The zebrafish genome in context: ohnologs gone missing
Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including...
Saved in:
Published in | Journal of experimental zoology. Part B, Molecular and developmental evolution Vol. 308B; no. 5; pp. 563 - 577 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
15.09.2007
|
Subjects | |
Online Access | Get full text |
ISSN | 1552-5007 1552-5015 |
DOI | 10.1002/jez.b.21137 |
Cover
Abstract | Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007. © 2006 Wiley‐Liss, Inc. |
---|---|
AbstractList | Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them novel genes. The origin of many so-called novel genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be novel are more appropriately interpreted as ohnologs gone missing, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563-577, 2007. Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007. © 2006 Wiley‐Liss, Inc. Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be “novel” are more appropriately interpreted as “ohnologs gone missing”, cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage‐specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. J. Exp. Zool. (Mol. Dev. Evol.) 308B:563–577, 2007 . © 2006 Wiley‐Liss, Inc. Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions.Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes becomes apparent when considered in the context of genome duplication events that occurred during evolution of the phylum Chordata, including two rounds at about the origin of the subphylum Vertebrata (R1 and R2) and one round before the teleost radiation (R3). Ohnologs are paralogs stemming from such genome duplication events, and some zebrafish genes said to be "novel" are more appropriately interpreted as "ohnologs gone missing", cases in which ohnologs are preserved differentially in different evolutionary lineages. Here we consider ohnologs present in the zebrafish genome but absent from the human genome. Reasonable hypotheses are that lineage-specific loss of ohnologs can play a role in establishing lineage divergence and in the origin of developmental innovations. How does the evolution of ohnologs differ from the evolution of gene duplicates arising from other mechanisms, such as tandem duplication or retrotransposition? To what extent do different major vertebrate lineages or different teleost lineages differ in ohnolog content? What roles do differences in ohnolog content play in the origin of developmental mechanisms that differ among lineages? This review explores these questions. |
Author | Postlethwait, John H. |
Author_xml | – sequence: 1 givenname: John H. surname: Postlethwait fullname: Postlethwait, John H. email: jpostle@uoneuro.uoregon.edu organization: Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403 |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/17068775$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkTtPwzAURi1UxHtiR5lYUIrtxHbCBhVPVSAkXmKxHOc6dUljiFNB--sJ9DEgBNP1cL7vXh1vok7lKkBol-AuwZgeDmHazbqUkEisoA3CGA0ZJqyzfGOxjja9H7Ywx4ytoXUiME-EYBuI3w0gmEJWK2P9ICigciMIbBVoVzXw0RwFblC50hU-KNq1wch6b6tiG60aVXrYmc8tdH92ete7CPs355e9436oYx6L0OAszXOVJ7GmhlIwOmGGpSmwhGuudS4UTlimIRUaYpGqNAITGSUUJUowEW2h_Vnva-3exuAb2R6goSxVBW7sJU9iEeOU_AtSnBBC0q_GvTk4zkaQy9fajlQ9kQslLUBmgK6d9zUYqW2jGtv6qJUtJcHyS7tstctMfmtvMwc_MsvaX-n5hndbwuQvVF6dPi8y4Sxjffsty4yqXyQXkWDy8fpcnsRPvQdOY3kbfQKzf6Ie |
CitedBy_id | crossref_primary_10_7554_eLife_82978 crossref_primary_10_1186_1471_2164_13_521 crossref_primary_10_1523_JNEUROSCI_2659_13_2013 crossref_primary_10_1371_journal_pgen_1004449 crossref_primary_10_1016_j_fsi_2011_05_016 crossref_primary_10_3389_fcell_2017_00005 crossref_primary_10_1074_jbc_RA120_012636 crossref_primary_10_1186_s13064_016_0070_1 crossref_primary_10_1002_dvdy_23913 crossref_primary_10_1016_j_fsi_2008_05_005 crossref_primary_10_1007_s00239_012_9521_4 crossref_primary_10_1093_sysbio_syac040 crossref_primary_10_1007_s11160_021_09691_7 crossref_primary_10_1016_j_tcm_2008_04_002 crossref_primary_10_1016_j_gene_2015_03_027 crossref_primary_10_3389_fncel_2014_00263 crossref_primary_10_1016_j_cbpc_2014_01_005 crossref_primary_10_1016_j_exphem_2013_04_002 crossref_primary_10_1002_dvdy_24041 crossref_primary_10_1038_nrg_2016_39 crossref_primary_10_1371_journal_pone_0163229 crossref_primary_10_3389_fphys_2017_00776 crossref_primary_10_1016_j_neuroscience_2012_11_052 crossref_primary_10_1186_1471_2148_13_271 crossref_primary_10_1016_j_gene_2011_08_007 crossref_primary_10_1016_j_dci_2011_03_006 crossref_primary_10_1007_s00427_009_0311_y crossref_primary_10_1534_g3_114_012294 crossref_primary_10_1002_dvdy_21967 crossref_primary_10_1002_dvdy_21965 crossref_primary_10_1093_dnares_dsx034 crossref_primary_10_1002_jez_b_21191 crossref_primary_10_1074_jbc_M111_260125 crossref_primary_10_1134_S0006297924020160 crossref_primary_10_1007_s00251_012_0616_2 crossref_primary_10_1016_j_dci_2021_104100 crossref_primary_10_1016_j_margen_2008_06_003 crossref_primary_10_1007_s00251_011_0558_0 crossref_primary_10_1186_1471_2148_9_207 crossref_primary_10_1186_s12864_020_6620_2 crossref_primary_10_1016_j_aquaculture_2021_736484 crossref_primary_10_1093_toxsci_kfaa143 crossref_primary_10_1242_bio_058172 crossref_primary_10_1016_j_aquaculture_2022_738266 crossref_primary_10_1016_j_fsi_2023_108515 crossref_primary_10_1038_nrg2226 crossref_primary_10_1002_dvdy_21797 crossref_primary_10_1093_molbev_mss192 crossref_primary_10_3390_ijms22041584 crossref_primary_10_1007_s10709_008_9328_9 crossref_primary_10_1016_j_ydbio_2012_04_032 crossref_primary_10_1186_s12862_023_02167_1 crossref_primary_10_1016_j_cbpa_2008_06_029 crossref_primary_10_1093_molbev_mss199 crossref_primary_10_1210_en_2007_1256 crossref_primary_10_1186_1471_2148_12_59 crossref_primary_10_1016_j_matbio_2015_07_001 crossref_primary_10_1186_1471_2164_11_643 crossref_primary_10_1038_srep27816 crossref_primary_10_1038_s41598_022_26876_7 crossref_primary_10_1038_jid_2014_182 crossref_primary_10_7554_eLife_27955 crossref_primary_10_1155_2011_905813 crossref_primary_10_1371_journal_pone_0119372 crossref_primary_10_4049_jimmunol_0803285 crossref_primary_10_1371_journal_pgen_1010534 crossref_primary_10_1007_s00239_021_10020_6 crossref_primary_10_1186_1471_2164_15_874 crossref_primary_10_1371_journal_pone_0073951 crossref_primary_10_1111_j_1095_8649_2009_02184_x crossref_primary_10_1016_j_dci_2013_05_013 crossref_primary_10_1523_JNEUROSCI_2740_08_2008 crossref_primary_10_1007_s00239_008_9121_5 crossref_primary_10_1002_dvdy_22195 crossref_primary_10_1002_dvdy_22196 crossref_primary_10_1093_cvr_cvy005 crossref_primary_10_1093_molbev_msac004 crossref_primary_10_1002_glia_22381 crossref_primary_10_1016_j_gep_2015_07_004 crossref_primary_10_1016_j_tig_2021_07_002 crossref_primary_10_1007_s00239_007_9035_7 crossref_primary_10_1089_zeb_2009_0609 crossref_primary_10_1002_dvdy_329 crossref_primary_10_1002_jez_b_22589 crossref_primary_10_1186_1471_2148_8_171 crossref_primary_10_1002_dvdy_21891 crossref_primary_10_1016_j_gene_2013_01_058 crossref_primary_10_1111_j_1749_6632_2012_06684_x crossref_primary_10_1523_JNEUROSCI_4329_08_2008 crossref_primary_10_1038_jid_2010_388 crossref_primary_10_1016_j_ydbio_2017_08_011 crossref_primary_10_1101_gr_090480_108 crossref_primary_10_1016_j_ydbio_2017_03_030 crossref_primary_10_1182_bloodadvances_2024013237 crossref_primary_10_1002_jez_b_21307 crossref_primary_10_1096_fj_11_202663 crossref_primary_10_1016_j_crvi_2008_07_007 crossref_primary_10_1186_1471_2148_11_234 crossref_primary_10_1002_cne_23240 crossref_primary_10_1530_JME_12_0199 crossref_primary_10_1177_0192623312464308 crossref_primary_10_1073_pnas_0806015105 crossref_primary_10_1186_1471_2148_14_157 crossref_primary_10_1002_jez_b_21439 crossref_primary_10_1016_j_ygcen_2013_08_016 crossref_primary_10_1038_ng_3526 crossref_primary_10_1016_j_ydbio_2024_02_005 crossref_primary_10_1534_g3_113_009316 crossref_primary_10_1016_j_cub_2024_06_031 crossref_primary_10_1016_j_semcdb_2012_12_008 crossref_primary_10_1098_rstb_2012_0474 crossref_primary_10_1371_journal_pone_0052701 crossref_primary_10_1002_jez_b_23069 crossref_primary_10_1371_journal_pgen_1000496 crossref_primary_10_1038_nature12111 crossref_primary_10_1186_1471_2148_8_184 crossref_primary_10_1016_j_fsi_2008_11_004 crossref_primary_10_1111_j_1365_2109_2009_02173_x crossref_primary_10_1002_dvdy_23889 |
Cites_doi | 10.1086/280465 10.7150/ijbs.1.19 10.1093/oxfordjournals.molbev.a025825 10.1016/j.tree.2005.04.008 10.1002/1097-010X(20001215)288:4<345::AID-JEZ7>3.0.CO;2-Y 10.1093/genetics/147.3.1259 10.1038/ng0498-345 10.1073/pnas.0307968100 10.1038/43815 10.1074/jbc.M000121200 10.1126/science.282.5394.1711 10.1006/geno.1996.0328 10.1016/S0012-1606(03)00219-7 10.1101/gr.164800 10.2307/2412923 10.1002/dvdy.20080 10.1093/bioinformatics/btg213 10.1111/j.1601-5223.1968.tb02169.x 10.1002/dvdy.20335 10.1006/mpev.1994.1007 10.1101/gr.4134305 10.1016/S0955-0674(99)00039-3 10.1159/000095104 10.1073/pnas.94.10.5177 10.1371/journal.pbio.0030314 10.1023/A:1022661917301 10.1093/nar/gkg106 10.1242/dev.116.4.1001 10.1093/genetics/142.1.295 10.1016/S0168-9525(03)00139-2 10.1242/dev.119.4.1261 10.1101/gr.445702 10.1016/S0168-9525(97)01065-2 10.1002/(SICI)1521-1878(199806)20:6<511::AID-BIES10>3.0.CO;2-3 10.1093/nar/17.24.10385 10.1093/molbev/msh114 10.1101/gr.640303 10.1007/978-3-642-86659-3 10.1093/molbev/msg224 10.1101/gr.10.12.1903 10.1101/gr.GR-1600R 10.1242/dev.128.13.2471 10.1093/genetics/151.4.1531 10.1093/nar/25.17.3389 10.1038/sj.hdy.6800635 10.1006/geno.1993.1133 10.1016/j.bbrc.2005.03.133 10.1016/0092-8674(89)90912-4 10.1126/science.175.4022.644 10.1126/science.290.5494.1151 10.1073/pnas.0501102102 10.1073/pnas.262525399 10.1242/dev.129.10.2339 10.1016/S1360-1385(97)01154-0 10.1007/BF01732026 10.1146/annurev.genet.38.072902.092831 10.1002/(SICI)1097-010X(19990415)285:1<41::AID-JEZ5>3.0.CO;2-D 10.1038/75560 10.1007/PL00006540 10.1007/978-1-4684-4652-4_1 10.1016/0092-8674(83)90429-4 10.1093/oxfordjournals.molbev.a025707 10.1016/0959-437X(93)90016-I 10.1093/genetics/154.1.459 10.1016/j.mod.2004.01.007 10.1101/gr.2004004 10.1086/316992 10.1002/jez.10091 10.1111/j.1469-185X.2000.tb00057.x 10.1242/dev.121.2.347 10.1042/BJ20050005 10.1007/s00239-004-2613-z 10.1101/gr.155801 10.1093/genetics/145.4.1083 10.1023/A:1022652814749 10.1038/nature04336 10.1038/nature03025 10.1101/gr.700503 10.1093/molbev/msg173 10.1016/j.tig.2004.08.001 10.1016/S0925-4773(99)00312-3 10.1093/genetics/116.4.579 10.1101/gr.1717804 10.1016/j.gene.2003.12.008 10.1098/rstb.2001.0975 |
ContentType | Journal Article |
Copyright | Copyright © 2006 Wiley‐Liss, Inc., A Wiley Company Copyright 2006 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2006 Wiley‐Liss, Inc., A Wiley Company – notice: Copyright 2006 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
DOI | 10.1002/jez.b.21137 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Aquatic Science & Fisheries Abstracts (ASFA) Professional Genetics Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Zoology |
EISSN | 1552-5015 |
EndPage | 577 |
ExternalDocumentID | 17068775 10_1002_jez_b_21137 JEZ21137 ark_67375_WNG_B4XCV624_Q |
Genre | article Journal Article Review Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: National Institutes of Health (NIH) funderid: P01 HD22486 – fundername: National Center for Research Resources (NCRR) funderid: R01 RR10715 – fundername: NCRR NIH HHS grantid: R01 RR10715 – fundername: NICHD NIH HHS grantid: P01 HD22486 |
GroupedDBID | --- .GA .Y3 05W 0R~ 10A 186 1L6 1OC 1ZS 31~ 33P 4.4 51W 52M 52O 52S 52T 52W 53G 5GY 5VS 7PT 8-1 85S A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACFBH ACGFS ACNCT ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BFHJK BRXPI BSCLL BY8 CO8 CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS EJD F5P FEDTE G-S GNP GODZA HBH HGLYW HHY HHZ HVGLF HZ~ IX1 KQQ LATKE LAW LC2 LC3 LEEKS LH4 LOXES LP6 LP7 LUTES LYRES MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM O9- OIG P2P P2W P4D QB0 ROL SUPJJ UB1 UPT UQL V2E W99 WH7 WJL WQJ XG1 XSW XV2 ZCG AAHHS ACCFJ AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE MEWTI RWI WIH WXSBR AAYXX CITATION CGR CUY CVF ECM EIF NPM 8FD F1W FR3 H95 L.G P64 RC3 7X8 |
ID | FETCH-LOGICAL-c4647-f0b9ddad84c2f22efc85f599e586c6ccd7a085bce97ce479a93ef3fa7a21a7573 |
IEDL.DBID | DR2 |
ISSN | 1552-5007 |
IngestDate | Fri Jul 11 11:15:47 EDT 2025 Fri Jul 11 12:21:23 EDT 2025 Wed Feb 19 01:45:38 EST 2025 Thu Apr 24 22:51:14 EDT 2025 Tue Jul 01 01:36:36 EDT 2025 Wed Jan 22 16:58:31 EST 2025 Tue Sep 09 05:32:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor Copyright 2006 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4647-f0b9ddad84c2f22efc85f599e586c6ccd7a085bce97ce479a93ef3fa7a21a7573 |
Notes | ark:/67375/WNG-B4XCV624-Q istex:921463DA99A5FD5F5C2082AE40A44739C8A3047F National Center for Research Resources (NCRR) - No. R01 RR10715 ArticleID:JEZ21137 National Institutes of Health (NIH) - No. P01 HD22486 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Review-3 |
PMID | 17068775 |
PQID | 20811197 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_68474091 proquest_miscellaneous_20811197 pubmed_primary_17068775 crossref_citationtrail_10_1002_jez_b_21137 crossref_primary_10_1002_jez_b_21137 wiley_primary_10_1002_jez_b_21137_JEZ21137 istex_primary_ark_67375_WNG_B4XCV624_Q |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 15 September 2007 |
PublicationDateYYYYMMDD | 2007-09-15 |
PublicationDate_xml | – month: 09 year: 2007 text: 15 September 2007 day: 15 |
PublicationDecade | 2000 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Journal of experimental zoology. Part B, Molecular and developmental evolution |
PublicationTitleAlternate | J. Exp. Zool |
PublicationYear | 2007 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | McClintock JM, Kheirbek MA, Prince VE. 2002. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339-2354. Santini S, Boore JL, Meyer A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13:1111-1122. Zhang J, Nei M. 1996. Evolution of Antennapedia-class homeobox genes. Genetics 142:295-303. Chai C, Liu YW, Chan WK. 2003. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 260:226-244. Lynch M, Force A. 2000b. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459-473. Akimenko M-A, Johnson SL, Westerfield M, Ekker M. 1995. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121:347-357. Wolfe K. 2000. Robustness - it's not where you think it is. Nat Genet 25:3-4. Ekker M, Wegner J, Akimenko M-A, Westerfield M. 1992. Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001-1010. Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615-643. David L, Blum S, Feldman MW, Lavi U, Hillel J. 2003. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425-1434. Ohno S, Wolf U, Atkins NB. 1968. Evolution from fish to mammals by gene duplication. Hereditas 59:169-187. Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. 2005. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 389(Part 1):19-26. Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545. Postlethwait J. 2006. The zebrafish genome: a review using msx genes as a case study. Genome Dyn 2:183-197. Phillips R, Rab P. 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1-25. Kappen C, Ruddle F. 1993. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 3:931-938. Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957. Bailey AD, Shen CC, Shen CK. 1997a. Molecular origin of the mosaic sequence arrangements of higher primate alpha-globin duplication units. Proc Natl Acad Sci USA 94:5177-5182. Kasahara M, Nakaya J, Satta Y, Takahata N. 1997. Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90-92. Ohno S. 1970. Evolution by gene duplication. New York: Springer-Verlag. Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. 2004. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481-490. McClintock JM, Carlson R, Mann DM, Prince VE. 2001. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471-2484. Raisanen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK. 2005. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120-126. Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A, Boncinelli E. 1989. The human HOX gene family. Nucleic Acids Res 17:10385-10402. Bailey W, Kim J, Wagner G, Ruddle F. 1997b. Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843-853. Nadeau JH, Sankoff D. 1997. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259-1266. Taylor JS, van de Peer Y, Braasch I, Meyer A. 2001. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B 356:1661-1679. Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711-1714. Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol 49:169-181. Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965-968. Lynch M, Conery J. 2000. The evolutionary fate and consequences of gene duplication. Science 290:1151-1155. Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699-704. Larhammar D, Risinger C. 1994. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3:59-68. Katsanis N, Fitzgibbon J, Fisher EMC. 1996. Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101-108. Hughes MK, Hughes AL. 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360-1369. Larhammar D, Lundin L, Hallbook F. 2002. The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12:1910-1920. Wittbrodt J, Meyer A, Schartl M. 1998. More genes in fish? BioEssays 20:511-515. Haldane JBS. 1933. The part played by recurrent mutation in evolution. Am Nat 67:5-9. Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. 2003. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:63-67. McLysaght A. 2001. Evolution of vertebrate genome organisation [Doctor of Philosophy]. Dublin: University of Dublin. 160 p. Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS. 2000. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890-1902. Ferris SD, Whitt GS. 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267-317. Force A, Amores A, Postlethwait JH. 2002. Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294:30-46. Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N. 1999. Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes. Nature 401:341. Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146-1151. Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367-378. von Hofsten J, Larsson A, Olsson PE. 2005. Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233:595-604. Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS. 2000. A comparative map of the zebrafish genome. Genome Res 10:1903-1914. Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307-1314. Gu X. 2003. Evolution of duplicate genes versus genetic robustness against null mutations. Trends Genet 19:354-356. Snell EA, Scemama JL, Stellwag EJ. 1999. Genomic organization of the Hoxa4-Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. J Exp Zool 285:41-49. Hughes AL. 1999. Adaptive evolution of genes and genomes. New York: Oxford University Press. Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. 2005. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454-5459. Hoegg S, Brinkmann H, Taylor JS, Meyer A. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190-203. Ekker M, Akimenko M, Allende M, Smith R, Drouin G, Langille R, Weinberg E, Westerfield M. 1997. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol Biol Evol 14:1008-1022. Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisua Belmonte JC, Ninomiya Y. 2004. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121:301-312. Laurenti P, Thaeron C, Allizard F, Huysseune A, Sire JY. 2004. Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish (Danio rerio). Dev Dyn 230:727-733. Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. 2004. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1-10. Wall DP, Fraser HB, Hirsh AE. 2003. Detecting putative orthologs. Bioinformatics 19:1710-1711. Hokamp K, McLysaght A, Wol 2004; 21 2004; 121 1933; 67 2004; 20 2005; 331 2002; 12 1999; 49 2002; 99 2003; 13 1999; 285 2005; 20 1972; 175 2000; 91 1997; 2 2003; 19 1970 1996; 142 1996; 35 2004; 328 1999; 401 1993; 3 2000; 290 1997; 147 1968; 59 1998; 18 1987; 116 2001 2004; 38 2005; 102 2005; 389 2000; 10 1997; 14 1997; 13 1997; 145 1992; 116 2003; 3 1999; 11 1984 1978; 27 1997a; 94 2000; 288 2001; 11 1995; 121 1998; 282 2004; 101 2006; 439 1979; 12 2000; 25 2002; 294 2005; 233 1997; 25 2000a; 156 2000; 275 2003 2006; 2 2002 1998; 20 2003; 31 2000b; 154 1997b; 14 1983; 33 2001; 128 1999 2004; 431 2004; 230 1993; 119 1993; 16 2004; 14 1999; 39 2004; 59 1993; 10 2003; 260 2002; 129 1999; 151 2005; 1 2005; 3 2005; 94 2005; 15 1989; 57 1994; 3 2003; 20 2003; 21 2001; 356 1989; 17 2001; 76 Hughes MK (e_1_2_1_33_1) 1993; 10 e_1_2_1_81_1 e_1_2_1_20_1 e_1_2_1_41_1 e_1_2_1_66_1 e_1_2_1_87_1 e_1_2_1_68_1 e_1_2_1_89_1 e_1_2_1_24_1 e_1_2_1_45_1 e_1_2_1_62_1 e_1_2_1_83_1 e_1_2_1_22_1 e_1_2_1_64_1 e_1_2_1_85_1 e_1_2_1_28_1 e_1_2_1_49_1 e_1_2_1_26_1 e_1_2_1_47_1 e_1_2_1_92_1 e_1_2_1_90_1 Hughes AL (e_1_2_1_32_1) 1999 e_1_2_1_31_1 e_1_2_1_54_1 e_1_2_1_77_1 e_1_2_1_8_1 Kumazawa Y (e_1_2_1_43_1) 1999 e_1_2_1_56_1 e_1_2_1_79_1 e_1_2_1_6_1 Santini F (e_1_2_1_75_1) 1999; 39 e_1_2_1_12_1 Ekker M (e_1_2_1_19_1) 1992; 116 e_1_2_1_35_1 e_1_2_1_50_1 e_1_2_1_73_1 e_1_2_1_4_1 e_1_2_1_10_1 e_1_2_1_52_1 e_1_2_1_2_1 e_1_2_1_16_1 e_1_2_1_39_1 McLysaght A (e_1_2_1_60_1) 2001 e_1_2_1_14_1 Joly J‐S (e_1_2_1_37_1) 1993; 119 e_1_2_1_18_1 McClintock JM (e_1_2_1_58_1) 2001; 128 e_1_2_1_80_1 e_1_2_1_82_1 e_1_2_1_42_1 e_1_2_1_65_1 e_1_2_1_88_1 e_1_2_1_40_1 e_1_2_1_67_1 e_1_2_1_23_1 e_1_2_1_46_1 e_1_2_1_61_1 e_1_2_1_84_1 e_1_2_1_21_1 e_1_2_1_63_1 e_1_2_1_86_1 e_1_2_1_27_1 Kuo MW (e_1_2_1_44_1) 2005; 389 Postlethwait JH (e_1_2_1_71_1) 2002 e_1_2_1_25_1 e_1_2_1_48_1 e_1_2_1_69_1 e_1_2_1_29_1 e_1_2_1_93_1 e_1_2_1_70_1 e_1_2_1_91_1 e_1_2_1_7_1 e_1_2_1_30_1 e_1_2_1_55_1 e_1_2_1_76_1 e_1_2_1_5_1 e_1_2_1_57_1 e_1_2_1_78_1 e_1_2_1_3_1 e_1_2_1_13_1 e_1_2_1_34_1 e_1_2_1_51_1 e_1_2_1_72_1 e_1_2_1_11_1 e_1_2_1_53_1 e_1_2_1_74_1 e_1_2_1_17_1 e_1_2_1_38_1 e_1_2_1_15_1 e_1_2_1_36_1 e_1_2_1_59_1 e_1_2_1_9_1 |
References_xml | – reference: Larhammar D, Risinger C. 1994. Molecular genetic aspects of tetraploidy in the common carp Cyprinus carpio. Mol Phylogenet Evol 3:59-68. – reference: Nadeau JH, Sankoff D. 1997. Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution. Genetics 147:1259-1266. – reference: Snell EA, Scemama JL, Stellwag EJ. 1999. Genomic organization of the Hoxa4-Hoxa10 region from Morone saxatilis: implications for Hox gene evolution among vertebrates. J Exp Zool 285:41-49. – reference: Van de Peer Y, Taylor JS, Meyer A. 2003. Are all fishes ancient polyploids? J Struct Funct Genomics 3:65-73. – reference: Lynch M, Conery J. 2000. The evolutionary fate and consequences of gene duplication. Science 290:1151-1155. – reference: Allendorf FW, Danzmann RG. 1997. Secondary tetrasomic segregation of MDH-B and preferential pairing of homeologues in rainbow trout. Genetics 145:1083-1092. – reference: von Hofsten J, Larsson A, Olsson PE. 2005. Novel steroidogenic factor-1 homolog (ff1d) is coexpressed with anti-Mullerian hormone (AMH) in zebrafish. Dev Dyn 233:595-604. – reference: Minguillon C, Gardenyes J, Serra E, Castro LF, Hill-Force A, Holland PW, Amemiya CT, Garcia-Fernandez J. 2005. No more than 14: the end of the amphioxus Hox cluster. Int J Biol Sci 1:19-23. – reference: Delsuc F, Brinkmann H, Chourrout D, Philippe H. 2006. Tunicates and not cephalochordates are the closest living relatives of vertebrates. Nature 439:965-968. – reference: Santini S, Boore JL, Meyer A. 2003. Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters. Genome Res 13:1111-1122. – reference: Acampora D, D'Esposito M, Faiella A, Pannese M, Migliaccio E, Morelli F, Stornaiuolo A, Nigro V, Simeone A, Boncinelli E. 1989. The human HOX gene family. Nucleic Acids Res 17:10385-10402. – reference: Bailey AD, Shen CC, Shen CK. 1997a. Molecular origin of the mosaic sequence arrangements of higher primate alpha-globin duplication units. Proc Natl Acad Sci USA 94:5177-5182. – reference: Chai C, Chan W. 2000. Developmental expression of a novel Ftz-F1 homologue, ff1b (NR5A4), in the zebrafish Danio rerio. Mech Dev 91:421-426. – reference: Lee MG, Lewis SA, Wilde CD, Cowan NJ. 1983. Evolutionary history of a multigene family: an expressed human beta-tubulin gene and three processed pseudogenes. Cell 33:477-487. – reference: Leveugle M, Prat K, Perrier N, Birnbaum D, Coulier F. 2003. ParaDB: a tool for paralogy mapping in vertebrate genomes. Nucleic Acids Res 31:63-67. – reference: Bailey W, Kim J, Wagner G, Ruddle F. 1997b. Phylogenetic reconstruction of vertebrate Hox cluster duplications. Mol Biol Evol 14:843-853. – reference: Dehal P, Boore JL. 2005. Two rounds of whole genome duplication in the ancestral vertebrate. PLoS Biol 3:e314. – reference: Force A, Lynch M, Pickett FB, Amores A, Yan Y-L, Postlethwait J. 1999. Preservation of duplicate genes by complementary, degenerative mutations. Genetics 151:1531-1545. – reference: Meyer A, Schartl M. 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr Opin Cell Biol 11:699-704. – reference: Wittbrodt J, Meyer A, Schartl M. 1998. More genes in fish? BioEssays 20:511-515. – reference: Haldane JBS. 1933. The part played by recurrent mutation in evolution. Am Nat 67:5-9. – reference: Lundin LG. 1993. Evolution of the vertebrate genome as relected in paralogous chromosomal regions in man and the house mouse. Genomics 16:1-19. – reference: Naruse K, Tanaka M, Mita K, Shima A, Postlethwait J, Mitani H. 2004. A medaka gene map: the trace of ancestral vertebrate proto-chromosomes revealed by comparative gene mapping. Genome Res 14:820-828. – reference: Akimenko M-A, Johnson SL, Westerfield M, Ekker M. 1995. Differential induction of four msx homeobox genes during fin development and regeneration in zebrafish. Development 121:347-357. – reference: Koopman P, Schepers G, Brenner S, Venkatesh B. 2004. Origin and diversity of the Sox transcription factor gene family: genome-wide analysis in Fugu rubripes. Gene 328:177-186. – reference: Woods IG, Kelly PD, Chu F, Ngo-Hazelett P, Yan YL, Huang H, Postlethwait JH, Talbot WS. 2000. A comparative map of the zebrafish genome. Genome Res 10:1903-1914. – reference: Zhang J, Nei M. 1996. Evolution of Antennapedia-class homeobox genes. Genetics 142:295-303. – reference: Hughes MK, Hughes AL. 1993. Evolution of duplicate genes in a tetraploid animal, Xenopus laevis. Mol Biol Evol 10:1360-1369. – reference: Johnson KR, Wright JE Jr, May B. 1987. Linkage relationships reflecting ancestral tetraploidy in salmonid fish. Genetics 116:579-591. – reference: Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 38:615-643. – reference: Friedman R, Hughes AL. 2001. Pattern and timing of gene duplication in animal genomes. Genome Res 11:1842-1847. – reference: Coulier F, Popovici C, Villet R, Birnbaum D. 2000. MetaHox gene clusters. J Exp Zool 288:345-351. – reference: Kang JS, Oohashi T, Kawakami Y, Bekku Y, Izpisua Belmonte JC, Ninomiya Y. 2004. Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones. Mech Dev 121:301-312. – reference: Felsenstein J. 1978. Cases in which parsimony or compatibility methods will be positively misleading. Syst Zool 27:401-410. – reference: Wall DP, Fraser HB, Hirsh AE. 2003. Detecting putative orthologs. Bioinformatics 19:1710-1711. – reference: Stoltzfus A. 1999. On the possibility of constructive neutral evolution. J Mol Evol 49:169-181. – reference: Gu X. 2003. Evolution of duplicate genes versus genetic robustness against null mutations. Trends Genet 19:354-356. – reference: Locascio A, Manzanares M, Blanco MJ, Nieto MA. 2002. Modularity and reshuffling of Snail and Slug expression during vertebrate evolution. Proc Natl Acad Sci USA 99:16841-16846. – reference: Ekker M, Akimenko M, Allende M, Smith R, Drouin G, Langille R, Weinberg E, Westerfield M. 1997. Relationships among msx gene structure and function in zebrafish and other vertebrates. Mol Biol Evol 14:1008-1022. – reference: Ohno S, Wolf U, Atkins NB. 1968. Evolution from fish to mammals by gene duplication. Hereditas 59:169-187. – reference: Kasahara M, Nakaya J, Satta Y, Takahata N. 1997. Chromosomal duplication and the emergence of the adaptive immune system. Trends Genet 13:90-92. – reference: Taylor J, Braasch I, Frickey T, Meyer A, Van De Peer Y. 2003. Genome duplication, a trait shared by 22,000 species of ray-finned fish. Genome Res 13:382-390. – reference: Jaillon O, Aury JM, Brunet F, Petit JL, Stange-Thomann N, Mauceli E, Bouneau L, Fischer C, Ozouf-Costaz C, Bernot A, Nicaud S, Jaffe D, Fisher S, Lutfalla G, Dossat C, Segurens B, Dasilva C, Salanoubat M, Levy M, Boudet N, Castellano S, Anthouard V, Jubin C, Castelli V, Katinka M, Vacherie B, Biemont C, Skalli Z, Cattolico L, Poulain J, De Berardinis V, Cruaud C, Duprat S, Brottier P, Coutanceau JP, Gouzy J, Parra G, Lardier G, Chapple C, McKernan KJ, McEwan P, Bosak S, Kellis M, Volff JN, Guigo R, Zody MC, Mesirov J, Lindblad-Toh K, Birren B, Nusbaum C, Kahn D, Robinson-Rechavi M, Laudet V, Schachter V, Quetier F, Saurin W, Scarpelli C, Wincker P, Lander ES, Weissenbach J, Roest Crollius H. 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate proto-karyotype. Nature 431:946-957. – reference: Chai C, Liu YW, Chan WK. 2003. Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ. Dev Biol 260:226-244. – reference: Ohno S. 1970. Evolution by gene duplication. New York: Springer-Verlag. – reference: Postlethwait J. 2006. The zebrafish genome: a review using msx genes as a case study. Genome Dyn 2:183-197. – reference: McClintock JM, Carlson R, Mann DM, Prince VE. 2001. Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes. Development 128:2471-2484. – reference: Larhammar D, Lundin L, Hallbook F. 2002. The human Hox-bearing chromosome regions did arise by block or chromosome (or even genome) duplications. Genome Res 12:1910-1920. – reference: Postlethwait JH, Woods IG, Ngo-Hazelett P, Yan Y-L, Kelly PD, Chu F, Huang H, Hill-Force A, Talbot WS. 2000. Zebrafish comparative genomics and the origins of vertebrate chromosomes. Genome Res 10:1890-1902. – reference: Postlethwait JH, Yan Y-L, Gates M, Horne S, Amores A, Brownlie A, Donovan A, Egan E, Force A, Gong Z, Goutel C, Fritz A, Kelsh R, Knapik E, Liao E, Paw B, Ransom D, Singer A, Thomson M, Abduljabbar TS, Yelick P, Beier D, Joly J-S, Larhammar D, Talbot WS. 1998. Vertebrate genome evolution and the zebrafish gene map. Nat Genet 18:345-349. – reference: Raisanen SR, Alatalo SL, Ylipahkala H, Halleen JM, Cassady AI, Hume DA, Vaananen HK. 2005. Macrophages overexpressing tartrate-resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing. Biochem Biophys Res Commun 331:120-126. – reference: Hoegg S, Brinkmann H, Taylor JS, Meyer A. 2004. Phylogenetic timing of the fish-specific genome duplication correlates with the diversification of teleost fish. J Mol Evol 59:190-203. – reference: Woods IG, Wilson C, Friedlander B, Chang P, Reyes DK, Nix R, Kelly PD, Chu F, Postlethwait JH, Talbot WS. 2005. The zebrafish gene map defines ancestral vertebrate chromosomes. Genome Res 15:1307-1314. – reference: Wolfe K. 2000. Robustness - it's not where you think it is. Nat Genet 25:3-4. – reference: Force A, Amores A, Postlethwait JH. 2002. Hox cluster organization in the jawless vertebrate Petromyzon marinus. J Exp Zool 294:30-46. – reference: Leitch IJ, B MD. 1997. Polyploidy in angiosperms. Trends Plant Sci 2:470-476. – reference: Volff JN. 2005. Genome evolution and biodiversity in teleost fish. Heredity 94:280-294. – reference: Gallardo MH, Bickham JW, Honeycutt RL, Ojeda RA, Köhler N. 1999. Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes. Nature 401:341. – reference: Kuo MW, Postlethwait J, Lee WC, Lou SW, Chan WK, Chung BC. 2005. Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz-F1) family. Biochem J 389(Part 1):19-26. – reference: Uyeno T, Smith GR. 1972. Tetraploid origin of the karyotype of catostomid fishes. Science 175:644-646. – reference: Vandepoele K, De Vos W, Taylor JS, Meyer A, Van de Peer Y. 2004. Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray-finned fishes and land vertebrates. Proc Natl Acad Sci USA 101:1638-1643. – reference: Hughes AL, da Silva J, Friedman R. 2001. Ancient genome duplications did not structure the human Hox-bearing chromosomes. Genome Res 11:771-778. – reference: Maere S, De Bodt S, Raes J, Casneuf T, Van Montagu M, Kuiper M, Van de Peer Y. 2005. Modeling gene and genome duplications in eukaryotes. Proc Natl Acad Sci USA 102:5454-5459. – reference: Katsanis N, Fitzgibbon J, Fisher EMC. 1996. Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. Genomics 35:101-108. – reference: Lynch M, Force A. 2000a. The origin of interspecific genomic incompatibility via gene duplication. Am Nat 156:590-605. – reference: David L, Blum S, Feldman MW, Lavi U, Hillel J. 2003. Recent duplication of the common carp (Cyprinus carpio L.) genome as revealed by analyses of microsatellite loci. Mol Biol Evol 20:1425-1434. – reference: Santini F, Tyler JC. 1999. A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages. Am Zool 39:10A. – reference: Taylor JS, van de Peer Y, Braasch I, Meyer A. 2001. Comparative genomics provides evidence for an ancient genome duplication event in fish. Philos Trans R Soc Lond B 356:1661-1679. – reference: Kappen C, Ruddle F. 1993. Evolution of a regulatory gene family: HOM/HOX genes. Curr Opin Genet Dev 3:931-938. – reference: Postlethwait J, Amores A, Cresko W, Singer A, Yan YL. 2004. Subfunction partitioning, the teleost radiation and the annotation of the human genome. Trends Genet 20:481-490. – reference: Lynch M, Force A. 2000b. The probability of duplicate gene preservation by subfunctionalization. Genetics 154:459-473. – reference: Ferris SD, Whitt GS. 1979. Evolution of the differential regulation of duplicate genes after polyploidization. J Mol Evol 12:267-317. – reference: Ruuskanen J, Xhaard H, Marjamaki A, Salaneck E, Salminen T, Yan YL, Postlethwait JH, Johnson MS, Larhammar D, Scheinin M. 2003. Identification of duplicated fourth alpha 2-adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish. Mol Biol Evol 21:14-28. – reference: Joly J-S, Joly C, Schulte-Merker S, Boulekbache H, Condamine H. 1993. The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos. Development 119:1261-1275. – reference: Amores A, Suzuki T, Yan YL, Pomeroy J, Singer A, Amemiya C, Postlethwait JH. 2004. Developmental roles of pufferfish Hox clusters and genome evolution in ray-fin fish. Genome Res 14:1-10. – reference: Amores A, Force A, Yan Y-L, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang Y-L, Westerfield M, Ekker M, Postlethwait JH. 1998. Zebrafish hox clusters and vertebrate genome evolution. Science 282:1711-1714. – reference: Christoffels A, Koh EG, Chia JM, Brenner S, Aparicio S, Venkatesh B. 2004. Fugu genome analysis provides evidence for a whole-genome duplication early during the evolution of ray-finned fishes. Mol Biol Evol 21:1146-1151. – reference: Donoghue PC, Purnell MA. 2005. Genome duplication, extinction and vertebrate evolution. Trends Ecol Evol 20:312-319. – reference: McLysaght A. 2001. Evolution of vertebrate genome organisation [Doctor of Philosophy]. Dublin: University of Dublin. 160 p. – reference: Hughes AL. 1999. Adaptive evolution of genes and genomes. New York: Oxford University Press. – reference: Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389-3402. – reference: Phillips R, Rab P. 2001. Chromosome evolution in the Salmonidae (Pisces): an update. Biol Rev Camb Philos Soc 76:1-25. – reference: Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367-378. – reference: Hokamp K, McLysaght A, Wolfe KH. 2003. The 2R hypothesis and the human genome sequence. J Struct Funct Genomics 3:95-110. – reference: McClintock JM, Kheirbek MA, Prince VE. 2002. Knockdown of duplicated zebrafish hoxb1 genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention. Development 129:2339-2354. – reference: Ekker M, Wegner J, Akimenko M-A, Westerfield M. 1992. Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001-1010. – reference: Laurenti P, Thaeron C, Allizard F, Huysseune A, Sire JY. 2004. Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish (Danio rerio). Dev Dyn 230:727-733. – reference: Liu D, Chandy M, Lee SK, Le Drean Y, Ando H, Xiong F, Woon Lee J, Hew CL. 2000. A zebrafish ftz-F1 (Fushi tarazu factor 1) homologue requires multiple subdomains in the D and E regions for its transcriptional activity. J Biol Chem 275:16758-16766. – volume: 389 start-page: 19 issue: Part 1 year: 2005 end-page: 26 article-title: Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz‐F1) family publication-title: Biochem J – volume: 3 start-page: 59 year: 1994 end-page: 68 article-title: Molecular genetic aspects of tetraploidy in the common carp publication-title: Mol Phylogenet Evol – volume: 39 start-page: 10A year: 1999 article-title: A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages publication-title: Am Zool – volume: 20 start-page: 1425 year: 2003 end-page: 1434 article-title: Recent duplication of the common carp ( L.) genome as revealed by analyses of microsatellite loci publication-title: Mol Biol Evol – volume: 59 start-page: 169 year: 1968 end-page: 187 article-title: Evolution from fish to mammals by gene duplication publication-title: Hereditas – volume: 233 start-page: 595 year: 2005 end-page: 604 article-title: Novel steroidogenic factor‐1 homolog (ff1d) is coexpressed with anti‐Mullerian hormone (AMH) in zebrafish publication-title: Dev Dyn – volume: 38 start-page: 615 year: 2004 end-page: 643 article-title: Duplication and divergence: the evolution of new genes and old ideas publication-title: Annu Rev Genet – volume: 94 start-page: 280 year: 2005 end-page: 294 article-title: Genome evolution and biodiversity in teleost fish publication-title: Heredity – volume: 91 start-page: 421 year: 2000 end-page: 426 article-title: Developmental expression of a novel Ftz‐F1 homologue, ff1b (NR5A4), in the zebrafish publication-title: Mech Dev – volume: 328 start-page: 177 year: 2004 end-page: 186 article-title: Origin and diversity of the Sox transcription factor gene family: genome‐wide analysis in publication-title: Gene – volume: 57 start-page: 367 year: 1989 end-page: 378 article-title: The murine and Drosophila homeobox gene complexes have common features of organization and expression publication-title: Cell – volume: 1 start-page: 19 year: 2005 end-page: 23 article-title: No more than 14: the end of the amphioxus Hox cluster publication-title: Int J Biol Sci – year: 2001 – volume: 20 start-page: 481 year: 2004 end-page: 490 article-title: Subfunction partitioning, the teleost radiation and the annotation of the human genome publication-title: Trends Genet – volume: 260 start-page: 226 year: 2003 end-page: 244 article-title: Ff1b is required for the development of steroidogenic component of the zebrafish interrenal organ publication-title: Dev Biol – volume: 31 start-page: 63 year: 2003 end-page: 67 article-title: ParaDB: a tool for paralogy mapping in vertebrate genomes publication-title: Nucleic Acids Res – volume: 356 start-page: 1661 year: 2001 end-page: 1679 article-title: Comparative genomics provides evidence for an ancient genome duplication event in fish publication-title: Philos Trans R Soc Lond B – volume: 282 start-page: 1711 year: 1998 end-page: 1714 article-title: Zebrafish clusters and vertebrate genome evolution publication-title: Science – volume: 33 start-page: 477 year: 1983 end-page: 487 article-title: Evolutionary history of a multigene family: an expressed human beta‐tubulin gene and three processed pseudogenes publication-title: Cell – volume: 275 start-page: 16758 year: 2000 end-page: 16766 article-title: A zebrafish ftz‐F1 ( factor 1) homologue requires multiple subdomains in the D and E regions for its transcriptional activity publication-title: J Biol Chem – volume: 21 start-page: 1146 year: 2004 end-page: 1151 article-title: Fugu genome analysis provides evidence for a whole‐genome duplication early during the evolution of ray‐finned fishes publication-title: Mol Biol Evol – volume: 20 start-page: 312 year: 2005 end-page: 319 article-title: Genome duplication, extinction and vertebrate evolution publication-title: Trends Ecol Evol – volume: 431 start-page: 946 year: 2004 end-page: 957 article-title: Genome duplication in the teleost fish reveals the early vertebrate proto‐karyotype publication-title: Nature – volume: 156 start-page: 590 year: 2000a end-page: 605 article-title: The origin of interspecific genomic incompatibility via gene duplication publication-title: Am Nat – volume: 20 start-page: 511 year: 1998 end-page: 515 article-title: More genes in fish? publication-title: BioEssays – volume: 76 start-page: 1 year: 2001 end-page: 25 article-title: Chromosome evolution in the Salmonidae (Pisces): an update publication-title: Biol Rev Camb Philos Soc – volume: 175 start-page: 644 year: 1972 end-page: 646 article-title: Tetraploid origin of the karyotype of catostomid fishes publication-title: Science – volume: 290 start-page: 1151 year: 2000 end-page: 1155 article-title: The evolutionary fate and consequences of gene duplication publication-title: Science – volume: 14 start-page: 820 year: 2004 end-page: 828 article-title: A medaka gene map: the trace of ancestral vertebrate proto‐chromosomes revealed by comparative gene mapping publication-title: Genome Res – volume: 10 start-page: 1903 year: 2000 end-page: 1914 article-title: A comparative map of the zebrafish genome publication-title: Genome Res – volume: 101 start-page: 1638 year: 2004 end-page: 1643 article-title: Major events in the genome evolution of vertebrates: paranome age and size differ considerably between ray‐finned fishes and land vertebrates publication-title: Proc Natl Acad Sci USA – start-page: 35 year: 1999 end-page: 52 – volume: 12 start-page: 267 year: 1979 end-page: 317 article-title: Evolution of the differential regulation of duplicate genes after polyploidization publication-title: J Mol Evol – volume: 119 start-page: 1261 year: 1993 end-page: 1275 article-title: The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos publication-title: Development – volume: 288 start-page: 345 year: 2000 end-page: 351 article-title: MetaHox gene clusters publication-title: J Exp Zool – volume: 13 start-page: 382 year: 2003 end-page: 390 article-title: Genome duplication, a trait shared by 22,000 species of ray‐finned fish publication-title: Genome Res – volume: 2 start-page: 470 year: 1997 end-page: 476 article-title: Polyploidy in angiosperms publication-title: Trends Plant Sci – volume: 2 start-page: 183 year: 2006 end-page: 197 article-title: The zebrafish genome: a review using msx genes as a case study publication-title: Genome Dyn – start-page: 1 year: 1984 end-page: 46 – volume: 285 start-page: 41 year: 1999 end-page: 49 article-title: Genomic organization of the Hoxa4‐Hoxa10 region from : implications for Hox gene evolution among vertebrates publication-title: J Exp Zool – volume: 116 start-page: 1001 year: 1992 end-page: 1010 article-title: Coordinate embryonic expression of three zebrafish genes publication-title: Development – volume: 17 start-page: 10385 year: 1989 end-page: 10402 article-title: The human HOX gene family publication-title: Nucleic Acids Res – volume: 129 start-page: 2339 year: 2002 end-page: 2354 article-title: Knockdown of duplicated zebrafish genes reveals distinct roles in hindbrain patterning and a novel mechanism of duplicate gene retention publication-title: Development – volume: 13 start-page: 1111 year: 2003 end-page: 1122 article-title: Evolutionary conservation of regulatory elements in vertebrate Hox gene clusters publication-title: Genome Res – volume: 3 start-page: 65 year: 2003 end-page: 73 article-title: Are all fishes ancient polyploids? publication-title: J Struct Funct Genomics – volume: 25 start-page: 3 year: 2000 end-page: 4 article-title: Robustness — it's not where you think it is publication-title: Nat Genet – volume: 121 start-page: 347 year: 1995 end-page: 357 article-title: Differential induction of four homeobox genes during fin development and regeneration in zebrafish publication-title: Development – volume: 27 start-page: 401 year: 1978 end-page: 410 article-title: Cases in which parsimony or compatibility methods will be positively misleading publication-title: Syst Zool – volume: 35 start-page: 101 year: 1996 end-page: 108 article-title: Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel and loci publication-title: Genomics – volume: 102 start-page: 5454 year: 2005 end-page: 5459 article-title: Modeling gene and genome duplications in eukaryotes publication-title: Proc Natl Acad Sci USA – volume: 14 start-page: 843 year: 1997b end-page: 853 article-title: Phylogenetic reconstruction of vertebrate cluster duplications publication-title: Mol Biol Evol – volume: 331 start-page: 120 year: 2005 end-page: 126 article-title: Macrophages overexpressing tartrate‐resistant acid phosphatase show altered profile of free radical production and enhanced capacity of bacterial killing publication-title: Biochem Biophys Res Commun – volume: 439 start-page: 965 year: 2006 end-page: 968 article-title: Tunicates and not cephalochordates are the closest living relatives of vertebrates publication-title: Nature – volume: 142 start-page: 295 year: 1996 end-page: 303 article-title: Evolution of Antennapedia‐class homeobox genes publication-title: Genetics – volume: 3 start-page: e314 year: 2005 article-title: Two rounds of whole genome duplication in the ancestral vertebrate publication-title: PLoS Biol – volume: 15 start-page: 1307 year: 2005 end-page: 1314 article-title: The zebrafish gene map defines ancestral vertebrate chromosomes publication-title: Genome Res – volume: 21 start-page: 14 year: 2003 end-page: 28 article-title: Identification of duplicated fourth alpha 2‐adrenergic receptor subtype by cloning and mapping of five receptor genes in zebrafish publication-title: Mol Biol Evol – volume: 151 start-page: 1531 year: 1999 end-page: 1545 article-title: Preservation of duplicate genes by complementary, degenerative mutations publication-title: Genetics – volume: 19 start-page: 1710 year: 2003 end-page: 1711 article-title: Detecting putative orthologs publication-title: Bioinformatics – year: 2003 – volume: 145 start-page: 1083 year: 1997 end-page: 1092 article-title: Secondary tetrasomic segregation of MDH‐B and preferential pairing of homeologues in rainbow trout publication-title: Genetics – volume: 121 start-page: 301 year: 2004 end-page: 312 article-title: Characterization of dermacan, a novel zebrafish lectican gene, expressed in dermal bones publication-title: Mech Dev – volume: 147 start-page: 1259 year: 1997 end-page: 1266 article-title: Comparable rates of gene loss and functional divergence after genome duplications early in vertebrate evolution publication-title: Genetics – volume: 13 start-page: 90 year: 1997 end-page: 92 article-title: Chromosomal duplication and the emergence of the adaptive immune system publication-title: Trends Genet – volume: 11 start-page: 771 year: 2001 end-page: 778 article-title: Ancient genome duplications did not structure the human Hox‐bearing chromosomes publication-title: Genome Res – volume: 25 start-page: 3389 year: 1997 end-page: 3402 article-title: Gapped BLAST and PSI‐BLAST: a new generation of protein database search programs publication-title: Nucleic Acids Res – volume: 10 start-page: 1360 year: 1993 end-page: 1369 article-title: Evolution of duplicate genes in a tetraploid animal, publication-title: Mol Biol Evol – volume: 128 start-page: 2471 year: 2001 end-page: 2484 article-title: Consequences of gene duplication in the vertebrates: an investigation of the zebrafish paralogue group 1 genes publication-title: Development – volume: 11 start-page: 699 year: 1999 end-page: 704 article-title: Gene and genome duplications in vertebrates: the one‐to‐four (‐to‐eight in fish) rule and the evolution of novel gene functions publication-title: Curr Opin Cell Biol – volume: 19 start-page: 354 year: 2003 end-page: 356 article-title: Evolution of duplicate genes versus genetic robustness against null mutations publication-title: Trends Genet – volume: 16 start-page: 1 year: 1993 end-page: 19 article-title: Evolution of the vertebrate genome as relected in paralogous chromosomal regions in man and the house mouse publication-title: Genomics – volume: 14 start-page: 1 year: 2004 end-page: 10 article-title: Developmental roles of pufferfish Hox clusters and genome evolution in ray‐fin fish publication-title: Genome Res – volume: 49 start-page: 169 year: 1999 end-page: 181 article-title: On the possibility of constructive neutral evolution publication-title: J Mol Evol – volume: 401 start-page: 341 year: 1999 article-title: Discovery of tetraploidy in a mammal: the red viscacha rat is unaffected by having double the usual number of chromosomes publication-title: Nature – volume: 14 start-page: 1008 year: 1997 end-page: 1022 article-title: Relationships among gene structure and function in zebrafish and other vertebrates publication-title: Mol Biol Evol – volume: 59 start-page: 190 year: 2004 end-page: 203 article-title: Phylogenetic timing of the fish‐specific genome duplication correlates with the diversification of teleost fish publication-title: J Mol Evol – start-page: 20 year: 2002 end-page: 31 – volume: 67 start-page: 5 year: 1933 end-page: 9 article-title: The part played by recurrent mutation in evolution publication-title: Am Nat – volume: 154 start-page: 459 year: 2000b end-page: 473 article-title: The probability of duplicate gene preservation by subfunctionalization publication-title: Genetics – volume: 294 start-page: 30 year: 2002 end-page: 46 article-title: Hox cluster organization in the jawless vertebrate publication-title: J Exp Zool – volume: 11 start-page: 1842 year: 2001 end-page: 1847 article-title: Pattern and timing of gene duplication in animal genomes publication-title: Genome Res – volume: 230 start-page: 727 year: 2004 end-page: 733 article-title: Cellular expression of eve1 suggests its requirement for the differentiation of the ameloblasts and for the initiation and morphogenesis of the first tooth in the zebrafish ( ) publication-title: Dev Dyn – volume: 10 start-page: 1890 year: 2000 end-page: 1902 article-title: Zebrafish comparative genomics and the origins of vertebrate chromosomes publication-title: Genome Res – volume: 94 start-page: 5177 year: 1997a end-page: 5182 article-title: Molecular origin of the mosaic sequence arrangements of higher primate alpha‐globin duplication units publication-title: Proc Natl Acad Sci USA – volume: 12 start-page: 1910 year: 2002 end-page: 1920 article-title: The human Hox‐bearing chromosome regions did arise by block or chromosome (or even genome) duplications publication-title: Genome Res – volume: 18 start-page: 345 year: 1998 end-page: 349 article-title: Vertebrate genome evolution and the zebrafish gene map publication-title: Nat Genet – volume: 3 start-page: 931 year: 1993 end-page: 938 article-title: Evolution of a regulatory gene family: genes publication-title: Curr Opin Genet Dev – year: 1970 – volume: 116 start-page: 579 year: 1987 end-page: 591 article-title: Linkage relationships reflecting ancestral tetraploidy in salmonid fish publication-title: Genetics – volume: 99 start-page: 16841 year: 2002 end-page: 16846 article-title: Modularity and reshuffling of Snail and Slug expression during vertebrate evolution publication-title: Proc Natl Acad Sci USA – volume: 3 start-page: 95 year: 2003 end-page: 110 article-title: The 2R hypothesis and the human genome sequence publication-title: J Struct Funct Genomics – year: 1999 – ident: e_1_2_1_29_1 doi: 10.1086/280465 – ident: e_1_2_1_62_1 doi: 10.7150/ijbs.1.19 – ident: e_1_2_1_10_1 doi: 10.1093/oxfordjournals.molbev.a025825 – ident: e_1_2_1_18_1 doi: 10.1016/j.tree.2005.04.008 – ident: e_1_2_1_14_1 doi: 10.1002/1097-010X(20001215)288:4<345::AID-JEZ7>3.0.CO;2-Y – start-page: 35 volume-title: The biology biodiversity year: 1999 ident: e_1_2_1_43_1 – ident: e_1_2_1_63_1 doi: 10.1093/genetics/147.3.1259 – ident: e_1_2_1_69_1 doi: 10.1038/ng0498-345 – ident: e_1_2_1_85_1 doi: 10.1073/pnas.0307968100 – ident: e_1_2_1_82_1 – ident: e_1_2_1_26_1 doi: 10.1038/43815 – ident: e_1_2_1_51_1 doi: 10.1074/jbc.M000121200 – ident: e_1_2_1_7_1 doi: 10.1126/science.282.5394.1711 – ident: e_1_2_1_41_1 doi: 10.1006/geno.1996.0328 – ident: e_1_2_1_12_1 doi: 10.1016/S0012-1606(03)00219-7 – volume-title: Adaptive evolution of genes and genomes year: 1999 ident: e_1_2_1_32_1 – ident: e_1_2_1_70_1 doi: 10.1101/gr.164800 – ident: e_1_2_1_21_1 doi: 10.2307/2412923 – ident: e_1_2_1_47_1 doi: 10.1002/dvdy.20080 – volume: 39 start-page: 10A year: 1999 ident: e_1_2_1_75_1 article-title: A new phylogenetic hypothesis for the order Tetraodontiformes (Teleostei, Pisces), with placement of the most fossil basal lineages publication-title: Am Zool – ident: e_1_2_1_88_1 doi: 10.1093/bioinformatics/btg213 – ident: e_1_2_1_66_1 doi: 10.1111/j.1601-5223.1968.tb02169.x – ident: e_1_2_1_87_1 doi: 10.1002/dvdy.20335 – volume: 10 start-page: 1360 year: 1993 ident: e_1_2_1_33_1 article-title: Evolution of duplicate genes in a tetraploid animal, Xenopus laevis publication-title: Mol Biol Evol – ident: e_1_2_1_45_1 doi: 10.1006/mpev.1994.1007 – ident: e_1_2_1_92_1 doi: 10.1101/gr.4134305 – ident: e_1_2_1_61_1 doi: 10.1016/S0955-0674(99)00039-3 – ident: e_1_2_1_68_1 doi: 10.1159/000095104 – ident: e_1_2_1_9_1 doi: 10.1073/pnas.94.10.5177 – ident: e_1_2_1_16_1 doi: 10.1371/journal.pbio.0030314 – ident: e_1_2_1_31_1 doi: 10.1023/A:1022661917301 – ident: e_1_2_1_50_1 doi: 10.1093/nar/gkg106 – volume: 116 start-page: 1001 year: 1992 ident: e_1_2_1_19_1 article-title: Coordinate embryonic expression of three zebrafish engrailed genes publication-title: Development doi: 10.1242/dev.116.4.1001 – ident: e_1_2_1_93_1 doi: 10.1093/genetics/142.1.295 – ident: e_1_2_1_28_1 doi: 10.1016/S0168-9525(03)00139-2 – volume: 119 start-page: 1261 year: 1993 ident: e_1_2_1_37_1 article-title: The ventral and posterior expression of the zebrafish homeobox gene eve1 is perturbed in dorsalized and mutant embryos publication-title: Development doi: 10.1242/dev.119.4.1261 – ident: e_1_2_1_46_1 doi: 10.1101/gr.445702 – start-page: 20 volume-title: Aquatic genomics: steps toward a great future year: 2002 ident: e_1_2_1_71_1 – ident: e_1_2_1_40_1 doi: 10.1016/S0168-9525(97)01065-2 – ident: e_1_2_1_89_1 doi: 10.1002/(SICI)1521-1878(199806)20:6<511::AID-BIES10>3.0.CO;2-3 – ident: e_1_2_1_2_1 doi: 10.1093/nar/17.24.10385 – ident: e_1_2_1_13_1 doi: 10.1093/molbev/msh114 – ident: e_1_2_1_81_1 doi: 10.1101/gr.640303 – ident: e_1_2_1_65_1 doi: 10.1007/978-3-642-86659-3 – ident: e_1_2_1_74_1 doi: 10.1093/molbev/msg224 – ident: e_1_2_1_91_1 doi: 10.1101/gr.10.12.1903 – ident: e_1_2_1_34_1 doi: 10.1101/gr.GR-1600R – volume: 128 start-page: 2471 year: 2001 ident: e_1_2_1_58_1 article-title: Consequences of Hox gene duplication in the vertebrates: an investigation of the zebrafish Hox paralogue group 1 genes publication-title: Development doi: 10.1242/dev.128.13.2471 – ident: e_1_2_1_23_1 doi: 10.1093/genetics/151.4.1531 – ident: e_1_2_1_6_1 doi: 10.1093/nar/25.17.3389 – ident: e_1_2_1_86_1 doi: 10.1038/sj.hdy.6800635 – ident: e_1_2_1_53_1 doi: 10.1006/geno.1993.1133 – ident: e_1_2_1_73_1 doi: 10.1016/j.bbrc.2005.03.133 – ident: e_1_2_1_27_1 doi: 10.1016/0092-8674(89)90912-4 – ident: e_1_2_1_83_1 doi: 10.1126/science.175.4022.644 – ident: e_1_2_1_54_1 doi: 10.1126/science.290.5494.1151 – ident: e_1_2_1_57_1 doi: 10.1073/pnas.0501102102 – volume-title: Evolution of vertebrate genome organisation [Doctor of Philosophy] year: 2001 ident: e_1_2_1_60_1 – ident: e_1_2_1_52_1 doi: 10.1073/pnas.262525399 – ident: e_1_2_1_59_1 doi: 10.1242/dev.129.10.2339 – ident: e_1_2_1_49_1 doi: 10.1016/S1360-1385(97)01154-0 – ident: e_1_2_1_22_1 doi: 10.1007/BF01732026 – ident: e_1_2_1_79_1 doi: 10.1146/annurev.genet.38.072902.092831 – ident: e_1_2_1_77_1 doi: 10.1002/(SICI)1097-010X(19990415)285:1<41::AID-JEZ5>3.0.CO;2-D – ident: e_1_2_1_90_1 doi: 10.1038/75560 – ident: e_1_2_1_78_1 doi: 10.1007/PL00006540 – ident: e_1_2_1_5_1 doi: 10.1007/978-1-4684-4652-4_1 – ident: e_1_2_1_48_1 doi: 10.1016/0092-8674(83)90429-4 – ident: e_1_2_1_20_1 doi: 10.1093/oxfordjournals.molbev.a025707 – ident: e_1_2_1_39_1 doi: 10.1016/0959-437X(93)90016-I – ident: e_1_2_1_56_1 doi: 10.1093/genetics/154.1.459 – ident: e_1_2_1_38_1 doi: 10.1016/j.mod.2004.01.007 – ident: e_1_2_1_64_1 doi: 10.1101/gr.2004004 – ident: e_1_2_1_55_1 doi: 10.1086/316992 – ident: e_1_2_1_24_1 doi: 10.1002/jez.10091 – ident: e_1_2_1_67_1 doi: 10.1111/j.1469-185X.2000.tb00057.x – ident: e_1_2_1_3_1 doi: 10.1242/dev.121.2.347 – volume: 389 start-page: 19 issue: 1 year: 2005 ident: e_1_2_1_44_1 article-title: Gene duplication, gene loss and evolution of expression domains in the vertebrate nuclear receptor NR5A (Ftz‐F1) family publication-title: Biochem J doi: 10.1042/BJ20050005 – ident: e_1_2_1_30_1 doi: 10.1007/s00239-004-2613-z – ident: e_1_2_1_25_1 doi: 10.1101/gr.155801 – ident: e_1_2_1_4_1 doi: 10.1093/genetics/145.4.1083 – ident: e_1_2_1_84_1 doi: 10.1023/A:1022652814749 – ident: e_1_2_1_17_1 doi: 10.1038/nature04336 – ident: e_1_2_1_35_1 doi: 10.1038/nature03025 – ident: e_1_2_1_76_1 doi: 10.1101/gr.700503 – ident: e_1_2_1_15_1 doi: 10.1093/molbev/msg173 – ident: e_1_2_1_72_1 doi: 10.1016/j.tig.2004.08.001 – ident: e_1_2_1_11_1 doi: 10.1016/S0925-4773(99)00312-3 – ident: e_1_2_1_36_1 doi: 10.1093/genetics/116.4.579 – ident: e_1_2_1_8_1 doi: 10.1101/gr.1717804 – ident: e_1_2_1_42_1 doi: 10.1016/j.gene.2003.12.008 – ident: e_1_2_1_80_1 doi: 10.1098/rstb.2001.0975 |
SSID | ssj0026055 |
Score | 2.1941671 |
SecondaryResourceType | review_article |
Snippet | Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them “novel” genes. The origin of many so‐called “novel” genes... Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them "novel" genes. The origin of many so-called "novel" genes... Some zebrafish genes appear to lack an ortholog in the human genome and researchers often call them novel genes. The origin of many so-called novel genes... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 563 |
SubjectTerms | Animals Chordata Chordata - genetics Danio rerio Evolution, Molecular Freshwater Gene Duplication Genome Humans Teleostei Vertebrata Zebrafish - genetics Zebrafish Proteins - genetics |
Title | The zebrafish genome in context: ohnologs gone missing |
URI | https://api.istex.fr/ark:/67375/WNG-B4XCV624-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjez.b.21137 https://www.ncbi.nlm.nih.gov/pubmed/17068775 https://www.proquest.com/docview/20811197 https://www.proquest.com/docview/68474091 |
Volume | 308B |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEA9SEXzxW3t-5qH4IOz1Npuv9U1raylYUKwefQlJdqK1uifdO5D7653Jbq9WqqBvCzvLJjOTzC-TyS-MbSSrk4XUFCZ5U0gfoLBQ-sImnzAgqcoDpQbe7OvdA7k3VdOhNofOwvT8EKuEG42MPF_TAPeh2zwjDf0Cy3EY4_qlorPkZaWJOf_VuxV5FAF1ldlSFS63MBQOp_PwzeYv356LR5dJtT8uApvnsWsOPjvX-xtWu8xZSDUnx-PFPIzj8jdGx__u1w12bYCl_EXvRzfZJWhvsSuHs5x0v800ehNf0h5zOuo-cyJ2_Qb8qOVU6Y7T-3M-6xP0Hf80a4Gj81AO4g472Nl-v7VbDDcuFFFqaYo0CXXT-MbKKJIQkKJVSdU1KKujjrExHiFaiFCbCNLUvq4gVWhlL0pvlKnusrUWf7POeGpAG8QzMDFCBlX7GOSkiRYmPskk7Ig9O9W7iwMdOd2K8dX1RMrCoSJccFkRI7axEv7es3BcLPY0G3Al40-OqXDNKPdx_7V7KadbH7SQ7u2IPTm1sEON0B6Jb2G26JxAiEQ7q3-W0BjPcVFcjti93jXOWoT9tcYo7Fo28N-a6va2D_PD_X8RfsCu9rnluijVQ7Y2P1nAIwRF8_A4-_5PQtgIZw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxEB5BKwQX3o_wqg8VB6RNE6-99nKDqiWUNhKohagXy_aO6QM2qEkklF_P2LtJKSpIcFtpZ7X2zNjzecb-DLAedBE0hipTwapMWIeZxr7NdLCBApLMLcbUwN6wGByInZEctQm3eBam4YdYJtziyEjzdRzgMSG9cc4aeoLzruvSAiZXV2E1VegiKPq4pI-KUF0mvlRJCy4Khu35PHqz8cvHFyLSalTuj8vg5kX0msLP9i0wi4Y3u05Ou7Op6_r5b5yO_9-z23CzRabsdeNKd-AK1nfh2uE45d3vQUEOxeaxzByOJ0cscrt-Q3Zcs7jZnWb4V2zc5Ogn7Mu4Rkb-E9MQ9-Fge2t_c5C1ly5knlSostBzZVXZSgvPA-cYvJZBliVKXfjC-0pZQmnOY6k8ClXaMseQk6Et71slVf4AVmr6zSNgocJCEaTBnuLCydJ6J3qV19izQQSuO_ByoXjjW0byeDHGV9NwKXNDijDOJEV0YH0p_L0h4rhc7EWy4FLGnp3GvWtKms_Dt-aNGG1-KrgwHzqwtjCxIY3EMomtcTybGE4oKRZX_yxRUEindXG_Aw8b3zhvEfVXKyWpa8nCf2uq2dk6TA-P_0V4Da4P9vd2ze674fsncKNJNZdZXz6FlenZDJ8RRpq652kg_ATB0wyF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dTxQxEG8QouFFwA88RekD8cFkj7tuv9Y3QU4-9KJG9MJL03aniuge4e4Scn-90-5yiEETedtkZ7PtzLTz63T6KyEbQcugIZSZClZl3DrINHRtpoMNGJBEbiGmBt715e4h3x-IQVObE8_C1PwQs4RbHBlpvo4D_LQMm5ekod9h2nZtXL_k6hZZ4BIDZcREH2fsURGpi0SXKnC9hbGwOZ6HbzZ_-_hKQFqIuj2_Dm1eBa8p-vSW6itWR4m0MBadnLQnY9f20z8oHW_csWVyt8Gl9FXtSCtkDqp75PbRMGXd7xOJ7kSncZM5HI--0cjs-hPocUVjqTvO7y_psM7Qj-jXYQUUvScmIR6Qw97Op-3drLlyIfNccpWFjivK0paaexYYg-C1CKIoQGjppfelsojRnIdCeeCqsEUOIUczW9a1Sqj8IZmv8DePCA0lSIWABjqKcScK6x3vlF5DxwYemG6RFxd6N77hI4_XYvwwNZMyM6gI40xSRItszIRPaxqO68WeJwPOZOzZSaxcU8J86b8xW3yw_Vkybj60yPqFhQ1qJG6S2AqGk5FhiJHi1urfJSQGdFwVd1tktXaNyxZhf7VSAruWDPyvppr9naP08Ph_hNfJnfeve-btXv_gCVms88xF1hVrZH58NoGnCJDG7lkaBr8AmR0LNA |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+zebrafish+genome+in+context%3A+ohnologs+gone+missing&rft.jtitle=Journal+of+experimental+zoology.+Part+B%2C+Molecular+and+developmental+evolution&rft.au=Postlethwait%2C+John+H&rft.date=2007-09-15&rft.issn=1552-5007&rft.volume=308&rft.issue=5&rft.spage=563&rft_id=info:doi/10.1002%2Fjez.b.21137&rft_id=info%3Apmid%2F17068775&rft.externalDocID=17068775 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1552-5007&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1552-5007&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1552-5007&client=summon |