An investigation of pulsatile flow in a model cavo-pulmonary vascular system

The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the...

Full description

Saved in:
Bibliographic Details
Published inCommunications in numerical methods in engineering Vol. 25; no. 11; pp. 1061 - 1083
Main Authors Chitra, K., Vengadesan, S., Sundararajan, T., Nithiarasu, P.
Format Journal Article
LanguageEnglish
Published Chichester, UK John Wiley & Sons, Ltd 01.11.2009
Wiley
Subjects
Online AccessGet full text
ISSN1069-8299
2040-7947
2040-7939
1099-0887
2040-7947
DOI10.1002/cnm.1205

Cover

Abstract The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo‐pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long‐term health of the surgically corrected TCPC. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList The complexities in the flow pattern in a cavo-pulmonary vascular system-after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T-junction-are analysed. A characteristic-based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo-pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long-term health of the surgically corrected TCPC.
The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo‐pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long‐term health of the surgically corrected TCPC. Copyright © 2008 John Wiley & Sons, Ltd.
Author Chitra, K.
Nithiarasu, P.
Vengadesan, S.
Sundararajan, T.
Author_xml – sequence: 1
  givenname: K.
  surname: Chitra
  fullname: Chitra, K.
  email: muralikmc@gmail.com, vengades@iitm.ac.in
  organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
– sequence: 2
  givenname: S.
  surname: Vengadesan
  fullname: Vengadesan, S.
  organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India
– sequence: 3
  givenname: T.
  surname: Sundararajan
  fullname: Sundararajan, T.
  organization: Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India
– sequence: 4
  givenname: P.
  surname: Nithiarasu
  fullname: Nithiarasu, P.
  organization: School of Engineering, Swansea University, Swansea SA2 8PP, U.K
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22068889$$DView record in Pascal Francis
BookMark eNqFkVtvEzEQhS1UJNqAxE_YFwQvG8Z3-7GKIFQKRaLc3iyv40UGrx3Wm7T59zi0KgJR-uLLzDdHR3NO0FHKySP0FMMcA5CXLg1zTIA_QMcYtG5BKXl0eAvdKqL1I3RSyjcA0KDgGK1OUxPSzpcpfLVTyKnJfbPZxlI_0Td9zJe139hmyGsfG2d3ua3tISc77pudLW4b7diUfZn88Bg97G0s_snNPUMfX7_6sHjTrt4tzxanq9YxwXires4ddl2vAbisNc6ZUh3WknrWdx04ptfS467TjK8JB6tqiSmqaT2ZpjP0_Fp3M-Yf2-rdDKE4H6NNPm-LkYwJQgXllXzxXxJLKQSTlKj7USEx4-Lg414UCCjOSDUxQ89u0LoqG_vRJheK2YxhqAs0hIBQSunfkm7MpYy-v0UwmEOwpgZrDsFWdP4X6sL0K7tptCH-a6C9Hriske7vFDaL87d_8qGGenXL2_G7EZJKbj6fL80XeUEpX34y7-lPCPDB9g
CitedBy_id crossref_primary_10_1016_j_ijheatfluidflow_2012_11_005
crossref_primary_10_1002_fld_2256
crossref_primary_10_1002_nme_2986
crossref_primary_10_1108_09615531111177741
crossref_primary_10_1515_jmmm_2016_0157
Cites_doi 10.1098/rspb.1971.0019
10.1002/nme.1697
10.1016/S0022-5223(19)35174-8
10.1016/S0045-7930(98)00018-8
10.1002/cnm.463
10.1136/thx.26.3.240
10.1007/978-1-4757-3884-1
10.1115/1.2834303
10.1002/nme.1698
10.1016/0021-9290(95)95273-8
10.1016/S0022-5223(98)70130-8
10.1002/fld.1626
10.1002/cnm.1012
10.1136/heart.87.6.554
10.1063/1.4822390
10.1002/cnm.1117
10.1115/1.2891384
10.1115/1.1487880
10.1002/fld.1805
10.1016/0021-9150(81)90027-7
10.1002/cnm.981
10.1115/1.2796002
10.1016/S0022-5223(19)33815-2
10.1002/fld.1832
10.1016/S0022-5223(98)70311-3
10.1007/BF02058520
10.1115/1.1800553
10.1114/1.1511239
10.1115/1.1824126
10.1007/BF02367081
