1995; 38
(2023080501410869200_c88) 2011; 20
(2023080501410869200_c89) 2010; 19
(2023080501410869200_c103) 2012; 19
(2023080501410869200_c59) 1994
(2023080501410869200_c49) 2015; 48
(2023080501410869200_c20) 2011
(2023080501410869200_c132) 2012; 46
(2023080501410869200_c100) 2005; 337
(2023080501410869200_c158) 2012; 45
(2023080501410869200_c31) 2015
(2023080501410869200_c9) 2008
(2023080501410869200_c80) 2009; 6
(2023080501410869200_c71) 1962; 84
(2023080501410869200_c91) 1992; 74
(2023080501410869200_c111) 2008; 28
(2023080501410869200_c134) 2010; 30
(2023080501410869200_c44) 2012; 40
References_xml – start-page: 025001
  year: 2010
  ident: c89
  publication-title: Plasma Sources Sci. Technol.
– start-page: 231
  year: 2010
  ident: c131
  publication-title: Plasma Process Polym.
– start-page: 015020
  year: 2014
  ident: c99
  publication-title: Plasma Sources Sci. Technol.
– start-page: 2979
  year: 2006
  ident: c64
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 045025
  year: 2010
  ident: c46
  publication-title: Plasma Sources Sci. Technol.
– start-page: 13
  year: 1996
  ident: c135
  publication-title: J. Adv. Oxid. Technol.
– start-page: 493
  year: 2010
  ident: c141
  publication-title: Water Res.
– start-page: 263001
  year: 2012
  ident: c158
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 883
  year: 2010
  ident: c48
  publication-title: Plasma Chem. Plasma Process
– start-page: 424004
  year: 2015
  ident: c127
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 3665
  year: 2011
  ident: c35
  publication-title: Environ Sci. Technol.
– start-page: 909
  year: 2004
  ident: c5
  publication-title: Bioscience
– start-page: 775
  year: 2007
  ident: c12
  publication-title: Water Resour. Manage.
– start-page: 2
  year: 2006
  ident: c54
  publication-title: Spectrochim. Acta Part B
– start-page: 1579
  year: 2012
  ident: c103
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 647
  year: 1985
  ident: c102
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 185
  year: 2000
  ident: c7
  publication-title: Water Int.
– start-page: 882
  year: 2006
  ident: c43
  publication-title: Ind. Eng. Chem. Res.
– start-page: 5129
  year: 2004
  ident: c92
  publication-title: J. Appl. Phys.
– start-page: 247
  year: 2010
  ident: c70
  publication-title: Nat. Chem.
– start-page: 33
  year: 2007
  ident: c21
  publication-title: Mar. Pollut. Bull.
– start-page: 1099
  year: 2011
  ident: c113
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 976
  year: 2012
  ident: c24
  publication-title: Middle East J. Sci. Res.
– start-page: 503
  year: 2013
  ident: c114
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 931
  year: 2008
  ident: c32
  publication-title: Environ. Technol.
– start-page: 82
  year: 2001
  ident: c42
  publication-title: Plasma Sources Sci. Technol.
– start-page: 054010
  year: 2014
  ident: c153
  publication-title: Plasma Sources Sci. Technol.
– start-page: 503
  year: 2012
  ident: c34
  publication-title: Sep. Purif. Technol.
– start-page: 053001
  year: 2009
  ident: c45
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 4243
  year: 2005
  ident: c81
  publication-title: Ind. Eng. Chem. Res.
– start-page: 035010
  year: 2009
  ident: c95
  publication-title: Plasma Sources Sci. Technol.
– start-page: 082001
  year: 2011
  ident: c148
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1127
  year: 2016
  ident: c138
  article-title: 2-D apparatus for the study of the plasma liquid interface
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 093001
  year: 2016
  ident: c164
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1
  year: 2003
  ident: c63
  publication-title: Plasma Chem. Plasma Process.
– start-page: 65
  year: 2006
  ident: c29
  publication-title: Desalination
– start-page: 4074
  year: 2005
  ident: c115
  publication-title: J. Phys. D: Apply. Phys.
– start-page: 729
  year: 2009
  ident: c80
  publication-title: Plasma Process. Polym.
– start-page: 289
  year: 1998
  ident: c105
  publication-title: J. Chem. Technol. Biotechnol.
– start-page: 055202
  year: 2014
  ident: c51
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 034004
  year: 2011
  ident: c87
  publication-title: Plasma Sources Sci. Technol.
– start-page: 187
  year: 2009
  ident: c3
  publication-title: Great Plains Res.
– start-page: 6554
  year: 2012
  ident: c132
  publication-title: Water Res.
– start-page: 2622
  year: 2014
  ident: c150
  article-title: Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 113304
  year: 2005
  ident: c94
  publication-title: J. Appl. Phys.
– start-page: 2736
  year: 2014
  ident: c126
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 59
  year: 2001
  ident: c39
  publication-title: Proc. Estonian Acad. Sci. Chem.
– start-page: 125
  year: 2003
  ident: c163
  publication-title: Plasma Sources Sci. Technol.
– start-page: 403
  year: 2014
  ident: c47
  publication-title: Plasma Chem. Plasma Process
– start-page: 8097
  year: 2016
  ident: c142
  publication-title: Desalin. Water Treat.
– start-page: 351
  year: 1999
  ident: c86
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 036001
  year: 2009
  ident: c154
  publication-title: Appl. Phys. Express
– start-page: 22818
  year: 2009
  ident: c82
  publication-title: Eur. Phys. J. Appl. Phys.
– start-page: 055005
  year: 2015
  ident: c52
  publication-title: Plasma Sources Sci. Technol.
– start-page: 2526
  year: 1996
  ident: c122
  publication-title: Environ. Sci. Technol.
– start-page: 013303
  year: 2009
  ident: c60
  publication-title: J. Appl. Phys.
– start-page: 3
  year: 2015
  ident: c15
  publication-title: Water Res.
– start-page: 306
  year: 1998
  ident: c101
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
– start-page: 351
  year: 2003
  ident: c78
  publication-title: J. Home Econ. Jpn.
– start-page: 271
  year: 1992
  ident: c91
  publication-title: Sov. Phys. JETP
– start-page: 2650
  year: 2001
  ident: c147
  publication-title: Chem. Commun.
– start-page: 480
  year: 2013
  ident: c33
  publication-title: Sci. Total Environ.
– start-page: 1409
  year: 2002
  ident: c55
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 243
  year: 2004
  ident: c108
  publication-title: Dyes Pigm.
– start-page: 464001
  year: 2013
  ident: c159
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 4090
  year: 1962
  ident: c71
  publication-title: J. Am. Chem. Soc.
– start-page: 199
  year: 2015
  ident: c17
  publication-title: Water Res.
– start-page: 415203
  year: 2012
  ident: c97
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 355203
  year: 2015
  ident: c162
  publication-title: J. Phys. D.
– start-page: 1
  year: 2013
  ident: c75
  publication-title: Plasma Chem. Plasma Process
– start-page: 025006
  year: 2008
  ident: c112
  publication-title: Plasma Sources Sci. Technol.
– start-page: 178
  year: 1995
  ident: c73
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 246
  year: 2010
  ident: c120
  publication-title: J. Hazard. Mater.
– start-page: 1083
  year: 2007
  ident: c11
  publication-title: Technol. Forecast. Social Change
– start-page: 2652
  year: 2011
  ident: c155
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 253001
  year: 2012
  ident: c50
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1
  year: 1991
  ident: c77
  publication-title: Chem. Soc. Rev.
– start-page: 124
  year: 2015
  ident: c128
  publication-title: Water Res.
– start-page: 990
  year: 2010
  ident: c41
  publication-title: Ultrasonics Sonochemistry
– start-page: 274
  year: 2010
  ident: c69
  publication-title: Nat. Chem.
– start-page: 1978
  year: 2016
  ident: c28
  publication-title: J. Environ. Chem. Eng.
– start-page: 21
  year: 2010
  ident: c134
  publication-title: Plasma Chem. Plasma Process.
– start-page: 189
  year: 2000
  ident: c53
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 034003
  year: 2011
  ident: c88
  publication-title: Plasma Sources Sci. Technol.
– start-page: 646
  year: 2002
  ident: c116
  publication-title: IEEE Trans. Dielectrics Electr. Insul.
– start-page: 1670
  year: 2006
  ident: c98
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 5906
  year: 2002
  ident: c117
  publication-title: Ind. Eng. Chem. Res.
– start-page: 7248
  year: 2015
  ident: c72
  publication-title: Nat. Commun.
– start-page: 1311
  year: 2012
  ident: c44
  publication-title: IEEE Trans. Plasma Sci.
– start-page: 335
  year: 1987
  ident: c37
  publication-title: Ozone Sci. Eng.
– start-page: 086201
  year: 2015
  ident: c151
  publication-title: Jpn. J. Appl. Phys.
– start-page: 1633
  year: 2004
  ident: c107
  publication-title: J. Appl. Polym. Sci.
– start-page: 169
  year: 2004
  ident: c119
  publication-title: Sep. Purif. Technol.
– start-page: 023502
  year: 2006
  ident: c61
  publication-title: Phys. Plasmas.
– start-page: 5
  year: 2007
  ident: c10
  article-title: Will the wet get wetter and the dry drier
  publication-title: NOAA, GFDL Clim. Model. Res. Highlights
– start-page: 348
  year: 2014
  ident: c124
  publication-title: Chem. Eng. J.
– start-page: 416
  year: 2006
  ident: c110
  publication-title: J. Electrost.
– start-page: 284
  year: 2000
  ident: c2
  publication-title: Science
– start-page: 503
  year: 2008
  ident: c58
  publication-title: Plasma Process. Polym.
– start-page: 159
  year: 2005
  ident: c100
  publication-title: C. R. Geosci.
– start-page: 567
  year: 1995
  ident: c84
  publication-title: Phys.-Usp.
– start-page: 4
  year: 2005
  ident: c14
  publication-title: Renewable Resour.
– start-page: 234007
  year: 2008
  ident: c74
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 1016
  year: 2003
  ident: c38
  publication-title: Environ Sci. Technol.
– start-page: 2618
  year: 2000
  ident: c62
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 677
  year: 2008
  ident: c111
  publication-title: Plasma Chem. Plasma Process.
– start-page: 23737
  year: 2015
  ident: c139
  publication-title: Sci. Rep.
– start-page: 17
  year: 2004
  ident: c143
  publication-title: J. Environ. Eng.
– start-page: 105201
  year: 2013
  ident: c104
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 226
  year: 2007
  ident: c83
  publication-title: Plasma Sources Sci. Technol.
– start-page: 224
  year: 1987
  ident: c109
  publication-title: IEEE Trans. Ind. Appl.
– start-page: 053002
  year: 2016
  ident: c67
  article-title: Plasma liquid interactions: a review and roadmap
  publication-title: Plasma Sources Sci. Technol.
– start-page: 124005
  year: 2010
  ident: c160
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 115011
  year: 2009
  ident: c57
  publication-title: New J. Phys.
– start-page: 361
  year: 2000
  ident: c118
  publication-title: Plasma Sources Sci. Technol.
– start-page: 215201
  year: 2008
  ident: c156
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 5993
  year: 2013
  ident: c129
  publication-title: J. Phys. Chem. C.
– start-page: 771
  year: 2005
  ident: c106
  publication-title: Pol. J. Environ. Stud.
– start-page: 3617
  year: 2004
  ident: c93
  publication-title: J. Appl. Phys.
– start-page: 053025
  year: 2011
  ident: c149
  publication-title: New J. Phys.
– start-page: 105
  year: 2016
  ident: c121
  publication-title: J. Adv. Oxd. Technol.
– start-page: 51
  year: 1999
  ident: c40
  publication-title: Catal. Today
– start-page: 424008
  year: 2015
  ident: c161
  publication-title: J. Phys. D: Appl. Phys.
– start-page: 314
  year: 2013
  ident: c123
  publication-title: Bull Environ. Contam. Toxicol.
– start-page: 053302
  year: 2007
  ident: c76
  publication-title: J. Appl. Phys.
– start-page: 424007
  year: 2015
  ident: c49
  publication-title: J. Phys. D: Appl. Phys.
– volume: 47
  start-page: 055202
  year: 2014
  ident: 2023080501410869200_c51
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/47/5/055202
– volume: 46
  start-page: 464001
  year: 2013
  ident: 2023080501410869200_c159
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/46/464001
– volume: 20
  start-page: 034004
  year: 2011
  ident: 2023080501410869200_c87
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/20/3/034004
– volume: 182
  start-page: 246
  year: 2010
  ident: 2023080501410869200_c120
  publication-title: J. Hazard. Mater.
  doi: 10.1016/j.jhazmat.2010.06.021
– volume: 34
  start-page: 1670
  year: 2006
  ident: 2023080501410869200_c98
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2006.881891
– volume: 72
  start-page: 3
  year: 2015
  ident: 2023080501410869200_c15
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.08.053
– volume: 9
  start-page: 335
  year: 1987
  ident: 2023080501410869200_c37
  publication-title: Ozone Sci. Eng.
  doi: 10.1080/01919518708552148
– volume: 20
  start-page: 1
  year: 1991
  ident: 2023080501410869200_c77
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/cs9912000001
– volume: 38
  start-page: 567
  year: 1995
  ident: 2023080501410869200_c84
  publication-title: Phys.-Usp.
  doi: 10.1070/PU1995v038n06ABEH000089
– volume: 29
  start-page: 931
  year: 2008
  ident: 2023080501410869200_c32
  publication-title: Environ. Technol.
  doi: 10.1080/09593330802318894
– volume-title: Water Treatment: Principles and Design
  year: 2005
  ident: 2023080501410869200_c36
– volume: 33
  start-page: 1
  year: 2013
  ident: 2023080501410869200_c75
  publication-title: Plasma Chem. Plasma Process
  doi: 10.1007/s11090-012-9425-5
– volume: 23
  start-page: 1
  year: 2003
  ident: 2023080501410869200_c63
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1023/A:1022470901385
– volume: 96
  start-page: 5129
  issue: 9
  year: 2004
  ident: 2023080501410869200_c92
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1792391
– volume-title: Electrical Discharges for Environmental Purposes
  year: 2000
  ident: 2023080501410869200_c65
– volume: 187
  start-page: 65
  year: 2006
  ident: 2023080501410869200_c29
  publication-title: Desalination
  doi: 10.1016/j.desal.2005.04.068
– volume: 41
  start-page: 215201
  year: 2008
  ident: 2023080501410869200_c156
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/21/215201
– volume: 236
  start-page: 348
  year: 2014
  ident: 2023080501410869200_c124
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2013.09.090
– year: 2011
  ident: 2023080501410869200_c20
  article-title: Organic compounds assessed in Chattahoochee River water used for public supply near Atlanta, Georgia, 2004-05
– volume: 101
  start-page: 053302
  year: 2007
  ident: 2023080501410869200_c76
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.2437675
– year: 2010
  ident: 2023080501410869200_c16
  article-title: Treating Contaminants of emerging concern: A literature review database
– volume: 12
  start-page: 125
  year: 2003
  ident: 2023080501410869200_c163
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/12/2/301
– volume: 5
  start-page: 503
  year: 2008
  ident: 2023080501410869200_c58
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200700154
– volume: 44
  start-page: 493
  year: 2010
  ident: 2023080501410869200_c141
  publication-title: Water Res.
  doi: 10.1016/j.watres.2009.09.029
– volume: 25
  start-page: 185
  year: 2000
  ident: 2023080501410869200_c7
  publication-title: Water Int.
  doi: 10.1080/02508060008686817
– volume: 337
  start-page: 159
  year: 2005
  ident: 2023080501410869200_c100
  publication-title: C. R. Geosci.
  doi: 10.1016/j.crte.2004.09.018
– volume: 30
  start-page: 883
  year: 2010
  ident: 2023080501410869200_c48
  publication-title: Plasma Chem. Plasma Process
  doi: 10.1007/s11090-009-9207-x
– volume: 30
  start-page: 1409
  year: 2002
  ident: 2023080501410869200_c55
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2002.804220
– year: 2015
  ident: 2023080501410869200_c31
  article-title: State water resources control board regulations related to recycled water
– volume: 57
  start-page: 8097
  year: 2016
  ident: 2023080501410869200_c142
  publication-title: Desalin. Water Treat.
  doi: 10.1080/19443994.2015.1024752
– year: 2014
  ident: 2023080501410869200_c96
– volume: 64
  start-page: 416
  year: 2006
  ident: 2023080501410869200_c110
  publication-title: J. Electrost.
  doi: 10.1016/j.elstat.2005.11.004
– volume: 19
  start-page: 1579
  year: 2012
  ident: 2023080501410869200_c103
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/TDEI.2012.6311503
– volume: 81
  start-page: 124
  year: 2015
  ident: 2023080501410869200_c128
  publication-title: Water Res.
  doi: 10.1016/j.watres.2015.05.037
– volume: 39
  start-page: 2652
  year: 2011
  ident: 2023080501410869200_c155
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2158324
– volume: 2
  start-page: 274
  year: 2010
  ident: 2023080501410869200_c69
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.580
– volume: 14
  start-page: 771
  year: 2005
  ident: 2023080501410869200_c106
  publication-title: Pol. J. Environ. Stud.
– volume: 53
  start-page: 51
  year: 1999
  ident: 2023080501410869200_c40
  publication-title: Catal. Today
  doi: 10.1016/S0920-5861(99)00102-9
– volume: 461–462
  start-page: 480
  year: 2013
  ident: 2023080501410869200_c33
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2013.05.034
– volume: 130
  start-page: 17
  year: 2004
  ident: 2023080501410869200_c143
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2004)130:1(17)
– year: 2016
  ident: 2023080501410869200_c125
  article-title: Treatment of perfluoroalkyl acids by nonthermal plasma processes
– ident: 2023080501410869200_c66
  doi: 10.1109/PLASMA.2013.6633242
– volume: 30
  start-page: 2526
  year: 1996
  ident: 2023080501410869200_c122
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es950850s
– ident: 2023080501410869200_c152
– volume: 13
  start-page: 053025
  year: 2011
  ident: 2023080501410869200_c149
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/13/5/053025
– volume: 45
  start-page: 415203
  year: 2012
  ident: 2023080501410869200_c97
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/41/415203
– volume: 48
  start-page: 424004
  year: 2015
  ident: 2023080501410869200_c127
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/42/424004
– volume: 47
  start-page: 22818
  year: 2009
  ident: 2023080501410869200_c82
  publication-title: Eur. Phys. J. Appl. Phys.
