The zebrafish genome in context: ohnologs gone missing

Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including...

Full description

Saved in:
Bibliographic Details
Published inJournal of experimental zoology. Part B, Molecular and developmental evolution Vol. 308B; no. 5; pp. 563 - 577
Main Author Postlethwait, John H.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.09.2007
Subjects
Online AccessGet full text
ISSN1552-5007
1552-5015
DOI10.1002/jez.b.21137

Cover

Abstract Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007. © 2006 Wiley‐Liss, Inc.
AbstractList Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them novel genes. The origin of many so-called novel genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be novel are more appropriately interpreted as ohnologs gone missing, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563-577, 2007.
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007. © 2006 Wiley‐Liss, Inc.
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007 . © 2006 Wiley‐Liss, Inc.
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions.
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions.Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions.
Author Postlethwait, John H.
Author_xml – sequence: 1
  givenname: John H.
  surname: Postlethwait
  fullname: Postlethwait, John H.
  email: jpostle@uoneuro.uoregon.edu
  organization: Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403
BackLink https://www.ncbi.nlm.nih.gov/pubmed/17068775$$D View this record in MEDLINE/PubMed
BookMark eNqFkTtPwzAURi1UxHtiR5lYUIrtxHbCBhVPVSAkXmKxHOc6dUljiFNB--sJ9DEgBNP1cL7vXh1vok7lKkBol-AuwZgeDmHazbqUkEisoA3CGA0ZJqyzfGOxjja9H7Ywx4ytoXUiME-EYBuI3w0gmEJWK2P9ICigciMIbBVoVzXw0RwFblC50hU-KNq1wch6b6tiG60aVXrYmc8tdH92ete7CPs355e9436oYx6L0OAszXOVJ7GmhlIwOmGGpSmwhGuudS4UTlimIRUaYpGqNAITGSUUJUowEW2h_Vnva-3exuAb2R6goSxVBW7sJU9iEeOU_AtSnBBC0q_GvTk4zkaQy9fajlQ9kQslLUBmgK6d9zUYqW2jGtv6qJUtJcHyS7tstctMfmtvMwc_MsvaX-n5hndbwuQvVF6dPi8y4Sxjffsty4yqXyQXkWDy8fpcnsRPvQdOY3kbfQKzf6Ie
CitedBy_id crossref_primary_10_7554_eLife_82978
crossref_primary_10_1186_1471_2164_13_521
crossref_primary_10_1523_JNEUROSCI_2659_13_2013
crossref_primary_10_1371_journal_pgen_1004449
crossref_primary_10_1016_j_fsi_2011_05_016
crossref_primary_10_3389_fcell_2017_00005
crossref_primary_10_1074_jbc_RA120_012636
crossref_primary_10_1186_s13064_016_0070_1
crossref_primary_10_1002_dvdy_23913
crossref_primary_10_1016_j_fsi_2008_05_005
crossref_primary_10_1007_s00239_012_9521_4
crossref_primary_10_1093_sysbio_syac040
crossref_primary_10_1007_s11160_021_09691_7
crossref_primary_10_1016_j_tcm_2008_04_002
crossref_primary_10_1016_j_gene_2015_03_027
crossref_primary_10_3389_fncel_2014_00263
crossref_primary_10_1016_j_cbpc_2014_01_005
crossref_primary_10_1016_j_exphem_2013_04_002
crossref_primary_10_1002_dvdy_24041
crossref_primary_10_1038_nrg_2016_39
crossref_primary_10_1371_journal_pone_0163229
crossref_primary_10_3389_fphys_2017_00776
crossref_primary_10_1016_j_neuroscience_2012_11_052
crossref_primary_10_1186_1471_2148_13_271
crossref_primary_10_1016_j_gene_2011_08_007
crossref_primary_10_1016_j_dci_2011_03_006
crossref_primary_10_1007_s00427_009_0311_y
crossref_primary_10_1534_g3_114_012294
crossref_primary_10_1002_dvdy_21967
crossref_primary_10_1002_dvdy_21965
crossref_primary_10_1093_dnares_dsx034
crossref_primary_10_1002_jez_b_21191
crossref_primary_10_1074_jbc_M111_260125
crossref_primary_10_1134_S0006297924020160
crossref_primary_10_1007_s00251_012_0616_2
crossref_primary_10_1016_j_dci_2021_104100
crossref_primary_10_1016_j_margen_2008_06_003
crossref_primary_10_1007_s00251_011_0558_0
crossref_primary_10_1186_1471_2148_9_207
crossref_primary_10_1186_s12864_020_6620_2
crossref_primary_10_1016_j_aquaculture_2021_736484
crossref_primary_10_1093_toxsci_kfaa143
crossref_primary_10_1242_bio_058172
crossref_primary_10_1016_j_aquaculture_2022_738266
crossref_primary_10_1016_j_fsi_2023_108515
crossref_primary_10_1038_nrg2226
crossref_primary_10_1002_dvdy_21797
crossref_primary_10_1093_molbev_mss192
crossref_primary_10_3390_ijms22041584
crossref_primary_10_1007_s10709_008_9328_9
crossref_primary_10_1016_j_ydbio_2012_04_032
crossref_primary_10_1186_s12862_023_02167_1
crossref_primary_10_1016_j_cbpa_2008_06_029
crossref_primary_10_1093_molbev_mss199
crossref_primary_10_1210_en_2007_1256
crossref_primary_10_1186_1471_2148_12_59
crossref_primary_10_1016_j_matbio_2015_07_001
crossref_primary_10_1186_1471_2164_11_643
crossref_primary_10_1038_srep27816
crossref_primary_10_1038_s41598_022_26876_7
crossref_primary_10_1038_jid_2014_182
crossref_primary_10_7554_eLife_27955
crossref_primary_10_1155_2011_905813
crossref_primary_10_1371_journal_pone_0119372
crossref_primary_10_4049_jimmunol_0803285
crossref_primary_10_1371_journal_pgen_1010534
crossref_primary_10_1007_s00239_021_10020_6
crossref_primary_10_1186_1471_2164_15_874
crossref_primary_10_1371_journal_pone_0073951
crossref_primary_10_1111_j_1095_8649_2009_02184_x
crossref_primary_10_1016_j_dci_2013_05_013
crossref_primary_10_1523_JNEUROSCI_2740_08_2008
crossref_primary_10_1007_s00239_008_9121_5
crossref_primary_10_1002_dvdy_22195
crossref_primary_10_1002_dvdy_22196
crossref_primary_10_1093_cvr_cvy005
crossref_primary_10_1093_molbev_msac004
crossref_primary_10_1002_glia_22381
crossref_primary_10_1016_j_gep_2015_07_004
crossref_primary_10_1016_j_tig_2021_07_002
crossref_primary_10_1007_s00239_007_9035_7
crossref_primary_10_1089_zeb_2009_0609
crossref_primary_10_1002_dvdy_329
crossref_primary_10_1002_jez_b_22589
crossref_primary_10_1186_1471_2148_8_171
crossref_primary_10_1002_dvdy_21891
crossref_primary_10_1016_j_gene_2013_01_058
crossref_primary_10_1111_j_1749_6632_2012_06684_x
crossref_primary_10_1523_JNEUROSCI_4329_08_2008
crossref_primary_10_1038_jid_2010_388
crossref_primary_10_1016_j_ydbio_2017_08_011
crossref_primary_10_1101_gr_090480_108
crossref_primary_10_1016_j_ydbio_2017_03_030
crossref_primary_10_1182_bloodadvances_2024013237
crossref_primary_10_1002_jez_b_21307
crossref_primary_10_1096_fj_11_202663
crossref_primary_10_1016_j_crvi_2008_07_007
crossref_primary_10_1186_1471_2148_11_234
crossref_primary_10_1002_cne_23240
crossref_primary_10_1530_JME_12_0199
crossref_primary_10_1177_0192623312464308
crossref_primary_10_1073_pnas_0806015105
crossref_primary_10_1186_1471_2148_14_157
