Plasma-based water purification: Challenges and prospects for the future
Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment...
Saved in:
Published in | Physics of plasmas Vol. 24; no. 5 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
United States
American Institute of Physics (AIP)
01.05.2017
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-664X 1089-7674 |
DOI | 10.1063/1.4977921 |
Cover
Abstract | Freshwater scarcity derived from seasonal weather variations, climate change, and
over-development has led to serious consideration for water reuse.
Water reuse involves the direct processing of wastewater for either
indirect or directly potable water reuse. In either case, advanced
water
treatment
technologies will be required to process the water to the point that it can be reused in a
meaningful way. Additionally, there is growing concern regarding micropollutants, such as
pharmaceuticals and personal care products, which have been detected in finished drinking
water not removed by conventional means. The health impact of these
contaminants in
low concentration is not well understood. Pending regulatory action, the removal of these
contaminants by
water
treatment plants
will also require advanced technology. One new and emerging technology that could
potentially address the removal of micropollutants in both finished drinking
water as well as wastewater slated for reuse is plasma-based
water purification. Plasma in contact with liquid water generates a
host of reactive species that attack and ultimately mineralize contaminants in solution. This
interaction takes place in the boundary layer or interaction zone centered at the
plasma-liquid water interface. An understanding of the physical processes taking
place at the interface, though poorly understood, is key to the optimization of
plasma-based water purifiers. High electric field conditions, large density gradients,
plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region.
The region is also the source function for longer-lived reactive species that ultimately
treat the
water. Here, we review the need for advanced water
treatment methods
and in the process, make the case for plasma-based methods. Additionally, we survey the
basic methods of interacting plasma with liquid water (including
a discussion of breakdown processes in water), the current state of understanding of
the physical processes taking place at the plasma-liquid interface, and the role these
processes play in water purification. The development of plasma diagnostics
usable in this multiphase environment along with modeling efforts aimed at elucidating
physical processes taking place at the interface are also detailed. Key experiments that
demonstrate the capability of plasma-based water
treatment are also
reviewed. The technical challenges to the implementation of plasma-based water reactors
are also discussed. We conclude with a discussion of prospects for the future of
plasma-based water purification. |
---|---|
AbstractList | Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification. Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water reuse involves the direct processing of wastewater for either indirect or directly potable water reuse. In either case, advanced water treatment technologies will be required to process the water to the point that it can be reused in a meaningful way. Additionally, there is growing concern regarding micropollutants, such as pharmaceuticals and personal care products, which have been detected in finished drinking water not removed by conventional means. The health impact of these contaminants in low concentration is not well understood. Pending regulatory action, the removal of these contaminants by water treatment plants will also require advanced technology. One new and emerging technology that could potentially address the removal of micropollutants in both finished drinking water as well as wastewater slated for reuse is plasma-based water purification. Plasma in contact with liquid water generates a host of reactive species that attack and ultimately mineralize contaminants in solution. This interaction takes place in the boundary layer or interaction zone centered at the plasma-liquid water interface. An understanding of the physical processes taking place at the interface, though poorly understood, is key to the optimization of plasma-based water purifiers. High electric field conditions, large density gradients, plasma-driven chemistries, and fluid dynamic effects prevail in this multiphase region. The region is also the source function for longer-lived reactive species that ultimately treat the water. Here, we review the need for advanced water treatment methods and in the process, make the case for plasma-based methods. Additionally, we survey the basic methods of interacting plasma with liquid water (including a discussion of breakdown processes in water), the current state of understanding of the physical processes taking place at the plasma-liquid interface, and the role these processes play in water purification. The development of plasma diagnostics usable in this multiphase environment along with modeling efforts aimed at elucidating physical processes taking place at the interface are also detailed. Key experiments that demonstrate the capability of plasma-based water treatment are also reviewed. The technical challenges to the implementation of plasma-based water reactors are also discussed. We conclude with a discussion of prospects for the future of plasma-based water purification. |
Author | Foster, John E. |
Author_xml | – sequence: 1 givenname: John E. surname: Foster fullname: Foster, John E. organization: Department of Nuclear Engineering, The University of Michigan, Ann Arbor, Michigan 48109, USA |
BackLink | https://www.osti.gov/servlets/purl/1465690$$D View this record in Osti.gov |
BookMark | eNp9kMFLwzAYxYNMcJse_A-CN4VuX9o0abzJUCcM9KDgLaRp4iJdW5JM8b-3c1NBxdP3HX7v8d4boUHTNgahYwITAiybkgkVnIuU7KEhgUIknHE62PwcEsbo4wEahfAMAJTlxRDN72oVViopVTAVflXReNytvbNOq-ja5hzPlqquTfNkAlZNhTvfhs7oGLBtPY5Lg-06rr05RPtW1cEc7e4YPVxd3s_myeL2-mZ2sUg0ZTQmPM-rEvIKskJrELQUjGvBU8JKWnECmhWEk4xnllujlc1TQUqRcQNgQOsiG6OTrW8bopNBu2j0UrdN02eSpC_FBPTQdAvpPm3wxsqe--gTvXK1JCA3a0kid2v1itMfis67lfJvf7JnWzZ8un7BL63_BmVX2f_g387voiWHKg |
CODEN | PHPAEN |
CitedBy_id | crossref_primary_10_1140_epjd_e2017_80329_9 crossref_primary_10_1016_j_jece_2024_113541 crossref_primary_10_1134_S1063780X21060131 crossref_primary_10_1002_cphc_202300143 crossref_primary_10_1039_D4NR02498B crossref_primary_10_1088_1361_6463_abca2a crossref_primary_10_1134_S1063780X24601238 crossref_primary_10_1134_S0018143920030108 crossref_primary_10_1088_1361_6595_ac3ba3 crossref_primary_10_1007_s11090_019_09970_z crossref_primary_10_1088_1402_4896_acc704 crossref_primary_10_1016_j_ijthermalsci_2022_107908 crossref_primary_10_1134_S0018143921060096 crossref_primary_10_3390_pr12091846 crossref_primary_10_1002_pen_26594 crossref_primary_10_1016_j_jwpe_2024_105915 crossref_primary_10_1088_1361_6463_ab324a crossref_primary_10_1021_acs_est_4c10363 crossref_primary_10_1134_S1063780X22010081 crossref_primary_10_3390_plasma5020021 crossref_primary_10_1109_TPS_2018_2805882 crossref_primary_10_4028_www_scientific_net_KEM_786_409 crossref_primary_10_1007_s11090_019_10036_3 crossref_primary_10_1063_5_0044261 crossref_primary_10_1088_2058_6272_ab9170 crossref_primary_10_1063_5_0157985 crossref_primary_10_1088_2058_6272_ad2b38 crossref_primary_10_1134_S1027451024702082 crossref_primary_10_1016_j_jece_2025_115459 crossref_primary_10_1109_TPS_2024_3516487 crossref_primary_10_1116_6_0002064 crossref_primary_10_1016_j_cej_2022_140304 crossref_primary_10_3390_ijerph21081107 crossref_primary_10_3389_fenvc_2024_1416702 crossref_primary_10_1007_s00253_021_11715_y crossref_primary_10_3390_antibiotics11060747 crossref_primary_10_1088_1361_6595_ad5ebb crossref_primary_10_1088_1361_6463_ac09ba crossref_primary_10_1002_ppap_202000003 crossref_primary_10_1109_TPS_2022_3161425 crossref_primary_10_7567_JJAP_57_026201 crossref_primary_10_1063_5_0173873 crossref_primary_10_1002_ppap_202400105 crossref_primary_10_1016_j_ceja_2022_100435 crossref_primary_10_1088_1361_6595_ab51bf crossref_primary_10_1039_D4CP04272G crossref_primary_10_1016_j_cclet_2019_03_051 crossref_primary_10_1007_s00396_023_05161_7 crossref_primary_10_3390_su13084327 crossref_primary_10_1007_s11356_021_12395_x crossref_primary_10_1002_ppap_201900001 crossref_primary_10_1088_1361_6463_ad2b22 crossref_primary_10_1002_ppap_201700238 crossref_primary_10_1016_j_elstat_2017_07_001 crossref_primary_10_1021_acsestengg_4c00166 crossref_primary_10_1088_1361_6595_ab25d8 crossref_primary_10_1063_5_0190348 crossref_primary_10_1007_s11090_019_10014_9 crossref_primary_10_1063_1_5092296 crossref_primary_10_1088_1755_1315_385_1_012056 crossref_primary_10_1088_1361_6463_ad7bc4 crossref_primary_10_1088_1361_6595_aab6d4 crossref_primary_10_1088_1361_6463_aac816 crossref_primary_10_1016_j_chemosphere_2017_05_134 crossref_primary_10_1088_1361_6463_ac74f8 crossref_primary_10_1002_ppsc_201700365 crossref_primary_10_1016_j_ijleo_2018_03_018 crossref_primary_10_1038_s41598_018_30540_4 crossref_primary_10_1088_1361_6463_acfb1b crossref_primary_10_1088_2058_6272_abf47f crossref_primary_10_1088_1361_6463_aa7570 crossref_primary_10_1116_6_0001992 crossref_primary_10_1002_ppap_202100051 crossref_primary_10_1063_1_5063761 crossref_primary_10_1134_S0018143924700723 crossref_primary_10_1016_j_ceja_2022_100421 crossref_primary_10_1088_1361_6595_aaa5da crossref_primary_10_1063_1_5018331 crossref_primary_10_1088_1361_6463_acc958 crossref_primary_10_1016_j_scitotenv_2024_171369 crossref_primary_10_1007_s11090_020_10076_0 crossref_primary_10_1016_j_chemosphere_2018_07_012 crossref_primary_10_1063_5_0042945 crossref_primary_10_1016_j_ultsonch_2023_106535 crossref_primary_10_3390_app13020772 crossref_primary_10_1063_5_0035186 crossref_primary_10_1111_jfpe_14312 crossref_primary_10_3390_pr11082292 crossref_primary_10_1002_ppap_202000028 crossref_primary_10_1016_j_foodres_2022_111246 crossref_primary_10_1063_1_5008779 crossref_primary_10_1016_j_surfin_2023_103162 crossref_primary_10_1007_s11356_018_1392_9 crossref_primary_10_1016_j_hydromet_2020_105483 crossref_primary_10_1088_1361_6595_abf71d crossref_primary_10_1088_1361_6463_ab16a6 crossref_primary_10_1016_j_eti_2021_102032 crossref_primary_10_1016_j_ijhydene_2022_02_015 crossref_primary_10_1088_1361_6463_ac5eef crossref_primary_10_3390_pr10102063 crossref_primary_10_1088_2058_6272_ac66bb crossref_primary_10_3390_pr8060667 crossref_primary_10_1002_ceat_202000171 crossref_primary_10_1017_jfm_2020_751 crossref_primary_10_1039_D2JA00063F crossref_primary_10_1088_2058_6272_aafbc6 crossref_primary_10_1002_ctpp_202300080 crossref_primary_10_1063_1_5134787 crossref_primary_10_1063_5_0208701 crossref_primary_10_1016_j_jece_2020_104504 crossref_primary_10_3390_plasma2030020 crossref_primary_10_1088_1361_6595_ab8e49 crossref_primary_10_1016_j_jwpe_2024_105942 crossref_primary_10_1088_1361_6463_abb048 crossref_primary_10_1063_5_0164607 crossref_primary_10_1109_TPS_2024_3371647 crossref_primary_10_14233_ajchem_2021_23010 crossref_primary_10_1007_s12649_019_00928_y crossref_primary_10_1002_ppap_201800124 crossref_primary_10_1021_envhealth_4c00100 crossref_primary_10_14233_ajchem_2021_23255 crossref_primary_10_35848_1882_0786_abf80e crossref_primary_10_7567_JJAP_57_0102BE crossref_primary_10_1016_j_psep_2024_05_009 crossref_primary_10_1016_j_chemosphere_2023_140820 crossref_primary_10_1140_epjd_e2018_90138_3 crossref_primary_10_1039_C8CP05983G crossref_primary_10_1063_5_0044905 crossref_primary_10_3390_electronics8101137 crossref_primary_10_1007_s11090_023_10322_1 crossref_primary_10_1109_TPS_2019_2929513 crossref_primary_10_1021_acs_est_8b00586 crossref_primary_10_1038_s41378_022_00373_3 crossref_primary_10_1063_5_0021948 crossref_primary_10_1109_TPS_2022_3198826 crossref_primary_10_1016_j_jcou_2021_101557 crossref_primary_10_1002_ppap_202000030 crossref_primary_10_1088_1361_6463_abecb1 crossref_primary_10_1088_1755_1315_109_1_012004 crossref_primary_10_1063_5_0141059 crossref_primary_10_1088_1361_6595_aaa578 crossref_primary_10_1088_1361_6595_acb812 crossref_primary_10_1088_1361_6463_ad9c8f crossref_primary_10_1088_1361_6595_ab8f76 crossref_primary_10_3390_pr11030873 crossref_primary_10_1016_j_jece_2019_103476 crossref_primary_10_1088_1361_6463_aad428 crossref_primary_10_1016_j_jece_2021_107090 crossref_primary_10_1088_1361_6463_ab81cf crossref_primary_10_1021_acsomega_2c07810 crossref_primary_10_1109_TPS_2019_2939683 crossref_primary_10_1016_j_ultsonch_2024_107110 crossref_primary_10_1088_1361_6463_ad1221 crossref_primary_10_1063_5_0123892 crossref_primary_10_1088_1361_6463_aab8b9 crossref_primary_10_1088_1361_6595_aabd17 crossref_primary_10_1088_1361_6595_ad6fce crossref_primary_10_1016_j_scitotenv_2022_161194 crossref_primary_10_1063_1_5020511 crossref_primary_10_1016_j_rinp_2022_105215 crossref_primary_10_1088_1361_6463_ab4c9d crossref_primary_10_1109_TPS_2022_3209312 crossref_primary_10_1002_ppap_201900192 crossref_primary_10_1007_s11356_024_34475_4 crossref_primary_10_1016_j_foodcont_2024_110530 crossref_primary_10_1134_S1063780X1809009X crossref_primary_10_1088_1361_6595_abc830 crossref_primary_10_1063_1_5091815 crossref_primary_10_1063_5_0042355 crossref_primary_10_1007_s11090_018_9918_y crossref_primary_10_1007_s10904_019_01371_1 crossref_primary_10_1080_01932691_2022_2059506 crossref_primary_10_1016_j_jhazmat_2017_09_025 crossref_primary_10_2174_0115734129247763231224172204 crossref_primary_10_1016_j_ifset_2019_102256 crossref_primary_10_1109_TPS_2019_2933767 crossref_primary_10_3390_plasma7010002 crossref_primary_10_1007_s11090_025_10540_9 crossref_primary_10_1016_j_watres_2021_117321 crossref_primary_10_1007_s11090_018_9905_3 crossref_primary_10_1049_hve2_12189 crossref_primary_10_1088_2058_6272_ab9ddd crossref_primary_10_1016_j_jece_2023_109855 crossref_primary_10_1088_1361_6595_aba7ef crossref_primary_10_1088_1757_899X_543_1_012093 crossref_primary_10_1063_1_5030099 crossref_primary_10_1063_5_0059100 crossref_primary_10_1088_1361_6595_abc815 crossref_primary_10_1016_j_chemosphere_2023_139972 crossref_primary_10_1002_ppap_202400077 crossref_primary_10_1002_chem_202302090 crossref_primary_10_1088_1361_6463_aad175 crossref_primary_10_1016_j_sab_2021_106307 crossref_primary_10_1109_TPS_2019_2908781 crossref_primary_10_1134_S0018143919030032 crossref_primary_10_1109_TPS_2024_3508668 crossref_primary_10_1063_1_5019961 crossref_primary_10_1088_1361_6595_ab006b crossref_primary_10_1088_2516_1067_ab69d7 crossref_primary_10_1039_D0LC00001A crossref_primary_10_1016_j_seppur_2019_03_043 crossref_primary_10_3390_ijms23105423 crossref_primary_10_1016_j_seppur_2024_127431 crossref_primary_10_1007_s11090_023_10418_8 crossref_primary_10_1016_j_cattod_2019_11_021 crossref_primary_10_3390_plasma5040030 crossref_primary_10_7498_aps_73_20231881 crossref_primary_10_1016_j_cap_2022_06_017 crossref_primary_10_1088_2058_6272_ac6e34 crossref_primary_10_1039_D0EW00388C crossref_primary_10_1088_1402_4896_ace856 crossref_primary_10_1007_s11686_023_00691_0 crossref_primary_10_1016_j_fuel_2021_121469 crossref_primary_10_1088_2058_6272_ab66e9 crossref_primary_10_1134_S1063780X24600877 crossref_primary_10_2139_ssrn_4118494 crossref_primary_10_1002_ppap_202100215 crossref_primary_10_1016_j_jes_2020_09_003 crossref_primary_10_1557_adv_2018_42 crossref_primary_10_1088_2058_6272_aaffa2 crossref_primary_10_1088_1361_6595_ace95d crossref_primary_10_1002_cnma_201900676 crossref_primary_10_51368_1996_0948_2021_3_5_10 crossref_primary_10_1140_epjd_e2019_100099_2 crossref_primary_10_1088_1361_6463_aadfad crossref_primary_10_4236_jwarp_2021_138034 crossref_primary_10_1016_j_ceja_2023_100443 crossref_primary_10_1007_s00344_020_10275_1 crossref_primary_10_1016_j_pnsc_2024_11_008 crossref_primary_10_1109_ACCESS_2019_2947632 crossref_primary_10_1016_j_chemosphere_2020_126864 crossref_primary_10_1149_1945_7111_ac41f5 crossref_primary_10_1007_s11090_019_09975_8 crossref_primary_10_1016_j_watres_2022_118047 crossref_primary_10_1134_S0018143920030029 crossref_primary_10_1088_1361_6595_adac0b crossref_primary_10_3389_fmicb_2022_1100102 crossref_primary_10_1063_5_0039264 crossref_primary_10_1063_5_0022534 crossref_primary_10_3390_ma11060891 crossref_primary_10_1088_2058_6272_ad6706 crossref_primary_10_3390_plasma7030036 crossref_primary_10_1088_1361_6595_ab7089 crossref_primary_10_1515_hf_2020_0182 crossref_primary_10_1088_1361_6463_abc502 crossref_primary_10_1088_1361_6463_aa7ef1 crossref_primary_10_1088_1361_6463_ab522a crossref_primary_10_1002_ppap_202200159 crossref_primary_10_1016_j_ijleo_2018_09_056 crossref_primary_10_1063_5_0033846 crossref_primary_10_3390_app132312631 crossref_primary_10_1016_j_chemosphere_2024_142689 crossref_primary_10_1038_s41598_024_68337_3 crossref_primary_10_1016_j_chemosphere_2022_133606 crossref_primary_10_1088_2058_6272_ac0008 crossref_primary_10_1016_j_cej_2017_12_107 crossref_primary_10_1063_5_0068129 crossref_primary_10_5004_dwt_2021_27084 crossref_primary_10_1088_1402_4896_ad6bd2 crossref_primary_10_1016_j_seppur_2025_131758 crossref_primary_10_1088_1361_6463_ac570a crossref_primary_10_1088_1361_6463_aabea2 crossref_primary_10_1088_1361_6463_ab208e crossref_primary_10_1021_acs_langmuir_4c00639 crossref_primary_10_1088_1361_6595_ad8216 crossref_primary_10_1002_ppap_201900159 crossref_primary_10_1016_j_jece_2018_01_029 crossref_primary_10_1109_TPS_2020_3041839 crossref_primary_10_1007_s41614_022_00077_1 crossref_primary_10_3390_app11083372 crossref_primary_10_1016_j_cej_2021_133916 crossref_primary_10_1088_1361_6463_ac0840 crossref_primary_10_1016_j_jwpe_2023_104294 crossref_primary_10_3389_fphy_2021_748113 crossref_primary_10_1140_epjd_s10053_024_00843_5 crossref_primary_10_1021_acs_inorgchem_4c03260 crossref_primary_10_1088_1361_6595_ab7987 crossref_primary_10_1088_1361_6463_aba21a crossref_primary_10_1016_j_jenvman_2021_113885 crossref_primary_10_3390_w15010077 crossref_primary_10_1088_2058_6272_ac742b crossref_primary_10_1140_epjd_s10053_021_00283_5 crossref_primary_10_1016_j_jenvman_2024_122574 crossref_primary_10_1063_1_5116063 crossref_primary_10_1088_1361_6463_ac9538 crossref_primary_10_1109_TPS_2019_2942576 crossref_primary_10_3390_antibiotics12091371 crossref_primary_10_3103_S1068375522050039 crossref_primary_10_3390_polym13111678 crossref_primary_10_21467_ajgr_10_1_23_32 crossref_primary_10_1016_j_elstat_2019_03_001 crossref_primary_10_1063_5_0078076 crossref_primary_10_1002_ppap_201800198 crossref_primary_10_1088_1361_6463_ad8004 crossref_primary_10_1134_S1063780X22040043 crossref_primary_10_1088_1361_6463_aac7cd crossref_primary_10_1063_5_0005197 crossref_primary_10_1088_1361_6463_ac113b crossref_primary_10_1063_5_0083766 crossref_primary_10_1063_5_0040163 crossref_primary_10_3390_su16020605 crossref_primary_10_1002_ppap_202400139 crossref_primary_10_1016_j_seppur_2024_127741 crossref_primary_10_1002_ppap_202400257 crossref_primary_10_1088_1361_6463_ad172a crossref_primary_10_1016_j_jece_2021_105758 crossref_primary_10_1021_acs_est_3c07162 |
Cites_doi | 10.1088/0022-3727/47/5/055202 10.1088/0022-3727/46/46/464001 10.1088/0963-0252/20/3/034004 10.1016/j.jhazmat.2010.06.021 10.1109/TPS.2006.881891 10.1016/j.watres.2014.08.053 10.1080/01919518708552148 10.1039/cs9912000001 10.1070/PU1995v038n06ABEH000089 10.1080/09593330802318894 10.1007/s11090-012-9425-5 10.1023/A:1022470901385 10.1063/1.1792391 10.1016/j.desal.2005.04.068 10.1088/0022-3727/41/21/215201 10.1016/j.cej.2013.09.090 10.1063/1.2437675 10.1088/0963-0252/12/2/301 10.1002/ppap.200700154 10.1016/j.watres.2009.09.029 10.1080/02508060008686817 10.1016/j.crte.2004.09.018 10.1007/s11090-009-9207-x 10.1109/TPS.2002.804220 10.1080/19443994.2015.1024752 10.1016/j.elstat.2005.11.004 10.1109/TDEI.2012.6311503 10.1016/j.watres.2015.05.037 10.1109/TPS.2011.2158324 10.1038/nchem.580 10.1016/S0920-5861(99)00102-9 10.1016/j.scitotenv.2013.05.034 10.1061/(ASCE)0733-9372(2004)130:1(17) 10.1109/PLASMA.2013.6633242 10.1021/es950850s 10.1088/1367-2630/13/5/053025 10.1088/0022-3727/45/41/415203 10.1088/0022-3727/48/42/424004 10.1051/epjap/2009110 10.1088/0963-0252/24/5/055005 10.1088/0963-0252/9/3/315 10.1109/TPS.2016.2567322 10.1021/es025896h 10.1002/ppap.200900044 10.1088/0022-3727/42/5/053001 10.1088/0022-3727/38/22/010 10.1515/jaots-2005-0117 10.1109/TPS.2014.2328793 10.1109/94.689419 10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2 10.7567/JJAP.54.086201 10.1007/s11090-009-9202-2 10.1016/j.sab.2005.10.003 10.1088/0022-3727/39/14/017 10.1088/0963-0252/23/1/015020 10.1088/0022-3727/18/4/009 10.3176/chem.2001.2.01 10.1063/1.2172926 10.1088/0963-0252/19/4/045025 10.1109/TPS.2011.2180028 10.1007/s11269-006-9111-6 10.1016/S1383-5866(03)00166-7 10.1016/j.watres.2012.09.041 10.1088/0963-0252/20/3/034003 10.1088/0022-3727/48/35/355203 10.1088/0963-0252/16/2/003 10.1088/0963-0252/23/5/054010 10.1109/TPS.2011.2109402 10.1021/ie050981u 10.1016/j.ultsonch.2009.09.005 10.1007/s11090-008-9155-x 10.1143/APEX.2.036001 10.1109/TIA.1987.4504897 10.1088/0022-3727/48/42/424008 10.1021/ie048807d 10.1088/0022-3727/41/23/234007 10.1088/1367-2630/11/11/115011 10.1088/0022-3727/28/1/025 10.1088/0963-0252/19/2/025001 10.1016/j.seppur.2012.07.025 10.1088/0022-3727/33/20/315 10.1088/0963-0252/10/1/311 10.1109/TPS.2013.2245426 10.1126/science.289.5477.284 10.1088/0963-0252/17/2/025006 10.1088/0022-3727/48/42/424007 10.1109/94.879360 10.1021/ja00880a025 10.1039/b107616g 10.1063/1.1789274 10.1002/(SICI)1097-4660(199808)72:4%3C289::AID-JCTB905%3E3.0.CO;2-# 10.1021/jp3128516 10.1088/0022-3727/46/10/105201 10.1016/j.dyepig.2004.03.005 10.1109/TPS.2014.2325977 10.1021/es104287n 10.1109/94.775622 10.1016/j.watres.2014.10.027 10.1021/ie0203328 10.1063/1.1921338 10.1088/0963-0252/18/3/035010 10.1088/0022-3727/44/8/082001 10.1002/ppap.200900070 10.1038/srep23737 10.1016/j.jece.2016.03.013 10.1088/0963-0252/25/5/053002 10.1088/0022-3727/43/12/124005 10.1038/ncomms8248 10.1007/s00128-013-1048-x 10.1088/0022-3727/45/25/253001 10.1063/1.3143781 10.1007/s11090-014-9545-1 10.1088/0022-3727/45/26/263001 10.1088/0022-3727/49/9/093001 10.1016/j.techfore.2006.05.021 10.1002/app.13714 10.1038/nchem.604 10.1109/27.842901 |
ContentType | Journal Article |
Copyright | Author(s) |
Copyright_xml | – notice: Author(s) |
CorporateAuthor | Univ. of Michigan, Ann Arbor, MI (United States) |
CorporateAuthor_xml | – name: Univ. of Michigan, Ann Arbor, MI (United States) |
DBID | AAYXX CITATION OIOZB OTOTI |
DOI | 10.1063/1.4977921 |
DatabaseName | CrossRef OSTI.GOV - Hybrid OSTI.GOV |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1089-7674 |
ExternalDocumentID | 1465690 10_1063_1_4977921 pop |
GrantInformation_xml | – fundername: U.S. Department of Energy (DOE) grantid: DE-SC0001939 funderid: http://dx.doi.org/10.13039/100000015 – fundername: National Science Foundation (NSF) grantid: 1336375; 1519117 funderid: http://dx.doi.org/10.13039/100000001 |
GroupedDBID | -~X 0ZJ 123 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABEFF ABJNI ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACXMS ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 N9A NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS T9H TN5 WH7 XFK AAGWI AAYXX ABJGX ADMLS BDMKI CITATION ABPTK AGIHO AQWKA OIOZB OTOTI UE8 |
ID | FETCH-LOGICAL-c464t-755db05d038cc094b967c97216b4d710c68171373f7fecaf5291b937e00e0cc83 |
ISSN | 1070-664X |
IngestDate | Thu May 18 22:32:20 EDT 2023 Thu Apr 24 23:10:12 EDT 2025 Tue Jul 01 00:34:51 EDT 2025 Fri Jun 21 00:14:40 EDT 2024 Sun Jul 14 11:29:19 EDT 2019 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | 1070-664X/2017/24(5)/055501/16/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c464t-755db05d038cc094b967c97216b4d710c68171373f7fecaf5291b937e00e0cc83 |
Notes | SC0001939 USDOE Office of Science (SC) |
OpenAccessLink | https://www.osti.gov/servlets/purl/1465690 |
PageCount | 16 |
ParticipantIDs | osti_scitechconnect_1465690 crossref_primary_10_1063_1_4977921 crossref_citationtrail_10_1063_1_4977921 scitation_primary_10_1063_1_4977921 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-05-01 |
PublicationDateYYYYMMDD | 2017-05-01 |
PublicationDate_xml | – month: 05 year: 2017 text: 2017-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Physics of plasmas |
PublicationYear | 2017 |
Publisher | American Institute of Physics (AIP) |
Publisher_xml | – name: American Institute of Physics (AIP) |
References | Korus, Burbach (c3) 2009 Pimentel, Berger, Filiberto, Newton, Wolfe, Karbabinakis, Clark, Poon, Abbett, Nanagopal (c5) 2004 Foster, Adamovsky, Gucker, Blankson (c114) 2013 Foster, Weatherford, Gillman, Yee (c89) 2010 Fridman, Friedman, Gutsol, Shekhter, Vasilets, Fridman (c58) 2008 Akiyama (c116) 2002 Fujioka, Khan, Poussade, Drewes, Nghiem (c34) 2012 Sommers, Foster (c97) 2012 Vandeivere, Bianchi, Verstraete (c105) 1998 Magureanu, Piroi, Gherendi, Mandache, Parvulescu (c111) 2008 Bruggeman, Verreycken, Gonzalez, Walsh, Kong, Leys, Schram (c160) 2010 Gucker, Foster, Garcia (c52) 2015 Jiang, Zheng, Qiu, Wu, Zhang, Yan, Xue (c124) 2014 Margot, Kienle, Weil, Rossi, Alencastro, Abegglen, Thonney, Chèvre, Schärer, Barry (c33) 2013 Kawasaki, Masaki, Hamada, Wakabayashi, Abe, Kihara (c151) 2015 Graves (c158) 2012 Sano, Kawashima, Fujikawa, Fujimoto, Kitai, Kanki, Toyoda (c117) 2002 Daughton (c14) 2005 Hung, Chang, Chi, Chang (c120) 2010 Vorosmarty, Green, Salisbury, Lammers (c2) 2000 Lisitsyn, Nomlyama, Katsuki (c86) 1999 Malik (c134) 2010 Munter (c39) 2001 Drake, Doblin, Dobbs (c21) 2007 Jin, Xia, Zhang, Wang (c113) 2011 Willberg, Lang, Hochemer, Kratel, Hoffmann (c122) 1996 Kolb, Joshi, Xiao, Schoenbach (c74) 2008 Liu, Liu, Chen, Yang, Li, Rong, Chen, Kong (c139) 2015 Shirai, Ibuka, Ishii (c154) 2009 Ibrahim, El-Naggar (c24) 2012 Miller (c29) 2006 Franclemont, Fan, Thagard (c127) 2015 Bolton, Bircher, Tumas, Tolman (c135) 1996 Grabowski, Veldhuizen, Pemem, Rutgers (c83) 2007 Foster, Sommer, Gucker, Blankson, Adamovsky (c44) 2012 Laux, Spence, Kruger, Zare (c163) 2003 Kunhardt (c53) 2000 Held, Becchi, Setzer, Vecchi, Dixon (c10) 2007 Wetz, Mankowski, Dickens, Kristiansen (c98) 2006 Rosenblum, Sitterley, Thurman, Ferrer, Linden (c28) 2016 Andreozzi, Caprio, Insola, Marotta (c40) 1999 Montijn, Ebert (c64) 2006 Cabane, Vuilleumier (c100) 2005 Kwak, Panton (c102) 1985 Dobrynin, Guaitella, Rousseau, Starikovskaia (c104) 2013 Garg, Amita, Kumar, Gupta (c108) 2004 Ono (c164) 2016 Dang, Denat, Lesaint, Telssedre (c82) 2009 Huber, Canonica, Park, Gunten (c38) 2003 Siefermann, Liu, Lugovoy, Link, Faubel, Buck, Winter, Abel (c69) 2010 Locke, Sato, Sunka, Hoffmann, Chang (c43) 2006 Hart, Anbar (c71) 1962 Iglesias, Garrote, Flores, Moneo (c12) 2007 Birkin, Watson, Leighton (c147) 2001 Bruggeman, Leys (c45) 2009 Joshi, Qian, Zhao, Kolb, Schoenbach, Schamiloglu, Gaudet (c92) 2004 Shneider (c103) 2012 Hu, Bai, Yu, Zhang, Chen (c123) 2013 Bruggeman, Brandenburg (c159) 2013 Zhang, Huang, Ke, Yang, Wang, Yu (c132) 2012 van Rens, Schoof, Ummelen, van Vught, Bruggeman, van Veldhuizen (c150) 2014 Shih, Locke (c80) 2009 Mesyats (c84) 1995 Xiong, Yang, Bruggeman (c161) 2015 Staack, Farouck, Gutsol, Fridman (c60) 2009 Shih, Locke (c48) 2010 Bruggeman, Schram (c46) 2010 Hoeben, Veldhuizen, Rutgers, Cramers, Koesen (c118) 2000 Klimiuk, Kabardo, Gusiatin, Filipkowska (c106) 2005 Johnson, Bzdek, Fahrenbruck, Chandler, Bisha, Goodridge, Hybertson (c142) 2016 Laroussi (c55) 2002 Qian (c94) 2005 Samukawa, Hori, Rauf, Tachibana, Bruggeman, Kroesen, Whitehead, Murphy, Gutsol, Starikovskaia, Kortshagen, Boeuf, Sommerer, Kushner, Czarnetzki, Mason (c50) 2012 Lukes, Locke (c115) 2005 Lindsay, Anderson, Slikboer, Shannon, Graves (c49) 2015 Mingos, Bahhurst (c77) 1991 Morfill, Kong, Zimmermann (c57) 2009 An, Baumung, Bluhm (c76) 2007 Neumark (c70) 2010 Sahni, Finney, Locke (c121) 2016 Lewis (c101) 1998 Manolache, Shamamian, Denes (c143) 2004 Shirai, Uchida, Tochikubo, Ishii (c155) 2011 Mahamuni, Adewuyi (c41) 2010 Rumbach, Bartels, Sankaran, Go (c72) 2015 Joshi, Qian, Schoenbach, Schamailoglu (c93) 2004 Liu, Sun, Bai, Tian, Zhou, Wei, Zhou, Zhang, Zhu, Becker, Fang (c131) 2010 Kirkpatrick, Locke (c81) 2005 Kogelshatz (c63) 2003 Shimizu, Iwafuchi, Morfill, Sato (c149) 2011 Petrie, Barden, Hordern (c15) 2015 Jones, Kundhardt (c73) 1995 Clements, Sato, Davis (c109) 1987 Gerrity, Stanford, Trenholm, Snyder (c141) 2010 Garcia, Gucker, Foster (c162) 2015 Schaper, Stalder, Graham (c87) 2011 Sommers, Foster (c99) 2014 Magureanu, Mandache, Parvulescu (c128) 2015 Sommers, Foster, Kushner (c148) 2011 Wong, Szeto, Cheung, McKay (c107) 2004 Tian, Tachibana, Kushner (c51) 2014 Bunkin, Bunkin (c91) 1992 Shirai, Uchida, Tochikubo (c153) 2014 Gaffney, Cristina, Almeida, Rodrigues, Ferreira, Benoliel, Cardoso (c17) 2015 Malik, Ghaffar, Malik (c42) 2001 Peters, Meybeck (c7) 2000 Glaze, Kang, Chapin (c37) 1987 Bruggeman, Kushner, Locke, Gardeniers, Graham, Graves, Hofman-Caris, Maric, Reid, Ceriani, Fernandez Rivas, Foster, Garrick, Gorbanev, Hamaguchi, Iza, Kolb, Krcma, Lukes, Macha-la, Marinov, Mariotti, Thagard, Minakata, Neyts, Pawlat, Petrovic, Pfieger, Reuter, Schram, Schroter, Shiraiwa, Tarabová, Tresp, Tsai, Verlet, von Woedtke, Vyhnankova, Wilson, Yasui, Zvereva (c67) 2016 Abdelmelek, Geaves, Ishida, Cooper, Song (c35) 2011 Wang, Li, Quan (c110) 2006 Fischer, Tubiello, Velthuizen, Wilberg (c11) 2007 Foster, Lai (c138) 2016 Nakamura (c78) 2003 Bruggeman, Liu, Degroote, Kong, Vierendeels, Leys (c156) 2008 Schaper, Stalder, Graham (c88) 2011 Aoki, Kitano, Hamaguchi (c112) 2008 Machheret, Shneider, Murray (c61) 2006 Banaschik, Koch, Juergen, Weltmann (c126) 2014 Tendero, Tixier, Trisant, Desmaison, Leprince (c54) 2006 Joshi, Thagard (c75) 2013 Yusupov, Boaerts, Huygh, Snoeckx, Duin, Neyts (c129) 2013 Chen, Liu, Liu, Yang, Chen, Shama, Kong (c47) 2014 Chung, Ku, Gregory (c32) 2008 Babaeva, Kushner (c95) 2009 Gibalov, Pietsch (c62) 2000 Sano, Kawashima, Fujikawa, Fujimoto, Kawashima, Yammamoto, Kanki, Toyoda (c119) 2004 2023080501410869200_c8 (2023080501410869200_c112) 2008; 17 2023080501410869200_c6 (2023080501410869200_c109) 1987; IA-23 2023080501410869200_c4 (2023080501410869200_c57) 2009; 11 (2023080501410869200_c95) 2009; 18 2023080501410869200_c1 (2023080501410869200_c93) 2004; 96 (2023080501410869200_c64) 2006; 39 (2023080501410869200_c110) 2006; 64 (2023080501410869200_c11) 2007; 74 (2023080501410869200_c29) 2006; 187 (2023080501410869200_c105) 1998; 72 (2023080501410869200_c147) 2001 (2023080501410869200_c163) 2003; 12 (2023080501410869200_c10) 2007; 1 (2023080501410869200_c37) 1987; 9 (2023080501410869200_c41) 2010; 17 (2023080501410869200_c14) 2005; 23 2023080501410869200_c66 (2023080501410869200_c18) 2006 (2023080501410869200_c38) 2003; 37 (2023080501410869200_c78) 2003; 54 2023080501410869200_c152 (2023080501410869200_c104) 2013; 46 (2023080501410869200_c113) 2011; 39 (2023080501410869200_c146) 1997 (2023080501410869200_c75) 2013; 33 (2023080501410869200_c97) 2012; 45 (2023080501410869200_c129) 2013; 117 (2023080501410869200_c137) 2011 (2023080501410869200_c157) 2016 (2023080501410869200_c7) 2000; 25 (2023080501410869200_c17) 2015; 72 (2023080501410869200_c127) 2015; 48 (2023080501410869200_c123) 2013; 91 (2023080501410869200_c2) 2000; 289 (2023080501410869200_c65) 2000 (2023080501410869200_c90) 2003 (2023080501410869200_c85) 2008 (2023080501410869200_c61) 2006; 13 (2023080501410869200_c117) 2002; 41 (2023080501410869200_c43) 2006; 45 (2023080501410869200_c52) 2015; 24 2023080501410869200_c56 (2023080501410869200_c121) 2016; 8 (2023080501410869200_c141) 2010; 44 (2023080501410869200_c12) 2007; 21 (2023080501410869200_c45) 2009; 42 (2023080501410869200_c51) 2014; 47 (2023080501410869200_c139) 2015; 6 (2023080501410869200_c151) 2015; 54 (2023080501410869200_c39) 2001; 50 2023080501410869200_c136 (2023080501410869200_c108) 2004; 63 (2023080501410869200_c40) 1999; 53 (2023080501410869200_c99) 2014; 23 (2023080501410869200_c114) 2013; 41 (2023080501410869200_c149) 2011; 13 (2023080501410869200_c155) 2011; 39 (2023080501410869200_c76) 2007; 101 (2023080501410869200_c77) 1991; 20 (2023080501410869200_c148) 2011; 44 (2023080501410869200_c36) 2005 (2023080501410869200_c48) 2010; 30 (2023080501410869200_c107) 2004; 92 (2023080501410869200_c153) 2014; 23 (2023080501410869200_c131) 2010; 7 (2023080501410869200_c82) 2009; 47 (2023080501410869200_c79) 1998 2023080501410869200_c144 (2023080501410869200_c34) 2012; 98 (2023080501410869200_c92) 2004; 96 (2023080501410869200_c120) 2010; 182 (2023080501410869200_c116) 2002; 7 (2023080501410869200_c42) 2001; 10 (2023080501410869200_c69) 2010; 2 (2023080501410869200_c63) 2003; 23 (2023080501410869200_c32) 2008; 29 (2023080501410869200_c21) 2007; 55 (2023080501410869200_c70) 2010; 2 2023080501410869200_c140 (2023080501410869200_c24) 2012; 12 (2023080501410869200_c50) 2012; 45 (2023080501410869200_c15) 2015; 72 (2023080501410869200_c102) 1985; 18 (2023080501410869200_c58) 2008; 5 (2023080501410869200_c156) 2008; 41 (2023080501410869200_c87) 2011; 20 (2023080501410869200_c98) 2006; 34 (2023080501410869200_c115) 2005; 38 (2023080501410869200_c164) 2016; 49 (2023080501410869200_c119) 2004; 37 (2023080501410869200_c68) 1999 (2023080501410869200_c101) 1998; 5 (2023080501410869200_c161) 2015; 48 (2023080501410869200_c19) 2013 (2023080501410869200_c81) 2005; 44 2023080501410869200_c25 2023080501410869200_c27 2023080501410869200_c22 (2023080501410869200_c126) 2014; 42 (2023080501410869200_c150) 2014; 42 2023080501410869200_c23 (2023080501410869200_c5) 2004; 54 (2023080501410869200_c106) 2005; 14 (2023080501410869200_c142) 2016; 57 (2023080501410869200_c130) 2008 (2023080501410869200_c28) 2016; 4 (2023080501410869200_c118) 2000; 9 (2023080501410869200_c96) 2014 (2023080501410869200_c60) 2009; 106 (2023080501410869200_c143) 2004; 130 (2023080501410869200_c46) 2010; 19 (2023080501410869200_c94) 2005; 97 (2023080501410869200_c124) 2014; 236 (2023080501410869200_c54) 2006; 61 (2023080501410869200_c135) 1996; 1 (2023080501410869200_c133) 2015 (2023080501410869200_c30) 2012 (2023080501410869200_c16) 2010 (2023080501410869200_c72) 2015; 6 (2023080501410869200_c74) 2008; 41 (2023080501410869200_c62) 2000; 33 (2023080501410869200_c125) 2016 (2023080501410869200_c83) 2007; 16 (2023080501410869200_c13) 2014 (2023080501410869200_c53) 2000; 28 (2023080501410869200_c55) 2002; 30 (2023080501410869200_c73) 1995; 28 (2023080501410869200_c145) 2016 (2023080501410869200_c86) 1999; 6 (2023080501410869200_c160) 2010; 43 (2023080501410869200_c122) 1996; 30 (2023080501410869200_c33) 2013; 461–462 (2023080501410869200_c47) 2014; 34 (2023080501410869200_c154) 2009; 2 (2023080501410869200_c159) 2013; 46 (2023080501410869200_c128) 2015; 81 (2023080501410869200_c162) 2015; 48 (2023080501410869200_c26) 2009 (2023080501410869200_c3) 2009; 19 (2023080501410869200_c67) 2016; 25 (2023080501410869200_c35) 2011; 45 (2023080501410869200_c138) 2016; 44 (2023080501410869200_c84) 1995; 38 (2023080501410869200_c88) 2011; 20 (2023080501410869200_c89) 2010; 19 (2023080501410869200_c103) 2012; 19 (2023080501410869200_c59) 1994 (2023080501410869200_c49) 2015; 48 (2023080501410869200_c20) 2011 (2023080501410869200_c132) 2012; 46 (2023080501410869200_c100) 2005; 337 (2023080501410869200_c158) 2012; 45 (2023080501410869200_c31) 2015 (2023080501410869200_c9) 2008 (2023080501410869200_c80) 2009; 6 (2023080501410869200_c71) 1962; 84 (2023080501410869200_c91) 1992; 74 (2023080501410869200_c111) 2008; 28 (2023080501410869200_c134) 2010; 30 (2023080501410869200_c44) 2012; 40 |
References_xml | – start-page: 025001 year: 2010 ident: c89 publication-title: Plasma Sources Sci. Technol. – start-page: 231 year: 2010 ident: c131 publication-title: Plasma Process Polym. – start-page: 015020 year: 2014 ident: c99 publication-title: Plasma Sources Sci. Technol. – start-page: 2979 year: 2006 ident: c64 publication-title: J. Phys. D: Appl. Phys. – start-page: 045025 year: 2010 ident: c46 publication-title: Plasma Sources Sci. Technol. – start-page: 13 year: 1996 ident: c135 publication-title: J. Adv. Oxid. Technol. – start-page: 493 year: 2010 ident: c141 publication-title: Water Res. – start-page: 263001 year: 2012 ident: c158 publication-title: J. Phys. D: Appl. Phys. – start-page: 883 year: 2010 ident: c48 publication-title: Plasma Chem. Plasma Process – start-page: 424004 year: 2015 ident: c127 publication-title: J. Phys. D: Appl. Phys. – start-page: 3665 year: 2011 ident: c35 publication-title: Environ Sci. Technol. – start-page: 909 year: 2004 ident: c5 publication-title: Bioscience – start-page: 775 year: 2007 ident: c12 publication-title: Water Resour. Manage. – start-page: 2 year: 2006 ident: c54 publication-title: Spectrochim. Acta Part B – start-page: 1579 year: 2012 ident: c103 publication-title: IEEE Trans. Dielectr. Electr. Insul. – start-page: 647 year: 1985 ident: c102 publication-title: J. Phys. D: Appl. Phys. – start-page: 185 year: 2000 ident: c7 publication-title: Water Int. – start-page: 882 year: 2006 ident: c43 publication-title: Ind. Eng. Chem. Res. – start-page: 5129 year: 2004 ident: c92 publication-title: J. Appl. Phys. – start-page: 247 year: 2010 ident: c70 publication-title: Nat. Chem. – start-page: 33 year: 2007 ident: c21 publication-title: Mar. Pollut. Bull. – start-page: 1099 year: 2011 ident: c113 publication-title: IEEE Trans. Plasma Sci. – start-page: 976 year: 2012 ident: c24 publication-title: Middle East J. Sci. Res. – start-page: 503 year: 2013 ident: c114 publication-title: IEEE Trans. Plasma Sci. – start-page: 931 year: 2008 ident: c32 publication-title: Environ. Technol. – start-page: 82 year: 2001 ident: c42 publication-title: Plasma Sources Sci. Technol. – start-page: 054010 year: 2014 ident: c153 publication-title: Plasma Sources Sci. Technol. – start-page: 503 year: 2012 ident: c34 publication-title: Sep. Purif. Technol. – start-page: 053001 year: 2009 ident: c45 publication-title: J. Phys. D: Appl. Phys. – start-page: 4243 year: 2005 ident: c81 publication-title: Ind. Eng. Chem. Res. – start-page: 035010 year: 2009 ident: c95 publication-title: Plasma Sources Sci. Technol. – start-page: 082001 year: 2011 ident: c148 publication-title: J. Phys. D: Appl. Phys. – start-page: 1127 year: 2016 ident: c138 article-title: 2-D apparatus for the study of the plasma liquid interface publication-title: IEEE Trans. Plasma Sci. – start-page: 093001 year: 2016 ident: c164 publication-title: J. Phys. D: Appl. Phys. – start-page: 1 year: 2003 ident: c63 publication-title: Plasma Chem. Plasma Process. – start-page: 65 year: 2006 ident: c29 publication-title: Desalination – start-page: 4074 year: 2005 ident: c115 publication-title: J. Phys. D: Apply. Phys. – start-page: 729 year: 2009 ident: c80 publication-title: Plasma Process. Polym. – start-page: 289 year: 1998 ident: c105 publication-title: J. Chem. Technol. Biotechnol. – start-page: 055202 year: 2014 ident: c51 publication-title: J. Phys. D: Appl. Phys. – start-page: 034004 year: 2011 ident: c87 publication-title: Plasma Sources Sci. Technol. – start-page: 187 year: 2009 ident: c3 publication-title: Great Plains Res. – start-page: 6554 year: 2012 ident: c132 publication-title: Water Res. – start-page: 2622 year: 2014 ident: c150 article-title: Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet publication-title: IEEE Trans. Plasma Sci. – start-page: 113304 year: 2005 ident: c94 publication-title: J. Appl. Phys. – start-page: 2736 year: 2014 ident: c126 publication-title: IEEE Trans. Plasma Sci. – start-page: 59 year: 2001 ident: c39 publication-title: Proc. Estonian Acad. Sci. Chem. – start-page: 125 year: 2003 ident: c163 publication-title: Plasma Sources Sci. Technol. – start-page: 403 year: 2014 ident: c47 publication-title: Plasma Chem. Plasma Process – start-page: 8097 year: 2016 ident: c142 publication-title: Desalin. Water Treat. – start-page: 351 year: 1999 ident: c86 publication-title: IEEE Trans. Dielectr. Electr. Insul. – start-page: 036001 year: 2009 ident: c154 publication-title: Appl. Phys. Express – start-page: 22818 year: 2009 ident: c82 publication-title: Eur. Phys. J. Appl. Phys. – start-page: 055005 year: 2015 ident: c52 publication-title: Plasma Sources Sci. Technol. – start-page: 2526 year: 1996 ident: c122 publication-title: Environ. Sci. Technol. – start-page: 013303 year: 2009 ident: c60 publication-title: J. Appl. Phys. – start-page: 3 year: 2015 ident: c15 publication-title: Water Res. – start-page: 306 year: 1998 ident: c101 publication-title: IEEE Trans. Dielectr. Electr. Insul. – start-page: 351 year: 2003 ident: c78 publication-title: J. Home Econ. Jpn. – start-page: 271 year: 1992 ident: c91 publication-title: Sov. Phys. JETP – start-page: 2650 year: 2001 ident: c147 publication-title: Chem. Commun. – start-page: 480 year: 2013 ident: c33 publication-title: Sci. Total Environ. – start-page: 1409 year: 2002 ident: c55 publication-title: IEEE Trans. Plasma Sci. – start-page: 243 year: 2004 ident: c108 publication-title: Dyes Pigm. – start-page: 464001 year: 2013 ident: c159 publication-title: J. Phys. D: Appl. Phys. – start-page: 4090 year: 1962 ident: c71 publication-title: J. Am. Chem. Soc. – start-page: 199 year: 2015 ident: c17 publication-title: Water Res. – start-page: 415203 year: 2012 ident: c97 publication-title: J. Phys. D: Appl. Phys. – start-page: 355203 year: 2015 ident: c162 publication-title: J. Phys. D. – start-page: 1 year: 2013 ident: c75 publication-title: Plasma Chem. Plasma Process – start-page: 025006 year: 2008 ident: c112 publication-title: Plasma Sources Sci. Technol. – start-page: 178 year: 1995 ident: c73 publication-title: J. Phys. D: Appl. Phys. – start-page: 246 year: 2010 ident: c120 publication-title: J. Hazard. Mater. – start-page: 1083 year: 2007 ident: c11 publication-title: Technol. Forecast. Social Change – start-page: 2652 year: 2011 ident: c155 publication-title: IEEE Trans. Plasma Sci. – start-page: 253001 year: 2012 ident: c50 publication-title: J. Phys. D: Appl. Phys. – start-page: 1 year: 1991 ident: c77 publication-title: Chem. Soc. Rev. – start-page: 124 year: 2015 ident: c128 publication-title: Water Res. – start-page: 990 year: 2010 ident: c41 publication-title: Ultrasonics Sonochemistry – start-page: 274 year: 2010 ident: c69 publication-title: Nat. Chem. – start-page: 1978 year: 2016 ident: c28 publication-title: J. Environ. Chem. Eng. – start-page: 21 year: 2010 ident: c134 publication-title: Plasma Chem. Plasma Process. – start-page: 189 year: 2000 ident: c53 publication-title: IEEE Trans. Plasma Sci. – start-page: 034003 year: 2011 ident: c88 publication-title: Plasma Sources Sci. Technol. – start-page: 646 year: 2002 ident: c116 publication-title: IEEE Trans. Dielectrics Electr. Insul. – start-page: 1670 year: 2006 ident: c98 publication-title: IEEE Trans. Plasma Sci. – start-page: 5906 year: 2002 ident: c117 publication-title: Ind. Eng. Chem. Res. – start-page: 7248 year: 2015 ident: c72 publication-title: Nat. Commun. – start-page: 1311 year: 2012 ident: c44 publication-title: IEEE Trans. Plasma Sci. – start-page: 335 year: 1987 ident: c37 publication-title: Ozone Sci. Eng. – start-page: 086201 year: 2015 ident: c151 publication-title: Jpn. J. Appl. Phys. – start-page: 1633 year: 2004 ident: c107 publication-title: J. Appl. Polym. Sci. – start-page: 169 year: 2004 ident: c119 publication-title: Sep. Purif. Technol. – start-page: 023502 year: 2006 ident: c61 publication-title: Phys. Plasmas. – start-page: 5 year: 2007 ident: c10 article-title: Will the wet get wetter and the dry drier publication-title: NOAA, GFDL Clim. Model. Res. Highlights – start-page: 348 year: 2014 ident: c124 publication-title: Chem. Eng. J. – start-page: 416 year: 2006 ident: c110 publication-title: J. Electrost. – start-page: 284 year: 2000 ident: c2 publication-title: Science – start-page: 503 year: 2008 ident: c58 publication-title: Plasma Process. Polym. – start-page: 159 year: 2005 ident: c100 publication-title: C. R. Geosci. – start-page: 567 year: 1995 ident: c84 publication-title: Phys.-Usp. – start-page: 4 year: 2005 ident: c14 publication-title: Renewable Resour. – start-page: 234007 year: 2008 ident: c74 publication-title: J. Phys. D: Appl. Phys. – start-page: 1016 year: 2003 ident: c38 publication-title: Environ Sci. Technol. – start-page: 2618 year: 2000 ident: c62 publication-title: J. Phys. D: Appl. Phys. – start-page: 677 year: 2008 ident: c111 publication-title: Plasma Chem. Plasma Process. – start-page: 23737 year: 2015 ident: c139 publication-title: Sci. Rep. – start-page: 17 year: 2004 ident: c143 publication-title: J. Environ. Eng. – start-page: 105201 year: 2013 ident: c104 publication-title: J. Phys. D: Appl. Phys. – start-page: 226 year: 2007 ident: c83 publication-title: Plasma Sources Sci. Technol. – start-page: 224 year: 1987 ident: c109 publication-title: IEEE Trans. Ind. Appl. – start-page: 053002 year: 2016 ident: c67 article-title: Plasma liquid interactions: a review and roadmap publication-title: Plasma Sources Sci. Technol. – start-page: 124005 year: 2010 ident: c160 publication-title: J. Phys. D: Appl. Phys. – start-page: 115011 year: 2009 ident: c57 publication-title: New J. Phys. – start-page: 361 year: 2000 ident: c118 publication-title: Plasma Sources Sci. Technol. – start-page: 215201 year: 2008 ident: c156 publication-title: J. Phys. D: Appl. Phys. – start-page: 5993 year: 2013 ident: c129 publication-title: J. Phys. Chem. C. – start-page: 771 year: 2005 ident: c106 publication-title: Pol. J. Environ. Stud. – start-page: 3617 year: 2004 ident: c93 publication-title: J. Appl. Phys. – start-page: 053025 year: 2011 ident: c149 publication-title: New J. Phys. – start-page: 105 year: 2016 ident: c121 publication-title: J. Adv. Oxd. Technol. – start-page: 51 year: 1999 ident: c40 publication-title: Catal. Today – start-page: 424008 year: 2015 ident: c161 publication-title: J. Phys. D: Appl. Phys. – start-page: 314 year: 2013 ident: c123 publication-title: Bull Environ. Contam. Toxicol. – start-page: 053302 year: 2007 ident: c76 publication-title: J. Appl. Phys. – start-page: 424007 year: 2015 ident: c49 publication-title: J. Phys. D: Appl. Phys. – volume: 47 start-page: 055202 year: 2014 ident: 2023080501410869200_c51 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/47/5/055202 – volume: 46 start-page: 464001 year: 2013 ident: 2023080501410869200_c159 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/46/464001 – volume: 20 start-page: 034004 year: 2011 ident: 2023080501410869200_c87 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/20/3/034004 – volume: 182 start-page: 246 year: 2010 ident: 2023080501410869200_c120 publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2010.06.021 – volume: 34 start-page: 1670 year: 2006 ident: 2023080501410869200_c98 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2006.881891 – volume: 72 start-page: 3 year: 2015 ident: 2023080501410869200_c15 publication-title: Water Res. doi: 10.1016/j.watres.2014.08.053 – volume: 9 start-page: 335 year: 1987 ident: 2023080501410869200_c37 publication-title: Ozone Sci. Eng. doi: 10.1080/01919518708552148 – volume: 20 start-page: 1 year: 1991 ident: 2023080501410869200_c77 publication-title: Chem. Soc. Rev. doi: 10.1039/cs9912000001 – volume: 38 start-page: 567 year: 1995 ident: 2023080501410869200_c84 publication-title: Phys.-Usp. doi: 10.1070/PU1995v038n06ABEH000089 – volume: 29 start-page: 931 year: 2008 ident: 2023080501410869200_c32 publication-title: Environ. Technol. doi: 10.1080/09593330802318894 – volume-title: Water Treatment: Principles and Design year: 2005 ident: 2023080501410869200_c36 – volume: 33 start-page: 1 year: 2013 ident: 2023080501410869200_c75 publication-title: Plasma Chem. Plasma Process doi: 10.1007/s11090-012-9425-5 – volume: 23 start-page: 1 year: 2003 ident: 2023080501410869200_c63 publication-title: Plasma Chem. Plasma Process. doi: 10.1023/A:1022470901385 – volume: 96 start-page: 5129 issue: 9 year: 2004 ident: 2023080501410869200_c92 publication-title: J. Appl. Phys. doi: 10.1063/1.1792391 – volume-title: Electrical Discharges for Environmental Purposes year: 2000 ident: 2023080501410869200_c65 – volume: 187 start-page: 65 year: 2006 ident: 2023080501410869200_c29 publication-title: Desalination doi: 10.1016/j.desal.2005.04.068 – volume: 41 start-page: 215201 year: 2008 ident: 2023080501410869200_c156 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/21/215201 – volume: 236 start-page: 348 year: 2014 ident: 2023080501410869200_c124 publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2013.09.090 – year: 2011 ident: 2023080501410869200_c20 article-title: Organic compounds assessed in Chattahoochee River water used for public supply near Atlanta, Georgia, 2004-05 – volume: 101 start-page: 053302 year: 2007 ident: 2023080501410869200_c76 publication-title: J. Appl. Phys. doi: 10.1063/1.2437675 – year: 2010 ident: 2023080501410869200_c16 article-title: Treating Contaminants of emerging concern: A literature review database – volume: 12 start-page: 125 year: 2003 ident: 2023080501410869200_c163 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/12/2/301 – volume: 5 start-page: 503 year: 2008 ident: 2023080501410869200_c58 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200700154 – volume: 44 start-page: 493 year: 2010 ident: 2023080501410869200_c141 publication-title: Water Res. doi: 10.1016/j.watres.2009.09.029 – volume: 25 start-page: 185 year: 2000 ident: 2023080501410869200_c7 publication-title: Water Int. doi: 10.1080/02508060008686817 – volume: 337 start-page: 159 year: 2005 ident: 2023080501410869200_c100 publication-title: C. R. Geosci. doi: 10.1016/j.crte.2004.09.018 – volume: 30 start-page: 883 year: 2010 ident: 2023080501410869200_c48 publication-title: Plasma Chem. Plasma Process doi: 10.1007/s11090-009-9207-x – volume: 30 start-page: 1409 year: 2002 ident: 2023080501410869200_c55 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2002.804220 – year: 2015 ident: 2023080501410869200_c31 article-title: State water resources control board regulations related to recycled water – volume: 57 start-page: 8097 year: 2016 ident: 2023080501410869200_c142 publication-title: Desalin. Water Treat. doi: 10.1080/19443994.2015.1024752 – year: 2014 ident: 2023080501410869200_c96 – volume: 64 start-page: 416 year: 2006 ident: 2023080501410869200_c110 publication-title: J. Electrost. doi: 10.1016/j.elstat.2005.11.004 – volume: 19 start-page: 1579 year: 2012 ident: 2023080501410869200_c103 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/TDEI.2012.6311503 – volume: 81 start-page: 124 year: 2015 ident: 2023080501410869200_c128 publication-title: Water Res. doi: 10.1016/j.watres.2015.05.037 – volume: 39 start-page: 2652 year: 2011 ident: 2023080501410869200_c155 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2158324 – volume: 2 start-page: 274 year: 2010 ident: 2023080501410869200_c69 publication-title: Nat. Chem. doi: 10.1038/nchem.580 – volume: 14 start-page: 771 year: 2005 ident: 2023080501410869200_c106 publication-title: Pol. J. Environ. Stud. – volume: 53 start-page: 51 year: 1999 ident: 2023080501410869200_c40 publication-title: Catal. Today doi: 10.1016/S0920-5861(99)00102-9 – volume: 461–462 start-page: 480 year: 2013 ident: 2023080501410869200_c33 publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2013.05.034 – volume: 130 start-page: 17 year: 2004 ident: 2023080501410869200_c143 publication-title: J. Environ. Eng. doi: 10.1061/(ASCE)0733-9372(2004)130:1(17) – year: 2016 ident: 2023080501410869200_c125 article-title: Treatment of perfluoroalkyl acids by nonthermal plasma processes – ident: 2023080501410869200_c66 doi: 10.1109/PLASMA.2013.6633242 – volume: 30 start-page: 2526 year: 1996 ident: 2023080501410869200_c122 publication-title: Environ. Sci. Technol. doi: 10.1021/es950850s – ident: 2023080501410869200_c152 – volume: 13 start-page: 053025 year: 2011 ident: 2023080501410869200_c149 publication-title: New J. Phys. doi: 10.1088/1367-2630/13/5/053025 – volume: 45 start-page: 415203 year: 2012 ident: 2023080501410869200_c97 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/41/415203 – volume: 48 start-page: 424004 year: 2015 ident: 2023080501410869200_c127 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/42/424004 – volume: 47 start-page: 22818 year: 2009 ident: 2023080501410869200_c82 publication-title: Eur. Phys. J. Appl. Phys. doi: 10.1051/epjap/2009110 – volume: 24 start-page: 055005 year: 2015 ident: 2023080501410869200_c52 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/24/5/055005 – volume: 9 start-page: 361 year: 2000 ident: 2023080501410869200_c118 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/9/3/315 – volume: 44 start-page: 1127 year: 2016 ident: 2023080501410869200_c138 article-title: 2-D apparatus for the study of the plasma liquid interface publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2016.2567322 – volume: 37 start-page: 1016 year: 2003 ident: 2023080501410869200_c38 publication-title: Environ Sci. Technol. doi: 10.1021/es025896h – volume: 55 start-page: 33 year: 2007 ident: 2023080501410869200_c21 publication-title: Mar. Pollut. Bull. – ident: 2023080501410869200_c136 – volume: 6 start-page: 729 year: 2009 ident: 2023080501410869200_c80 publication-title: Plasma Process. Polym. doi: 10.1002/ppap.200900044 – volume: 42 start-page: 053001 year: 2009 ident: 2023080501410869200_c45 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/42/5/053001 – volume-title: Advanced Oxidation Processes year: 2011 ident: 2023080501410869200_c137 – volume: 1 start-page: 5 year: 2007 ident: 2023080501410869200_c10 article-title: Will the wet get wetter and the dry drier publication-title: NOAA, GFDL Clim. Model. Res. Highlights – volume: 38 start-page: 4074 year: 2005 ident: 2023080501410869200_c115 publication-title: J. Phys. D: Apply. Phys. doi: 10.1088/0022-3727/38/22/010 – volume: 8 start-page: 105 year: 2016 ident: 2023080501410869200_c121 publication-title: J. Adv. Oxd. Technol. doi: 10.1515/jaots-2005-0117 – volume: 42 start-page: 2622 year: 2014 ident: 2023080501410869200_c150 article-title: Induced liquid phase flow by RF Ar cold atmospheric pressure plasma jet publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2328793 – ident: 2023080501410869200_c4 – volume: 5 start-page: 306 year: 1998 ident: 2023080501410869200_c101 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/94.689419 – volume: 54 start-page: 909 year: 2004 ident: 2023080501410869200_c5 publication-title: Bioscience doi: 10.1641/0006-3568(2004)054[0909:WRAAEI]2.0.CO;2 – volume: 54 start-page: 086201 year: 2015 ident: 2023080501410869200_c151 publication-title: Jpn. J. Appl. Phys. doi: 10.7567/JJAP.54.086201 – volume: 30 start-page: 21 year: 2010 ident: 2023080501410869200_c134 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-009-9202-2 – year: 2008 ident: 2023080501410869200_c130 article-title: Pulsed corona discharge in water for coli bacteria inactivation – volume: 61 start-page: 2 year: 2006 ident: 2023080501410869200_c54 publication-title: Spectrochim. Acta Part B doi: 10.1016/j.sab.2005.10.003 – volume: 39 start-page: 2979 year: 2006 ident: 2023080501410869200_c64 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/39/14/017 – volume: 23 start-page: 015020 year: 2014 ident: 2023080501410869200_c99 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/23/1/015020 – ident: 2023080501410869200_c23 – volume: 12 start-page: 976 year: 2012 ident: 2023080501410869200_c24 publication-title: Middle East J. Sci. Res. – volume: 1 start-page: 13 year: 1996 ident: 2023080501410869200_c135 publication-title: J. Adv. Oxid. Technol. – volume: 18 start-page: 647 year: 1985 ident: 2023080501410869200_c102 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/18/4/009 – volume: 50 start-page: 59 year: 2001 ident: 2023080501410869200_c39 publication-title: Proc. Estonian Acad. Sci. Chem. doi: 10.3176/chem.2001.2.01 – volume: 13 start-page: 023502 year: 2006 ident: 2023080501410869200_c61 publication-title: Phys. Plasmas. doi: 10.1063/1.2172926 – ident: 2023080501410869200_c144 – volume: 19 start-page: 045025 year: 2010 ident: 2023080501410869200_c46 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/19/4/045025 – volume: 54 start-page: 351 year: 2003 ident: 2023080501410869200_c78 publication-title: J. Home Econ. Jpn. – volume: 40 start-page: 1311 year: 2012 ident: 2023080501410869200_c44 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2180028 – ident: 2023080501410869200_c1 – volume: 21 start-page: 775 year: 2007 ident: 2023080501410869200_c12 publication-title: Water Resour. Manage. doi: 10.1007/s11269-006-9111-6 – start-page: 2006 ident: 2023080501410869200_c56 article-title: Atmospheric pressure plasma process and applications – volume: 37 start-page: 169 year: 2004 ident: 2023080501410869200_c119 publication-title: Sep. Purif. Technol. doi: 10.1016/S1383-5866(03)00166-7 – volume: 46 start-page: 6554 year: 2012 ident: 2023080501410869200_c132 publication-title: Water Res. doi: 10.1016/j.watres.2012.09.041 – volume-title: Produced Water Volumes and Management Practices in the U.S. year: 2009 ident: 2023080501410869200_c26 – volume: 20 start-page: 034003 year: 2011 ident: 2023080501410869200_c88 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/20/3/034003 – volume: 48 start-page: 355203 year: 2015 ident: 2023080501410869200_c162 publication-title: J. Phys. D. doi: 10.1088/0022-3727/48/35/355203 – volume: 16 start-page: 226 year: 2007 ident: 2023080501410869200_c83 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/16/2/003 – volume: 23 start-page: 054010 year: 2014 ident: 2023080501410869200_c153 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/23/5/054010 – volume-title: Cathodic Arcs year: 2008 ident: 2023080501410869200_c85 – ident: 2023080501410869200_c6 – volume: 39 start-page: 1099 year: 2011 ident: 2023080501410869200_c113 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2011.2109402 – volume: 45 start-page: 882 year: 2006 ident: 2023080501410869200_c43 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie050981u – volume: 17 start-page: 990 year: 2010 ident: 2023080501410869200_c41 publication-title: Ultrasonics Sonochemistry doi: 10.1016/j.ultsonch.2009.09.005 – volume: 28 start-page: 677 year: 2008 ident: 2023080501410869200_c111 publication-title: Plasma Chem. Plasma Process. doi: 10.1007/s11090-008-9155-x – volume: 2 start-page: 036001 year: 2009 ident: 2023080501410869200_c154 publication-title: Appl. Phys. Express doi: 10.1143/APEX.2.036001 – volume: IA-23 start-page: 224 issue: 2 year: 1987 ident: 2023080501410869200_c109 publication-title: IEEE Trans. Ind. Appl. doi: 10.1109/TIA.1987.4504897 – volume: 48 start-page: 424008 year: 2015 ident: 2023080501410869200_c161 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/42/424008 – start-page: 1292 volume-title: Volatile Organic Compounds in the Nation's Ground Water and Drinking Water Wells year: 2006 ident: 2023080501410869200_c18 – volume: 44 start-page: 4243 year: 2005 ident: 2023080501410869200_c81 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie048807d – volume: 41 start-page: 234007 year: 2008 ident: 2023080501410869200_c74 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/41/23/234007 – ident: 2023080501410869200_c25 – volume: 11 start-page: 115011 year: 2009 ident: 2023080501410869200_c57 publication-title: New J. Phys. doi: 10.1088/1367-2630/11/11/115011 – volume: 28 start-page: 178 year: 1995 ident: 2023080501410869200_c73 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/28/1/025 – volume: 19 start-page: 025001 year: 2010 ident: 2023080501410869200_c89 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/19/2/025001 – volume: 98 start-page: 503 year: 2012 ident: 2023080501410869200_c34 publication-title: Sep. Purif. Technol. doi: 10.1016/j.seppur.2012.07.025 – volume: 33 start-page: 2618 year: 2000 ident: 2023080501410869200_c62 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/33/20/315 – volume-title: Arroyo year: 2013 ident: 2023080501410869200_c19 – volume: 19 start-page: 187 year: 2009 ident: 2023080501410869200_c3 publication-title: Great Plains Res. – volume: 10 start-page: 82 year: 2001 ident: 2023080501410869200_c42 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/10/1/311 – volume: 41 start-page: 503 year: 2013 ident: 2023080501410869200_c114 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2013.2245426 – volume: 289 start-page: 284 year: 2000 ident: 2023080501410869200_c2 publication-title: Science doi: 10.1126/science.289.5477.284 – volume: 17 start-page: 025006 year: 2008 ident: 2023080501410869200_c112 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/17/2/025006 – volume-title: Grand Challenges for Engineering year: 2008 ident: 2023080501410869200_c9 – volume-title: GAO Highlights year: 2014 ident: 2023080501410869200_c13 article-title: Freshwater supply concerns continue, and uncertainties complicate planning – volume-title: Fundamentals of Radiation Chemistry year: 1999 ident: 2023080501410869200_c68 – volume: 48 start-page: 424007 year: 2015 ident: 2023080501410869200_c49 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/48/42/424007 – volume: 7 start-page: 646 issue: 5 year: 2002 ident: 2023080501410869200_c116 publication-title: IEEE Trans. Dielectrics Electr. Insul. doi: 10.1109/94.879360 – volume: 84 start-page: 4090 year: 1962 ident: 2023080501410869200_c71 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja00880a025 – start-page: 2650 year: 2001 ident: 2023080501410869200_c147 publication-title: Chem. Commun. doi: 10.1039/b107616g – start-page: 9 year: 2016 ident: 2023080501410869200_c157 article-title: An investigation of the role of near-anode plasma conditions on anode spot self organization in atmospheric pressure DC glows – volume: 96 start-page: 3617 issue: 7 year: 2004 ident: 2023080501410869200_c93 publication-title: J. Appl. Phys. doi: 10.1063/1.1789274 – volume: 72 start-page: 289 year: 1998 ident: 2023080501410869200_c105 publication-title: J. Chem. Technol. Biotechnol. doi: 10.1002/(SICI)1097-4660(199808)72:4%3C289::AID-JCTB905%3E3.0.CO;2-# – volume: 117 start-page: 5993 year: 2013 ident: 2023080501410869200_c129 publication-title: J. Phys. Chem. C. doi: 10.1021/jp3128516 – ident: 2023080501410869200_c22 – volume: 46 start-page: 105201 year: 2013 ident: 2023080501410869200_c104 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/46/10/105201 – volume: 63 start-page: 243 year: 2004 ident: 2023080501410869200_c108 publication-title: Dyes Pigm. doi: 10.1016/j.dyepig.2004.03.005 – volume: 42 start-page: 2736 year: 2014 ident: 2023080501410869200_c126 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/TPS.2014.2325977 – volume: 45 start-page: 3665 year: 2011 ident: 2023080501410869200_c35 publication-title: Environ Sci. Technol. doi: 10.1021/es104287n – volume: 6 start-page: 351 year: 1999 ident: 2023080501410869200_c86 publication-title: IEEE Trans. Dielectr. Electr. Insul. doi: 10.1109/94.775622 – volume: 72 start-page: 199 year: 2015 ident: 2023080501410869200_c17 publication-title: Water Res. doi: 10.1016/j.watres.2014.10.027 – volume: 41 start-page: 5906 year: 2002 ident: 2023080501410869200_c117 publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0203328 – volume: 74 start-page: 271 year: 1992 ident: 2023080501410869200_c91 publication-title: Sov. Phys. JETP – volume: 97 start-page: 113304 year: 2005 ident: 2023080501410869200_c94 publication-title: J. Appl. Phys. doi: 10.1063/1.1921338 – volume-title: Thermal Plasmas: Fundamental and Applications year: 1994 ident: 2023080501410869200_c59 – volume: 18 start-page: 035010 year: 2009 ident: 2023080501410869200_c95 publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/18/3/035010 – volume: 44 start-page: 082001 year: 2011 ident: 2023080501410869200_c148 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/44/8/082001 – volume-title: The Acoustic Bubble year: 1997 ident: 2023080501410869200_c146 – volume: 23 start-page: 4 year: 2005 ident: 2023080501410869200_c14 publication-title: Renewable Resour. – volume: 7 start-page: 231 year: 2010 ident: 2023080501410869200_c131 publication-title: Plasma Process Polym. doi: 10.1002/ppap.200900070 – ident: 2023080501410869200_c27 – year: 2003 ident: 2023080501410869200_c90 article-title: Model analysis of breakdown in high voltage, water based switches – volume: 6 start-page: 23737 year: 2015 ident: 2023080501410869200_c139 publication-title: Sci. Rep. doi: 10.1038/srep23737 – volume: 4 start-page: 1978 year: 2016 ident: 2023080501410869200_c28 publication-title: J. Environ. Chem. Eng. doi: 10.1016/j.jece.2016.03.013 – volume: 25 start-page: 053002 year: 2016 ident: 2023080501410869200_c67 article-title: Plasma liquid interactions: a review and roadmap publication-title: Plasma Sources Sci. Technol. doi: 10.1088/0963-0252/25/5/053002 – volume: 43 start-page: 124005 year: 2010 ident: 2023080501410869200_c160 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/43/12/124005 – volume: 6 start-page: 7248 year: 2015 ident: 2023080501410869200_c72 publication-title: Nat. Commun. doi: 10.1038/ncomms8248 – volume: 91 start-page: 314 year: 2013 ident: 2023080501410869200_c123 publication-title: Bull Environ. Contam. Toxicol. doi: 10.1007/s00128-013-1048-x – ident: 2023080501410869200_c8 – volume: 45 start-page: 253001 year: 2012 ident: 2023080501410869200_c50 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/25/253001 – volume: 106 start-page: 013303 year: 2009 ident: 2023080501410869200_c60 publication-title: J. Appl. Phys. doi: 10.1063/1.3143781 – volume: 34 start-page: 403 year: 2014 ident: 2023080501410869200_c47 publication-title: Plasma Chem. Plasma Process doi: 10.1007/s11090-014-9545-1 – year: 2015 ident: 2023080501410869200_c133 article-title: Drinking water health advisory for the cyanobacterial microcystin toxins – volume: 45 start-page: 263001 year: 2012 ident: 2023080501410869200_c158 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/45/26/263001 – volume: 49 start-page: 093001 year: 2016 ident: 2023080501410869200_c164 publication-title: J. Phys. D: Appl. Phys. doi: 10.1088/0022-3727/49/9/093001 – volume: 74 start-page: 1083 year: 2007 ident: 2023080501410869200_c11 publication-title: Technol. Forecast. Social Change doi: 10.1016/j.techfore.2006.05.021 – year: 2012 ident: 2023080501410869200_c30 article-title: Guidelines for water reuse – year: 2016 ident: 2023080501410869200_c145 article-title: High throughput plasma water treatment – volume: 92 start-page: 1633 year: 2004 ident: 2023080501410869200_c107 publication-title: J. Appl. Polym. Sci. doi: 10.1002/app.13714 – ident: 2023080501410869200_c140 – volume: 2 start-page: 247 year: 2010 ident: 2023080501410869200_c70 publication-title: Nat. Chem. doi: 10.1038/nchem.604 – volume: 28 start-page: 189 year: 2000 ident: 2023080501410869200_c53 publication-title: IEEE Trans. Plasma Sci. doi: 10.1109/27.842901 – volume-title: Engineer's Handbook of Industrial Microwave Heating year: 1998 ident: 2023080501410869200_c79 |
SSID | ssj0004658 |
Score | 2.6438844 |
Snippet | Freshwater scarcity derived from seasonal weather variations, climate change, and
over-development has led to serious consideration for water reuse.
Water... Freshwater scarcity derived from seasonal weather variations, climate change, and over-development has led to serious consideration for water reuse. Water... |
SourceID | osti crossref scitation |
SourceType | Open Access Repository Enrichment Source Index Database Publisher |
SubjectTerms | 70 PLASMA PHYSICS AND FUSION TECHNOLOGY |
Title | Plasma-based water purification: Challenges and prospects for the future |
URI | http://dx.doi.org/10.1063/1.4977921 https://www.osti.gov/servlets/purl/1465690 |
Volume | 24 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1089-7674 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004658 issn: 1070-664X databaseCode: ADMLS dateStart: 19940101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxNBFD5oiqgP4pXGqgzqgyCTbnbnsuNbqZUgVgRb6Nuyc1kUbHZJtwr-es_Mzl6UINWXJQyHSXK-ycw34fvOAXjJS66YtoLKTBrKtG_krlJNmXP-eJJ5GZA-_ihWp-z9GT8bmzUEd0mrF-bnVl_J_6CKY4ird8n-A7LDpDiArxFffCLC-LwSxp-Q-p6X1J9E9vWP0tc7bC43XvwzaDYO-2YpF7EkQB28lReDvHAsKtJz1CAKNUHi0YQ3GC0idd_HIwhujhbT_wzwHBoUenGbwx86FaLTRi5cHMsV9aV9pntj52-Oa4Bv3XKR4_jb_4Ihk1Sd2_mPCtZN3VyHnVQKkc5g5-Dt8YfPE-sq79yK8QP1xZ9Etj9M-RtlmOE3_XobbiJB6LQKEzpwchfuRB5PDjpQ7sE1t74PN2LqHsBqCg0J0JApNG_ICAxBYMgADEFgCAJDOmAewum7o5PDFY1NK6hhgrVUcm51wm2S5cbg3VkrIU0okaSZRTpnRL6Uy0xmlaycKSueqqVGjuiSxCXG5NkjmK3rtdsFoiySMSEV3nkrpkpb5o6nzuWVVQpj2Rxe9Xkp-mz4xiLfiqAsEFmxLGIK5_B8CG26MibbgvZ8cgufWme-GK-0Mq2_HHKhkjm8GHL-tzm2RH2vN2NE0djq8ZXm2oNb4-J9ArN2c-meIgVs9bO4jH4BGsZbPw |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plasma-based+water+purification%3A+Challenges+and+prospects+for+the+future&rft.jtitle=Physics+of+plasmas&rft.au=Foster%2C+John+E.&rft.date=2017-05-01&rft.issn=1070-664X&rft.eissn=1089-7674&rft.volume=24&rft.issue=5&rft_id=info:doi/10.1063%2F1.4977921&rft.externalDocID=pop |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-664X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-664X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-664X&client=summon |