An investigation of pulsatile flow in a model cavo-pulmonary vascular system
The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the...
Saved in:
| Published in | Communications in numerical methods in engineering Vol. 25; no. 11; pp. 1061 - 1083 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2009
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1069-8299 2040-7947 2040-7939 1099-0887 2040-7947 |
| DOI | 10.1002/cnm.1205 |
Cover
| Abstract | The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo‐pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long‐term health of the surgically corrected TCPC. Copyright © 2008 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | The complexities in the flow pattern in a cavo-pulmonary vascular system-after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T-junction-are analysed. A characteristic-based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo-pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long-term health of the surgically corrected TCPC. The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava, inferior vena cava, and the confluence at the T‐junction—are analysed. A characteristic‐based split (CBS) finite element scheme involving the artificial compressibility approach is employed to compute the resulting flow. Benchmarking of the CBS scheme is carried out using standard problems and with the flow features observed in an experimental model with the help of a dye visualization technique in model scale. The transient flow variations in a total cavo‐pulmonary connection (TCPC) under pulsatile conditions are investigated and compared with flow visualization studies. In addition to such qualitative flow investigations, quantitative analysis of energy loss and haemodynamic stresses have also been performed. The comparisons show good agreement between the numerical and experimental flow patterns. The numerically predicted shear stress values indicate that the pulsatile flow condition is likely to be more severe than steady flow, with regard to the long‐term health of the surgically corrected TCPC. Copyright © 2008 John Wiley & Sons, Ltd. |
| Author | Chitra, K. Nithiarasu, P. Vengadesan, S. Sundararajan, T. |
| Author_xml | – sequence: 1 givenname: K. surname: Chitra fullname: Chitra, K. email: muralikmc@gmail.com, vengades@iitm.ac.in organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India – sequence: 2 givenname: S. surname: Vengadesan fullname: Vengadesan, S. organization: Department of Applied Mechanics, Indian Institute of Technology Madras, Chennai 600036, India – sequence: 3 givenname: T. surname: Sundararajan fullname: Sundararajan, T. organization: Department of Mechanical Engineering, Indian Institute of Technology Madras, Chennai 600036, India – sequence: 4 givenname: P. surname: Nithiarasu fullname: Nithiarasu, P. organization: School of Engineering, Swansea University, Swansea SA2 8PP, U.K |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22068889$$DView record in Pascal Francis |
| BookMark | eNqFkVtvEzEQhS1UJNqAxE_YFwQvG8Z3-7GKIFQKRaLc3iyv40UGrx3Wm7T59zi0KgJR-uLLzDdHR3NO0FHKySP0FMMcA5CXLg1zTIA_QMcYtG5BKXl0eAvdKqL1I3RSyjcA0KDgGK1OUxPSzpcpfLVTyKnJfbPZxlI_0Td9zJe139hmyGsfG2d3ua3tISc77pudLW4b7diUfZn88Bg97G0s_snNPUMfX7_6sHjTrt4tzxanq9YxwXires4ddl2vAbisNc6ZUh3WknrWdx04ptfS467TjK8JB6tqiSmqaT2ZpjP0_Fp3M-Yf2-rdDKE4H6NNPm-LkYwJQgXllXzxXxJLKQSTlKj7USEx4-Lg414UCCjOSDUxQ89u0LoqG_vRJheK2YxhqAs0hIBQSunfkm7MpYy-v0UwmEOwpgZrDsFWdP4X6sL0K7tptCH-a6C9Hriske7vFDaL87d_8qGGenXL2_G7EZJKbj6fL80XeUEpX34y7-lPCPDB9g |
| CitedBy_id | crossref_primary_10_1016_j_ijheatfluidflow_2012_11_005 crossref_primary_10_1002_fld_2256 crossref_primary_10_1002_nme_2986 crossref_primary_10_1108_09615531111177741 crossref_primary_10_1515_jmmm_2016_0157 |
| Cites_doi | 10.1098/rspb.1971.0019 10.1002/nme.1697 10.1016/S0022-5223(19)35174-8 10.1016/S0045-7930(98)00018-8 10.1002/cnm.463 10.1136/thx.26.3.240 10.1007/978-1-4757-3884-1 10.1115/1.2834303 10.1002/nme.1698 10.1016/0021-9290(95)95273-8 10.1016/S0022-5223(98)70130-8 10.1002/fld.1626 10.1002/cnm.1012 10.1136/heart.87.6.554 10.1063/1.4822390 10.1002/cnm.1117 10.1115/1.2891384 10.1115/1.1487880 10.1002/fld.1805 10.1016/0021-9150(81)90027-7 10.1002/cnm.981 10.1115/1.2796002 10.1016/S0022-5223(19)33815-2 10.1002/fld.1832 10.1016/S0022-5223(98)70311-3 10.1007/BF02058520 10.1115/1.1800553 10.1114/1.1511239 10.1115/1.1824126 10.1007/BF02367081 10.1002/nme.712 10.1002/cnm.939 10.1016/j.jbiomech.2003.12.028 10.1115/1.2794203 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7QO P64 |