crossref_primary_10_1002_jez_b_21439
crossref_primary_10_1016_j_ygcen_2013_08_016
crossref_primary_10_1038_ng_3526
crossref_primary_10_1016_j_ydbio_2024_02_005
crossref_primary_10_1534_g3_113_009316
crossref_primary_10_1016_j_cub_2024_06_031
crossref_primary_10_1016_j_semcdb_2012_12_008
crossref_primary_10_1098_rstb_2012_0474
crossref_primary_10_1371_journal_pone_0052701
crossref_primary_10_1002_jez_b_23069
crossref_primary_10_1371_journal_pgen_1000496
crossref_primary_10_1038_nature12111
crossref_primary_10_1186_1471_2148_8_184
crossref_primary_10_1016_j_fsi_2008_11_004
crossref_primary_10_1111_j_1365_2109_2009_02173_x
crossref_primary_10_1002_dvdy_23889
Cites_doi 10.1086/280465
10.7150/ijbs.1.19
10.1093/oxfordjournals.molbev.a025825
10.1016/j.tree.2005.04.008
10.1002/1097-010X(20001215)288:4<345::AID-JEZ7>3.0.CO;2-Y
10.1093/genetics/147.3.1259
10.1038/ng0498-345
10.1073/pnas.0307968100
10.1038/43815
10.1074/jbc.M000121200
10.1126/science.282.5394.1711
10.1006/geno.1996.0328
10.1016/S0012-1606(03)00219-7
10.1101/gr.164800
10.2307/2412923
10.1002/dvdy.20080
10.1093/bioinformatics/btg213
10.1111/j.1601-5223.1968.tb02169.x
10.1002/dvdy.20335
10.1006/mpev.1994.1007
10.1101/gr.4134305
10.1016/S0955-0674(99)00039-3
10.1159/000095104
10.1073/pnas.94.10.5177
10.1371/journal.pbio.0030314
10.1023/A:1022661917301
10.1093/nar/gkg106
10.1242/dev.116.4.1001
10.1093/genetics/142.1.295
10.1016/S0168-9525(03)00139-2
10.1242/dev.119.4.1261
10.1101/gr.445702
10.1016/S0168-9525(97)01065-2
10.1002/(SICI)1521-1878(199806)20:6<511::AID-BIES10>3.0.CO;2-3
10.1093/nar/17.24.10385
10.1093/molbev/msh114
10.1101/gr.640303
10.1007/978-3-642-86659-3
10.1093/molbev/msg224
10.1101/gr.10.12.1903
10.1101/gr.GR-1600R
10.1242/dev.128.13.2471
10.1093/genetics/151.4.1531
10.1093/nar/25.17.3389
10.1038/sj.hdy.6800635
10.1006/geno.1993.1133
10.1016/j.bbrc.2005.03.133
10.1016/0092-8674(89)90912-4
10.1126/science.175.4022.644
10.1126/science.290.5494.1151
10.1073/pnas.0501102102
10.1073/pnas.262525399
10.1242/dev.129.10.2339
10.1016/S1360-1385(97)01154-0
10.1007/BF01732026
10.1146/annurev.genet.38.072902.092831
10.1002/(SICI)1097-010X(19990415)285:1<41::AID-JEZ5>3.0.CO;2-D
10.1038/75560
10.1007/PL00006540
10.1007/978-1-4684-4652-4_1
10.1016/0092-8674(83)90429-4
10.1093/oxfordjournals.molbev.a025707
10.1016/0959-437X(93)90016-I
10.1093/genetics/154.1.459
10.1016/j.mod.2004.01.007
10.1101/gr.2004004
10.1086/316992
10.1002/jez.10091
10.1111/j.1469-185X.2000.tb00057.x
10.1242/dev.121.2.347
10.1042/BJ20050005
10.1007/s00239-004-2613-z
10.1101/gr.155801
10.1093/genetics/145.4.1083
10.1023/A:1022652814749
10.1038/nature04336
10.1038/nature03025
10.1101/gr.700503
10.1093/molbev/msg173
10.1016/j.tig.2004.08.001
10.1016/S0925-4773(99)00312-3
10.1093/genetics/116.4.579
10.1101/gr.1717804
10.1016/j.gene.2003.12.008
10.1098/rstb.2001.0975
ContentType Journal Article
Copyright Copyright © 2006 Wiley‐Liss, Inc., A Wiley Company
Copyright 2006 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2006 Wiley‐Liss, Inc., A Wiley Company
– notice: Copyright 2006 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
DOI 10.1002/jez.b.21137
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Genetics Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional

CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Zoology
EISSN 1552-5015
EndPage 577
ExternalDocumentID 17068775
10_1002_jez_b_21137
JEZ21137
ark_67375_WNG_B4XCV624_Q
Genre article
Journal Article
Review
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: National Institutes of Health (NIH)
  funderid: P01 HD22486
– fundername: National Center for Research Resources (NCRR)
  funderid: R01 RR10715
– fundername: NCRR NIH HHS
  grantid: R01 RR10715
– fundername: NICHD NIH HHS
  grantid: P01 HD22486
GroupedDBID ---
.GA
.Y3
05W
0R~
10A
186
1L6
1OC
1ZS
31~
33P
4.4
51W
52M
52O
52S
52T
52W
53G
5GY
5VS
7PT
8-1
85S
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACNCT
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BFHJK
BRXPI
BSCLL
BY8
CO8
CS3
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F5P
FEDTE
G-S
GNP
GODZA
HBH
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LOXES
LP6
LP7
LUTES
LYRES
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
O9-
OIG
P2P
P2W
P4D
QB0
ROL
SUPJJ
UB1
UPT
UQL
V2E
W99
WH7
WJL
WQJ
XG1
XSW
XV2
ZCG
AAHHS
ACCFJ
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
MEWTI
RWI
WIH
WXSBR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
8FD
F1W
FR3
H95
L.G
P64
RC3
7X8
ID FETCH-LOGICAL-c4647-f0b9ddad84c2f22efc85f599e586c6ccd7a085bce97ce479a93ef3fa7a21a7573
IEDL.DBID DR2
ISSN 1552-5007
IngestDate Fri Jul 11 11:15:47 EDT 2025
Fri Jul 11 12:21:23 EDT 2025
Wed Feb 19 01:45:38 EST 2025
Thu Apr 24 22:51:14 EDT 2025
Tue Jul 01 01:36:36 EDT 2025
Wed Jan 22 16:58:31 EST 2025
Tue Sep 09 05:32:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
Copyright 2006 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4647-f0b9ddad84c2f22efc85f599e586c6ccd7a085bce97ce479a93ef3fa7a21a7573
Notes ark:/67375/WNG-B4XCV624-Q
istex:921463DA99A5FD5F5C2082AE40A44739C8A3047F
National Center for Research Resources (NCRR) - No. R01 RR10715
ArticleID:JEZ21137
National Institutes of Health (NIH) - No. P01 HD22486
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Review-3
PMID 17068775
PQID 20811197
PQPubID 23462
PageCount 15
ParticipantIDs proquest_miscellaneous_68474091
proquest_miscellaneous_20811197
pubmed_primary_17068775
crossref_citationtrail_10_1002_jez_b_21137
crossref_primary_10_1002_jez_b_21137
wiley_primary_10_1002_jez_b_21137_JEZ21137
istex_primary_ark_67375_WNG_B4XCV624_Q
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 15 September 2007
PublicationDateYYYYMMDD 2007-09-15
PublicationDate_xml – month: 09
  year: 2007
  text: 15 September 2007
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Journal of experimental zoology. Part B, Molecular and developmental evolution
PublicationTitleAlternate J. Exp. Zool
PublicationYear 2007
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References McClintock JM, Kheirbek MA, Prince VE. 2002. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339-2354.
Santini S, Boore JL, Meyer A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13:1111-1122.
Zhang J, Nei M. 1996. Evolution of Antennapedia-class homeobox genes. Genetics 142:295-303.
Chai C, Liu YW, Chan WK. 2003. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 260:226-244.
Lynch M, Force A. 2000b. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459-473.
Akimenko M-A, Johnson SL, Westerfield M, Ekker M. 1995. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121:347-357.
Wolfe K. 2000. Robustness - it's not where you think it is. Nat Genet 25:3-4.
Ekker M, Wegner J, Akimenko M-A, Westerfield M. 1992. Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001-1010.
Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615-643.
David L, Blum S, Feldman MW, Lavi U, Hillel J. 2003. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425-1434.
Ohno S, Wolf U, Atkins NB. 1968. Evolution from fish to mammals by gene duplication. Hereditas 59:169-187.
Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. 2005. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 389(Part 1):19-26.
Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545.
Postlethwait J. 2006. The zebrafish genome: a review using msx genes as a case study. Genome Dyn 2:183-197.
Phillips R, Rab P. 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1-25.
Kappen C, Ruddle F. 1993. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 3:931-938.
Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957.
Bailey AD, Shen CC, Shen CK. 1997a. Molecular origin of the mosaic sequence arrangements of higher primate alpha-globin duplication units. Proc Natl Acad Sci USA 94:5177-5182.
Kasahara M, Nakaya J, Satta Y, Takahata N. 1997. Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90-92.
Ohno S. 1970. Evolution by gene duplication. New York: Springer-Verlag.
Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. 2004. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481-490.
McClintock JM, Carlson R, Mann DM, Prince VE. 2001. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471-2484.
Raisanen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK. 2005. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120-126.
Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A, Boncinelli E. 1989. The human HOX gene family. Nucleic Acids Res 17:10385-10402.
Bailey W, Kim J, Wagner G, Ruddle F. 1997b. Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843-853.
Nadeau JH, Sankoff D. 1997. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259-1266.
Taylor JS, van de Peer Y, Braasch I, Meyer A. 2001. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B 356:1661-1679.
Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711-1714.
Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol 49:169-181.
Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965-968.
Lynch M, Conery J. 2000. The evolutionary fate and consequences of gene duplication. Science 290:1151-1155.
Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699-704.
Larhammar D, Risinger C. 1994. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3:59-68.
Katsanis N, Fitzgibbon J, Fisher EMC. 1996. Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101-108.
Hughes MK, Hughes AL. 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360-1369.
Larhammar D, Lundin L, Hallbook F. 2002. The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12:1910-1920.
Wittbrodt J, Meyer A, Schartl M. 1998. More genes in fish? BioEssays 20:511-515.
Haldane JBS. 1933. The part played by recurrent mutation in evolution. Am Nat 67:5-9.
Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. 2003. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:63-67.
McLysaght A. 2001. Evolution of vertebrate genome organisation [Doctor of Philosophy]. Dublin: University of Dublin. 160 p.
Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS. 2000. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890-1902.
Ferris SD, Whitt GS. 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267-317.
Force A, Amores A, Postlethwait JH. 2002. Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294:30-46.
Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N. 1999. Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes. Nature 401:341.
Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146-1151.
Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367-378.
von Hofsten J, Larsson A, Olsson PE. 2005. Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233:595-604.
Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS. 2000. A comparative map of the zebrafish genome. Genome Res 10:1903-1914.
Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307-1314.
Gu X. 2003. Evolution of duplicate genes versus genetic robustness against null mutations. Trends Genet 19:354-356.
Snell EA, Scemama JL, Stellwag EJ. 1999. Genomic organization of the Hoxa4-Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. J Exp Zool 285:41-49.
Hughes AL. 1999. Adaptive evolution of genes and genomes. New York: Oxford University Press.
Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. 2005. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454-5459.
Hoegg S, Brinkmann H, Taylor JS, Meyer A. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190-203.
Ekker M, Akimenko M, Allende M, Smith R, Drouin G, Langille R, Weinberg E, Westerfield M. 1997. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol Biol Evol 14:1008-1022.
Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisua Belmonte JC, Ninomiya Y. 2004. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121:301-312.
Laurenti P, Thaeron C, Allizard F, Huysseune A, Sire JY. 2004. Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish (Danio rerio). Dev Dyn 230:727-733.
Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. 2004. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1-10.
Wall DP, Fraser HB, Hirsh AE. 2003. Detecting putative orthologs. Bioinformatics 19:1710-1711.
Hokamp K, McLysaght A, Wol
2004; 21
2004; 121
1933; 67
2004; 20
2005; 331
2002; 12
1999; 49
2002; 99
2003; 13
1999; 285
2005; 20
1972; 175
2000; 91
1997; 2
2003; 19
1970
1996; 142
1996; 35
2004; 328
1999; 401
1993; 3
2000; 290
1997; 147
1968; 59
1998; 18
1987; 116
2001
2004; 38
2005; 102
2005; 389
2000; 10
1997; 14
1997; 13
1997; 145
1992; 116
2003; 3
1999; 11
1984
1978; 27
1997a; 94
2000; 288
2001; 11
1995; 121
1998; 282
2004; 101
2006; 439
1979; 12
2000; 25
2002; 294
2005; 233
1997; 25
2000a; 156
2000; 275
2003
2006; 2
2002
1998; 20
2003; 31
2000b; 154
1997b; 14
1983; 33
2001; 128
1999
2004; 431
2004; 230
1993; 119
1993; 16
2004; 14
1999; 39
2004; 59
1993; 10
2003; 260
2002; 129
1999; 151
2005; 1
2005; 3
2005; 94
2005; 15
1989; 57
1994; 3
2003; 20
2003; 21
2001; 356
1989; 17
2001; 76
Hughes MK (e_1_2_1_33_1) 1993; 10
e_1_2_1_81_1
e_1_2_1_20_1
e_1_2_1_41_1
e_1_2_1_66_1
e_1_2_1_87_1
e_1_2_1_68_1
e_1_2_1_89_1
e_1_2_1_24_1
e_1_2_1_45_1
e_1_2_1_62_1
e_1_2_1_83_1
e_1_2_1_22_1
e_1_2_1_64_1
e_1_2_1_85_1
e_1_2_1_28_1
e_1_2_1_49_1
e_1_2_1_26_1
e_1_2_1_47_1
e_1_2_1_92_1
e_1_2_1_90_1
Hughes AL (e_1_2_1_32_1) 1999
e_1_2_1_31_1
e_1_2_1_54_1
e_1_2_1_77_1
e_1_2_1_8_1
Kumazawa Y (e_1_2_1_43_1) 1999
e_1_2_1_56_1
e_1_2_1_79_1
e_1_2_1_6_1
Santini F (e_1_2_1_75_1) 1999; 39
e_1_2_1_12_1
Ekker M (e_1_2_1_19_1) 1992; 116
e_1_2_1_35_1
e_1_2_1_50_1
e_1_2_1_73_1
e_1_2_1_4_1
e_1_2_1_10_1
e_1_2_1_52_1
e_1_2_1_2_1
e_1_2_1_16_1
e_1_2_1_39_1
McLysaght A (e_1_2_1_60_1) 2001
e_1_2_1_14_1
Joly J‐S (e_1_2_1_37_1) 1993; 119
e_1_2_1_18_1
McClintock JM (e_1_2_1_58_1) 2001; 128
e_1_2_1_80_1
e_1_2_1_82_1
e_1_2_1_42_1
e_1_2_1_65_1
e_1_2_1_88_1
e_1_2_1_40_1
e_1_2_1_67_1
e_1_2_1_23_1
e_1_2_1_46_1
e_1_2_1_61_1
e_1_2_1_84_1
e_1_2_1_21_1
e_1_2_1_63_1
e_1_2_1_86_1
e_1_2_1_27_1
Kuo MW (e_1_2_1_44_1) 2005; 389
Postlethwait JH (e_1_2_1_71_1) 2002
e_1_2_1_25_1
e_1_2_1_48_1
e_1_2_1_69_1
e_1_2_1_29_1
e_1_2_1_93_1
e_1_2_1_70_1
e_1_2_1_91_1
e_1_2_1_7_1
e_1_2_1_30_1
e_1_2_1_55_1
e_1_2_1_76_1
e_1_2_1_5_1
e_1_2_1_57_1
e_1_2_1_78_1
e_1_2_1_3_1
e_1_2_1_13_1
e_1_2_1_34_1
e_1_2_1_51_1
e_1_2_1_72_1
e_1_2_1_11_1
e_1_2_1_53_1
e_1_2_1_74_1
e_1_2_1_17_1
e_1_2_1_38_1
e_1_2_1_15_1
e_1_2_1_36_1
e_1_2_1_59_1
e_1_2_1_9_1
References_xml – reference: Larhammar D, Risinger C. 1994. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3:59-68.
– reference: Nadeau JH, Sankoff D. 1997. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259-1266.
– reference: Snell EA, Scemama JL, Stellwag EJ. 1999. Genomic organization of the Hoxa4-Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. J Exp Zool 285:41-49.
– reference: Van de Peer Y, Taylor JS, Meyer A. 2003. Are all fishes ancient polyploids? J Struct Funct Genomics 3:65-73.
– reference: Lynch M, Conery J. 2000. The evolutionary fate and consequences of gene duplication. Science 290:1151-1155.
– reference: Allendorf FW, Danzmann RG. 1997. Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083-1092.
– reference: von Hofsten J, Larsson A, Olsson PE. 2005. Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233:595-604.
– reference: Minguillon C, Gardenyes J, Serra E, Castro LF, Hill-Force A, Holland PW, Amemiya CT, Garcia-Fernandez J. 2005. No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 1:19-23.
– reference: Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965-968.
– reference: Santini S, Boore JL, Meyer A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13:1111-1122.
– reference: Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A, Boncinelli E. 1989. The human HOX gene family. Nucleic Acids Res 17:10385-10402.
– reference: Bailey AD, Shen CC, Shen CK. 1997a. Molecular origin of the mosaic sequence arrangements of higher primate alpha-globin duplication units. Proc Natl Acad Sci USA 94:5177-5182.
– reference: Chai C, Chan W. 2000. Developmental expression of a novel Ftz-F1 homologue, ff1b (NR5A4), in the zebrafish Danio rerio. Mech Dev 91:421-426.
– reference: Lee MG, Lewis SA, Wilde CD, Cowan NJ. 1983. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell 33:477-487.
– reference: Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. 2003. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:63-67.
– reference: Bailey W, Kim J, Wagner G, Ruddle F. 1997b. Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843-853.
– reference: Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314.
– reference: Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545.
– reference: Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699-704.
– reference: Wittbrodt J, Meyer A, Schartl M. 1998. More genes in fish? BioEssays 20:511-515.
– reference: Haldane JBS. 1933. The part played by recurrent mutation in evolution. Am Nat 67:5-9.
– reference: Lundin LG. 1993. Evolution of the vertebrate genome as relected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1-19.
– reference: Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H. 2004. A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820-828.
– reference: Akimenko M-A, Johnson SL, Westerfield M, Ekker M. 1995. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121:347-357.
– reference: Koopman P, Schepers G, Brenner S, Venkatesh B. 2004. Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328:177-186.
– reference: Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS. 2000. A comparative map of the zebrafish genome. Genome Res 10:1903-1914.
– reference: Zhang J, Nei M. 1996. Evolution of Antennapedia-class homeobox genes. Genetics 142:295-303.
– reference: Hughes MK, Hughes AL. 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360-1369.
– reference: Johnson KR, Wright JE Jr, May B. 1987. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579-591.
– reference: Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615-643.
– reference: Friedman R, Hughes AL. 2001. Pattern and timing of gene duplication in animal genomes. Genome Res 11:1842-1847.
– reference: Coulier F, Popovici C, Villet R, Birnbaum D. 2000. MetaHox gene clusters. J Exp Zool 288:345-351.
– reference: Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisua Belmonte JC, Ninomiya Y. 2004. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121:301-312.
– reference: Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401-410.
– reference: Wall DP, Fraser HB, Hirsh AE. 2003. Detecting putative orthologs. Bioinformatics 19:1710-1711.
– reference: Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol 49:169-181.
– reference: Gu X. 2003. Evolution of duplicate genes versus genetic robustness against null mutations. Trends Genet 19:354-356.
– reference: Locascio A, Manzanares M, Blanco MJ, Nieto MA. 2002. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci USA 99:16841-16846.
– reference: Ekker M, Akimenko M, Allende M, Smith R, Drouin G, Langille R, Weinberg E, Westerfield M. 1997. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol Biol Evol 14:1008-1022.
– reference: Ohno S, Wolf U, Atkins NB. 1968. Evolution from fish to mammals by gene duplication. Hereditas 59:169-187.
– reference: Kasahara M, Nakaya J, Satta Y, Takahata N. 1997. Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90-92.
– reference: Taylor J, Braasch I, Frickey T, Meyer A, Van De Peer Y. 2003. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382-390.
– reference: Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957.
– reference: Chai C, Liu YW, Chan WK. 2003. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 260:226-244.
– reference: Ohno S. 1970. Evolution by gene duplication. New York: Springer-Verlag.
– reference: Postlethwait J. 2006. The zebrafish genome: a review using msx genes as a case study. Genome Dyn 2:183-197.
– reference: McClintock JM, Carlson R, Mann DM, Prince VE. 2001. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471-2484.
– reference: Larhammar D, Lundin L, Hallbook F. 2002. The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12:1910-1920.
– reference: Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS. 2000. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890-1902.
– reference: Postlethwait JH, Yan Y-L, Gates M, Horne S, Amores A, Brownlie A, Donovan A, Egan E, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly J-S, Larhammar D, Talbot WS. 1998. Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345-349.
– reference: Raisanen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK. 2005. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120-126.
– reference: Hoegg S, Brinkmann H, Taylor JS, Meyer A. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190-203.
– reference: Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307-1314.
– reference: Wolfe K. 2000. Robustness - it's not where you think it is. Nat Genet 25:3-4.
– reference: Force A, Amores A, Postlethwait JH. 2002. Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294:30-46.
– reference: Leitch IJ, B MD. 1997. Polyploidy in angiosperms. Trends Plant Sci 2:470-476.
– reference: Volff JN. 2005. Genome evolution and biodiversity in teleost fish. Heredity 94:280-294.
– reference: Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N. 1999. Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes. Nature 401:341.
– reference: Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. 2005. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 389(Part 1):19-26.
– reference: Uyeno T, Smith GR. 1972. Tetraploid origin of the karyotype of catostomid fishes. Science 175:644-646.
– reference: Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. 2004. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638-1643.
– reference: Hughes AL, da Silva J, Friedman R. 2001. Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res 11:771-778.
– reference: Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. 2005. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454-5459.
– reference: Katsanis N, Fitzgibbon J, Fisher EMC. 1996. Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101-108.
– reference: Lynch M, Force A. 2000a. The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590-605.
– reference: David L, Blum S, Feldman MW, Lavi U, Hillel J. 2003. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425-1434.
– reference: Santini F, Tyler JC. 1999. A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages. Am Zool 39:10A.
– reference: Taylor JS, van de Peer Y, Braasch I, Meyer A. 2001. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B 356:1661-1679.
– reference: Kappen C, Ruddle F. 1993. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 3:931-938.
– reference: Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. 2004. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481-490.
– reference: Lynch M, Force A. 2000b. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459-473.
– reference: Ferris SD, Whitt GS. 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267-317.
– reference: Ruuskanen J, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan YL, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M. 2003. Identification of duplicated fourth alpha 2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 21:14-28.
– reference: Joly J-S, Joly C, Schulte-Merker S, Boulekbache H, Condamine H. 1993. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119:1261-1275.
– reference: Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. 2004. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1-10.
– reference: Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711-1714.
– reference: Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146-1151.
– reference: Donoghue PC, Purnell MA. 2005. Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312-319.
– reference: McLysaght A. 2001. Evolution of vertebrate genome organisation [Doctor of Philosophy]. Dublin: University of Dublin. 160 p.
– reference: Hughes AL. 1999. Adaptive evolution of genes and genomes. New York: Oxford University Press.
– reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402.
– reference: Phillips R, Rab P. 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1-25.
– reference: Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367-378.
– reference: Hokamp K, McLysaght A, Wolfe KH. 2003. The 2R hypothesis and the human genome sequence. J Struct Funct Genomics 3:95-110.
– reference: McClintock JM, Kheirbek MA, Prince VE. 2002. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339-2354.
– reference: Ekker M, Wegner J, Akimenko M-A, Westerfield M. 1992. Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001-1010.
– reference: Laurenti P, Thaeron C, Allizard F, Huysseune A, Sire JY. 2004. Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish (Danio rerio). Dev Dyn 230:727-733.
– reference: Liu D, Chandy M, Lee SK, Le Drean Y, Ando H, Xiong F, Woon Lee J, Hew CL. 2000. A zebrafish ftz-F1 (Fushi tarazu factor 1) homologue requires multiple subdomains in the D and E regions for its transcriptional activity. J Biol Chem 275:16758-16766.
– volume: 389
  start-page: 19
  issue: Part 1
  year: 2005
  end-page: 26
  article-title: Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz‐F1) family
  publication-title: Biochem J
– volume: 3
  start-page: 59
  year: 1994
  end-page: 68
  article-title: Molecular genetic aspects of tetraploidy in the common carp
  publication-title: Mol Phylogenet Evol
– volume: 39
  start-page: 10A
  year: 1999
  article-title: A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages
  publication-title: Am Zool
– volume: 20
  start-page: 1425
  year: 2003
  end-page: 1434
  article-title: Recent duplication of the common carp ( L.) genome as revealed by analyses of microsatellite loci
  publication-title: Mol Biol Evol
– volume: 59
  start-page: 169
  year: 1968
  end-page: 187
  article-title: Evolution from fish to mammals by gene duplication
  publication-title: Hereditas
– volume: 233
  start-page: 595
  year: 2005
  end-page: 604
  article-title: Novel steroidogenic factor‐1 homolog (ff1d) is coexpressed with anti‐Mullerian hormone (AMH) in zebrafish
  publication-title: Dev Dyn
– volume: 38
  start-page: 615
  year: 2004
  end-page: 643
  article-title: Duplication and divergence: the evolution of new genes and old ideas
  publication-title: Annu Rev Genet
– volume: 94
  start-page: 280
  year: 2005
  end-page: 294
  article-title: Genome evolution and biodiversity in teleost fish
  publication-title: Heredity
– volume: 91
  start-page: 421
  year: 2000
  end-page: 426
  article-title: Developmental expression of a novel Ftz‐F1 homologue, ff1b (NR5A4), in the zebrafish
  publication-title: Mech Dev
– volume: 328
  start-page: 177
  year: 2004
  end-page: 186
  article-title: Origin and diversity of the Sox transcription factor gene family: genome‐wide analysis in
  publication-title: Gene
– volume: 57
  start-page: 367
  year: 1989
  end-page: 378
  article-title: The murine and Drosophila homeobox gene complexes have common features of organization and expression
  publication-title: Cell
– volume: 1
  start-page: 19
  year: 2005
  end-page: 23
  article-title: No more than 14: the end of the amphioxus Hox cluster
  publication-title: Int J Biol Sci
– year: 2001
– volume: 20
  start-page: 481
  year: 2004
  end-page: 490
  article-title: Subfunction partitioning, the teleost radiation and the annotation of the human genome
  publication-title: Trends Genet
– volume: 260
  start-page: 226
  year: 2003
  end-page: 244
  article-title: Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ
  publication-title: Dev Biol
– volume: 31
  start-page: 63
  year: 2003
  end-page: 67
  article-title: ParaDB: a tool for paralogy mapping in vertebrate genomes
  publication-title: Nucleic Acids Res
– volume: 356
  start-page: 1661
  year: 2001
  end-page: 1679
  article-title: Comparative genomics provides evidence for an ancient genome duplication event in fish
  publication-title: Philos Trans R Soc Lond B
– volume: 282
  start-page: 1711
  year: 1998
  end-page: 1714
  article-title: Zebrafish clusters and vertebrate genome evolution
  publication-title: Science
– volume: 33
  start-page: 477
  year: 1983
  end-page: 487
  article-title: Evolutionary history of a multigene family: an expressed human beta‐tubulin gene and three processed pseudogenes
  publication-title: Cell
– volume: 275
  start-page: 16758
  year: 2000
  end-page: 16766
  article-title: A zebrafish ftz‐F1 ( factor 1) homologue requires multiple subdomains in the D and E regions for its transcriptional activity
  publication-title: J Biol Chem
– volume: 21
  start-page: 1146
  year: 2004
  end-page: 1151
  article-title: Fugu genome analysis provides evidence for a whole‐genome duplication early during the evolution of ray‐finned fishes
  publication-title: Mol Biol Evol
– volume: 20
  start-page: 312
  year: 2005
  end-page: 319
  article-title: Genome duplication, extinction and vertebrate evolution
  publication-title: Trends Ecol Evol
– volume: 431
  start-page: 946
  year: 2004
  end-page: 957
  article-title: Genome duplication in the teleost fish reveals the early vertebrate proto‐karyotype
  publication-title: Nature
– volume: 156
  start-page: 590
  year: 2000a
  end-page: 605
  article-title: The origin of interspecific genomic incompatibility via gene duplication
  publication-title: Am Nat
– volume: 20
  start-page: 511
  year: 1998
  end-page: 515
  article-title: More genes in fish?
  publication-title: BioEssays
– volume: 76
  start-page: 1
  year: 2001
  end-page: 25
  article-title: Chromosome evolution in the Salmonidae (Pisces): an update
  publication-title: Biol Rev Camb Philos Soc
– volume: 175
  start-page: 644
  year: 1972
  end-page: 646
  article-title: Tetraploid origin of the karyotype of catostomid fishes
  publication-title: Science
– volume: 290
  start-page: 1151
  year: 2000
  end-page: 1155
  article-title: The evolutionary fate and consequences of gene duplication
  publication-title: Science
– volume: 14
  start-page: 820
  year: 2004
  end-page: 828
  article-title: A medaka gene map: the trace of ancestral vertebrate proto‐chromosomes revealed by comparative gene mapping
  publication-title: Genome Res
– volume: 10
  start-page: 1903
  year: 2000
  end-page: 1914
  article-title: A comparative map of the zebrafish genome
  publication-title: Genome Res
– volume: 101
  start-page: 1638
  year: 2004
  end-page: 1643
  article-title: Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray‐finned fishes and land vertebrates
  publication-title: Proc Natl Acad Sci USA
– start-page: 35
  year: 1999
  end-page: 52
– volume: 12
  start-page: 267
  year: 1979
  end-page: 317
  article-title: Evolution of the differential regulation of duplicate genes after polyploidization
  publication-title: J Mol Evol
– volume: 119
  start-page: 1261
  year: 1993
  end-page: 1275
  article-title: The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos
  publication-title: Development
– volume: 288
  start-page: 345
  year: 2000
  end-page: 351
  article-title: MetaHox gene clusters
  publication-title: J Exp Zool
– volume: 13
  start-page: 382
  year: 2003
  end-page: 390
  article-title: Genome duplication, a trait shared by 22,000 species of ray‐finned fish
  publication-title: Genome Res
– volume: 2
  start-page: 470
  year: 1997
  end-page: 476
  article-title: Polyploidy in angiosperms
  publication-title: Trends Plant Sci
– volume: 2
  start-page: 183
  year: 2006
  end-page: 197
  article-title: The zebrafish genome: a review using msx genes as a case study
  publication-title: Genome Dyn
– start-page: 1
  year: 1984
  end-page: 46
– volume: 285
  start-page: 41
  year: 1999
  end-page: 49
  article-title: Genomic organization of the Hoxa4‐Hoxa10 region from : implications for Hox gene evolution among vertebrates
  publication-title: J Exp Zool
– volume: 116
  start-page: 1001
  year: 1992
  end-page: 1010
  article-title: Coordinate embryonic expression of three zebrafish genes
  publication-title: Development
– volume: 17
  start-page: 10385
  year: 1989
  end-page: 10402
  article-title: The human HOX gene family
  publication-title: Nucleic Acids Res
– volume: 129
  start-page: 2339
  year: 2002
  end-page: 2354
  article-title: Knockdown of duplicated zebrafish genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention
  publication-title: Development
– volume: 13
  start-page: 1111
  year: 2003
  end-page: 1122
  article-title: Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters
  publication-title: Genome Res
– volume: 3
  start-page: 65
  year: 2003
  end-page: 73
  article-title: Are all fishes ancient polyploids?
  publication-title: J Struct Funct Genomics
– volume: 25
  start-page: 3
  year: 2000
  end-page: 4
  article-title: Robustness — it's not where you think it is
  publication-title: Nat Genet
– volume: 121
  start-page: 347
  year: 1995
  end-page: 357
  article-title: Differential induction of four homeobox genes during fin development and regeneration in zebrafish
  publication-title: Development
– volume: 27
  start-page: 401
  year: 1978
  end-page: 410
  article-title: Cases in which parsimony or compatibility methods will be positively misleading
  publication-title: Syst Zool
– volume: 35
  start-page: 101
  year: 1996
  end-page: 108
  article-title: Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel and loci
  publication-title: Genomics
– volume: 102
  start-page: 5454
  year: 2005
  end-page: 5459
  article-title: Modeling gene and genome duplications in eukaryotes
  publication-title: Proc Natl Acad Sci USA
– volume: 14
  start-page: 843
  year: 1997b
  end-page: 853
  article-title: Phylogenetic reconstruction of vertebrate cluster duplications
  publication-title: Mol Biol Evol
– volume: 331
  start-page: 120
  year: 2005
  end-page: 126
  article-title: Macrophages overexpressing tartrate‐resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing
  publication-title: Biochem Biophys Res Commun
– volume: 439
  start-page: 965
  year: 2006
  end-page: 968
  article-title: Tunicates and not cephalochordates are the closest living relatives of vertebrates
  publication-title: Nature
– volume: 142
  start-page: 295
  year: 1996
  end-page: 303
  article-title: Evolution of Antennapedia‐class homeobox genes
  publication-title: Genetics
– volume: 3
  start-page: e314
  year: 2005
  article-title: Two rounds of whole genome duplication in the ancestral vertebrate
  publication-title: PLoS Biol
– volume: 15
  start-page: 1307
  year: 2005
  end-page: 1314
  article-title: The zebrafish gene map defines ancestral vertebrate chromosomes
  publication-title: Genome Res
– volume: 21
  start-page: 14
  year: 2003
  end-page: 28
  article-title: Identification of duplicated fourth alpha 2‐adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish
  publication-title: Mol Biol Evol
– volume: 151
  start-page: 1531
  year: 1999
  end-page: 1545
  article-title: Preservation of duplicate genes by complementary, degenerative mutations
  publication-title: Genetics
– volume: 19
  start-page: 1710
  year: 2003
  end-page: 1711
  article-title: Detecting putative orthologs
  publication-title: Bioinformatics
– year: 2003
– volume: 145
  start-page: 1083
  year: 1997
  end-page: 1092
  article-title: Secondary tetrasomic segregation of MDH‐B and preferential pairing of homeologues in rainbow trout
  publication-title: Genetics
– volume: 121
  start-page: 301
  year: 2004
  end-page: 312
  article-title: Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones
  publication-title: Mech Dev
– volume: 147
  start-page: 1259
  year: 1997
  end-page: 1266
  article-title: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution
  publication-title: Genetics
– volume: 13
  start-page: 90
  year: 1997
  end-page: 92
  article-title: Chromosomal duplication and the emergence of the adaptive immune system
  publication-title: Trends Genet
– volume: 11
  start-page: 771
  year: 2001
  end-page: 778
  article-title: Ancient genome duplications did not structure the human Hox‐bearing chromosomes
  publication-title: Genome Res
– volume: 25
  start-page: 3389
  year: 1997
  end-page: 3402
  article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs
  publication-title: Nucleic Acids Res
– volume: 10
  start-page: 1360
  year: 1993
  end-page: 1369
  article-title: Evolution of duplicate genes in a tetraploid animal,
  publication-title: Mol Biol Evol
– volume: 128
  start-page: 2471
  year: 2001
  end-page: 2484
  article-title: Consequences of gene duplication in the vertebrates: an investigation of the zebrafish paralogue group 1 genes
  publication-title: Development
– volume: 11
  start-page: 699
  year: 1999
  end-page: 704
  article-title: Gene and genome duplications in vertebrates: the one‐to‐four (‐to‐eight in fish) rule and the evolution of novel gene functions
  publication-title: Curr Opin Cell Biol
– volume: 19
  start-page: 354
  year: 2003
  end-page: 356
  article-title: Evolution of duplicate genes versus genetic robustness against null mutations
  publication-title: Trends Genet
– volume: 16
  start-page: 1
  year: 1993
  end-page: 19
  article-title: Evolution of the vertebrate genome as relected in paralogous chromosomal regions in man and the house mouse
  publication-title: Genomics
– volume: 14
  start-page: 1
  year: 2004
  end-page: 10
  article-title: Developmental roles of pufferfish Hox clusters and genome evolution in ray‐fin fish
  publication-title: Genome Res
– volume: 49
  start-page: 169
  year: 1999
  end-page: 181
  article-title: On the possibility of constructive neutral evolution
  publication-title: J Mol Evol
– volume: 401
  start-page: 341
  year: 1999
  article-title: Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes
  publication-title: Nature
– volume: 14
  start-page: 1008
  year: 1997
  end-page: 1022
  article-title: Relationships among gene structure and function in zebrafish and other vertebrates
  publication-title: Mol Biol Evol
– volume: 59
  start-page: 190
  year: 2004
  end-page: 203
  article-title: Phylogenetic timing of the fish‐specific genome duplication correlates with the diversification of teleost fish
  publication-title: J Mol Evol
– start-page: 20
  year: 2002
  end-page: 31
– volume: 67
  start-page: 5
  year: 1933
  end-page: 9
  article-title: The part played by recurrent mutation in evolution
  publication-title: Am Nat
– volume: 154
  start-page: 459
  year: 2000b
  end-page: 473
  article-title: The probability of duplicate gene preservation by subfunctionalization
  publication-title: Genetics
– volume: 294
  start-page: 30
  year: 2002
  end-page: 46
  article-title: Hox cluster organization in the jawless vertebrate
  publication-title: J Exp Zool
– volume: 11
  start-page: 1842
  year: 2001
  end-page: 1847
  article-title: Pattern and timing of gene duplication in animal genomes
  publication-title: Genome Res
– volume: 230
  start-page: 727
  year: 2004
  end-page: 733
  article-title: Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish ( )
  publication-title: Dev Dyn
– volume: 10
  start-page: 1890
  year: 2000
  end-page: 1902
  article-title: Zebrafish comparative genomics and the origins of vertebrate chromosomes
  publication-title: Genome Res
– volume: 94
  start-page: 5177
  year: 1997a
  end-page: 5182
  article-title: Molecular origin of the mosaic sequence arrangements of higher primate alpha‐globin duplication units
  publication-title: Proc Natl Acad Sci USA
– volume: 12
  start-page: 1910
  year: 2002
  end-page: 1920
  article-title: The human Hox‐bearing chromosome regions did arise by block or chromosome (or even genome) duplications
  publication-title: Genome Res
– volume: 18
  start-page: 345
  year: 1998
  end-page: 349
  article-title: Vertebrate genome evolution and the zebrafish gene map
  publication-title: Nat Genet
– volume: 3
  start-page: 931
  year: 1993
  end-page: 938
  article-title: Evolution of a regulatory gene family: genes
  publication-title: Curr Opin Genet Dev
– year: 1970
– volume: 116
  start-page: 579
  year: 1987
  end-page: 591
  article-title: Linkage relationships reflecting ancestral tetraploidy in salmonid fish
  publication-title: Genetics
– volume: 99
  start-page: 16841
  year: 2002
  end-page: 16846
  article-title: Modularity and reshuffling of Snail and Slug expression during vertebrate evolution
  publication-title: Proc Natl Acad Sci USA
– volume: 3
  start-page: 95
  year: 2003
  end-page: 110
  article-title: The 2R hypothesis and the human genome sequence
  publication-title: J Struct Funct Genomics
– year: 1999
– ident: e_1_2_1_29_1
  doi: 10.1086/280465
– ident: e_1_2_1_62_1
  doi: 10.7150/ijbs.1.19
– ident: e_1_2_1_10_1
  doi: 10.1093/oxfordjournals.molbev.a025825
– ident: e_1_2_1_18_1
  doi: 10.1016/j.tree.2005.04.008
– ident: e_1_2_1_14_1
  doi: 10.1002/1097-010X(20001215)288:4<345::AID-JEZ7>3.0.CO;2-Y
– start-page: 35
  volume-title: The biology biodiversity
  year: 1999
  ident: e_1_2_1_43_1
– ident: e_1_2_1_63_1
  doi: 10.1093/genetics/147.3.1259
– ident: e_1_2_1_69_1
  doi: 10.1038/ng0498-345
– ident: e_1_2_1_85_1
  doi: 10.1073/pnas.0307968100
– ident: e_1_2_1_82_1
– ident: e_1_2_1_26_1
  doi: 10.1038/43815
– ident: e_1_2_1_51_1
  doi: 10.1074/jbc.M000121200
– ident: e_1_2_1_7_1
  doi: 10.1126/science.282.5394.1711
– ident: e_1_2_1_41_1
  doi: 10.1006/geno.1996.0328
– ident: e_1_2_1_12_1
  doi: 10.1016/S0012-1606(03)00219-7
– volume-title: Adaptive evolution of genes and genomes
  year: 1999
  ident: e_1_2_1_32_1
– ident: e_1_2_1_70_1
  doi: 10.1101/gr.164800
– ident: e_1_2_1_21_1
  doi: 10.2307/2412923
– ident: e_1_2_1_47_1
  doi: 10.1002/dvdy.20080
– volume: 39
  start-page: 10A
  year: 1999
  ident: e_1_2_1_75_1
  article-title: A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages
  publication-title: Am Zool
– ident: e_1_2_1_88_1
  doi: 10.1093/bioinformatics/btg213
– ident: e_1_2_1_66_1
  doi: 10.1111/j.1601-5223.1968.tb02169.x
– ident: e_1_2_1_87_1
  doi: 10.1002/dvdy.20335
– volume: 10
  start-page: 1360
  year: 1993
  ident: e_1_2_1_33_1
  article-title: Evolution of duplicate genes in a tetraploid animal, Xenopus laevis
  publication-title: Mol Biol Evol
– ident: e_1_2_1_45_1
  doi: 10.1006/mpev.1994.1007
– ident: e_1_2_1_92_1
  doi: 10.1101/gr.4134305
– ident: e_1_2_1_61_1
  doi: 10.1016/S0955-0674(99)00039-3
– ident: e_1_2_1_68_1
  doi: 10.1159/000095104
– ident: e_1_2_1_9_1
  doi: 10.1073/pnas.94.10.5177
– ident: e_1_2_1_16_1
  doi: 10.1371/journal.pbio.0030314
– ident: e_1_2_1_31_1
  doi: 10.1023/A:1022661917301
– ident: e_1_2_1_50_1
  doi: 10.1093/nar/gkg106
– volume: 116
  start-page: 1001
  year: 1992
  ident: e_1_2_1_19_1
  article-title: Coordinate embryonic expression of three zebrafish engrailed genes
  publication-title: Development
  doi: 10.1242/dev.116.4.1001
– ident: e_1_2_1_93_1
  doi: 10.1093/genetics/142.1.295
– ident: e_1_2_1_28_1
  doi: 10.1016/S0168-9525(03)00139-2
– volume: 119
  start-page: 1261
  year: 1993
  ident: e_1_2_1_37_1
  article-title: The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos
  publication-title: Development
  doi: 10.1242/dev.119.4.1261
– ident: e_1_2_1_46_1
  doi: 10.1101/gr.445702
– start-page: 20
  volume-title: Aquatic genomics: steps toward a great future
  year: 2002
  ident: e_1_2_1_71_1
– ident: e_1_2_1_40_1
  doi: 10.1016/S0168-9525(97)01065-2
– ident: e_1_2_1_89_1
  doi: 10.1002/(SICI)1521-1878(199806)20:6<511::AID-BIES10>3.0.CO;2-3
– ident: e_1_2_1_2_1
  doi: 10.1093/nar/17.24.10385
– ident: e_1_2_1_13_1
  doi: 10.1093/molbev/msh114
– ident: e_1_2_1_81_1
  doi: 10.1101/gr.640303
– ident: e_1_2_1_65_1
  doi: 10.1007/978-3-642-86659-3
– ident: e_1_2_1_74_1
  doi: 10.1093/molbev/msg224
– ident: e_1_2_1_91_1
  doi: 10.1101/gr.10.12.1903
– ident: e_1_2_1_34_1
  doi: 10.1101/gr.GR-1600R
– volume: 128
  start-page: 2471
  year: 2001
  ident: e_1_2_1_58_1
  article-title: Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes
  publication-title: Development
  doi: 10.1242/dev.128.13.2471
– ident: e_1_2_1_23_1
  doi: 10.1093/genetics/151.4.1531
– ident: e_1_2_1_6_1
  doi: 10.1093/nar/25.17.3389
– ident: e_1_2_1_86_1
  doi: 10.1038/sj.hdy.6800635
– ident: e_1_2_1_53_1
  doi: 10.1006/geno.1993.1133
– ident: e_1_2_1_73_1
  doi: 10.1016/j.bbrc.2005.03.133
– ident: e_1_2_1_27_1
  doi: 10.1016/0092-8674(89)90912-4
– ident: e_1_2_1_83_1
  doi: 10.1126/science.175.4022.644
– ident: e_1_2_1_54_1
  doi: 10.1126/science.290.5494.1151
– ident: e_1_2_1_57_1
  doi: 10.1073/pnas.0501102102
– volume-title: Evolution of vertebrate genome organisation [Doctor of Philosophy]
  year: 2001
  ident: e_1_2_1_60_1
– ident: e_1_2_1_52_1
  doi: 10.1073/pnas.262525399
– ident: e_1_2_1_59_1
  doi: 10.1242/dev.129.10.2339
– ident: e_1_2_1_49_1
  doi: 10.1016/S1360-1385(97)01154-0
– ident: e_1_2_1_22_1
  doi: 10.1007/BF01732026
– ident: e_1_2_1_79_1
  doi: 10.1146/annurev.genet.38.072902.092831
– ident: e_1_2_1_77_1
  doi: 10.1002/(SICI)1097-010X(19990415)285:1<41::AID-JEZ5>3.0.CO;2-D
– ident: e_1_2_1_90_1
  doi: 10.1038/75560
– ident: e_1_2_1_78_1
  doi: 10.1007/PL00006540
– ident: e_1_2_1_5_1
  doi: 10.1007/978-1-4684-4652-4_1
– ident: e_1_2_1_48_1
  doi: 10.1016/0092-8674(83)90429-4
– ident: e_1_2_1_20_1
  doi: 10.1093/oxfordjournals.molbev.a025707
– ident: e_1_2_1_39_1
  doi: 10.1016/0959-437X(93)90016-I
– ident: e_1_2_1_56_1
  doi: 10.1093/genetics/154.1.459
– ident: e_1_2_1_38_1
  doi: 10.1016/j.mod.2004.01.007
– ident: e_1_2_1_64_1
  doi: 10.1101/gr.2004004
– ident: e_1_2_1_55_1
  doi: 10.1086/316992
– ident: e_1_2_1_24_1
  doi: 10.1002/jez.10091
– ident: e_1_2_1_67_1
  doi: 10.1111/j.1469-185X.2000.tb00057.x
– ident: e_1_2_1_3_1
  doi: 10.1242/dev.121.2.347
– volume: 389
  start-page: 19
  issue: 1
  year: 2005
  ident: e_1_2_1_44_1
  article-title: Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz‐F1) family
  publication-title: Biochem J
  doi: 10.1042/BJ20050005
– ident: e_1_2_1_30_1
  doi: 10.1007/s00239-004-2613-z
– ident: e_1_2_1_25_1
  doi: 10.1101/gr.155801
– ident: e_1_2_1_4_1
  doi: 10.1093/genetics/145.4.1083
– ident: e_1_2_1_84_1
  doi: 10.1023/A:1022652814749
– ident: e_1_2_1_17_1
  doi: 10.1038/nature04336
– ident: e_1_2_1_35_1
  doi: 10.1038/nature03025
– ident: e_1_2_1_76_1
  doi: 10.1101/gr.700503
– ident: e_1_2_1_15_1
  doi: 10.1093/molbev/msg173
– ident: e_1_2_1_72_1
  doi: 10.1016/j.tig.2004.08.001
– ident: e_1_2_1_11_1
  doi: 10.1016/S0925-4773(99)00312-3
– ident: e_1_2_1_36_1
  doi: 10.1093/genetics/116.4.579
– ident: e_1_2_1_8_1
  doi: 10.1101/gr.1717804
– ident: e_1_2_1_42_1
  doi: 10.1016/j.gene.2003.12.008
– ident: e_1_2_1_80_1
  doi: 10.1098/rstb.2001.0975
SSID ssj0026055
Score 2.1941671
SecondaryResourceType review_article
Snippet Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes...
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes...
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them novel genes. The origin of many so-called novel genes...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 563
SubjectTerms Animals
Chordata
Chordata - genetics
Danio rerio
Evolution, Molecular
Freshwater
Gene Duplication
Genome
Humans
Teleostei
Vertebrata
Zebrafish - genetics
Zebrafish Proteins - genetics
Title The zebrafish genome in context: ohnologs gone missing
URI https://api.istex.fr/ark:/67375/WNG-B4XCV624-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjez.b.21137
https://www.ncbi.nlm.nih.gov/pubmed/17068775
https://www.proquest.com/docview/20811197
https://www.proquest.com/docview/68474091
Volume 308B
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9SEXzxW3t-5qH4IOz1Npuv9U1raylYUKwefQlJdqK1uifdO5D7653Jbq9WqqBvCzvLJjOTzC-TyS-MbSSrk4XUFCZ5U0gfoLBQ-sImnzAgqcoDpQbe7OvdA7k3VdOhNofOwvT8EKuEG42MPF_TAPeh2zwjDf0Cy3EY4_qlorPkZaWJOf_VuxV5FAF1ldlSFS63MBQOp_PwzeYv356LR5dJtT8uApvnsWsOPjvX-xtWu8xZSDUnx-PFPIzj8jdGx__u1w12bYCl_EXvRzfZJWhvsSuHs5x0v800ehNf0h5zOuo-cyJ2_Qb8qOVU6Y7T-3M-6xP0Hf80a4Gj81AO4g472Nl-v7VbDDcuFFFqaYo0CXXT-MbKKJIQkKJVSdU1KKujjrExHiFaiFCbCNLUvq4gVWhlL0pvlKnusrUWf7POeGpAG8QzMDFCBlX7GOSkiRYmPskk7Ig9O9W7iwMdOd2K8dX1RMrCoSJccFkRI7axEv7es3BcLPY0G3Al40-OqXDNKPdx_7V7KadbH7SQ7u2IPTm1sEON0B6Jb2G26JxAiEQ7q3-W0BjPcVFcjti93jXOWoT9tcYo7Fo28N-a6va2D_PD_X8RfsCu9rnluijVQ7Y2P1nAIwRF8_A4-_5PQtgIZw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKwQX3o_wqg8VB6RNE6-99nKDqiWUNhKohagXy_aO6QM2qEkklF_P2LtJKSpIcFtpZ7X2zNjzecb-DLAedBE0hipTwapMWIeZxr7NdLCBApLMLcbUwN6wGByInZEctQm3eBam4YdYJtziyEjzdRzgMSG9cc4aeoLzruvSAiZXV2E1VegiKPq4pI-KUF0mvlRJCy4Khu35PHqz8cvHFyLSalTuj8vg5kX0msLP9i0wi4Y3u05Ou7Op6_r5b5yO_9-z23CzRabsdeNKd-AK1nfh2uE45d3vQUEOxeaxzByOJ0cscrt-Q3Zcs7jZnWb4V2zc5Ogn7Mu4Rkb-E9MQ9-Fge2t_c5C1ly5knlSostBzZVXZSgvPA-cYvJZBliVKXfjC-0pZQmnOY6k8ClXaMseQk6Et71slVf4AVmr6zSNgocJCEaTBnuLCydJ6J3qV19izQQSuO_ByoXjjW0byeDHGV9NwKXNDijDOJEV0YH0p_L0h4rhc7EWy4FLGnp3GvWtKms_Dt-aNGG1-KrgwHzqwtjCxIY3EMomtcTybGE4oKRZX_yxRUEindXG_Aw8b3zhvEfVXKyWpa8nCf2uq2dk6TA-P_0V4Da4P9vd2ze674fsncKNJNZdZXz6FlenZDJ8RRpq652kg_ATB0wyF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8QouFFwA88RekD8cFkj7tuv9Y3QU4-9KJG9MJL03aniuge4e4Scn-90-5yiEETedtkZ7PtzLTz63T6KyEbQcugIZSZClZl3DrINHRtpoMNGJBEbiGmBt715e4h3x-IQVObE8_C1PwQs4RbHBlpvo4D_LQMm5ekod9h2nZtXL_k6hZZ4BIDZcREH2fsURGpi0SXKnC9hbGwOZ6HbzZ_-_hKQFqIuj2_Dm1eBa8p-vSW6itWR4m0MBadnLQnY9f20z8oHW_csWVyt8Gl9FXtSCtkDqp75PbRMGXd7xOJ7kSncZM5HI--0cjs-hPocUVjqTvO7y_psM7Qj-jXYQUUvScmIR6Qw97Op-3drLlyIfNccpWFjivK0paaexYYg-C1CKIoQGjppfelsojRnIdCeeCqsEUOIUczW9a1Sqj8IZmv8DePCA0lSIWABjqKcScK6x3vlF5DxwYemG6RFxd6N77hI4_XYvwwNZMyM6gI40xSRItszIRPaxqO68WeJwPOZOzZSaxcU8J86b8xW3yw_Vkybj60yPqFhQ1qJG6S2AqGk5FhiJHi1urfJSQGdFwVd1tktXaNyxZhf7VSAruWDPyvppr9naP08Ph_hNfJnfeve-btXv_gCVms88xF1hVrZH58NoGnCJDG7lkaBr8AmR0LNA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+zebrafish+genome+in+context%3A+ohnologs+gone+missing&rft.jtitle=Journal+of+experimental+zoology.+Part+B%2C+Molecular+and+developmental+evolution&rft.au=Postlethwait%2C+John+H&rft.date=2007-09-15&rft.issn=1552-5007&rft.volume=308&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1002%2Fjez.b.21137&rft_id=info%3Apmid%2F17068775&rft.externalDocID=17068775
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5007&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5007&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5007&client=summon