  doi: 10.1051/epjap/2009110
– volume: 24
  start-page: 055005
  year: 2015
  ident: 2023080501410869200_c52
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/24/5/055005
– volume: 9
  start-page: 361
  year: 2000
  ident: 2023080501410869200_c118
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/9/3/315
– volume: 44
  start-page: 1127
  year: 2016
  ident: 2023080501410869200_c138
  article-title: 2-D apparatus for the study of the plasma liquid interface
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2016.2567322
– volume: 37
  start-page: 1016
  year: 2003
  ident: 2023080501410869200_c38
  publication-title: Environ Sci. Technol.
  doi: 10.1021/es025896h
– volume: 55
  start-page: 33
  year: 2007
  ident: 2023080501410869200_c21
  publication-title: Mar. Pollut. Bull.
– ident: 2023080501410869200_c136
– volume: 6
  start-page: 729
  year: 2009
  ident: 2023080501410869200_c80
  publication-title: Plasma Process. Polym.
  doi: 10.1002/ppap.200900044
– volume: 42
  start-page: 053001
  year: 2009
  ident: 2023080501410869200_c45
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/42/5/053001
– volume-title: Advanced Oxidation Processes
  year: 2011
  ident: 2023080501410869200_c137
– volume: 1
  start-page: 5
  year: 2007
  ident: 2023080501410869200_c10
  article-title: Will the wet get wetter and the dry drier
  publication-title: NOAA, GFDL Clim. Model. Res. Highlights
– volume: 38
  start-page: 4074
  year: 2005
  ident: 2023080501410869200_c115
  publication-title: J. Phys. D: Apply. Phys.
  doi: 10.1088/0022-3727/38/22/010
– volume: 8
  start-page: 105
  year: 2016
  ident: 2023080501410869200_c121
  publication-title: J. Adv. Oxd. Technol.
  doi: 10.1515/jaots-2005-0117
– volume: 42
  start-page: 2622
  year: 2014
  ident: 2023080501410869200_c150
  article-title: Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2328793
– ident: 2023080501410869200_c4
– volume: 5
  start-page: 306
  year: 1998
  ident: 2023080501410869200_c101
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/94.689419
– volume: 54
  start-page: 909
  year: 2004
  ident: 2023080501410869200_c5
  publication-title: Bioscience
  doi: 10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2
– volume: 54
  start-page: 086201
  year: 2015
  ident: 2023080501410869200_c151
  publication-title: Jpn. J. Appl. Phys.
  doi: 10.7567/JJAP.54.086201
– volume: 30
  start-page: 21
  year: 2010
  ident: 2023080501410869200_c134
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-009-9202-2
– year: 2008
  ident: 2023080501410869200_c130
  article-title: Pulsed corona discharge in water for coli bacteria inactivation
– volume: 61
  start-page: 2
  year: 2006
  ident: 2023080501410869200_c54
  publication-title: Spectrochim. Acta Part B
  doi: 10.1016/j.sab.2005.10.003
– volume: 39
  start-page: 2979
  year: 2006
  ident: 2023080501410869200_c64
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/39/14/017
– volume: 23
  start-page: 015020
  year: 2014
  ident: 2023080501410869200_c99
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/23/1/015020
– ident: 2023080501410869200_c23
– volume: 12
  start-page: 976
  year: 2012
  ident: 2023080501410869200_c24
  publication-title: Middle East J. Sci. Res.
– volume: 1
  start-page: 13
  year: 1996
  ident: 2023080501410869200_c135
  publication-title: J. Adv. Oxid. Technol.
– volume: 18
  start-page: 647
  year: 1985
  ident: 2023080501410869200_c102
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/18/4/009
– volume: 50
  start-page: 59
  year: 2001
  ident: 2023080501410869200_c39
  publication-title: Proc. Estonian Acad. Sci. Chem.
  doi: 10.3176/chem.2001.2.01
– volume: 13
  start-page: 023502
  year: 2006
  ident: 2023080501410869200_c61
  publication-title: Phys. Plasmas.
  doi: 10.1063/1.2172926
– ident: 2023080501410869200_c144
– volume: 19
  start-page: 045025
  year: 2010
  ident: 2023080501410869200_c46
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/19/4/045025
– volume: 54
  start-page: 351
  year: 2003
  ident: 2023080501410869200_c78
  publication-title: J. Home Econ. Jpn.
– volume: 40
  start-page: 1311
  year: 2012
  ident: 2023080501410869200_c44
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2180028
– ident: 2023080501410869200_c1
– volume: 21
  start-page: 775
  year: 2007
  ident: 2023080501410869200_c12
  publication-title: Water Resour. Manage.
  doi: 10.1007/s11269-006-9111-6
– start-page: 2006
  ident: 2023080501410869200_c56
  article-title: Atmospheric pressure plasma process and applications
– volume: 37
  start-page: 169
  year: 2004
  ident: 2023080501410869200_c119
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/S1383-5866(03)00166-7
– volume: 46
  start-page: 6554
  year: 2012
  ident: 2023080501410869200_c132
  publication-title: Water Res.
  doi: 10.1016/j.watres.2012.09.041
– volume-title: Produced Water Volumes and Management Practices in the U.S.
  year: 2009
  ident: 2023080501410869200_c26
– volume: 20
  start-page: 034003
  year: 2011
  ident: 2023080501410869200_c88
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/20/3/034003
– volume: 48
  start-page: 355203
  year: 2015
  ident: 2023080501410869200_c162
  publication-title: J. Phys. D.
  doi: 10.1088/0022-3727/48/35/355203
– volume: 16
  start-page: 226
  year: 2007
  ident: 2023080501410869200_c83
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/16/2/003
– volume: 23
  start-page: 054010
  year: 2014
  ident: 2023080501410869200_c153
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/23/5/054010
– volume-title: Cathodic Arcs
  year: 2008
  ident: 2023080501410869200_c85
– ident: 2023080501410869200_c6
– volume: 39
  start-page: 1099
  year: 2011
  ident: 2023080501410869200_c113
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2011.2109402
– volume: 45
  start-page: 882
  year: 2006
  ident: 2023080501410869200_c43
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie050981u
– volume: 17
  start-page: 990
  year: 2010
  ident: 2023080501410869200_c41
  publication-title: Ultrasonics Sonochemistry
  doi: 10.1016/j.ultsonch.2009.09.005
– volume: 28
  start-page: 677
  year: 2008
  ident: 2023080501410869200_c111
  publication-title: Plasma Chem. Plasma Process.
  doi: 10.1007/s11090-008-9155-x
– volume: 2
  start-page: 036001
  year: 2009
  ident: 2023080501410869200_c154
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.2.036001
– volume: IA-23
  start-page: 224
  issue: 2
  year: 1987
  ident: 2023080501410869200_c109
  publication-title: IEEE Trans. Ind. Appl.
  doi: 10.1109/TIA.1987.4504897
– volume: 48
  start-page: 424008
  year: 2015
  ident: 2023080501410869200_c161
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/42/424008
– start-page: 1292
  volume-title: Volatile Organic Compounds in the Nation's Ground Water and Drinking Water Wells
  year: 2006
  ident: 2023080501410869200_c18
– volume: 44
  start-page: 4243
  year: 2005
  ident: 2023080501410869200_c81
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie048807d
– volume: 41
  start-page: 234007
  year: 2008
  ident: 2023080501410869200_c74
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/41/23/234007
– ident: 2023080501410869200_c25
– volume: 11
  start-page: 115011
  year: 2009
  ident: 2023080501410869200_c57
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/11/11/115011
– volume: 28
  start-page: 178
  year: 1995
  ident: 2023080501410869200_c73
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/28/1/025
– volume: 19
  start-page: 025001
  year: 2010
  ident: 2023080501410869200_c89
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/19/2/025001
– volume: 98
  start-page: 503
  year: 2012
  ident: 2023080501410869200_c34
  publication-title: Sep. Purif. Technol.
  doi: 10.1016/j.seppur.2012.07.025
– volume: 33
  start-page: 2618
  year: 2000
  ident: 2023080501410869200_c62
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/33/20/315
– volume-title: Arroyo
  year: 2013
  ident: 2023080501410869200_c19
– volume: 19
  start-page: 187
  year: 2009
  ident: 2023080501410869200_c3
  publication-title: Great Plains Res.
– volume: 10
  start-page: 82
  year: 2001
  ident: 2023080501410869200_c42
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/10/1/311
– volume: 41
  start-page: 503
  year: 2013
  ident: 2023080501410869200_c114
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2013.2245426
– volume: 289
  start-page: 284
  year: 2000
  ident: 2023080501410869200_c2
  publication-title: Science
  doi: 10.1126/science.289.5477.284
– volume: 17
  start-page: 025006
  year: 2008
  ident: 2023080501410869200_c112
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/17/2/025006
– volume-title: Grand Challenges for Engineering
  year: 2008
  ident: 2023080501410869200_c9
– volume-title: GAO Highlights
  year: 2014
  ident: 2023080501410869200_c13
  article-title: Freshwater supply concerns continue, and uncertainties complicate planning
– volume-title: Fundamentals of Radiation Chemistry
  year: 1999
  ident: 2023080501410869200_c68
– volume: 48
  start-page: 424007
  year: 2015
  ident: 2023080501410869200_c49
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/48/42/424007
– volume: 7
  start-page: 646
  issue: 5
  year: 2002
  ident: 2023080501410869200_c116
  publication-title: IEEE Trans. Dielectrics Electr. Insul.