| DOI | 10.1002/cnm.1205 |
| DatabaseName | Istex CrossRef Pascal-Francis Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Biotechnology Research Abstracts Biotechnology and BioEngineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef Engineering Research Database Civil Engineering Abstracts Engineering Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics Physics |
| EISSN | 1099-0887 2040-7947 |
| EndPage | 1083 |
| ExternalDocumentID | 22068889 10_1002_cnm_1205 CNM1205 ark_67375_WNG_X7S335GV_R |
| Genre | article |
| GrantInformation_xml | – fundername: EPSRC funderid: D070554 |
| GroupedDBID | -~X .GA .Y3 10A 1L6 1OB 1OC 1ZS 31~ 4.4 51W 51X 52N 52O 52P 52S 52T 52W 52X 5GY 5VS 66C 6J9 7PT 8-1 8-4 8-5 930 A03 AAEVG AAHQN AAMMB AAMNL AANHP AANLZ AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJNI ACAHQ ACBWZ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADEOM ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIGN AEIMD AEUYR AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGQPQ AGXDD AGYGG AHBTC AI. AIDQK AIDYY AIQQE AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZFZN BDRZF BRXPI BSCLL BY8 CO8 CS3 D-F DCZOG DRFUL DRSTM DU5 EBS EJD ESX F00 F01 F04 F5P FEDTE G-S GBZZK GNP GODZA HBH HF~ HGLYW HHY HVGLF I-F JPC KQQ LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LYRES M6O MEWTI MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P4D PALCI QB0 QRW RIWAO RJQFR ROL RYL SAMSI SUPJJ TN5 TUS UB1 VH1 WIB WIH WIK WQJ WXSBR XG1 XPP XV2 ZY4 ~02 AAYXX CITATION IQODW .3N 0R~ 33P 3SF 50Z 52U 53G 7SC 7TB 8-0 8-3 8FD AAESR AASGY ACGFO ACIWK ACPRK ADBBV ADKYN ADXAS ADZMN AEGXH AENEX AEYWJ AFRAH ALAGY ALVPJ AUFTA AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX D-E DPXWK DR2 FR3 G.N H.T H.X HZ~ IX1 J0M JQ2 KR7 L7M L~C L~D MK4 N04 N05 NF~ O66 O9- P2W P2X PQQKQ Q.N R.K V2E W8V W99 WBKPD WLBEL WOHZO WYISQ ~IA ~WT 7QO P64 |
| ID | FETCH-LOGICAL-c4645-8f55c1cbf90057c4655488b1973e4fbb0c49d7e1bb945d250a80c448393448493 |
| ISSN | 1069-8299 2040-7947 2040-7939 |
| IngestDate | Mon Oct 06 18:07:50 EDT 2025 Tue Oct 07 09:29:03 EDT 2025 Thu Oct 02 11:44:57 EDT 2025 Fri Sep 05 09:31:48 EDT 2025 Mon Jul 21 09:15:10 EDT 2025 Thu Apr 24 23:12:31 EDT 2025 Wed Oct 01 04:56:20 EDT 2025 Sun Sep 21 06:17:19 EDT 2025 Sun Sep 21 06:16:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | CFD Compressibility Scale models Steady flow Transient flow Finite element method Energy dissipation Scaling laws Qualitative chemical analysis Modelling Quantitative chemical analysis Method of characteristics Energy analysis Fontan procedure Computational fluid dynamics Fractional step method Experimental study Long term Blood flow total cavo-pulmonary connection inferior vena cava Blood circulation Pulsatile flow Flow visualization Energy losses superior vena cava Circulatory system Man |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c4645-8f55c1cbf90057c4655488b1973e4fbb0c49d7e1bb945d250a80c448393448493 |
| Notes | istex:4B304C6A9AFDFBFDE5160B37991858B08060B34A ArticleID:CNM1205 EPSRC - No. D070554 ark:/67375/WNG-X7S335GV-R ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1020854262 |
| PQPubID | 23500 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_744623635 proquest_miscellaneous_1776647328 proquest_miscellaneous_1671456448 proquest_miscellaneous_1020854262 pascalfrancis_primary_22068889 crossref_primary_10_1002_cnm_1205 crossref_citationtrail_10_1002_cnm_1205 wiley_primary_10_1002_cnm_1205_CNM1205 istex_primary_ark_67375_WNG_X7S335GV_R |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2009 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: November 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | Communications in numerical methods in engineering |
| PublicationTitleAlternate | Commun. Numer. Meth. Engng |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417. Aike Q, Liu Y. Numerical study of heamodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; 24:1067-1078. Friedman M, Hutchins HGM, Bargeron CB. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39:425-436. Nithiarasu P. An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering 2003; 56:1815-1845. Rathishkumar BV. On operator splitting approach for parallel multi-frontal FE flow computation in a multiply dilated vessel. Communications in Numerical Methods in Engineering 2002; 18:43-52. Turritto VT, Baumgartner HR. In Platelet-Surface Interactions, Hemostasis and Thrombosis, Colman R et al. (eds). Lippincott Company: Philadelphia, 1987; 555-571. Shirai LK, Rosenthal DN, Reitz BA, Robbins RC, Dubin AM. Arrhythmias and thromboembolic complications after the extracardiac Fontan operation. Journal of Thoracic and Cardiovascular Surgery 1998; 115:499-505. Zienkiewicz OC, Taylor RL, Nithiarasu P. The Finite Element Method for Fluid Dynamics. Elsevier, Butterworths-Heinemann: Amsterdam, London, 2005. Sheu TWH, Tsai SF, Hwang WS, Chang TM. A finite element study of the blood flow in total cavopulmonary connection. Computers and Fluids 1999; 28:19-39. Hedrick M, Elkins RC, Knott-Craig CJ, Razook JD. Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature. Journal of Thoracic and Cardiovascular Surgery 1993; 105:297-301. Liu Y, Pekkan K, Casey Jones S, Yoganathan AP. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. Journal of Biomechanical Engineering 2004; 126:594-603. Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden H, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57:631-651. Qiao A, Liu Y. Numerical study of hemodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1012. Nerem RM. Vascular fluid mechanics, the arterial wall and atherosclerosis. Journal of Biomechanical Engineering 1992; 114:274-282. Tzirtzilakis EE. A simple numerical methodology for bfd problems using stream function vorticity formulation. Communications in Numerical Methods in Engineering 2008; 24:683-700. Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126:709-713. Morgan VL, Graham TP, Roselli RJ, Lorenz CH. Alternations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in fontan patients. Journal of Thoracic and Cardiovascular Surgery 1998; 116:294-304. Nithiarasu P, Liu C-B, Massarotti N. Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Communications in Numerical Methods in Engineering 2007; 23:1057-1069. Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Computers in Physics 1996; 10:224-232. Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-248. de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience. Journal of Thoracic and Cardiovascular Surgery 1988; 96:682-695. Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proceedings of the Royal Society of London, Series B-Biological Sciences 1971; 177:109-159. Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. ASME Journal of Biomechanical Engineering 1995; 117:203-210. Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 1995; 28:845-856. Steiger HJ, Poll A, Liepsch D, Reulen HJ. Basic flow structures in saccular aneurysms: a flow visualization study. Heart and Vessels 1987; 3(2):55-65. Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP. Hemodynamics of the Fontan connection: an in-vitro study. ASME Journal of Biomechanical Engineering 1995; 117:423-428. Cheng CP, Parker D, Taylor CA. Quantification of large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002; 30:1020-1032. Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Annals of Biomedical Engineering 1994; 22:445-455. Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (CBS) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546. Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE. Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 2002; 87:554-558. Chiu J-J, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. ASME Journal of Biomechanical Engineering 1998; 120:2-8. Kim T, Cheer AY, Dwyer HA. A simulated dye method for flow visualization with a computational model for blood flow. Journal of Biomechanics 2004; 37(8):1125-1136. Khunatorn Y, Mahalingam S, DeGroff CG, Robin Shandas R. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. Journal of Biomechanical Engineering 2002; 124:364-377. Codina R, Owen C, Nithiarasu P, Liu C-B. Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2006; 66:1672-1689. Hyun KY, Lee JS. Numerical investigation of hemodynamics at an end-to-side junction with a laterally diffused bypass graft. International Journal for Numerical Methods in Fluids 2007; 1-10. DOI: 10.1002/fld.1832. Miranda AIP, Oliveira PJ, Pinh FT. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. International Journal for Numerical Methods in Fluids 2008; 57:295-328. Fung YC. Biodynamics: Circulation. Springer: New York, 1984. 1987; 3 2004; 126 2002; 18 2002; 30 1999; 28 1971; 26 1995; 117 2008 1994; 22 2007 2008; 57 1998; 115 2005 1988; 96 1998; 116 1993; 105 1996; 10 2003; 56 1995; 28 2006; 66 2002; 124 2004; 37 1992; 114 2002; 87 1987 1984 2008; 24 1971; 177 1981; 39 2007; 23 1998; 120 de Leval MR (e_1_2_1_17_2) 1988; 96 Hedrick M (e_1_2_1_21_2) 1993; 105 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 e_1_2_1_28_2 e_1_2_1_29_2 Zienkiewicz OC (e_1_2_1_33_2) 2005 e_1_2_1_6_2 Turritto VT (e_1_2_1_19_2) 1987 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 Fung YC (e_1_2_1_2_2) 1984 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_36_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_8_2 e_1_2_1_9_2 e_1_2_1_18_2 |
| References_xml | – reference: Sheu TWH, Tsai SF, Hwang WS, Chang TM. A finite element study of the blood flow in total cavopulmonary connection. Computers and Fluids 1999; 28:19-39. – reference: Hyun KY, Lee JS. Numerical investigation of hemodynamics at an end-to-side junction with a laterally diffused bypass graft. International Journal for Numerical Methods in Fluids 2007; 1-10. DOI: 10.1002/fld.1832. – reference: Steiger HJ, Poll A, Liepsch D, Reulen HJ. Basic flow structures in saccular aneurysms: a flow visualization study. Heart and Vessels 1987; 3(2):55-65. – reference: Fung YC. Biodynamics: Circulation. Springer: New York, 1984. – reference: Shirai LK, Rosenthal DN, Reitz BA, Robbins RC, Dubin AM. Arrhythmias and thromboembolic complications after the extracardiac Fontan operation. Journal of Thoracic and Cardiovascular Surgery 1998; 115:499-505. – reference: Liu Y, Pekkan K, Casey Jones S, Yoganathan AP. The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection. Journal of Biomechanical Engineering 2004; 126:594-603. – reference: Turritto VT, Baumgartner HR. In Platelet-Surface Interactions, Hemostasis and Thrombosis, Colman R et al. (eds). Lippincott Company: Philadelphia, 1987; 555-571. – reference: Taylor CA, Hughes TJ, Zarins CK. Computational investigations of vascular disease. Computers in Physics 1996; 10:224-232. – reference: Nithiarasu P, Liu C-B, Massarotti N. Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes. Communications in Numerical Methods in Engineering 2007; 23:1057-1069. – reference: Nithiarasu P, Hassan O, Morgan K, Weatherill NP, Fielder C, Whittet H, Ebden H, Lewis KR. Steady flow through a realistic human upper airway geometry. International Journal for Numerical Methods in Fluids 2008; 57:631-651. – reference: Hellums JD. 1993 Whitaker lecture: biorheology in thrombosis research. Annals of Biomedical Engineering 1994; 22:445-455. – reference: Perktold K, Rappitsch G. Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model. Journal of Biomechanics 1995; 28:845-856. – reference: Truskey GA, Barber KM, Robey TC, Olivier LA, Combs MP. Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation. ASME Journal of Biomechanical Engineering 1995; 117:203-210. – reference: Qiao A, Liu Y. Numerical study of hemodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; DOI: 10.1002/cnm.1012. – reference: Mynard JP, Nithiarasu P. A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method. Communications in Numerical Methods in Engineering 2008; 24:367-417. – reference: Cheng CP, Parker D, Taylor CA. Quantification of large blood vessels using Lagrangian interpolation functions with cine phase-contrast magnetic resonance imaging. Annals of Biomedical Engineering 2002; 30:1020-1032. – reference: Tzirtzilakis EE. A simple numerical methodology for bfd problems using stream function vorticity formulation. Communications in Numerical Methods in Engineering 2008; 24:683-700. – reference: Miranda AIP, Oliveira PJ, Pinh FT. Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T-junction. International Journal for Numerical Methods in Fluids 2008; 57:295-328. – reference: Rathishkumar BV. On operator splitting approach for parallel multi-frontal FE flow computation in a multiply dilated vessel. Communications in Numerical Methods in Engineering 2002; 18:43-52. – reference: Nerem RM. Vascular fluid mechanics, the arterial wall and atherosclerosis. Journal of Biomechanical Engineering 1992; 114:274-282. – reference: Zienkiewicz OC, Taylor RL, Nithiarasu P. The Finite Element Method for Fluid Dynamics. Elsevier, Butterworths-Heinemann: Amsterdam, London, 2005. – reference: Kim T, Cheer AY, Dwyer HA. A simulated dye method for flow visualization with a computational model for blood flow. Journal of Biomechanics 2004; 37(8):1125-1136. – reference: Chiu J-J, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. ASME Journal of Biomechanical Engineering 1998; 120:2-8. – reference: Aike Q, Liu Y. Numerical study of heamodynamics comparison between small and large femoral bypass grafts. Communications in Numerical Methods in Engineering 2008; 24:1067-1078. – reference: Khunatorn Y, Mahalingam S, DeGroff CG, Robin Shandas R. Influence of connection geometry and SVC-IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study. Journal of Biomechanical Engineering 2002; 124:364-377. – reference: Nithiarasu P, Codina R, Zienkiewicz OC. The characteristic based split (CBS) scheme-a unified approach to fluid dynamics. International Journal for Numerical Methods in Engineering 2006; 66:1514-1546. – reference: de Leval MR, Kilner P, Gewillig M, Bull C. Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience. Journal of Thoracic and Cardiovascular Surgery 1988; 96:682-695. – reference: Kim YH, Walker PG, Fontaine AA, Panchal S, Ensley AE, Oshinski J, Sharma S, Ha B, Lucas CL, Yoganathan AP. Hemodynamics of the Fontan connection: an in-vitro study. ASME Journal of Biomechanical Engineering 1995; 117:423-428. – reference: Friedman M, Hutchins HGM, Bargeron CB. Correlation between intimal thickness and fluid shear in human arteries. Atherosclerosis 1981; 39:425-436. – reference: Hedrick M, Elkins RC, Knott-Craig CJ, Razook JD. Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature. Journal of Thoracic and Cardiovascular Surgery 1993; 105:297-301. – reference: Caro CG, Fitz-Gerald JM, Schroter RC. Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis. Proceedings of the Royal Society of London, Series B-Biological Sciences 1971; 177:109-159. – reference: Masters JC, Ketner M, Bleiweis MS, Mill M, Yoganathan A, Lucas CL. The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset. Journal of Biomechanical Engineering 2004; 126:709-713. – reference: Codina R, Owen C, Nithiarasu P, Liu C-B. Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier-Stokes equations. International Journal for Numerical Methods in Engineering 2006; 66:1672-1689. – reference: Fontan F, Baudet E. Surgical repair of tricuspid atresia. Thorax 1971; 26:240-248. – reference: Morgan VL, Graham TP, Roselli RJ, Lorenz CH. Alternations in pulmonary artery flow patterns and shear stress determined with three-dimensional phase-contrast magnetic resonance imaging in fontan patients. Journal of Thoracic and Cardiovascular Surgery 1998; 116:294-304. – reference: Nithiarasu P. An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows. International Journal for Numerical Methods in Engineering 2003; 56:1815-1845. – reference: Pedersen EM, Stenbog EV, Frund T, Houlind K, Kromann O, Sorensen KE, Emmertsen K, Hjortdal VE. Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping. Heart 2002; 87:554-558. – start-page: 555 year: 1987 end-page: 571 – volume: 24 start-page: 683 year: 2008 end-page: 700 article-title: A simple numerical methodology for bfd problems using stream function vorticity formulation publication-title: Communications in Numerical Methods in Engineering – volume: 117 start-page: 423 year: 1995 end-page: 428 article-title: Hemodynamics of the Fontan connection: an in‐vitro study publication-title: ASME Journal of Biomechanical Engineering – volume: 96 start-page: 682 year: 1988 end-page: 695 article-title: Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience publication-title: Journal of Thoracic and Cardiovascular Surgery – year: 2005 – volume: 23 start-page: 1057 year: 2007 end-page: 1069 article-title: Laminar and turbulent flow calculations through a model human upper airway using unstructured meshes publication-title: Communications in Numerical Methods in Engineering – volume: 37 start-page: 1125 issue: 8 year: 2004 end-page: 1136 article-title: A simulated dye method for flow visualization with a computational model for blood flow publication-title: Journal of Biomechanics – volume: 177 start-page: 109 year: 1971 end-page: 159 article-title: Atheroma and arterial wall shear: observation, correlation and proposal of a shear dependent mass transfer mechanism of atherogenesis publication-title: Proceedings of the Royal Society of London, Series B—Biological Sciences – volume: 39 start-page: 425 year: 1981 end-page: 436 article-title: Correlation between intimal thickness and fluid shear in human arteries publication-title: Atherosclerosis – volume: 18 start-page: 43 year: 2002 end-page: 52 article-title: On operator splitting approach for parallel multi‐frontal FE flow computation in a multiply dilated vessel publication-title: Communications in Numerical Methods in Engineering – volume: 10 start-page: 224 year: 1996 end-page: 232 article-title: Computational investigations of vascular disease publication-title: Computers in Physics – volume: 126 start-page: 594 year: 2004 end-page: 603 article-title: The effects of different mesh generation methods on computational fluid dynamic analysis and power loss assessment in total cavopulmonary connection publication-title: Journal of Biomechanical Engineering – volume: 57 start-page: 631 year: 2008 end-page: 651 article-title: Steady flow through a realistic human upper airway geometry publication-title: International Journal for Numerical Methods in Fluids – volume: 30 start-page: 1020 year: 2002 end-page: 1032 article-title: Quantification of large blood vessels using Lagrangian interpolation functions with cine phase‐contrast magnetic resonance imaging publication-title: Annals of Biomedical Engineering – volume: 57 start-page: 295 year: 2008 end-page: 328 article-title: Steady and unsteady laminar flows of Newtonian and generalized Newtonian fluids in a planar T‐junction publication-title: International Journal for Numerical Methods in Fluids – volume: 114 start-page: 274 year: 1992 end-page: 282 article-title: Vascular fluid mechanics, the arterial wall and atherosclerosis publication-title: Journal of Biomechanical Engineering – volume: 120 start-page: 2 year: 1998 end-page: 8 article-title: Effects of disturbed flow on endothelial cells publication-title: ASME Journal of Biomechanical Engineering – start-page: 1 year: 2007 end-page: 10 article-title: Numerical investigation of hemodynamics at an end‐to‐side junction with a laterally diffused bypass graft publication-title: International Journal for Numerical Methods in Fluids – year: 1984 – volume: 24 start-page: 1067 year: 2008 end-page: 1078 article-title: Numerical study of heamodynamics comparison between small and large femoral bypass grafts publication-title: Communications in Numerical Methods in Engineering – volume: 26 start-page: 240 year: 1971 end-page: 248 article-title: Surgical repair of tricuspid atresia publication-title: Thorax – volume: 56 start-page: 1815 year: 2003 end-page: 1845 article-title: An efficient artificial compressibility (AC) scheme based on the characteristic based split (CBS) method for incompressible flows publication-title: International Journal for Numerical Methods in Engineering – volume: 66 start-page: 1672 year: 2006 end-page: 1689 article-title: Numerical comparison of CBS and SGS as stabilization techniques for the incompressible Navier–Stokes equations publication-title: International Journal for Numerical Methods in Engineering – volume: 66 start-page: 1514 year: 2006 end-page: 1546 article-title: The characteristic based split (CBS) scheme—a unified approach to fluid dynamics publication-title: International Journal for Numerical Methods in Engineering – year: 2008 article-title: Numerical study of hemodynamics comparison between small and large femoral bypass grafts publication-title: Communications in Numerical Methods in Engineering – volume: 28 start-page: 845 year: 1995 end-page: 856 article-title: Computer simulation of local blood flow and vessel mechanics in a compliant carotid artery bifurcation model publication-title: Journal of Biomechanics – volume: 3 start-page: 55 issue: 2 year: 1987 end-page: 65 article-title: Basic flow structures in saccular aneurysms: a flow visualization study publication-title: Heart and Vessels – volume: 124 start-page: 364 year: 2002 end-page: 377 article-title: Influence of connection geometry and SVC‐IVC flow rate ratio on flow structures within the total cavopulmonary connection: a numerical study publication-title: Journal of Biomechanical Engineering – volume: 126 start-page: 709 year: 2004 end-page: 713 article-title: The effect of incorporating vessel compliance in a computational model of blood flow in a total cavopulmonary connection (TCPC) with caval centerline offset publication-title: Journal of Biomechanical Engineering – volume: 28 start-page: 19 year: 1999 end-page: 39 article-title: A finite element study of the blood flow in total cavopulmonary connection publication-title: Computers and Fluids – volume: 105 start-page: 297 year: 1993 end-page: 301 article-title: Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature publication-title: Journal of Thoracic and Cardiovascular Surgery – volume: 22 start-page: 445 year: 1994 end-page: 455 article-title: 1993 Whitaker lecture: biorheology in thrombosis research publication-title: Annals of Biomedical Engineering – volume: 117 start-page: 203 year: 1995 end-page: 210 article-title: Characterization of a sudden expansion flow chamber to study the response of endothelium to flow recirculation publication-title: ASME Journal of Biomechanical Engineering – volume: 87 start-page: 554 year: 2002 end-page: 558 article-title: Flow during exercise in the cavopulmonary connection measured by magnetic resonance velocity mapping publication-title: Heart – volume: 24 start-page: 367 year: 2008 end-page: 417 article-title: A 1d arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative galerkin (lcg) method publication-title: Communications in Numerical Methods in Engineering – volume: 115 start-page: 499 year: 1998 end-page: 505 article-title: Arrhythmias and thromboembolic complications after the extracardiac Fontan operation publication-title: Journal of Thoracic and Cardiovascular Surgery – volume: 116 start-page: 294 year: 1998 end-page: 304 article-title: Alternations in pulmonary artery flow patterns and shear stress determined with three‐dimensional phase‐contrast magnetic resonance imaging in fontan patients publication-title: Journal of Thoracic and Cardiovascular Surgery – ident: e_1_2_1_3_2 doi: 10.1098/rspb.1971.0019 – ident: e_1_2_1_37_2 doi: 10.1002/nme.1697 – volume: 96 start-page: 682 year: 1988 ident: e_1_2_1_17_2 article-title: Total cavopulmonary connection: a logical alternative to atrio pulmonary connection for complex Fontan operations Experiment studies and early clinical experience publication-title: Journal of Thoracic and Cardiovascular Surgery doi: 10.1016/S0022-5223(19)35174-8 – ident: e_1_2_1_27_2 doi: 10.1016/S0045-7930(98)00018-8 – ident: e_1_2_1_5_2 doi: 10.1002/cnm.463 – ident: e_1_2_1_16_2 doi: 10.1136/thx.26.3.240 – volume-title: Biodynamics: Circulation year: 1984 ident: e_1_2_1_2_2 doi: 10.1007/978-1-4757-3884-1 – ident: e_1_2_1_14_2 doi: 10.1115/1.2834303 – ident: e_1_2_1_30_2 doi: 10.1002/nme.1698 – ident: e_1_2_1_8_2 doi: 10.1016/0021-9290(95)95273-8 – ident: e_1_2_1_23_2 doi: 10.1016/S0022-5223(98)70130-8 – ident: e_1_2_1_10_2 doi: 10.1002/fld.1626 – start-page: 555 volume-title: Platelet–Surface Interactions, Hemostasis and Thrombosis year: 1987 ident: e_1_2_1_19_2 – ident: e_1_2_1_6_2 doi: 10.1002/cnm.1012 – ident: e_1_2_1_38_2 doi: 10.1136/heart.87.6.554 – ident: e_1_2_1_9_2 doi: 10.1063/1.4822390 – ident: e_1_2_1_11_2 doi: 10.1002/cnm.1117 – ident: e_1_2_1_20_2 doi: 10.1115/1.2891384 – ident: e_1_2_1_24_2 doi: 10.1115/1.1487880 – ident: e_1_2_1_32_2 doi: 10.1002/fld.1805 – ident: e_1_2_1_4_2 doi: 10.1016/0021-9150(81)90027-7 – ident: e_1_2_1_13_2 doi: 10.1002/cnm.981 – ident: e_1_2_1_36_2 doi: 10.1115/1.2796002 – volume: 105 start-page: 297 year: 1993 ident: e_1_2_1_21_2 article-title: Successful thrombectomy for thrombosis of the right side of the heart after the Fontan operation. Report of two cases and review of the literature publication-title: Journal of Thoracic and Cardiovascular Surgery doi: 10.1016/S0022-5223(19)33815-2 – ident: e_1_2_1_7_2 doi: 10.1002/fld.1832 – ident: e_1_2_1_22_2 doi: 10.1016/S0022-5223(98)70311-3 – ident: e_1_2_1_34_2 doi: 10.1007/BF02058520 – ident: e_1_2_1_25_2 doi: 10.1115/1.1800553 – ident: e_1_2_1_28_2 doi: 10.1114/1.1511239 – ident: e_1_2_1_26_2 doi: 10.1115/1.1824126 – volume-title: The Finite Element Method for Fluid Dynamics year: 2005 ident: e_1_2_1_33_2 – ident: e_1_2_1_18_2 doi: 10.1007/BF02367081 – ident: e_1_2_1_29_2 doi: 10.1002/nme.712 – ident: e_1_2_1_31_2 doi: 10.1002/cnm.939 – ident: e_1_2_1_12_2 doi: 10.1002/cnm.1012 – ident: e_1_2_1_35_2 doi: 10.1016/j.jbiomech.2003.12.028 – ident: e_1_2_1_15_2 doi: 10.1115/1.2794203 |
| SSID | ssj0009080 ssj0000299973 |
| Score | 1.8457075 |
| Snippet | The complexities in the flow pattern in a cavo‐pulmonary vascular system—after application of the Fontan procedure in the vicinity of the superior vena cava,... The complexities in the flow pattern in a cavo-pulmonary vascular system-after application of the Fontan procedure in the vicinity of the superior vena cava,... The complexities in the flow pattern in a cavo-pulmonary vascular system - after application of the Fontan procedure in the vicinity of the superior vena cava,... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1061 |
| SubjectTerms | Biological and medical sciences blood flow CFD Compressibility Computational techniques Exact sciences and technology finite element method flow visualization Fluid dynamics Fontan procedure Fundamental and applied biological sciences. Psychology Fundamental areas of phenomenology (including applications) General theory Health Hemodynamics. Rheology inferior vena cava Mathematical analysis Mathematical methods in physics Mathematical models Numerical analysis Physics Quantitative analysis Steady flow superior vena cava total cavo-pulmonary connection Vertebrates: cardiovascular system |
| Title | An investigation of pulsatile flow in a model cavo-pulmonary vascular system |
| URI | https://api.istex.fr/ark:/67375/WNG-X7S335GV-R/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcnm.1205 https://www.proquest.com/docview/1020854262 https://www.proquest.com/docview/1671456448 https://www.proquest.com/docview/1776647328 https://www.proquest.com/docview/744623635 |
| Volume | 25 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1099-0887 dateEnd: 20100131 omitProxy: true ssIdentifier: ssj0009080 issn: 1069-8299 databaseCode: ABDBF dateStart: 19930101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1069-8299 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1099-0887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000299973 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F5AIHHgVEeESLhOBQOfix68cxLbQVUnIobcnNWr9EwDhVYgPixE_g7_B3-CXMeNcbW22qwsVKZid-ZMY7M7sz3xDygvngBcfCMYTjuAbijxi-LXyDWZFIAu4Lz8IC5-nMPTpl7-Z83uv9bmUtVWU0jn9cWlfyP1IFGsgVq2T_QbL6pECAzyBfOIKE4XgtGU8wTVHjZEjP77zKMUEnT3ezfPkNlzOEbHezG4uvS53bAGxwm5gyp3NRJahz21vtVI_UibNFJXd4ctV6uiamG0zDTbbAolzJarNxQzsDPpGka7Xkqul1MQrE7OKTapWsR2aL8uMCBtZV7eyOO0sUgarV0-bjYg5QvehQtqq3IDINQEtks6RxqmiIkOArg6xma1km3Wil1Zp7Mbht2XHLlB1yLtgIiTkbF1_Glm3yjR1s9v41D9_GVZv__dkUR26QgQ0GxeyTwWTvzd7BBvHZ9CUUhnqwBvnYtF83Z-34QgN8rb9jbi6IXeSZ7KvSCXza4VPt_5zcJbdV4EInUgvvkV5a7JA7KoihykSsd8itFsIlfJtqWOD1fTKbFLSjsHSZUa2wFBUWxqmgtcJSVNg_P39pVaWNqlKpqg_I6cHbk_0jQzX0MGLcQDf8jPPYiqMswBroGKH7wH5EVuA5KcuiyIxZkHipFUUB4wk458IHEgMf3oEjC5yHpF8si_QRoXYkwPNNXO54ggmeisxOA_Q9eZxEmeUOyavmrw1jhXaPTVfyUOJ02yEIIUQhDMlzzXkuEV4u4XlZS0cziNVnzIj0ePhhdhjOvfeOww_PwuMhGXXEp39g29jdyQ_gao08Q5jIcXdOFOmyWsMFsV0uNoi4gsf1LMR_Yv4VPJ7nugwxuIaEbuHxGIOwB2INeLBap7Y-eajU_PF1GZ-Qm5sp4Cnpl6sqfQZ-exmN1Bsygsj12P4L7xXtEQ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+investigation+of+pulsatile+flow+in+a+model+cavo%E2%80%90pulmonary+vascular+system&rft.jtitle=Communications+in+numerical+methods+in+engineering&rft.au=Chitra%2C+K.&rft.au=Vengadesan%2C+S.&rft.au=Sundararajan%2C+T.&rft.au=Nithiarasu%2C+P.&rft.date=2009-11-01&rft.pub=John+Wiley+%26+Sons%2C+Ltd&rft.issn=1069-8299&rft.eissn=1099-0887&rft.volume=25&rft.issue=11&rft.spage=1061&rft.epage=1083&rft_id=info:doi/10.1002%2Fcnm.1205&rft.externalDBID=10.1002%252Fcnm.1205&rft.externalDocID=CNM1205 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1069-8299&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1069-8299&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1069-8299&client=summon |