10.1002/nme.712
10.1002/cnm.939
10.1016/j.jbiomech.2003.12.028
10.1115/1.2794203
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7QO
P64
DOI 10.1002/cnm.1205
DatabaseName Istex
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Biotechnology Research Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef
Engineering Research Database

Civil Engineering Abstracts
Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
Physics
EISSN 1099-0887
2040-7947
EndPage 1083
ExternalDocumentID 22068889
10_1002_cnm_1205
CNM1205
ark_67375_WNG_X7S335GV_R
Genre article
GrantInformation_xml – fundername: EPSRC
  funderid: D070554
GroupedDBID -~X
.GA
.Y3
10A
1L6
1OB
1OC
1ZS
31~
4.4
51W
51X
52N
52O
52P
52S
52T
52W
52X
5GY
5VS
66C
6J9
7PT
8-1
8-4
8-5
930
A03
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJNI
ACAHQ
ACBWZ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIGN
AEIMD
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZFZN
BDRZF
BRXPI
BSCLL
BY8
CO8
CS3
D-F
DCZOG
DRFUL
DRSTM
DU5
EBS
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
GBZZK
GNP
GODZA
HBH
HF~
HGLYW
HHY
HVGLF
I-F
JPC
KQQ
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
M6O
MEWTI
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P4D
PALCI
QB0
QRW
RIWAO
RJQFR
ROL
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
WIB
WIH
WIK
WQJ
WXSBR
XG1
XPP
XV2
ZY4
~02
AAYXX
CITATION
IQODW
.3N
0R~
33P
3SF
50Z
52U
53G
7SC
7TB
8-0
8-3
8FD
AAESR
AASGY
ACGFO
ACIWK
ACPRK
ADBBV
ADKYN
ADXAS
ADZMN
AEGXH
AENEX
AEYWJ
AFRAH
ALAGY
ALVPJ
AUFTA
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
D-E
DPXWK
DR2
FR3
G.N
H.T
H.X
HZ~
IX1
J0M
JQ2
KR7
L7M
L~C
L~D
MK4
N04
N05
NF~
O66
O9-
P2W
P2X
PQQKQ
Q.N
R.K
V2E
W8V
W99
WBKPD
WLBEL
WOHZO
WYISQ
~IA
~WT
7QO
P64
ID FETCH-LOGICAL-c4645-8f55c1cbf90057c4655488b1973e4fbb0c49d7e1bb945d250a80c448393448493
ISSN 1069-8299
2040-7947
2040-7939
IngestDate Mon Oct 06 18:07:50 EDT 2025
Tue Oct 07 09:29:03 EDT 2025
Thu Oct 02 11:44:57 EDT 2025
Fri Sep 05 09:31:48 EDT 2025
Mon Jul 21 09:15:10 EDT 2025
Thu Apr 24 23:12:31 EDT 2025
Wed Oct 01 04:56:20 EDT 2025
Sun Sep 21 06:17:19 EDT 2025
Sun Sep 21 06:16:29 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords CFD
Compressibility
Scale models
Steady flow
Transient flow
Finite element method
Energy dissipation
Scaling laws
Qualitative chemical analysis
Modelling
Quantitative chemical analysis
Method of characteristics
Energy analysis
Fontan procedure
Computational fluid dynamics
Fractional step method
Experimental study
Long term
Blood flow
total cavo-pulmonary connection
inferior vena cava
Blood circulation
Pulsatile flow
Flow visualization
Energy losses
superior vena cava
Circulatory system
Man
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4645-8f55c1cbf90057c4655488b1973e4fbb0c49d7e1bb945d250a80c448393448493
Notes istex:4B304C6A9AFDFBFDE5160B37991858B08060B34A
ArticleID:CNM1205
EPSRC - No. D070554
ark:/67375/WNG-X7S335GV-R
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1020854262
PQPubID 23500
PageCount 23
ParticipantIDs proquest_miscellaneous_744623635
proquest_miscellaneous_1776647328
proquest_miscellaneous_1671456448
proquest_miscellaneous_1020854262
pascalfrancis_primary_22068889
crossref_primary_10_1002_cnm_1205
crossref_citationtrail_10_1002_cnm_1205
wiley_primary_10_1002_cnm_1205_CNM1205
istex_primary_ark_67375_WNG_X7S335GV_R
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle Communications in numerical methods in engineering
PublicationTitleAlternate Commun. Numer. Meth. Engng
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417.
Aike Q, Liu Y. Numerical study of heamodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; 24:1067-1078.
Friedman M, Hutchins HGM, Bargeron CB. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39:425-436.
Nithiarasu P. An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering 2003; 56:1815-1845.
Rathishkumar BV. On operator splitting approach for parallel multi-frontal FE flow computation in a multiply dilated vessel. Communications in Numerical Methods in Engineering 2002; 18:43-52.
Turritto VT, Baumgartner HR. In Platelet-Surface Interactions, Hemostasis and Thrombosis, Colman R et al. (eds). Lippincott Company: Philadelphia, 1987; 555-571.
Shirai LK, Rosenthal DN, Reitz BA, Robbins RC, Dubin AM. Arrhythmias and thromboembolic complications after the extracardiac Fontan operation. Journal of Thoracic and Cardiovascular Surgery 1998; 115:499-505.
Zienkiewicz OC, Taylor RL, Nithiarasu P. The Finite Element Method for Fluid Dynamics. Elsevier, Butterworths-Heinemann: Amsterdam, London, 2005.
Sheu TWH, Tsai SF, Hwang WS, Chang TM. A finite element study of the blood flow in total cavopulmonary connection. Computers and Fluids 1999; 28:19-39.
Hedrick M, Elkins RC, Knott-Craig CJ, Razook JD. Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature. Journal of Thoracic and Cardiovascular Surgery 1993; 105:297-301.
Liu Y, Pekkan K, Casey Jones S, Yoganathan AP. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. Journal of Biomechanical Engineering 2004; 126:594-603.
Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden H, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57:631-651.
Qiao A, Liu Y. Numerical study of hemodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1012.
Nerem RM. Vascular fluid mechanics, the arterial wall and atherosclerosis. Journal of Biomechanical Engineering 1992; 114:274-282.
Tzirtzilakis EE. A simple numerical methodology for bfd problems using stream function vorticity formulation. Communications in Numerical Methods in Engineering 2008; 24:683-700.
Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126:709-713.
Morgan VL, Graham TP, Roselli RJ, Lorenz CH. Alternations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in fontan patients. Journal of Thoracic and Cardiovascular Surgery 1998; 116:294-304.
Nithiarasu P, Liu C-B, Massarotti N. Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Communications in Numerical Methods in Engineering 2007; 23:1057-1069.
Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Computers in Physics 1996; 10:224-232.
Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-248.
de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience. Journal of Thoracic and Cardiovascular Surgery 1988; 96:682-695.
Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proceedings of the Royal Society of London, Series B-Biological Sciences 1971; 177:109-159.
Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. ASME Journal of Biomechanical Engineering 1995; 117:203-210.
Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 1995; 28:845-856.
Steiger HJ, Poll A, Liepsch D, Reulen HJ. Basic flow structures in saccular aneurysms: a flow visualization study. Heart and Vessels 1987; 3(2):55-65.
Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP. Hemodynamics of the Fontan connection: an in-vitro study. ASME Journal of Biomechanical Engineering 1995; 117:423-428.
Cheng CP, Parker D, Taylor CA. Quantification of large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002; 30:1020-1032.
Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Annals of Biomedical Engineering 1994; 22:445-455.
Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (CBS) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546.
Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE. Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 2002; 87:554-558.
Chiu J-J, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. ASME Journal of Biomechanical Engineering 1998; 120:2-8.
Kim T, Cheer AY, Dwyer HA. A simulated dye method for flow visualization with a computational model for blood flow. Journal of Biomechanics 2004; 37(8):1125-1136.
Khunatorn Y, Mahalingam S, DeGroff CG, Robin Shandas R. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. Journal of Biomechanical Engineering 2002; 124:364-377.
Codina R, Owen C, Nithiarasu P, Liu C-B. Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2006; 66:1672-1689.
Hyun KY, Lee JS. Numerical investigation of hemodynamics at an end-to-side junction with a laterally diffused bypass graft. International Journal for Numerical Methods in Fluids 2007; 1-10. DOI: 10.1002/fld.1832.
Miranda AIP, Oliveira PJ, Pinh FT. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. International Journal for Numerical Methods in Fluids 2008; 57:295-328.
Fung YC. Biodynamics: Circulation. Springer: New York, 1984.
1987; 3
2004; 126
2002; 18
2002; 30
1999; 28
1971; 26
1995; 117
2008
1994; 22
2007
2008; 57
1998; 115
2005
1988; 96
1998; 116
1993; 105
1996; 10
2003; 56
1995; 28
2006; 66
2002; 124
2004; 37
1992; 114
2002; 87
1987
1984
2008; 24
1971; 177
1981; 39
2007; 23
1998; 120
de Leval MR (e_1_2_1_17_2) 1988; 96
Hedrick M (e_1_2_1_21_2) 1993; 105
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
e_1_2_1_28_2
e_1_2_1_29_2
Zienkiewicz OC (e_1_2_1_33_2) 2005
e_1_2_1_6_2
Turritto VT (e_1_2_1_19_2) 1987
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
Fung YC (e_1_2_1_2_2) 1984
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_8_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – reference: Sheu TWH, Tsai SF, Hwang WS, Chang TM. A finite element study of the blood flow in total cavopulmonary connection. Computers and Fluids 1999; 28:19-39.
– reference: Hyun KY, Lee JS. Numerical investigation of hemodynamics at an end-to-side junction with a laterally diffused bypass graft. International Journal for Numerical Methods in Fluids 2007; 1-10. DOI: 10.1002/fld.1832.
– reference: Steiger HJ, Poll A, Liepsch D, Reulen HJ. Basic flow structures in saccular aneurysms: a flow visualization study. Heart and Vessels 1987; 3(2):55-65.
– reference: Fung YC. Biodynamics: Circulation. Springer: New York, 1984.
– reference: Shirai LK, Rosenthal DN, Reitz BA, Robbins RC, Dubin AM. Arrhythmias and thromboembolic complications after the extracardiac Fontan operation. Journal of Thoracic and Cardiovascular Surgery 1998; 115:499-505.
– reference: Liu Y, Pekkan K, Casey Jones S, Yoganathan AP. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. Journal of Biomechanical Engineering 2004; 126:594-603.
– reference: Turritto VT, Baumgartner HR. In Platelet-Surface Interactions, Hemostasis and Thrombosis, Colman R et al. (eds). Lippincott Company: Philadelphia, 1987; 555-571.
– reference: Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Computers in Physics 1996; 10:224-232.
– reference: Nithiarasu P, Liu C-B, Massarotti N. Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Communications in Numerical Methods in Engineering 2007; 23:1057-1069.
– reference: Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden H, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57:631-651.
– reference: Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Annals of Biomedical Engineering 1994; 22:445-455.
– reference: Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 1995; 28:845-856.
– reference: Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. ASME Journal of Biomechanical Engineering 1995; 117:203-210.
– reference: Qiao A, Liu Y. Numerical study of hemodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1012.
– reference: Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417.
– reference: Cheng CP, Parker D, Taylor CA. Quantification of large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002; 30:1020-1032.
– reference: Tzirtzilakis EE. A simple numerical methodology for bfd problems using stream function vorticity formulation. Communications in Numerical Methods in Engineering 2008; 24:683-700.
– reference: Miranda AIP, Oliveira PJ, Pinh FT. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. International Journal for Numerical Methods in Fluids 2008; 57:295-328.
– reference: Rathishkumar BV. On operator splitting approach for parallel multi-frontal FE flow computation in a multiply dilated vessel. Communications in Numerical Methods in Engineering 2002; 18:43-52.
– reference: Nerem RM. Vascular fluid mechanics, the arterial wall and atherosclerosis. Journal of Biomechanical Engineering 1992; 114:274-282.
– reference: Zienkiewicz OC, Taylor RL, Nithiarasu P. The Finite Element Method for Fluid Dynamics. Elsevier, Butterworths-Heinemann: Amsterdam, London, 2005.
– reference: Kim T, Cheer AY, Dwyer HA. A simulated dye method for flow visualization with a computational model for blood flow. Journal of Biomechanics 2004; 37(8):1125-1136.
– reference: Chiu J-J, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. ASME Journal of Biomechanical Engineering 1998; 120:2-8.
– reference: Aike Q, Liu Y. Numerical study of heamodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; 24:1067-1078.
– reference: Khunatorn Y, Mahalingam S, DeGroff CG, Robin Shandas R. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. Journal of Biomechanical Engineering 2002; 124:364-377.
– reference: Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (CBS) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546.
– reference: de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience. Journal of Thoracic and Cardiovascular Surgery 1988; 96:682-695.
– reference: Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP. Hemodynamics of the Fontan connection: an in-vitro study. ASME Journal of Biomechanical Engineering 1995; 117:423-428.
– reference: Friedman M, Hutchins HGM, Bargeron CB. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39:425-436.
– reference: Hedrick M, Elkins RC, Knott-Craig CJ, Razook JD. Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature. Journal of Thoracic and Cardiovascular Surgery 1993; 105:297-301.
– reference: Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proceedings of the Royal Society of London, Series B-Biological Sciences 1971; 177:109-159.
– reference: Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126:709-713.
– reference: Codina R, Owen C, Nithiarasu P, Liu C-B. Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2006; 66:1672-1689.
– reference: Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-248.
– reference: Morgan VL, Graham TP, Roselli RJ, Lorenz CH. Alternations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in fontan patients. Journal of Thoracic and Cardiovascular Surgery 1998; 116:294-304.
– reference: Nithiarasu P. An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering 2003; 56:1815-1845.
– reference: Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE. Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 2002; 87:554-558.
– start-page: 555
  year: 1987
  end-page: 571
– volume: 24
  start-page: 683
  year: 2008
  end-page: 700
  article-title: A simple numerical methodology for bfd problems using stream function vorticity formulation
  publication-title: Communications in Numerical Methods in Engineering
– volume: 117
  start-page: 423
  year: 1995
  end-page: 428
  article-title: Hemodynamics of the Fontan connection: an in‐vitro study
  publication-title: ASME Journal of Biomechanical Engineering
– volume: 96
  start-page: 682
  year: 1988
  end-page: 695
  article-title: Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– year: 2005
– volume: 23
  start-page: 1057
  year: 2007
  end-page: 1069
  article-title: Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes
  publication-title: Communications in Numerical Methods in Engineering
– volume: 37
  start-page: 1125
  issue: 8
  year: 2004
  end-page: 1136
  article-title: A simulated dye method for flow visualization with a computational model for blood flow
  publication-title: Journal of Biomechanics
– volume: 177
  start-page: 109
  year: 1971
  end-page: 159
  article-title: Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis
  publication-title: Proceedings of the Royal Society of London, Series B—Biological Sciences
– volume: 39
  start-page: 425
  year: 1981
  end-page: 436
  article-title: Correlation between intimal thickness and fluid shear in human arteries
  publication-title: Atherosclerosis
– volume: 18
  start-page: 43
  year: 2002
  end-page: 52
  article-title: On operator splitting approach for parallel multi‐frontal FE flow computation in a multiply dilated vessel
  publication-title: Communications in Numerical Methods in Engineering
– volume: 10
  start-page: 224
  year: 1996
  end-page: 232
  article-title: Computational investigations of vascular disease
  publication-title: Computers in Physics
– volume: 126
  start-page: 594
  year: 2004
  end-page: 603
  article-title: The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection
  publication-title: Journal of Biomechanical Engineering
– volume: 57
  start-page: 631
  year: 2008
  end-page: 651
  article-title: Steady flow through a realistic human upper airway geometry
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 30
  start-page: 1020
  year: 2002
  end-page: 1032
  article-title: Quantification of large blood vessels using Lagrangian interpolation functions with cine phase‐contrast magnetic resonance imaging
  publication-title: Annals of Biomedical Engineering
– volume: 57
  start-page: 295
  year: 2008
  end-page: 328
  article-title: Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T‐junction
  publication-title: International Journal for Numerical Methods in Fluids
– volume: 114
  start-page: 274
  year: 1992
  end-page: 282
  article-title: Vascular fluid mechanics, the arterial wall and atherosclerosis
  publication-title: Journal of Biomechanical Engineering
– volume: 120
  start-page: 2
  year: 1998
  end-page: 8
  article-title: Effects of disturbed flow on endothelial cells
  publication-title: ASME Journal of Biomechanical Engineering
– start-page: 1
  year: 2007
  end-page: 10
  article-title: Numerical investigation of hemodynamics at an end‐to‐side junction with a laterally diffused bypass graft
  publication-title: International Journal for Numerical Methods in Fluids
– year: 1984
– volume: 24
  start-page: 1067
  year: 2008
  end-page: 1078
  article-title: Numerical study of heamodynamics comparison between small and large femoral bypass grafts
  publication-title: Communications in Numerical Methods in Engineering
– volume: 26
  start-page: 240
  year: 1971
  end-page: 248
  article-title: Surgical repair of tricuspid atresia
  publication-title: Thorax
– volume: 56
  start-page: 1815
  year: 2003
  end-page: 1845
  article-title: An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 66
  start-page: 1672
  year: 2006
  end-page: 1689
  article-title: Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations
  publication-title: International Journal for Numerical Methods in Engineering
– volume: 66
  start-page: 1514
  year: 2006
  end-page: 1546
  article-title: The characteristic based split (CBS) scheme—a unified approach to fluid dynamics
  publication-title: International Journal for Numerical Methods in Engineering
– year: 2008
  article-title: Numerical study of hemodynamics comparison between small and large femoral bypass grafts
  publication-title: Communications in Numerical Methods in Engineering
– volume: 28
  start-page: 845
  year: 1995
  end-page: 856
  article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model
  publication-title: Journal of Biomechanics
– volume: 3
  start-page: 55
  issue: 2
  year: 1987
  end-page: 65
  article-title: Basic flow structures in saccular aneurysms: a flow visualization study
  publication-title: Heart and Vessels
– volume: 124
  start-page: 364
  year: 2002
  end-page: 377
  article-title: Influence of connection geometry and SVC‐IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study
  publication-title: Journal of Biomechanical Engineering
– volume: 126
  start-page: 709
  year: 2004
  end-page: 713
  article-title: The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset
  publication-title: Journal of Biomechanical Engineering
– volume: 28
  start-page: 19
  year: 1999
  end-page: 39
  article-title: A finite element study of the blood flow in total cavopulmonary connection
  publication-title: Computers and Fluids
– volume: 105
  start-page: 297
  year: 1993
  end-page: 301
  article-title: Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– volume: 22
  start-page: 445
  year: 1994
  end-page: 455
  article-title: 1993 Whitaker lecture: biorheology in thrombosis research
  publication-title: Annals of Biomedical Engineering
– volume: 117
  start-page: 203
  year: 1995
  end-page: 210
  article-title: Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation
  publication-title: ASME Journal of Biomechanical Engineering
– volume: 87
  start-page: 554
  year: 2002
  end-page: 558
  article-title: Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping
  publication-title: Heart
– volume: 24
  start-page: 367
  year: 2008
  end-page: 417
  article-title: A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method
  publication-title: Communications in Numerical Methods in Engineering
– volume: 115
  start-page: 499
  year: 1998
  end-page: 505
  article-title: Arrhythmias and thromboembolic complications after the extracardiac Fontan operation
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– volume: 116
  start-page: 294
  year: 1998
  end-page: 304
  article-title: Alternations in pulmonary artery flow patterns and shear stress determined with three‐dimensional phase‐contrast magnetic resonance imaging in fontan patients
  publication-title: Journal of Thoracic and Cardiovascular Surgery
– ident: e_1_2_1_3_2
  doi: 10.1098/rspb.1971.0019
– ident: e_1_2_1_37_2
  doi: 10.1002/nme.1697
– volume: 96
  start-page: 682
  year: 1988
  ident: e_1_2_1_17_2
  article-title: Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience
  publication-title: Journal of Thoracic and Cardiovascular Surgery
  doi: 10.1016/S0022-5223(19)35174-8
– ident: e_1_2_1_27_2
  doi: 10.1016/S0045-7930(98)00018-8
– ident: e_1_2_1_5_2
  doi: 10.1002/cnm.463
– ident: e_1_2_1_16_2
  doi: 10.1136/thx.26.3.240
– volume-title: Biodynamics: Circulation
  year: 1984
  ident: e_1_2_1_2_2
  doi: 10.1007/978-1-4757-3884-1
– ident: e_1_2_1_14_2
  doi: 10.1115/1.2834303
– ident: e_1_2_1_30_2
  doi: 10.1002/nme.1698
– ident: e_1_2_1_8_2
  doi: 10.1016/0021-9290(95)95273-8
– ident: e_1_2_1_23_2
  doi: 10.1016/S0022-5223(98)70130-8
– ident: e_1_2_1_10_2
  doi: 10.1002/fld.1626
– start-page: 555
  volume-title: Platelet–Surface Interactions, Hemostasis and Thrombosis
  year: 1987
  ident: e_1_2_1_19_2
– ident: e_1_2_1_6_2
  doi: 10.1002/cnm.1012
– ident: e_1_2_1_38_2
  doi: 10.1136/heart.87.6.554
– ident: e_1_2_1_9_2
  doi: 10.1063/1.4822390
– ident: e_1_2_1_11_2
  doi: 10.1002/cnm.1117
– ident: e_1_2_1_20_2
  doi: 10.1115/1.2891384
– ident: e_1_2_1_24_2
  doi: 10.1115/1.1487880
– ident: e_1_2_1_32_2
  doi: 10.1002/fld.1805
– ident: e_1_2_1_4_2
  doi: 10.1016/0021-9150(81)90027-7
– ident: e_1_2_1_13_2
  doi: 10.1002/cnm.981
– ident: e_1_2_1_36_2
  doi: 10.1115/1.2796002
– volume: 105
  start-page: 297
  year: 1993
  ident: e_1_2_1_21_2
  article-title: Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature
  publication-title: Journal of Thoracic and Cardiovascular Surgery
  doi: 10.1016/S0022-5223(19)33815-2
– ident: e_1_2_1_7_2
  doi: 10.1002/fld.1832
– ident: e_1_2_1_22_2
  doi: 10.1016/S0022-5223(98)70311-3
– ident: e_1_2_1_34_2
  doi: 10.1007/BF02058520
– ident: e_1_2_1_25_2
  doi: 10.1115/1.1800553
– ident: e_1_2_1_28_2
  doi: 10.1114/1.1511239
– ident: e_1_2_1_26_2
  doi: 10.1115/1.1824126
– volume-title: The Finite Element Method for Fluid Dynamics
  year: 2005
  ident: e_1_2_1_33_2
– ident: e_1_2_1_18_2
  doi: 10.1007/BF02367081
– ident: e_1_2_1_29_2
  doi: 10.1002/nme.712
– ident: e_1_2_1_31_2
  doi: 10.1002/cnm.939
– ident: e_1_2_1_12_2
  doi: 10.1002/cnm.1012
– ident: e_1_2_1_35_2
  doi: 10.1016/j.jbiomech.2003.12.028
– ident: e_1_2_1_15_2
  doi: 10.1115/1.2794203
SSID ssj0009080
ssj0000299973
Score 1.8457075
Snippet The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava,...
The complexities in the flow pattern in a cavo-pulmonary vascular system-after application of the Fontan procedure in the vicinity of the superior vena cava,...
The complexities in the flow pattern in a cavo-pulmonary vascular system - after application of the Fontan procedure in the vicinity of the superior vena cava,...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1061
SubjectTerms Biological and medical sciences
blood flow
CFD
Compressibility
Computational techniques
Exact sciences and technology
finite element method
flow visualization
Fluid dynamics
Fontan procedure
Fundamental and applied biological sciences. Psychology
Fundamental areas of phenomenology (including applications)
General theory
Health
Hemodynamics. Rheology
inferior vena cava
Mathematical analysis
Mathematical methods in physics
Mathematical models
Numerical analysis
Physics
Quantitative analysis
Steady flow
superior vena cava
total cavo-pulmonary connection
Vertebrates: cardiovascular system
Title An investigation of pulsatile flow in a model cavo-pulmonary vascular system
URI https://api.istex.fr/ark:/67375/WNG-X7S335GV-R/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1205
https://www.proquest.com/docview/1020854262
https://www.proquest.com/docview/1671456448
https://www.proquest.com/docview/1776647328
https://www.proquest.com/docview/744623635
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1099-0887
  dateEnd: 20100131
  omitProxy: true
  ssIdentifier: ssj0009080
  issn: 1069-8299
  databaseCode: ABDBF
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1069-8299
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1099-0887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000299973
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F5AIHHgVEeESLhOBQOfix68cxLbQVUnIobcnNWr9EwDhVYgPixE_g7_B3-CXMeNcbW22qwsVKZid-ZMY7M7sz3xDygvngBcfCMYTjuAbijxi-LXyDWZFIAu4Lz8IC5-nMPTpl7-Z83uv9bmUtVWU0jn9cWlfyP1IFGsgVq2T_QbL6pECAzyBfOIKE4XgtGU8wTVHjZEjP77zKMUEnT3ezfPkNlzOEbHezG4uvS53bAGxwm5gyp3NRJahz21vtVI_UibNFJXd4ctV6uiamG0zDTbbAolzJarNxQzsDPpGka7Xkqul1MQrE7OKTapWsR2aL8uMCBtZV7eyOO0sUgarV0-bjYg5QvehQtqq3IDINQEtks6RxqmiIkOArg6xma1km3Wil1Zp7Mbht2XHLlB1yLtgIiTkbF1_Glm3yjR1s9v41D9_GVZv__dkUR26QgQ0GxeyTwWTvzd7BBvHZ9CUUhnqwBvnYtF83Z-34QgN8rb9jbi6IXeSZ7KvSCXza4VPt_5zcJbdV4EInUgvvkV5a7JA7KoihykSsd8itFsIlfJtqWOD1fTKbFLSjsHSZUa2wFBUWxqmgtcJSVNg_P39pVaWNqlKpqg_I6cHbk_0jQzX0MGLcQDf8jPPYiqMswBroGKH7wH5EVuA5KcuiyIxZkHipFUUB4wk458IHEgMf3oEjC5yHpF8si_QRoXYkwPNNXO54ggmeisxOA_Q9eZxEmeUOyavmrw1jhXaPTVfyUOJ02yEIIUQhDMlzzXkuEV4u4XlZS0cziNVnzIj0ePhhdhjOvfeOww_PwuMhGXXEp39g29jdyQ_gao08Q5jIcXdOFOmyWsMFsV0uNoi4gsf1LMR_Yv4VPJ7nugwxuIaEbuHxGIOwB2INeLBap7Y-eajU_PF1GZ-Qm5sp4Cnpl6sqfQZ-exmN1Bsygsj12P4L7xXtEQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+pulsatile+flow+in+a+model+cavo%E2%80%90pulmonary+vascular+system&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Chitra%2C+K.&rft.au=Vengadesan%2C+S.&rft.au=Sundararajan%2C+T.&rft.au=Nithiarasu%2C+P.&rft.date=2009-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=11&rft.spage=1061&rft.epage=1083&rft_id=info:doi/10.1002%2Fcnm.1205&rft.externalDBID=10.1002%252Fcnm.1205&rft.externalDocID=CNM1205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon