New plane-sweep algorithms for distance-based join queries in spatial databases
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied...
        Saved in:
      
    
          | Published in | GeoInformatica Vol. 20; no. 4; pp. 571 - 628 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        New York
          Springer US
    
        01.10.2016
     Springer Springer Nature B.V  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1384-6175 1573-7624 1573-7624  | 
| DOI | 10.1007/s10707-016-0246-1 | 
Cover
| Abstract | Efficient and effective processing of the
distance-based join query
(DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the
K
Closest Pairs Query (
K
CPQ) and
ε
Distance Join Query (
ε
DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (
K
) or a distance threshold (
ε
). In this paper, we propose four new plane-sweep-based algorithms for
K
CPQs and their extensions for
ε
DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of
plane-sweep
algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for
K
CPQs and
ε
DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for
K
CPQs and
ε
DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases. | 
    
|---|---|
| AbstractList | Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and epsilon Distance Join Query ( epsilon DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold ( epsilon ). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for epsilon DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and epsilon DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and epsilon DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases. Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and ζDistance Join Query (ζDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ζ). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for ζDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and ζDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and ζDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases. Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and [straight epsilon]Distance Join Query ([straight epsilon]DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold ([straight epsilon]). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for [straight epsilon]DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and [straight epsilon]DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and [straight epsilon]DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases. Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query ( K CPQ) and ε Distance Join Query ( ε DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result ( K ) or a distance threshold ( ε ). In this paper, we propose four new plane-sweep-based algorithms for K CPQs and their extensions for ε DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for K CPQs and ε DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for K CPQs and ε DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.  | 
    
| Audience | Academic | 
    
| Author | Roumelis, George Corral, Antonio Vassilakopoulos, Michael Manolopoulos, Yannis  | 
    
| Author_xml | – sequence: 1 givenname: George surname: Roumelis fullname: Roumelis, George organization: Department of Informatics, Aristotle University – sequence: 2 givenname: Antonio surname: Corral fullname: Corral, Antonio organization: Department on Informatics, University of Almeria – sequence: 3 givenname: Michael orcidid: 0000-0003-2256-5523 surname: Vassilakopoulos fullname: Vassilakopoulos, Michael email: mvasilako@uth.gr organization: Department of Electrical and Computer Engineering, University of Thessaly – sequence: 4 givenname: Yannis surname: Manolopoulos fullname: Manolopoulos, Yannis organization: Department of Informatics, Aristotle University  | 
    
| BookMark | eNqNkU9r3DAQxUVIIX_aD9CboZdelEiyZGmPIbRpISSX9ixkebzRopVcycuSb98xziEEWoIOGsT7zei9uSCnKScg5DNnV5wxfV0500xTxjvKhOwoPyHnXOmW6k7IU6xbI2nHtTojF7XuGGMKgXPy-ADHZoouAa1HgKlxcZtLmJ_2tRlzaYZQZ5c80N5VGJpdDqn5c4ASoDZY1snNwcVmcLNbFPUj-TC6WOHTy31Jfn__9uv2B71_vPt5e3NPvezkTJXUvRDeGWmE8tK3vWC98Y73vd44KbwRTPZMaSW5BNGN0LfQ8nFQhhuH-ksi1r6HNLnno4vRTiXsXXm2nNklErtGYjESu0RiOUJfV2gqGU3U2e5D9RAX-_lQLTdSGSaNad8hFdoYtpFL1y9vpLt8KAndo4pvOrXRRqHqalVtXQQb0pjn4jyeAfbB4zLHgO83Er8sRas6BPgK-JJrLTC-y6B-w_gw44ZywmEh_pd8ybPilLSF8srEP6G_yRW-OA | 
    
| CitedBy_id | crossref_primary_10_1080_03081079_2023_2173750 crossref_primary_10_3390_ijgi10110763 crossref_primary_10_1016_j_ins_2019_10_030 crossref_primary_10_1002_cpe_5339 crossref_primary_10_1016_j_csi_2017_05_003 crossref_primary_10_1007_s10707_017_0309_y crossref_primary_10_1016_j_future_2019_10_037 crossref_primary_10_1016_j_ins_2024_120732 crossref_primary_10_1016_j_datak_2019_04_003 crossref_primary_10_1016_j_tcs_2021_09_012  | 
    
| Cites_doi | 10.1109/TKDE.2003.1245293 10.1007/978-1-4612-1098-6 10.1145/503099.503101 10.1109/ICDE.2011.5767903 10.1016/j.datak.2003.08.007 10.1145/152610.152611 10.1109/ICDE.2008.4497443 10.1109/TKDE.2008.85 10.1007/BF01231602 10.1145/93605.98741 10.1145/280277.280279 10.1145/276305.276326 10.1016/j.datak.2004.08.003 10.1007/s10707-012-0169-4 10.1109/ICDE.1997.582015 10.1145/335191.335414 10.1145/235968.233338 10.1093/comjnl/bxh060 10.1145/2463676.2463700 10.1109/TKDE.2015.2427795 10.1007/978-3-540-45072-6_16 10.1109/TKDE.2009.141 10.1007/s10115-003-0122-9 10.1016/0020-0190(88)90150-0 10.1109/SSDM.2000.869785 10.1145/602259.602266 10.1145/235968.233337 10.1145/937598.937600 10.1109/TKDE.2003.1209007 10.1145/48529.48535 10.1016/B978-044482537-7/50021-8 10.1145/1206049.1206056 10.1007/978-3-540-45072-6_15 10.1145/2629477 10.1007/978-3-319-04298-5_42 10.1016/j.ins.2006.12.012 10.1145/170036.170075 10.1109/69.842246  | 
    
| ContentType | Journal Article | 
    
| Copyright | Springer Science+Business Media New York 2016 COPYRIGHT 2016 Springer  | 
    
| Copyright_xml | – notice: Springer Science+Business Media New York 2016 – notice: COPYRIGHT 2016 Springer  | 
    
| DBID | AAYXX CITATION 3V. 7SC 7XB 88I 8AL 8FD 8FE 8FG 8FK ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ H96 HCIFZ JQ2 K7- KR7 L.G L7M L~C L~D M0N M2P P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PYCSY Q9U ADTOC UNPAY  | 
    
| DOI | 10.1007/s10707-016-0246-1 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional Computing Database Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Environmental Science Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central Earth, Atmospheric & Aquatic Science Collection ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing ProQuest Science Journals (Alumni Edition) ProQuest Central Basic ProQuest Science Journals ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Environmental Science Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database Engineering Research Database ProQuest One Academic ProQuest Central (Alumni) ProQuest One Academic (New)  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Civil Engineering Abstracts  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography Computer Science  | 
    
| EISSN | 1573-7624 | 
    
| EndPage | 628 | 
    
| ExternalDocumentID | oai:dnet:riualreposit::8b2a25317731409db5f13cc17bff1565 4183199741 A470742356 10_1007_s10707_016_0246_1  | 
    
| GrantInformation_xml | – fundername: European Regional Development Fund and Greek National Funds grantid: 11SYN 8 1213 – fundername: Junta de Andalucia research project grantid: P10-TIC-6114 – fundername: MINECO research project grantid: TIN2013-41576-R  | 
    
| GroupedDBID | -5A -5G -BR -EM -Y2 -~C .4S .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 203 29H 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2XV 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 7XC 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCSS ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. B0M BA0 BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EAD EAP EBLON EBS EDO EIOEI EJD EMK EPL ESBYG ESX FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IAO IHE IJ- IKXTQ ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6V K7- KDC KOV LAK LK5 LLZTM M0N M2P M4Y M7R MA- MK~ ML~ N2Q NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P62 P9O PATMY PCBAR PF0 PQQKQ PROAC PT4 PT5 PYCSY Q2X QOS R89 R9I RNI ROL RPX RSV RZC RZE RZK S16 S1Z S27 S3B SAP SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 XH6 YLTOR Z45 Z7Z Z83 Z88 ZMTXR ~8M ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO 7SC 7XB 8AL 8FD 8FK F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D PKEHL PQEST PQUKI Q9U ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c464t-547b22ca84825c4c3b20b8ca1bb79a42c8204b0575414e26feb3e31fd5818a4c3 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 1384-6175 1573-7624  | 
    
| IngestDate | Thu Aug 28 11:15:19 EDT 2025 Thu Oct 02 11:35:17 EDT 2025 Thu Oct 02 04:11:21 EDT 2025 Sat Jul 26 00:55:25 EDT 2025 Mon Oct 20 16:36:07 EDT 2025 Thu Apr 24 22:59:19 EDT 2025 Wed Oct 01 01:13:16 EDT 2025 Fri Feb 21 02:33:54 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | Spatial databases Plane-sweep technique Spatial query evaluation Query processing Distance-based join queries  | 
    
| Language | English | 
    
| License | cc-by-nc-nd | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c464t-547b22ca84825c4c3b20b8ca1bb79a42c8204b0575414e26feb3e31fd5818a4c3 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23  | 
    
| ORCID | 0000-0003-2256-5523 | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10835/5276 | 
    
| PQID | 1819659785 | 
    
| PQPubID | 105513 | 
    
| PageCount | 58 | 
    
| ParticipantIDs | unpaywall_primary_10_1007_s10707_016_0246_1 proquest_miscellaneous_1845804883 proquest_miscellaneous_1827880941 proquest_journals_1819659785 gale_infotracacademiconefile_A470742356 crossref_primary_10_1007_s10707_016_0246_1 crossref_citationtrail_10_1007_s10707_016_0246_1 springer_journals_10_1007_s10707_016_0246_1  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20161000 2016-10-00 20161001  | 
    
| PublicationDateYYYYMMDD | 2016-10-01 | 
    
| PublicationDate_xml | – month: 10 year: 2016 text: 20161000  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | New York | 
    
| PublicationPlace_xml | – name: New York – name: Dordrecht  | 
    
| PublicationSubtitle | An International Journal on Advances of Computer Science for Geographic Information Systems | 
    
| PublicationTitle | GeoInformatica | 
    
| PublicationTitleAbbrev | Geoinformatica | 
    
| PublicationYear | 2016 | 
    
| Publisher | Springer US Springer Springer Nature B.V  | 
    
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V  | 
    
| References | Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: SIGMOD conference, pp 237–246 Lo M-L, Ravishankar CV (1996) Spatial hash-joins. In: SIGMOD conference, pp 247–258 Hjaltason G R, Samet H (1998) Incremental distance join algorithms for spatial databases. In: SIGMOD conference, pp 237–248 GraefeGQuery evaluation techniques for large databasesACM Comput Surv19932527317010.1145/152610.152611 MamoulisNPapadiasDMultiway spatial joinsACM Trans Database Syst200126442447510.1145/503099.503101 KimYJPatelJMPerformance comparison of the r*-tree and the quadtree for knn and distance join queriesIEEE Trans Knowl Data Eng20102271014102710.1109/TKDE.2009.141 Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD conference, pp 47–57 CorralAVassilakopoulosMOn approximate algorithms for distance-based queries using r-treesComput J200548222023810.1093/comjnl/bxh060 JacoxEHSametHSpatial join techniquesACM Trans Database Syst2007321710.1145/1206049.1206056 Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) New plane-sweep algorithms for distance-based join queries in spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece, http://delab.csd.auth.gr/~michalis/TR-01-2014.pdf Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: SSDBM conference, pp 297–306 Leutenegger ST, Edgington JM, Lopez MA (1997) Str: a simple and efficient algorithm for r-tree packing. In: ICDE conference, pp 497–506 SidlauskasDJensenCSSpatial joins in main memory Implementation matters!PVLDB20148197100 SametHFoundations of multidimensional and metric data structures2007San FranciscoMorgan Kaufmann Smid M (2000) Closest-point problems in computational geometry. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. Elsevier, Ch 20, pp 877–935 Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB conference, pp 194–205 SowellBSallesMAVCaoTDemersAJGehrkeJAn experimental analysis of iterated spatial joins in main memoryPVLDB201361418821893 CorralAAlmendros-JiménezJMA Performance comparison of distance-based query algorithms using r-trees in spatial databasesInf Sci2007177112207223710.1016/j.ins.2006.12.012 Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall Preparata FP, Shamos MI (1985) Computational geometry - an introduction. Springer HinrichsKNievergeltJSchornPPlane-sweep solves the closest pair problem elegantlyInf Process Lett198826525526110.1016/0020-0190(88)90150-0 BöhmCKrebsFThe k-nearest neighbour join: turbo charging the kdd processKnowl Inf Syst20046672874910.1007/s10115-003-0122-9 KoudasNSevcikKCHigh dimensional similarity joins: algorithms and performance evaluationIEEE Trans Knowl Data Eng200012131810.1109/69.842246 GütingRHAn introduction to spatial database systemsVLDB J19943435739910.1007/BF01231602 Gurret C, Rigaux P (2000) The sort/sweep algorithm: a new method for r-tree based spatial joins. In: SSDBM conference, pp 153–165 ULHMamoulisNYiuMLComputation and monitoring of exclusive closest pairsIEEE Trans Knowl Data Eng200820121641165410.1109/TKDE.2008.85 Bryan B, Eberhardt F, Faloutsos C (2008) Compact similarity joins. In: ICDE conference, pp 346– 355 ShinHMoonBLeeSAdaptive and incremental processing for distance join queriesIEEE Trans Knowl Data Eng20031561561157810.1109/TKDE.2003.1245293 JacoxEHSametHIterative spatial joinACM Trans Database Syst200328323025610.1145/937598.937600 RigauxPSchollMVoisardASpatial databases - with applications to GIS2002San FranciscoElsevier ZhangHChenGOoiBCTanKZhangMInmemory big data management and processing: a surveyIEEE Trans Knowl Data Eng20152771920194810.1109/TKDE.2015.2427795 ChoiDChungCTaoYMaximizing range sum in external memoryACM Trans. Database Syst.201439321:121:4410.1145/2629477 AngiulliFPizzutiCAn approximate algorithm for top-k closest pairs join query in large high dimensional dataData Knowl Eng200553326328110.1016/j.datak.2004.08.003 CorralAManolopoulosYTheodoridisYVassilakopoulosMAlgorithms for processing k-closest-pair queries in spatial databasesData Knowl Eng20044916710410.1016/j.datak.2003.08.007 ChanEPFBuffer queriesIEEE Trans Knowl Data Eng200315489591010.1109/TKDE.2003.1209007 Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial databases. In: SIGMOD conference, pp 189–200 Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2014) A new plane-sweep algorithm for the k-closest-pairs query. In: SOFSEM conference, pp 478–490 Nobari S, Tauheed F, Heinis T, Karras P, Bressan S, Ailamaki A (2013) TOUCH: in-memory spatial join by hierarchical data-oriented partitioning. In: SIGMOD conference, pp 701–712 Cheema MA, Lin X, Wang H, Wang J, Zhang W (2011) A unified approach for computing top-k pairs in multidimensional space. In: ICDE conference, pp 1031–1042 Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD conference, pp 322–331 GutiérrezGSáezPThe k closest pairs in spatial databases when only one set is indexedGeoInformatica201317454356510.1007/s10707-012-0169-4 Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: SIGMOD conference, pp 259–270 AggarwalAVitterJSThe input/output complexity of sorting and related problemsCommun ACM19883191116112710.1145/48529.48535 Yang C, Lin K-I (2002) An index structure for improving nearest closest pairs and related join queries in spatial databases. In: IDEAS conference, pp 140–149 Shou Y, Mamoulis N, Cao H, Papadias D, Cheung D W (2003) Evaluation of iceberg distance joins. In: SSTD conference, pp 270–288 GaedeVGüntherOMultidimensional access methodsACM Comput Surv199830217023110.1145/280277.280279 Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S (1998) Scalable sweeping-based spatial join. In: VLDB conference, pp 570–581 Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: SSTD conference, pp 252–269 246_CR15 RH Güting (246_CR2) 1994; 3 246_CR3 246_CR16 246_CR38 LH U (246_CR39) 2008; 20 EH Jacox (246_CR12) 2003; 28 246_CR13 246_CR35 246_CR5 246_CR14 246_CR11 246_CR7 YJ Kim (246_CR30) 2010; 22 246_CR32 G Graefe (246_CR46) 1993; 25 C Böhm (246_CR43) 2004; 6 P Rigaux (246_CR17) 2002 K Hinrichs (246_CR8) 1988; 26 246_CR1 G Gutiérrez (246_CR31) 2013; 17 V Gaede (246_CR4) 1998; 30 B Sowell (246_CR20) 2013; 6 N Koudas (246_CR33) 2000; 12 246_CR28 246_CR26 246_CR48 246_CR27 246_CR24 246_CR25 A Corral (246_CR37) 2005; 48 F Angiulli (246_CR36) 2005; 53 246_CR44 246_CR45 246_CR42 H Samet (246_CR18) 2007 246_CR40 H Shin (246_CR10) 2003; 15 D Sidlauskas (246_CR21) 2014; 8 N Mamoulis (246_CR23) 2001; 26 A Corral (246_CR29) 2007; 177 A Corral (246_CR6) 2004; 49 246_CR19 D Choi (246_CR41) 2014; 39 EH Jacox (246_CR9) 2007; 32 EPF Chan (246_CR34) 2003; 15 H Zhang (246_CR22) 2015; 27 A Aggarwal (246_CR47) 1988; 31  | 
    
| References_xml | – reference: ChoiDChungCTaoYMaximizing range sum in external memoryACM Trans. Database Syst.201439321:121:4410.1145/2629477 – reference: Leutenegger ST, Edgington JM, Lopez MA (1997) Str: a simple and efficient algorithm for r-tree packing. In: ICDE conference, pp 497–506 – reference: RigauxPSchollMVoisardASpatial databases - with applications to GIS2002San FranciscoElsevier – reference: AggarwalAVitterJSThe input/output complexity of sorting and related problemsCommun ACM19883191116112710.1145/48529.48535 – reference: Preparata FP, Shamos MI (1985) Computational geometry - an introduction. Springer – reference: ShinHMoonBLeeSAdaptive and incremental processing for distance join queriesIEEE Trans Knowl Data Eng20031561561157810.1109/TKDE.2003.1245293 – reference: GaedeVGüntherOMultidimensional access methodsACM Comput Surv199830217023110.1145/280277.280279 – reference: Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S (1998) Scalable sweeping-based spatial join. In: VLDB conference, pp 570–581 – reference: SametHFoundations of multidimensional and metric data structures2007San FranciscoMorgan Kaufmann – reference: HinrichsKNievergeltJSchornPPlane-sweep solves the closest pair problem elegantlyInf Process Lett198826525526110.1016/0020-0190(88)90150-0 – reference: Bryan B, Eberhardt F, Faloutsos C (2008) Compact similarity joins. In: ICDE conference, pp 346– 355 – reference: Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall – reference: Lo M-L, Ravishankar CV (1996) Spatial hash-joins. In: SIGMOD conference, pp 247–258 – reference: Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2014) A new plane-sweep algorithm for the k-closest-pairs query. In: SOFSEM conference, pp 478–490 – reference: Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) New plane-sweep algorithms for distance-based join queries in spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece, http://delab.csd.auth.gr/~michalis/TR-01-2014.pdf – reference: GraefeGQuery evaluation techniques for large databasesACM Comput Surv19932527317010.1145/152610.152611 – reference: Smid M (2000) Closest-point problems in computational geometry. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. Elsevier, Ch 20, pp 877–935 – reference: ChanEPFBuffer queriesIEEE Trans Knowl Data Eng200315489591010.1109/TKDE.2003.1209007 – reference: Cheema MA, Lin X, Wang H, Wang J, Zhang W (2011) A unified approach for computing top-k pairs in multidimensional space. In: ICDE conference, pp 1031–1042 – reference: JacoxEHSametHSpatial join techniquesACM Trans Database Syst2007321710.1145/1206049.1206056 – reference: Hjaltason G R, Samet H (1998) Incremental distance join algorithms for spatial databases. In: SIGMOD conference, pp 237–248 – reference: GutiérrezGSáezPThe k closest pairs in spatial databases when only one set is indexedGeoInformatica201317454356510.1007/s10707-012-0169-4 – reference: Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial databases. In: SIGMOD conference, pp 189–200 – reference: SidlauskasDJensenCSSpatial joins in main memory Implementation matters!PVLDB20148197100 – reference: Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: SSDBM conference, pp 297–306 – reference: Nobari S, Tauheed F, Heinis T, Karras P, Bressan S, Ailamaki A (2013) TOUCH: in-memory spatial join by hierarchical data-oriented partitioning. In: SIGMOD conference, pp 701–712 – reference: JacoxEHSametHIterative spatial joinACM Trans Database Syst200328323025610.1145/937598.937600 – reference: CorralAManolopoulosYTheodoridisYVassilakopoulosMAlgorithms for processing k-closest-pair queries in spatial databasesData Knowl Eng20044916710410.1016/j.datak.2003.08.007 – reference: Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: SIGMOD conference, pp 237–246 – reference: Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD conference, pp 47–57 – reference: CorralAVassilakopoulosMOn approximate algorithms for distance-based queries using r-treesComput J200548222023810.1093/comjnl/bxh060 – reference: Shou Y, Mamoulis N, Cao H, Papadias D, Cheung D W (2003) Evaluation of iceberg distance joins. In: SSTD conference, pp 270–288 – reference: ULHMamoulisNYiuMLComputation and monitoring of exclusive closest pairsIEEE Trans Knowl Data Eng200820121641165410.1109/TKDE.2008.85 – reference: ZhangHChenGOoiBCTanKZhangMInmemory big data management and processing: a surveyIEEE Trans Knowl Data Eng20152771920194810.1109/TKDE.2015.2427795 – reference: Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: SSTD conference, pp 252–269 – reference: Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD conference, pp 322–331 – reference: KimYJPatelJMPerformance comparison of the r*-tree and the quadtree for knn and distance join queriesIEEE Trans Knowl Data Eng20102271014102710.1109/TKDE.2009.141 – reference: BöhmCKrebsFThe k-nearest neighbour join: turbo charging the kdd processKnowl Inf Syst20046672874910.1007/s10115-003-0122-9 – reference: SowellBSallesMAVCaoTDemersAJGehrkeJAn experimental analysis of iterated spatial joins in main memoryPVLDB201361418821893 – reference: Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB conference, pp 194–205 – reference: GütingRHAn introduction to spatial database systemsVLDB J19943435739910.1007/BF01231602 – reference: Gurret C, Rigaux P (2000) The sort/sweep algorithm: a new method for r-tree based spatial joins. In: SSDBM conference, pp 153–165 – reference: Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: SIGMOD conference, pp 259–270 – reference: CorralAAlmendros-JiménezJMA Performance comparison of distance-based query algorithms using r-trees in spatial databasesInf Sci2007177112207223710.1016/j.ins.2006.12.012 – reference: KoudasNSevcikKCHigh dimensional similarity joins: algorithms and performance evaluationIEEE Trans Knowl Data Eng200012131810.1109/69.842246 – reference: MamoulisNPapadiasDMultiway spatial joinsACM Trans Database Syst200126442447510.1145/503099.503101 – reference: Yang C, Lin K-I (2002) An index structure for improving nearest closest pairs and related join queries in spatial databases. In: IDEAS conference, pp 140–149 – reference: AngiulliFPizzutiCAn approximate algorithm for top-k closest pairs join query in large high dimensional dataData Knowl Eng200553326328110.1016/j.datak.2004.08.003 – volume: 15 start-page: 1561 issue: 6 year: 2003 ident: 246_CR10 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2003.1245293 – ident: 246_CR7 doi: 10.1007/978-1-4612-1098-6 – volume: 26 start-page: 424 issue: 4 year: 2001 ident: 246_CR23 publication-title: ACM Trans Database Syst doi: 10.1145/503099.503101 – ident: 246_CR35 – ident: 246_CR40 doi: 10.1109/ICDE.2011.5767903 – volume: 49 start-page: 67 issue: 1 year: 2004 ident: 246_CR6 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2003.08.007 – volume: 25 start-page: 73 issue: 2 year: 1993 ident: 246_CR46 publication-title: ACM Comput Surv doi: 10.1145/152610.152611 – ident: 246_CR45 doi: 10.1109/ICDE.2008.4497443 – volume: 20 start-page: 1641 issue: 12 year: 2008 ident: 246_CR39 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2008.85 – volume: 3 start-page: 357 issue: 4 year: 1994 ident: 246_CR2 publication-title: VLDB J doi: 10.1007/BF01231602 – ident: 246_CR11 doi: 10.1145/93605.98741 – volume: 30 start-page: 170 issue: 2 year: 1998 ident: 246_CR4 publication-title: ACM Comput Surv doi: 10.1145/280277.280279 – ident: 246_CR16 doi: 10.1145/276305.276326 – volume: 53 start-page: 263 issue: 3 year: 2005 ident: 246_CR36 publication-title: Data Knowl Eng doi: 10.1016/j.datak.2004.08.003 – ident: 246_CR44 – volume: 17 start-page: 543 issue: 4 year: 2013 ident: 246_CR31 publication-title: GeoInformatica doi: 10.1007/s10707-012-0169-4 – ident: 246_CR48 doi: 10.1109/ICDE.1997.582015 – ident: 246_CR5 doi: 10.1145/335191.335414 – ident: 246_CR27 doi: 10.1145/235968.233338 – volume: 48 start-page: 220 issue: 2 year: 2005 ident: 246_CR37 publication-title: Comput J doi: 10.1093/comjnl/bxh060 – ident: 246_CR19 doi: 10.1145/2463676.2463700 – volume: 8 start-page: 97 issue: 1 year: 2014 ident: 246_CR21 publication-title: PVLDB – volume: 27 start-page: 1920 issue: 7 year: 2015 ident: 246_CR22 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2427795 – ident: 246_CR42 doi: 10.1007/978-3-540-45072-6_16 – volume: 22 start-page: 1014 issue: 7 year: 2010 ident: 246_CR30 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2009.141 – ident: 246_CR32 – volume: 6 start-page: 728 issue: 6 year: 2004 ident: 246_CR43 publication-title: Knowl Inf Syst doi: 10.1007/s10115-003-0122-9 – volume: 26 start-page: 255 issue: 5 year: 1988 ident: 246_CR8 publication-title: Inf Process Lett doi: 10.1016/0020-0190(88)90150-0 – volume-title: Foundations of multidimensional and metric data structures year: 2007 ident: 246_CR18 – ident: 246_CR14 doi: 10.1109/SSDM.2000.869785 – ident: 246_CR25 doi: 10.1145/602259.602266 – volume: 6 start-page: 1882 issue: 14 year: 2013 ident: 246_CR20 publication-title: PVLDB – ident: 246_CR26 doi: 10.1145/235968.233337 – volume: 28 start-page: 230 issue: 3 year: 2003 ident: 246_CR12 publication-title: ACM Trans Database Syst doi: 10.1145/937598.937600 – volume: 15 start-page: 895 issue: 4 year: 2003 ident: 246_CR34 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2003.1209007 – volume: 31 start-page: 1116 issue: 9 year: 1988 ident: 246_CR47 publication-title: Commun ACM doi: 10.1145/48529.48535 – ident: 246_CR13 – ident: 246_CR28 doi: 10.1016/B978-044482537-7/50021-8 – volume: 32 start-page: 7 issue: 1 year: 2007 ident: 246_CR9 publication-title: ACM Trans Database Syst doi: 10.1145/1206049.1206056 – ident: 246_CR38 doi: 10.1007/978-3-540-45072-6_15 – volume: 39 start-page: 21:1 issue: 3 year: 2014 ident: 246_CR41 publication-title: ACM Trans. Database Syst. doi: 10.1145/2629477 – ident: 246_CR1 doi: 10.1007/978-3-319-04298-5_42 – ident: 246_CR15 – volume: 177 start-page: 2207 issue: 11 year: 2007 ident: 246_CR29 publication-title: Inf Sci doi: 10.1016/j.ins.2006.12.012 – volume-title: Spatial databases - with applications to GIS year: 2002 ident: 246_CR17 – ident: 246_CR24 doi: 10.1145/170036.170075 – volume: 12 start-page: 3 issue: 1 year: 2000 ident: 246_CR33 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/69.842246 – ident: 246_CR3  | 
    
| SSID | ssj0005070 | 
    
| Score | 2.1768916 | 
    
| Snippet | Efficient and effective processing of the
distance-based join query
(DJQ) is of great importance in spatial databases due to the wide area of applications that... Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that...  | 
    
| SourceID | unpaywall proquest gale crossref springer  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 571 | 
    
| SubjectTerms | Algorithms Analysis Computer Science Data Structures and Information Theory Datasets Earth and Environmental Science Geographical Information Systems/Cartography Geography Geospatial data Information Storage and Retrieval Multimedia Information Systems Partitioning Performance indices Queries Query processing Resource management Spatial analysis Spatial data Transportation planning Urban planning  | 
    
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fNA-iJ-Y9iwrCEJlMdlMPu6hFFsU8eEUqeBb2OwmfnDNpc0dcv-9M7nk7lro-RbIJNmP2ZnZ7G9-A3BsjUVOxJE5OXuJvnGlVpaMobZursjHuHnN9tkPr-7x-iF4WIF-mwvDsMrWJtaG2g4N_yM_I0_E3HdRHHwrf0uuGsWnq20JDd2UVrBfa4qxVVhTzIzVgbXvF_3buznow42mecMxcnJc0J5zTpPpohqGyaBcDKX3l6f6114vHJx-gPVxUerJqx4MFnzT5RZsNkGlOJ9qwTasZMUOrDf1zZ8mu3BDtkyUjGuV1WuWlUIPHqlzo6dflaCoVViOImn6JTs1K16Gz4WgBvA2WtBlxbBr-gDDSVmi2oP7y4ufP65kU0pBGgxxJAOMUqWMjpF2hAaNnyo3jY320jTqaVSGAgFMOXZDDzMV5rTHznwvtwE5dE3y-9AphkV2AMLYHjk-ipp8L0XEXhxaCgmZOM6NbN6LHXDbYUtMwzPO5S4GyZwhmUc6YWwZj3TiOfBl9kg5JdlYJnzCc5HwAqT3Gt3kEVDrmMoqOceI9_t-EDrQbacraVZmlcz1yIGj2W1aU3xQQtMwHLOMisiuUT-XyWAQs_nzHThtVWHhM_9v_ulMW97v7MflXfgEG4oVtgYXdqEz-jPODilIGqWfG81_A6xbCQY priority: 102 providerName: ProQuest – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB5EH6oP3mK8WEEQlIVkMzn6WEQRH_TFgm9hs5t4UNPStIj_3pk0aat44Fsgs_fOxXwzC3BijUVOxJE5KXuJvnGlVpaEobZurkjHuHlV7fM2vO7izUPwUOdxlw3avQlJVpJ6LtktqmCSDJrFUJLLsxRwNS-6xF3VmeE63GiSGhwj578FTSjzuy4-KaOvInkuNroCrXEx0O9vutebUz9X67Ba242iMznoDVjIik1Ya95kEDWLbkKrftX86X0L7kiCiQGjWWX5lmUDoXuP_eHz6Om1FGSrCsu2I7WSrMqseOk_F4LmxM6zoM-SwdY0JoNImaLchu7V5f3FtawfUJAGQxzJAKNUKaNjJD_QoPFT5aax0V6aRm2NypD6x5QtNvQwU2FOnnXme7kNSI1rot-BxaJfZLsgjG2TuiNbyfdSRGzHoSVDkMvFuZHN27EDbrOTiamri_MjF71kVheZNz9hRBlvfuI5cDZtMpiU1viN-JSPJ2G2o36NrrMHaHZcwCrpYMRevh-EDhw0J5jU_FgmZMdw5cQoDhw4nv4mTuLwCB1Df8w0KiJpRuv8jQaDmIWe78B5czvmhvl5-ufTC_T3Yvf-1fc-LCu-0hXC8AAWR8NxdkiW0ig9qjjjA0EDBR4 priority: 102 providerName: Springer Nature  | 
    
| Title | New plane-sweep algorithms for distance-based join queries in spatial databases | 
    
| URI | https://link.springer.com/article/10.1007/s10707-016-0246-1 https://www.proquest.com/docview/1819659785 https://www.proquest.com/docview/1827880941 https://www.proquest.com/docview/1845804883 http://hdl.handle.net/10835/5276  | 
    
| UnpaywallVersion | submittedVersion | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1573-7624 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: ABDBF dateStart: 19970401 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7624 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: AFBBN dateStart: 19970401 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7624 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: BENPR dateStart: 19970401 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7624 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: 8FG dateStart: 19970401 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7624 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7624 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0005070 issn: 1573-7624 databaseCode: U2A dateStart: 19970401 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a5KHsYb_HPLrgwWCwos6WT7bz6IykZYOsjAXaJyNL9totc0LtULq_fneOnWUd7diTDTpbkk9398k6fQJ4bY1F3ogjCgr2AgPjCS0tOUNtvUJSjPGKhu1zGh7P8MOpOt2B7si6G_QCPgOEd0pG4S70Q0Vouwf92fQkOWvmUTHyDjfVUKJGgSC7xm7hcr07LmryKjnLFkPh_xF6bjrgrZXQe7C3Kpf6-krP51vBZvJgnfRYNRyFnGPy_XBVZ4fm598Mjrf24yHcb5Gmm6yHxiPYycvHsNceen5-_QQ-kYNzl5zsKqqrPF-6ev51cXlRn_-oXIKyrmVoSWNCcKSz7rfFRelSJ3hu7dJtxbnYVAHnmLJE9RRmk_GX98eiPV9BGAyxFgqjTEqjY6RpokETZNLLYqP9LIuGGqUhdIAZAzr0MZdhQRPvPPALqyjKa5J_Br1yUebPwTV2SNGQoFTgZ4g4jENLOJHZ5LzIFsPYAa_79Klpycf5DIx5-ps2mbWVcsIZayv1HXi7eWS5Zt64S_gN6zNlq6T3Gt1uLqDWMb9VmmDEPwECFTqw36k8bc21SgnmMLFiFCsHXm2KydB49YTUsFixjIzI2VE_75JBFbNPDBw46IbTVjW3N_9gM-L-3dkX_yW9D736cpW_JOxUZwPYjSdHA-gnk9Foytejs49juo7G05PPVDqTyaA1sV9yKRVn | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hA4IJ7CpcAigZCoVtjr8etQoQKtUloCQq3Um1nv2pQqOAYnivLn-G3MOHYSkAin3ix5bO_Ozs43450HwDNrLHIijiwI7CX6xpVaWVKG2rqFIoxxi6ba5yDsn-H78-B8A351uTAcVtnpxEZR25Hhf-SvCIm49l0UB6-rH5K7RvHpatdCQ7etFexeU2KsTew4zmdTcuHqvaN3tN7PlTo8OH3bl22XAWkwxLEMMMqUMjpGcpYMGj9TbhYb7WVZlGhUhjASMzZr0MNchQW5n7nvFTYgrNNET--9BlvoY0LO39abg8Gnz8sgEzea5ynHyMl4QXeuOk_ei5qwTw4CxlB6fyDj3_iwclB7A3qTstKzqR4OV7Dw8BbcbI1YsT-XutuwkZd3oNf2U7-Y3YWPpDtFxXG0sp7meSX08Csxc3zxvRZkJQvLViuJm2QQteJy9K0UNAB22wVd1hzmTR_g8FWmqO_B2ZUw9T5slqMyfwDC2ISAlqw038sQMYlDSyYoF6pzI1sksQNux7bUtHXNub3GMF1WZGZOpxzLxpxOPQdeLh6p5kU91hG_4LVIecPTe41u8xZodFw6K93HiP8v-EHowE63XGmrCep0KbcOPF3cpj3MBzO0DKMJ06iI9CjNcx0NBjGrW9-B3U4UVj7z7-HvLqTl_5PdXj-FJ9Drn344SU-OBscP4bpi4W0CG3dgc_xzkj8iA22cPW53gYAvV73xfgP8D0U0 | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBVsfxE-MVl1BESxLk80km3sQKdaztVJ9sNC3uNlNbOXMRXPHcf-af50z-bg7Bc-nvgUySXZnZ-Y3m50PgGfOOuREHFkQ2EsMrS-NcmQMjfMLRRjjF021z5P48BTfn0VnG_Crz4XhsMreJjaG2o0t_yPfIyTi2nc6ifaKLizi08HwdfVDcgcpPmnt22m0InKcz2e0fatfHR3QWj9Xavj285tD2XUYkBZjnMgIdaaUNQnSRsmiDTPlZ4k1QZbpgUFlCR8xY5cGA8xVXNDWMw-DwkWEc4bo6b1X4KrmKu6cpT58twwv8XWboZwgp-FF_Ylqm7anm4BPDv_FWAZ_YOLfyLByRHsdtqZlZeYzMxqtoODwJtzo3Fex38rbLdjIy9uw1XVSP5_fgY9kNUXFEbSynuV5JczoK7Fucv69FuQfC8f-KgmaZPh04tv4ohQ0AN6wC7qsOcCbPsCBq0xR34XTS2HpPdgsx2V-H4R1A4JY8s_CIEPEQRI7cj65RJ2vXTFIPPB7tqW2q2jOjTVG6bIWM3M65Sg25nQaePBy8UjVlvNYR_yC1yJlVaf3WtNlLNDouGhWuo-a_yyEUezBTr9caWcD6nQpsR48Xdwm7eUjGVqG8ZRplCYLSvNcR4NRwoY29GC3F4WVz_x7-LsLafn_ZB-sn8ITuEbqln44Ojl-CNuKZbeJaNyBzcnPaf6IPLNJ9rhRAQFfLlvnfgP2wULO | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_q9aH44LeYUmUFQbBsTTaz2dzjIZbiQ_XBg_oU9iOxrWfuaHKU9q93JpecZ6UV3wKZZHczOzO_yc7-FuBN8AF5I46sKNhLTH0srQrkDG2IK0UxJq46ts_j7GiKn070yRYMR9bdoBdIGCC818pk92A704S2R7A9Pf4y-dblUTnyDjfdUaKaVJJd47BwudodZ7q6Sq6yxUwmf4Semw54YyX0Puws64W9urSz2UawOXy4KnpsOo5CrjH5cbBs3YG__pvB8dZxPIIHPdIUk9XUeAxbZf0EdvpDz0-vnsJncnBiwcWusrksy4Wws-_zi7P29GcjCMqKwNCS5oTkSBfE-fysFjQIzq0FXTZci00NcI0pSzTPYHr48euHI9mfryA9ZthKjcYp5W2OlCZ69KlTscu9TZwzY4vKEzpAx4AOEyxVVlHiXaZJFTRFeUvyz2FUz-vyBQgfxhQNCUqliUPEcZ4FwonMJhebUI3zCOLh0xe-Jx_nMzBmxW_aZNZWwQVnrK0iieDd-pHFinnjLuG3rM-CrZLe622_uYB6x_xWxQQN_wRIdRbB3qDyojfXpiCYw8SKJtcRvF7fJkPj1RNSw3zJMsqQs6Nx3iWDOmefmEawP0ynjWZu7_7-esb9e7C7_yW9B6P2Ylm-JOzUule9-fwC8e0O7g | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+plane-sweep+algorithms+for+distance-based+join+queries+in+spatial+databases&rft.jtitle=GeoInformatica&rft.au=Roumelis%2C+George&rft.au=Corral%2C+Antonio&rft.au=Vassilakopoulos%2C+Michael&rft.au=Manolopoulos%2C+Yannis&rft.date=2016-10-01&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=20&rft.issue=4&rft.spage=571&rft.epage=628&rft_id=info:doi/10.1007%2Fs10707-016-0246-1&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon |