New plane-sweep algorithms for distance-based join queries in spatial databases

Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied...

Full description

Saved in:
Bibliographic Details
Published inGeoInformatica Vol. 20; no. 4; pp. 571 - 628
Main Authors Roumelis, George, Corral, Antonio, Vassilakopoulos, Michael, Manolopoulos, Yannis
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2016
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1384-6175
1573-7624
1573-7624
DOI10.1007/s10707-016-0246-1

Cover

Abstract Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query ( K CPQ) and ε Distance Join Query ( ε DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result ( K ) or a distance threshold ( ε ). In this paper, we propose four new plane-sweep-based algorithms for K CPQs and their extensions for ε DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for K CPQs and ε DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for K CPQs and ε DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
AbstractList Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and epsilon Distance Join Query ( epsilon DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold ( epsilon ). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for epsilon DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and epsilon DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and epsilon DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and ζDistance Join Query (ζDJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold (ζ). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for ζDJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and ζDJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and ζDJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query (KCPQ) and [straight epsilon]Distance Join Query ([straight epsilon]DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result (K) or a distance threshold ([straight epsilon]). In this paper, we propose four new plane-sweep-based algorithms for KCPQs and their extensions for [straight epsilon]DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for KCPQs and [straight epsilon]DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for KCPQs and [straight epsilon]DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that may address such queries (mapping, urban planning, transportation planning, resource management, etc.). The most representative and studied DJQs are the K Closest Pairs Query ( K CPQ) and ε Distance Join Query ( ε DJQ). These spatial queries involve two spatial data sets and a distance function to measure the degree of closeness, along with a given number of pairs in the final result ( K ) or a distance threshold ( ε ). In this paper, we propose four new plane-sweep-based algorithms for K CPQs and their extensions for ε DJQs in the context of spatial databases, without the use of an index for any of the two disk-resident data sets (since, building and using indexes is not always in favor of processing performance). They employ a combination of plane-sweep algorithms and space partitioning techniques to join the data sets. Finally, we present results of an extensive experimental study, that compares the efficiency and effectiveness of the proposed algorithms for K CPQs and ε DJQs. This performance study, conducted on medium and big spatial data sets (real and synthetic) validates that the proposed plane-sweep-based algorithms are very promising in terms of both efficient and effective measures, when neither inputs are indexed. Moreover, the best of the new algorithms is experimentally compared to the best algorithm that is based on the R-tree (a widely accepted access method), for K CPQs and ε DJQs, using the same data sets. This comparison shows that the new algorithms outperform R-tree based algorithms, in most cases.
Audience Academic
Author Roumelis, George
Corral, Antonio
Vassilakopoulos, Michael
Manolopoulos, Yannis
Author_xml – sequence: 1
  givenname: George
  surname: Roumelis
  fullname: Roumelis, George
  organization: Department of Informatics, Aristotle University
– sequence: 2
  givenname: Antonio
  surname: Corral
  fullname: Corral, Antonio
  organization: Department on Informatics, University of Almeria
– sequence: 3
  givenname: Michael
  orcidid: 0000-0003-2256-5523
  surname: Vassilakopoulos
  fullname: Vassilakopoulos, Michael
  email: mvasilako@uth.gr
  organization: Department of Electrical and Computer Engineering, University of Thessaly
– sequence: 4
  givenname: Yannis
  surname: Manolopoulos
  fullname: Manolopoulos, Yannis
  organization: Department of Informatics, Aristotle University
BookMark eNqNkU9r3DAQxUVIIX_aD9CboZdelEiyZGmPIbRpISSX9ixkebzRopVcycuSb98xziEEWoIOGsT7zei9uSCnKScg5DNnV5wxfV0500xTxjvKhOwoPyHnXOmW6k7IU6xbI2nHtTojF7XuGGMKgXPy-ADHZoouAa1HgKlxcZtLmJ_2tRlzaYZQZ5c80N5VGJpdDqn5c4ASoDZY1snNwcVmcLNbFPUj-TC6WOHTy31Jfn__9uv2B71_vPt5e3NPvezkTJXUvRDeGWmE8tK3vWC98Y73vd44KbwRTPZMaSW5BNGN0LfQ8nFQhhuH-ksi1r6HNLnno4vRTiXsXXm2nNklErtGYjESu0RiOUJfV2gqGU3U2e5D9RAX-_lQLTdSGSaNad8hFdoYtpFL1y9vpLt8KAndo4pvOrXRRqHqalVtXQQb0pjn4jyeAfbB4zLHgO83Er8sRas6BPgK-JJrLTC-y6B-w_gw44ZywmEh_pd8ybPilLSF8srEP6G_yRW-OA
CitedBy_id crossref_primary_10_1080_03081079_2023_2173750
crossref_primary_10_3390_ijgi10110763
crossref_primary_10_1016_j_ins_2019_10_030
crossref_primary_10_1002_cpe_5339
crossref_primary_10_1016_j_csi_2017_05_003
crossref_primary_10_1007_s10707_017_0309_y
crossref_primary_10_1016_j_future_2019_10_037
crossref_primary_10_1016_j_ins_2024_120732
crossref_primary_10_1016_j_datak_2019_04_003
crossref_primary_10_1016_j_tcs_2021_09_012
Cites_doi 10.1109/TKDE.2003.1245293
10.1007/978-1-4612-1098-6
10.1145/503099.503101
10.1109/ICDE.2011.5767903
10.1016/j.datak.2003.08.007
10.1145/152610.152611
10.1109/ICDE.2008.4497443
10.1109/TKDE.2008.85
10.1007/BF01231602
10.1145/93605.98741
10.1145/280277.280279
10.1145/276305.276326
10.1016/j.datak.2004.08.003
10.1007/s10707-012-0169-4
10.1109/ICDE.1997.582015
10.1145/335191.335414
10.1145/235968.233338
10.1093/comjnl/bxh060
10.1145/2463676.2463700
10.1109/TKDE.2015.2427795
10.1007/978-3-540-45072-6_16
10.1109/TKDE.2009.141
10.1007/s10115-003-0122-9
10.1016/0020-0190(88)90150-0
10.1109/SSDM.2000.869785
10.1145/602259.602266
10.1145/235968.233337
10.1145/937598.937600
10.1109/TKDE.2003.1209007
10.1145/48529.48535
10.1016/B978-044482537-7/50021-8
10.1145/1206049.1206056
10.1007/978-3-540-45072-6_15
10.1145/2629477
10.1007/978-3-319-04298-5_42
10.1016/j.ins.2006.12.012
10.1145/170036.170075
10.1109/69.842246
ContentType Journal Article
Copyright Springer Science+Business Media New York 2016
COPYRIGHT 2016 Springer
Copyright_xml – notice: Springer Science+Business Media New York 2016
– notice: COPYRIGHT 2016 Springer
DBID AAYXX
CITATION
3V.
7SC
7XB
88I
8AL
8FD
8FE
8FG
8FK
ABUWG
AEUYN
AFKRA
ARAPS
ATCPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
DWQXO
F1W
FR3
GNUQQ
H96
HCIFZ
JQ2
K7-
KR7
L.G
L7M
L~C
L~D
M0N
M2P
P5Z
P62
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PYCSY
Q9U
ADTOC
UNPAY
DOI 10.1007/s10707-016-0246-1
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Environmental Science Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
ProQuest Science Journals (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Environmental Science Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
Engineering Research Database
ProQuest One Academic
ProQuest Central (Alumni)
ProQuest One Academic (New)
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources

Aquatic Science & Fisheries Abstracts (ASFA) Professional
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Computer Science
EISSN 1573-7624
EndPage 628
ExternalDocumentID oai:dnet:riualreposit::8b2a25317731409db5f13cc17bff1565
4183199741
A470742356
10_1007_s10707_016_0246_1
GrantInformation_xml – fundername: European Regional Development Fund and Greek National Funds
  grantid: 11SYN 8 1213
– fundername: Junta de Andalucia research project
  grantid: P10-TIC-6114
– fundername: MINECO research project
  grantid: TIN2013-41576-R
GroupedDBID -5A
-5G
-BR
-EM
-Y2
-~C
.4S
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29H
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2XV
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
7XC
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBLON
EBS
EDO
EIOEI
EJD
EMK
EPL
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K6V
K7-
KDC
KOV
LAK
LK5
LLZTM
M0N
M2P
M4Y
M7R
MA-
MK~
ML~
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P62
P9O
PATMY
PCBAR
PF0
PQQKQ
PROAC
PT4
PT5
PYCSY
Q2X
QOS
R89
R9I
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
XH6
YLTOR
Z45
Z7Z
Z83
Z88
ZMTXR
~8M
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
7SC
7XB
8AL
8FD
8FK
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c464t-547b22ca84825c4c3b20b8ca1bb79a42c8204b0575414e26feb3e31fd5818a4c3
IEDL.DBID UNPAY
ISSN 1384-6175
1573-7624
IngestDate Thu Aug 28 11:15:19 EDT 2025
Thu Oct 02 11:35:17 EDT 2025
Thu Oct 02 04:11:21 EDT 2025
Sat Jul 26 00:55:25 EDT 2025
Mon Oct 20 16:36:07 EDT 2025
Thu Apr 24 22:59:19 EDT 2025
Wed Oct 01 01:13:16 EDT 2025
Fri Feb 21 02:33:54 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Spatial databases
Plane-sweep technique
Spatial query evaluation
Query processing
Distance-based join queries
Language English
License cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-547b22ca84825c4c3b20b8ca1bb79a42c8204b0575414e26feb3e31fd5818a4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-2256-5523
OpenAccessLink https://proxy.k.utb.cz/login?url=http://hdl.handle.net/10835/5276
PQID 1819659785
PQPubID 105513
PageCount 58
ParticipantIDs unpaywall_primary_10_1007_s10707_016_0246_1
proquest_miscellaneous_1845804883
proquest_miscellaneous_1827880941
proquest_journals_1819659785
gale_infotracacademiconefile_A470742356
crossref_primary_10_1007_s10707_016_0246_1
crossref_citationtrail_10_1007_s10707_016_0246_1
springer_journals_10_1007_s10707_016_0246_1
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20161000
2016-10-00
20161001
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 20161000
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationSubtitle An International Journal on Advances of Computer Science for Geographic Information Systems
PublicationTitle GeoInformatica
PublicationTitleAbbrev Geoinformatica
PublicationYear 2016
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: SIGMOD conference, pp 237–246
Lo M-L, Ravishankar CV (1996) Spatial hash-joins. In: SIGMOD conference, pp 247–258
Hjaltason G R, Samet H (1998) Incremental distance join algorithms for spatial databases. In: SIGMOD conference, pp 237–248
GraefeGQuery evaluation techniques for large databasesACM Comput Surv19932527317010.1145/152610.152611
MamoulisNPapadiasDMultiway spatial joinsACM Trans Database Syst200126442447510.1145/503099.503101
KimYJPatelJMPerformance comparison of the r*-tree and the quadtree for knn and distance join queriesIEEE Trans Knowl Data Eng20102271014102710.1109/TKDE.2009.141
Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD conference, pp 47–57
CorralAVassilakopoulosMOn approximate algorithms for distance-based queries using r-treesComput J200548222023810.1093/comjnl/bxh060
JacoxEHSametHSpatial join techniquesACM Trans Database Syst2007321710.1145/1206049.1206056
Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) New plane-sweep algorithms for distance-based join queries in spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece, http://delab.csd.auth.gr/~michalis/TR-01-2014.pdf
Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: SSDBM conference, pp 297–306
Leutenegger ST, Edgington JM, Lopez MA (1997) Str: a simple and efficient algorithm for r-tree packing. In: ICDE conference, pp 497–506
SidlauskasDJensenCSSpatial joins in main memory Implementation matters!PVLDB20148197100
SametHFoundations of multidimensional and metric data structures2007San FranciscoMorgan Kaufmann
Smid M (2000) Closest-point problems in computational geometry. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. Elsevier, Ch 20, pp 877–935
Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB conference, pp 194–205
SowellBSallesMAVCaoTDemersAJGehrkeJAn experimental analysis of iterated spatial joins in main memoryPVLDB201361418821893
CorralAAlmendros-JiménezJMA Performance comparison of distance-based query algorithms using r-trees in spatial databasesInf Sci2007177112207223710.1016/j.ins.2006.12.012
Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall
Preparata FP, Shamos MI (1985) Computational geometry - an introduction. Springer
HinrichsKNievergeltJSchornPPlane-sweep solves the closest pair problem elegantlyInf Process Lett198826525526110.1016/0020-0190(88)90150-0
BöhmCKrebsFThe k-nearest neighbour join: turbo charging the kdd processKnowl Inf Syst20046672874910.1007/s10115-003-0122-9
KoudasNSevcikKCHigh dimensional similarity joins: algorithms and performance evaluationIEEE Trans Knowl Data Eng200012131810.1109/69.842246
GütingRHAn introduction to spatial database systemsVLDB J19943435739910.1007/BF01231602
Gurret C, Rigaux P (2000) The sort/sweep algorithm: a new method for r-tree based spatial joins. In: SSDBM conference, pp 153–165
ULHMamoulisNYiuMLComputation and monitoring of exclusive closest pairsIEEE Trans Knowl Data Eng200820121641165410.1109/TKDE.2008.85
Bryan B, Eberhardt F, Faloutsos C (2008) Compact similarity joins. In: ICDE conference, pp 346– 355
ShinHMoonBLeeSAdaptive and incremental processing for distance join queriesIEEE Trans Knowl Data Eng20031561561157810.1109/TKDE.2003.1245293
JacoxEHSametHIterative spatial joinACM Trans Database Syst200328323025610.1145/937598.937600
RigauxPSchollMVoisardASpatial databases - with applications to GIS2002San FranciscoElsevier
ZhangHChenGOoiBCTanKZhangMInmemory big data management and processing: a surveyIEEE Trans Knowl Data Eng20152771920194810.1109/TKDE.2015.2427795
ChoiDChungCTaoYMaximizing range sum in external memoryACM Trans. Database Syst.201439321:121:4410.1145/2629477
AngiulliFPizzutiCAn approximate algorithm for top-k closest pairs join query in large high dimensional dataData Knowl Eng200553326328110.1016/j.datak.2004.08.003
CorralAManolopoulosYTheodoridisYVassilakopoulosMAlgorithms for processing k-closest-pair queries in spatial databasesData Knowl Eng20044916710410.1016/j.datak.2003.08.007
ChanEPFBuffer queriesIEEE Trans Knowl Data Eng200315489591010.1109/TKDE.2003.1209007
Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial databases. In: SIGMOD conference, pp 189–200
Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2014) A new plane-sweep algorithm for the k-closest-pairs query. In: SOFSEM conference, pp 478–490
Nobari S, Tauheed F, Heinis T, Karras P, Bressan S, Ailamaki A (2013) TOUCH: in-memory spatial join by hierarchical data-oriented partitioning. In: SIGMOD conference, pp 701–712
Cheema MA, Lin X, Wang H, Wang J, Zhang W (2011) A unified approach for computing top-k pairs in multidimensional space. In: ICDE conference, pp 1031–1042
Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD conference, pp 322–331
GutiérrezGSáezPThe k closest pairs in spatial databases when only one set is indexedGeoInformatica201317454356510.1007/s10707-012-0169-4
Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: SIGMOD conference, pp 259–270
AggarwalAVitterJSThe input/output complexity of sorting and related problemsCommun ACM19883191116112710.1145/48529.48535
Yang C, Lin K-I (2002) An index structure for improving nearest closest pairs and related join queries in spatial databases. In: IDEAS conference, pp 140–149
Shou Y, Mamoulis N, Cao H, Papadias D, Cheung D W (2003) Evaluation of iceberg distance joins. In: SSTD conference, pp 270–288
GaedeVGüntherOMultidimensional access methodsACM Comput Surv199830217023110.1145/280277.280279
Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S (1998) Scalable sweeping-based spatial join. In: VLDB conference, pp 570–581
Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: SSTD conference, pp 252–269
246_CR15
RH Güting (246_CR2) 1994; 3
246_CR3
246_CR16
246_CR38
LH U (246_CR39) 2008; 20
EH Jacox (246_CR12) 2003; 28
246_CR13
246_CR35
246_CR5
246_CR14
246_CR11
246_CR7
YJ Kim (246_CR30) 2010; 22
246_CR32
G Graefe (246_CR46) 1993; 25
C Böhm (246_CR43) 2004; 6
P Rigaux (246_CR17) 2002
K Hinrichs (246_CR8) 1988; 26
246_CR1
G Gutiérrez (246_CR31) 2013; 17
V Gaede (246_CR4) 1998; 30
B Sowell (246_CR20) 2013; 6
N Koudas (246_CR33) 2000; 12
246_CR28
246_CR26
246_CR48
246_CR27
246_CR24
246_CR25
A Corral (246_CR37) 2005; 48
F Angiulli (246_CR36) 2005; 53
246_CR44
246_CR45
246_CR42
H Samet (246_CR18) 2007
246_CR40
H Shin (246_CR10) 2003; 15
D Sidlauskas (246_CR21) 2014; 8
N Mamoulis (246_CR23) 2001; 26
A Corral (246_CR29) 2007; 177
A Corral (246_CR6) 2004; 49
246_CR19
D Choi (246_CR41) 2014; 39
EH Jacox (246_CR9) 2007; 32
EPF Chan (246_CR34) 2003; 15
H Zhang (246_CR22) 2015; 27
A Aggarwal (246_CR47) 1988; 31
References_xml – reference: ChoiDChungCTaoYMaximizing range sum in external memoryACM Trans. Database Syst.201439321:121:4410.1145/2629477
– reference: Leutenegger ST, Edgington JM, Lopez MA (1997) Str: a simple and efficient algorithm for r-tree packing. In: ICDE conference, pp 497–506
– reference: RigauxPSchollMVoisardASpatial databases - with applications to GIS2002San FranciscoElsevier
– reference: AggarwalAVitterJSThe input/output complexity of sorting and related problemsCommun ACM19883191116112710.1145/48529.48535
– reference: Preparata FP, Shamos MI (1985) Computational geometry - an introduction. Springer
– reference: ShinHMoonBLeeSAdaptive and incremental processing for distance join queriesIEEE Trans Knowl Data Eng20031561561157810.1109/TKDE.2003.1245293
– reference: GaedeVGüntherOMultidimensional access methodsACM Comput Surv199830217023110.1145/280277.280279
– reference: Arge L, Procopiuc O, Ramaswamy S, Suel T, Vitter J S (1998) Scalable sweeping-based spatial join. In: VLDB conference, pp 570–581
– reference: SametHFoundations of multidimensional and metric data structures2007San FranciscoMorgan Kaufmann
– reference: HinrichsKNievergeltJSchornPPlane-sweep solves the closest pair problem elegantlyInf Process Lett198826525526110.1016/0020-0190(88)90150-0
– reference: Bryan B, Eberhardt F, Faloutsos C (2008) Compact similarity joins. In: ICDE conference, pp 346– 355
– reference: Shekhar S, Chawla S (2003) Spatial databases - a tour. Prentice Hall
– reference: Lo M-L, Ravishankar CV (1996) Spatial hash-joins. In: SIGMOD conference, pp 247–258
– reference: Roumelis G, Vassilakopoulos M, Corral A, Manolopoulos Y (2014) A new plane-sweep algorithm for the k-closest-pairs query. In: SOFSEM conference, pp 478–490
– reference: Roumelis G, Corral A, Vassilakopoulos M, Manolopoulos Y (2014) New plane-sweep algorithms for distance-based join queries in spatial databases, Tech. Rep. TR-01-2014, Data Eng. Lab, AUTH, Greece, http://delab.csd.auth.gr/~michalis/TR-01-2014.pdf
– reference: GraefeGQuery evaluation techniques for large databasesACM Comput Surv19932527317010.1145/152610.152611
– reference: Smid M (2000) Closest-point problems in computational geometry. In: Sack J-R, Urrutia J (eds) Handbook of computational geometry. Elsevier, Ch 20, pp 877–935
– reference: ChanEPFBuffer queriesIEEE Trans Knowl Data Eng200315489591010.1109/TKDE.2003.1209007
– reference: Cheema MA, Lin X, Wang H, Wang J, Zhang W (2011) A unified approach for computing top-k pairs in multidimensional space. In: ICDE conference, pp 1031–1042
– reference: JacoxEHSametHSpatial join techniquesACM Trans Database Syst2007321710.1145/1206049.1206056
– reference: Hjaltason G R, Samet H (1998) Incremental distance join algorithms for spatial databases. In: SIGMOD conference, pp 237–248
– reference: GutiérrezGSáezPThe k closest pairs in spatial databases when only one set is indexedGeoInformatica201317454356510.1007/s10707-012-0169-4
– reference: Corral A, Manolopoulos Y, Theodoridis Y, Vassilakopoulos M (2000) Closest pair queries in spatial databases. In: SIGMOD conference, pp 189–200
– reference: SidlauskasDJensenCSSpatial joins in main memory Implementation matters!PVLDB20148197100
– reference: Zhang J, Mamoulis N, Papadias D, Tao Y (2004) All-nearest-neighbors queries in spatial databases. In: SSDBM conference, pp 297–306
– reference: Nobari S, Tauheed F, Heinis T, Karras P, Bressan S, Ailamaki A (2013) TOUCH: in-memory spatial join by hierarchical data-oriented partitioning. In: SIGMOD conference, pp 701–712
– reference: JacoxEHSametHIterative spatial joinACM Trans Database Syst200328323025610.1145/937598.937600
– reference: CorralAManolopoulosYTheodoridisYVassilakopoulosMAlgorithms for processing k-closest-pair queries in spatial databasesData Knowl Eng20044916710410.1016/j.datak.2003.08.007
– reference: Brinkhoff T, Kriegel H-P, Seeger B (1993) Efficient processing of spatial joins using r-trees. In: SIGMOD conference, pp 237–246
– reference: Guttman A (1984) R-trees: a dynamic index structure for spatial searching. In: SIGMOD conference, pp 47–57
– reference: CorralAVassilakopoulosMOn approximate algorithms for distance-based queries using r-treesComput J200548222023810.1093/comjnl/bxh060
– reference: Shou Y, Mamoulis N, Cao H, Papadias D, Cheung D W (2003) Evaluation of iceberg distance joins. In: SSTD conference, pp 270–288
– reference: ULHMamoulisNYiuMLComputation and monitoring of exclusive closest pairsIEEE Trans Knowl Data Eng200820121641165410.1109/TKDE.2008.85
– reference: ZhangHChenGOoiBCTanKZhangMInmemory big data management and processing: a surveyIEEE Trans Knowl Data Eng20152771920194810.1109/TKDE.2015.2427795
– reference: Shan J, Zhang D, Salzberg B (2003) On spatial-range closest-pair query. In: SSTD conference, pp 252–269
– reference: Beckmann N, Kriegel H-P, Schneider R, Seeger B (1990) The r*-tree: an efficient and robust access method for points and rectangles. In: SIGMOD conference, pp 322–331
– reference: KimYJPatelJMPerformance comparison of the r*-tree and the quadtree for knn and distance join queriesIEEE Trans Knowl Data Eng20102271014102710.1109/TKDE.2009.141
– reference: BöhmCKrebsFThe k-nearest neighbour join: turbo charging the kdd processKnowl Inf Syst20046672874910.1007/s10115-003-0122-9
– reference: SowellBSallesMAVCaoTDemersAJGehrkeJAn experimental analysis of iterated spatial joins in main memoryPVLDB201361418821893
– reference: Weber R, Schek H-J, Blott S (1998) A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: VLDB conference, pp 194–205
– reference: GütingRHAn introduction to spatial database systemsVLDB J19943435739910.1007/BF01231602
– reference: Gurret C, Rigaux P (2000) The sort/sweep algorithm: a new method for r-tree based spatial joins. In: SSDBM conference, pp 153–165
– reference: Patel JM, DeWitt DJ (1996) Partition based spatial-merge join. In: SIGMOD conference, pp 259–270
– reference: CorralAAlmendros-JiménezJMA Performance comparison of distance-based query algorithms using r-trees in spatial databasesInf Sci2007177112207223710.1016/j.ins.2006.12.012
– reference: KoudasNSevcikKCHigh dimensional similarity joins: algorithms and performance evaluationIEEE Trans Knowl Data Eng200012131810.1109/69.842246
– reference: MamoulisNPapadiasDMultiway spatial joinsACM Trans Database Syst200126442447510.1145/503099.503101
– reference: Yang C, Lin K-I (2002) An index structure for improving nearest closest pairs and related join queries in spatial databases. In: IDEAS conference, pp 140–149
– reference: AngiulliFPizzutiCAn approximate algorithm for top-k closest pairs join query in large high dimensional dataData Knowl Eng200553326328110.1016/j.datak.2004.08.003
– volume: 15
  start-page: 1561
  issue: 6
  year: 2003
  ident: 246_CR10
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1245293
– ident: 246_CR7
  doi: 10.1007/978-1-4612-1098-6
– volume: 26
  start-page: 424
  issue: 4
  year: 2001
  ident: 246_CR23
  publication-title: ACM Trans Database Syst
  doi: 10.1145/503099.503101
– ident: 246_CR35
– ident: 246_CR40
  doi: 10.1109/ICDE.2011.5767903
– volume: 49
  start-page: 67
  issue: 1
  year: 2004
  ident: 246_CR6
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2003.08.007
– volume: 25
  start-page: 73
  issue: 2
  year: 1993
  ident: 246_CR46
  publication-title: ACM Comput Surv
  doi: 10.1145/152610.152611
– ident: 246_CR45
  doi: 10.1109/ICDE.2008.4497443
– volume: 20
  start-page: 1641
  issue: 12
  year: 2008
  ident: 246_CR39
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2008.85
– volume: 3
  start-page: 357
  issue: 4
  year: 1994
  ident: 246_CR2
  publication-title: VLDB J
  doi: 10.1007/BF01231602
– ident: 246_CR11
  doi: 10.1145/93605.98741
– volume: 30
  start-page: 170
  issue: 2
  year: 1998
  ident: 246_CR4
  publication-title: ACM Comput Surv
  doi: 10.1145/280277.280279
– ident: 246_CR16
  doi: 10.1145/276305.276326
– volume: 53
  start-page: 263
  issue: 3
  year: 2005
  ident: 246_CR36
  publication-title: Data Knowl Eng
  doi: 10.1016/j.datak.2004.08.003
– ident: 246_CR44
– volume: 17
  start-page: 543
  issue: 4
  year: 2013
  ident: 246_CR31
  publication-title: GeoInformatica
  doi: 10.1007/s10707-012-0169-4
– ident: 246_CR48
  doi: 10.1109/ICDE.1997.582015
– ident: 246_CR5
  doi: 10.1145/335191.335414
– ident: 246_CR27
  doi: 10.1145/235968.233338
– volume: 48
  start-page: 220
  issue: 2
  year: 2005
  ident: 246_CR37
  publication-title: Comput J
  doi: 10.1093/comjnl/bxh060
– ident: 246_CR19
  doi: 10.1145/2463676.2463700
– volume: 8
  start-page: 97
  issue: 1
  year: 2014
  ident: 246_CR21
  publication-title: PVLDB
– volume: 27
  start-page: 1920
  issue: 7
  year: 2015
  ident: 246_CR22
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2427795
– ident: 246_CR42
  doi: 10.1007/978-3-540-45072-6_16
– volume: 22
  start-page: 1014
  issue: 7
  year: 2010
  ident: 246_CR30
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2009.141
– ident: 246_CR32
– volume: 6
  start-page: 728
  issue: 6
  year: 2004
  ident: 246_CR43
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-003-0122-9
– volume: 26
  start-page: 255
  issue: 5
  year: 1988
  ident: 246_CR8
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(88)90150-0
– volume-title: Foundations of multidimensional and metric data structures
  year: 2007
  ident: 246_CR18
– ident: 246_CR14
  doi: 10.1109/SSDM.2000.869785
– ident: 246_CR25
  doi: 10.1145/602259.602266
– volume: 6
  start-page: 1882
  issue: 14
  year: 2013
  ident: 246_CR20
  publication-title: PVLDB
– ident: 246_CR26
  doi: 10.1145/235968.233337
– volume: 28
  start-page: 230
  issue: 3
  year: 2003
  ident: 246_CR12
  publication-title: ACM Trans Database Syst
  doi: 10.1145/937598.937600
– volume: 15
  start-page: 895
  issue: 4
  year: 2003
  ident: 246_CR34
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2003.1209007
– volume: 31
  start-page: 1116
  issue: 9
  year: 1988
  ident: 246_CR47
  publication-title: Commun ACM
  doi: 10.1145/48529.48535
– ident: 246_CR13
– ident: 246_CR28
  doi: 10.1016/B978-044482537-7/50021-8
– volume: 32
  start-page: 7
  issue: 1
  year: 2007
  ident: 246_CR9
  publication-title: ACM Trans Database Syst
  doi: 10.1145/1206049.1206056
– ident: 246_CR38
  doi: 10.1007/978-3-540-45072-6_15
– volume: 39
  start-page: 21:1
  issue: 3
  year: 2014
  ident: 246_CR41
  publication-title: ACM Trans. Database Syst.
  doi: 10.1145/2629477
– ident: 246_CR1
  doi: 10.1007/978-3-319-04298-5_42
– ident: 246_CR15
– volume: 177
  start-page: 2207
  issue: 11
  year: 2007
  ident: 246_CR29
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2006.12.012
– volume-title: Spatial databases - with applications to GIS
  year: 2002
  ident: 246_CR17
– ident: 246_CR24
  doi: 10.1145/170036.170075
– volume: 12
  start-page: 3
  issue: 1
  year: 2000
  ident: 246_CR33
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/69.842246
– ident: 246_CR3
SSID ssj0005070
Score 2.1768916
Snippet Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that...
Efficient and effective processing of the distance-based join query (DJQ) is of great importance in spatial databases due to the wide area of applications that...
SourceID unpaywall
proquest
gale
crossref
springer
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 571
SubjectTerms Algorithms
Analysis
Computer Science
Data Structures and Information Theory
Datasets
Earth and Environmental Science
Geographical Information Systems/Cartography
Geography
Geospatial data
Information Storage and Retrieval
Multimedia Information Systems
Partitioning
Performance indices
Queries
Query processing
Resource management
Spatial analysis
Spatial data
Transportation planning
Urban planning
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3dS9xAEB_0fNA-iJ-Y9iwrCEJlMdlMPu6hFFsU8eEUqeBb2OwmfnDNpc0dcv-9M7nk7lro-RbIJNmP2ZnZ7G9-A3BsjUVOxJE5OXuJvnGlVpaMobZursjHuHnN9tkPr-7x-iF4WIF-mwvDsMrWJtaG2g4N_yM_I0_E3HdRHHwrf0uuGsWnq20JDd2UVrBfa4qxVVhTzIzVgbXvF_3buznow42mecMxcnJc0J5zTpPpohqGyaBcDKX3l6f6114vHJx-gPVxUerJqx4MFnzT5RZsNkGlOJ9qwTasZMUOrDf1zZ8mu3BDtkyUjGuV1WuWlUIPHqlzo6dflaCoVViOImn6JTs1K16Gz4WgBvA2WtBlxbBr-gDDSVmi2oP7y4ufP65kU0pBGgxxJAOMUqWMjpF2hAaNnyo3jY320jTqaVSGAgFMOXZDDzMV5rTHznwvtwE5dE3y-9AphkV2AMLYHjk-ipp8L0XEXhxaCgmZOM6NbN6LHXDbYUtMwzPO5S4GyZwhmUc6YWwZj3TiOfBl9kg5JdlYJnzCc5HwAqT3Gt3kEVDrmMoqOceI9_t-EDrQbacraVZmlcz1yIGj2W1aU3xQQtMwHLOMisiuUT-XyWAQs_nzHThtVWHhM_9v_ulMW97v7MflXfgEG4oVtgYXdqEz-jPODilIGqWfG81_A6xbCQY
  priority: 102
  providerName: ProQuest
– databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ZS8NAEB5EH6oP3mK8WEEQlIVkMzn6WEQRH_TFgm9hs5t4UNPStIj_3pk0aat44Fsgs_fOxXwzC3BijUVOxJE5KXuJvnGlVpaEobZurkjHuHlV7fM2vO7izUPwUOdxlw3avQlJVpJ6LtktqmCSDJrFUJLLsxRwNS-6xF3VmeE63GiSGhwj578FTSjzuy4-KaOvInkuNroCrXEx0O9vutebUz9X67Ba242iMznoDVjIik1Ya95kEDWLbkKrftX86X0L7kiCiQGjWWX5lmUDoXuP_eHz6Om1FGSrCsu2I7WSrMqseOk_F4LmxM6zoM-SwdY0JoNImaLchu7V5f3FtawfUJAGQxzJAKNUKaNjJD_QoPFT5aax0V6aRm2NypD6x5QtNvQwU2FOnnXme7kNSI1rot-BxaJfZLsgjG2TuiNbyfdSRGzHoSVDkMvFuZHN27EDbrOTiamri_MjF71kVheZNz9hRBlvfuI5cDZtMpiU1viN-JSPJ2G2o36NrrMHaHZcwCrpYMRevh-EDhw0J5jU_FgmZMdw5cQoDhw4nv4mTuLwCB1Df8w0KiJpRuv8jQaDmIWe78B5czvmhvl5-ufTC_T3Yvf-1fc-LCu-0hXC8AAWR8NxdkiW0ig9qjjjA0EDBR4
  priority: 102
  providerName: Springer Nature
Title New plane-sweep algorithms for distance-based join queries in spatial databases
URI https://link.springer.com/article/10.1007/s10707-016-0246-1
https://www.proquest.com/docview/1819659785
https://www.proquest.com/docview/1827880941
https://www.proquest.com/docview/1845804883
http://hdl.handle.net/10835/5276
UnpaywallVersion submittedVersion
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: ABDBF
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: AFBBN
  dateStart: 19970401
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7624
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: BENPR
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: 8FG
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7624
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0005070
  issn: 1573-7624
  databaseCode: U2A
  dateStart: 19970401
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fa9swED7a5KHsYb_HPLrgwWCwos6WT7bz6IykZYOsjAXaJyNL9totc0LtULq_fneOnWUd7diTDTpbkk9398k6fQJ4bY1F3ogjCgr2AgPjCS0tOUNtvUJSjPGKhu1zGh7P8MOpOt2B7si6G_QCPgOEd0pG4S70Q0Vouwf92fQkOWvmUTHyDjfVUKJGgSC7xm7hcr07LmryKjnLFkPh_xF6bjrgrZXQe7C3Kpf6-krP51vBZvJgnfRYNRyFnGPy_XBVZ4fm598Mjrf24yHcb5Gmm6yHxiPYycvHsNceen5-_QQ-kYNzl5zsKqqrPF-6ev51cXlRn_-oXIKyrmVoSWNCcKSz7rfFRelSJ3hu7dJtxbnYVAHnmLJE9RRmk_GX98eiPV9BGAyxFgqjTEqjY6RpokETZNLLYqP9LIuGGqUhdIAZAzr0MZdhQRPvPPALqyjKa5J_Br1yUebPwTV2SNGQoFTgZ4g4jENLOJHZ5LzIFsPYAa_79Klpycf5DIx5-ps2mbWVcsIZayv1HXi7eWS5Zt64S_gN6zNlq6T3Gt1uLqDWMb9VmmDEPwECFTqw36k8bc21SgnmMLFiFCsHXm2KydB49YTUsFixjIzI2VE_75JBFbNPDBw46IbTVjW3N_9gM-L-3dkX_yW9D736cpW_JOxUZwPYjSdHA-gnk9Foytejs49juo7G05PPVDqTyaA1sV9yKRVn
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hA4IJ7CpcAigZCoVtjr8etQoQKtUloCQq3Um1nv2pQqOAYnivLn-G3MOHYSkAin3ix5bO_Ozs43450HwDNrLHIijiwI7CX6xpVaWVKG2rqFIoxxi6ba5yDsn-H78-B8A351uTAcVtnpxEZR25Hhf-SvCIm49l0UB6-rH5K7RvHpatdCQ7etFexeU2KsTew4zmdTcuHqvaN3tN7PlTo8OH3bl22XAWkwxLEMMMqUMjpGcpYMGj9TbhYb7WVZlGhUhjASMzZr0MNchQW5n7nvFTYgrNNET--9BlvoY0LO39abg8Gnz8sgEzea5ynHyMl4QXeuOk_ei5qwTw4CxlB6fyDj3_iwclB7A3qTstKzqR4OV7Dw8BbcbI1YsT-XutuwkZd3oNf2U7-Y3YWPpDtFxXG0sp7meSX08Csxc3zxvRZkJQvLViuJm2QQteJy9K0UNAB22wVd1hzmTR_g8FWmqO_B2ZUw9T5slqMyfwDC2ISAlqw038sQMYlDSyYoF6pzI1sksQNux7bUtHXNub3GMF1WZGZOpxzLxpxOPQdeLh6p5kU91hG_4LVIecPTe41u8xZodFw6K93HiP8v-EHowE63XGmrCep0KbcOPF3cpj3MBzO0DKMJ06iI9CjNcx0NBjGrW9-B3U4UVj7z7-HvLqTl_5PdXj-FJ9Drn344SU-OBscP4bpi4W0CG3dgc_xzkj8iA22cPW53gYAvV73xfgP8D0U0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB9qBVsfxE-MVl1BESxLk80km3sQKdaztVJ9sNC3uNlNbOXMRXPHcf-af50z-bg7Bc-nvgUySXZnZ-Y3m50PgGfOOuREHFkQ2EsMrS-NcmQMjfMLRRjjF021z5P48BTfn0VnG_Crz4XhsMreJjaG2o0t_yPfIyTi2nc6ifaKLizi08HwdfVDcgcpPmnt22m0InKcz2e0fatfHR3QWj9Xavj285tD2XUYkBZjnMgIdaaUNQnSRsmiDTPlZ4k1QZbpgUFlCR8xY5cGA8xVXNDWMw-DwkWEc4bo6b1X4KrmKu6cpT58twwv8XWboZwgp-FF_Ylqm7anm4BPDv_FWAZ_YOLfyLByRHsdtqZlZeYzMxqtoODwJtzo3Fex38rbLdjIy9uw1XVSP5_fgY9kNUXFEbSynuV5JczoK7Fucv69FuQfC8f-KgmaZPh04tv4ohQ0AN6wC7qsOcCbPsCBq0xR34XTS2HpPdgsx2V-H4R1A4JY8s_CIEPEQRI7cj65RJ2vXTFIPPB7tqW2q2jOjTVG6bIWM3M65Sg25nQaePBy8UjVlvNYR_yC1yJlVaf3WtNlLNDouGhWuo-a_yyEUezBTr9caWcD6nQpsR48Xdwm7eUjGVqG8ZRplCYLSvNcR4NRwoY29GC3F4WVz_x7-LsLafn_ZB-sn8ITuEbqln44Ojl-CNuKZbeJaNyBzcnPaf6IPLNJ9rhRAQFfLlvnfgP2wULO
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9RAEB_q9aH44LeYUmUFQbBsTTaz2dzjIZbiQ_XBg_oU9iOxrWfuaHKU9q93JpecZ6UV3wKZZHczOzO_yc7-FuBN8AF5I46sKNhLTH0srQrkDG2IK0UxJq46ts_j7GiKn070yRYMR9bdoBdIGCC818pk92A704S2R7A9Pf4y-dblUTnyDjfdUaKaVJJd47BwudodZ7q6Sq6yxUwmf4Semw54YyX0Puws64W9urSz2UawOXy4KnpsOo5CrjH5cbBs3YG__pvB8dZxPIIHPdIUk9XUeAxbZf0EdvpDz0-vnsJncnBiwcWusrksy4Wws-_zi7P29GcjCMqKwNCS5oTkSBfE-fysFjQIzq0FXTZci00NcI0pSzTPYHr48euHI9mfryA9ZthKjcYp5W2OlCZ69KlTscu9TZwzY4vKEzpAx4AOEyxVVlHiXaZJFTRFeUvyz2FUz-vyBQgfxhQNCUqliUPEcZ4FwonMJhebUI3zCOLh0xe-Jx_nMzBmxW_aZNZWwQVnrK0iieDd-pHFinnjLuG3rM-CrZLe622_uYB6x_xWxQQN_wRIdRbB3qDyojfXpiCYw8SKJtcRvF7fJkPj1RNSw3zJMsqQs6Nx3iWDOmefmEawP0ynjWZu7_7-esb9e7C7_yW9B6P2Ylm-JOzUule9-fwC8e0O7g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+plane-sweep+algorithms+for+distance-based+join+queries+in+spatial+databases&rft.jtitle=GeoInformatica&rft.au=Roumelis%2C+George&rft.au=Corral%2C+Antonio&rft.au=Vassilakopoulos%2C+Michael&rft.au=Manolopoulos%2C+Yannis&rft.date=2016-10-01&rft.issn=1384-6175&rft.eissn=1573-7624&rft.volume=20&rft.issue=4&rft.spage=571&rft.epage=628&rft_id=info:doi/10.1007%2Fs10707-016-0246-1&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1384-6175&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1384-6175&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1384-6175&client=summon