  doi: 10.1109/94.879360
– volume: 84
  start-page: 4090
  year: 1962
  ident: 2023080501410869200_c71
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja00880a025
– start-page: 2650
  year: 2001
  ident: 2023080501410869200_c147
  publication-title: Chem. Commun.
  doi: 10.1039/b107616g
– start-page: 9
  year: 2016
  ident: 2023080501410869200_c157
  article-title: An investigation of the role of near-anode plasma conditions on anode spot self organization in atmospheric pressure DC glows
– volume: 96
  start-page: 3617
  issue: 7
  year: 2004
  ident: 2023080501410869200_c93
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1789274
– volume: 72
  start-page: 289
  year: 1998
  ident: 2023080501410869200_c105
  publication-title: J. Chem. Technol. Biotechnol.
  doi: 10.1002/(SICI)1097-4660(199808)72:4%3C289::AID-JCTB905%3E3.0.CO;2-#
– volume: 117
  start-page: 5993
  year: 2013
  ident: 2023080501410869200_c129
  publication-title: J. Phys. Chem. C.
  doi: 10.1021/jp3128516
– ident: 2023080501410869200_c22
– volume: 46
  start-page: 105201
  year: 2013
  ident: 2023080501410869200_c104
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/46/10/105201
– volume: 63
  start-page: 243
  year: 2004
  ident: 2023080501410869200_c108
  publication-title: Dyes Pigm.
  doi: 10.1016/j.dyepig.2004.03.005
– volume: 42
  start-page: 2736
  year: 2014
  ident: 2023080501410869200_c126
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/TPS.2014.2325977
– volume: 45
  start-page: 3665
  year: 2011
  ident: 2023080501410869200_c35
  publication-title: Environ Sci. Technol.
  doi: 10.1021/es104287n
– volume: 6
  start-page: 351
  year: 1999
  ident: 2023080501410869200_c86
  publication-title: IEEE Trans. Dielectr. Electr. Insul.
  doi: 10.1109/94.775622
– volume: 72
  start-page: 199
  year: 2015
  ident: 2023080501410869200_c17
  publication-title: Water Res.
  doi: 10.1016/j.watres.2014.10.027
– volume: 41
  start-page: 5906
  year: 2002
  ident: 2023080501410869200_c117
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie0203328
– volume: 74
  start-page: 271
  year: 1992
  ident: 2023080501410869200_c91
  publication-title: Sov. Phys. JETP
– volume: 97
  start-page: 113304
  year: 2005
  ident: 2023080501410869200_c94
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1921338
– volume-title: Thermal Plasmas: Fundamental and Applications
  year: 1994
  ident: 2023080501410869200_c59
– volume: 18
  start-page: 035010
  year: 2009
  ident: 2023080501410869200_c95
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/18/3/035010
– volume: 44
  start-page: 082001
  year: 2011
  ident: 2023080501410869200_c148
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/44/8/082001
– volume-title: The Acoustic Bubble
  year: 1997
  ident: 2023080501410869200_c146
– volume: 23
  start-page: 4
  year: 2005
  ident: 2023080501410869200_c14
  publication-title: Renewable Resour.
– volume: 7
  start-page: 231
  year: 2010
  ident: 2023080501410869200_c131
  publication-title: Plasma Process Polym.
  doi: 10.1002/ppap.200900070
– ident: 2023080501410869200_c27
– year: 2003
  ident: 2023080501410869200_c90
  article-title: Model analysis of breakdown in high voltage, water based switches
– volume: 6
  start-page: 23737
  year: 2015
  ident: 2023080501410869200_c139
  publication-title: Sci. Rep.
  doi: 10.1038/srep23737
– volume: 4
  start-page: 1978
  year: 2016
  ident: 2023080501410869200_c28
  publication-title: J. Environ. Chem. Eng.
  doi: 10.1016/j.jece.2016.03.013
– volume: 25
  start-page: 053002
  year: 2016
  ident: 2023080501410869200_c67
  article-title: Plasma liquid interactions: a review and roadmap
  publication-title: Plasma Sources Sci. Technol.
  doi: 10.1088/0963-0252/25/5/053002
– volume: 43
  start-page: 124005
  year: 2010
  ident: 2023080501410869200_c160
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/43/12/124005
– volume: 6
  start-page: 7248
  year: 2015
  ident: 2023080501410869200_c72
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8248
– volume: 91
  start-page: 314
  year: 2013
  ident: 2023080501410869200_c123
  publication-title: Bull Environ. Contam. Toxicol.
  doi: 10.1007/s00128-013-1048-x
– ident: 2023080501410869200_c8
– volume: 45
  start-page: 253001
  year: 2012
  ident: 2023080501410869200_c50
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/25/253001
– volume: 106
  start-page: 013303
  year: 2009
  ident: 2023080501410869200_c60
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.3143781
– volume: 34
  start-page: 403
  year: 2014
  ident: 2023080501410869200_c47
  publication-title: Plasma Chem. Plasma Process
  doi: 10.1007/s11090-014-9545-1
– year: 2015
  ident: 2023080501410869200_c133
  article-title: Drinking water health advisory for the cyanobacterial microcystin toxins
– volume: 45
  start-page: 263001
  year: 2012
  ident: 2023080501410869200_c158
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/45/26/263001
– volume: 49
  start-page: 093001
  year: 2016
  ident: 2023080501410869200_c164
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/49/9/093001
– volume: 74
  start-page: 1083
  year: 2007
  ident: 2023080501410869200_c11
  publication-title: Technol. Forecast. Social Change
  doi: 10.1016/j.techfore.2006.05.021
– year: 2012
  ident: 2023080501410869200_c30
  article-title: Guidelines for water reuse
– year: 2016
  ident: 2023080501410869200_c145
  article-title: High throughput plasma water treatment
– volume: 92
  start-page: 1633
  year: 2004
  ident: 2023080501410869200_c107
  publication-title: J. Appl. Polym. Sci.
  doi: 10.1002/app.13714
– ident: 2023080501410869200_c140
– volume: 2
  start-page: 247
  year: 2010
  ident: 2023080501410869200_c70
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.604
– volume: 28
  start-page: 189
  year: 2000
  ident: 2023080501410869200_c53
  publication-title: IEEE Trans. Plasma Sci.
  doi: 10.1109/27.842901
– volume-title: Engineer's Handbook of Industrial Microwave Heating
  year: 1998
  ident: 2023080501410869200_c79
SSID ssj0004658
Score 2.6438844
Snippet Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water...
Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water...
SourceID osti
crossref
scitation
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
SubjectTerms 70 PLASMA PHYSICS AND FUSION TECHNOLOGY
Title Plasma-based water purification: Challenges and prospects for the future
URI http://dx.doi.org/10.1063/1.4977921
https://www.osti.gov/servlets/purl/1465690
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1089-7674
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004658
  issn: 1070-664X
  databaseCode: ADMLS
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD5oiqgP4pXGqgzqgyCTbnbnsuNbqZUgVgRb6Nuyc1kUbHZJtwr-es_Mzl6UINWXJQyHSXK-ycw34fvOAXjJS66YtoLKTBrKtG_krlJNmXP-eJJ5GZA-_ihWp-z9GT8bmzUEd0mrF-bnVl_J_6CKY4ird8n-A7LDpDiArxFffCLC-LwSxp-Q-p6X1J9E9vWP0tc7bC43XvwzaDYO-2YpF7EkQB28lReDvHAsKtJz1CAKNUHi0YQ3GC0idd_HIwhujhbT_wzwHBoUenGbwx86FaLTRi5cHMsV9aV9pntj52-Oa4Bv3XKR4_jb_4Ihk1Sd2_mPCtZN3VyHnVQKkc5g5-Dt8YfPE-sq79yK8QP1xZ9Etj9M-RtlmOE3_XobbiJB6LQKEzpwchfuRB5PDjpQ7sE1t74PN2LqHsBqCg0J0JApNG_ICAxBYMgADEFgCAJDOmAewum7o5PDFY1NK6hhgrVUcm51wm2S5cbg3VkrIU0okaSZRTpnRL6Uy0xmlaycKSueqqVGjuiSxCXG5NkjmK3rtdsFoiySMSEV3nkrpkpb5o6nzuWVVQpj2Rxe9Xkp-mz4xiLfiqAsEFmxLGIK5_B8CG26MibbgvZ8cgufWme-GK-0Mq2_HHKhkjm8GHL-tzm2RH2vN2NE0djq8ZXm2oNb4-J9ArN2c-meIgVs9bO4jH4BGsZbPw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-based+water+purification%3A+Challenges+and+prospects+for+the+future&rft.jtitle=Physics+of+plasmas&rft.au=Foster%2C+John+E.&rft.date=2017-05-01&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1063%2F1.4977921&rft.externalDocID=pop
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon