Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man
The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1 G93A mice. Quantitative pathologi...
Saved in:
Published in | Experimental neurology Vol. 185; no. 2; pp. 232 - 240 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
Elsevier Inc
01.02.2004
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0014-4886 1090-2430 |
DOI | 10.1016/j.expneurol.2003.10.004 |
Cover
Abstract | The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1
G93A mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 ± 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a “dying back” pattern. |
---|---|
AbstractList | The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern.The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern. The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern. The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1 G93A mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 ± 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a “dying back” pattern. |
Author | Wang, Minsheng Glass, Jonathan D. Culver, Deborah G. Castellano-Sanchez, Amilcar Polak, Meraida A. Fischer, Lindsey R. Davis, Albert A. Khan, Jaffar Tennant, Philip |
Author_xml | – sequence: 1 givenname: Lindsey R. surname: Fischer fullname: Fischer, Lindsey R. organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 2 givenname: Deborah G. surname: Culver fullname: Culver, Deborah G. organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 3 givenname: Philip surname: Tennant fullname: Tennant, Philip organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 4 givenname: Albert A. surname: Davis fullname: Davis, Albert A. organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 5 givenname: Minsheng surname: Wang fullname: Wang, Minsheng organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 6 givenname: Amilcar surname: Castellano-Sanchez fullname: Castellano-Sanchez, Amilcar organization: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 7 givenname: Jaffar surname: Khan fullname: Khan, Jaffar organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 8 givenname: Meraida A. surname: Polak fullname: Polak, Meraida A. organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA – sequence: 9 givenname: Jonathan D. surname: Glass fullname: Glass, Jonathan D. email: jglas03@emory.edu organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15483992$$DView record in Pascal Francis https://www.ncbi.nlm.nih.gov/pubmed/14736504$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkV9rFDEUxYNU7Lb6FXRe9G3Wm5nMnwg-LEWrUPRFn0Pm5oZmmUnWJFu6374z7tqCL4XAhZvfORfOuWBnPnhi7B2HNQfeftyu6X7naR_DuK4A6nm7BhAv2IqDhLISNZyxFQAXpej79pxdpLQFACmq7hU756Kr2wbEiv3YTIeQY9jdOixGnSnqsUg4UgzJpWJ-ujAu5Xmr74MPO51vD58KunOGPFLhfDG5eWpvikn71-yl1WOiN6d5yX5__fLr6lt58_P6-9XmpkTR1rm09YC25rJDsNBgpzsjUVYSewJBFhFlJwdqKg6msdogDl03UMWtqW3FRX3JPhx9dzH82VPKanIJaRy1p7BPqgfOK9lWM_j2BO6HiYzaRTfpeFD_EpiB9ydAJ9SjjdqjS09cI_paysXo85HDOZkUySp0WWcXfI7ajYqDWppRW_XYjFqaWT7g753uP_3jiWeVm6OS5kDvHEWV0C3hGxcJszLBPevxABP2rso |
CODEN | EXNEAC |
CitedBy_id | crossref_primary_10_1002_ana_21152 crossref_primary_10_1002_brb3_104 crossref_primary_10_1007_s10571_014_0029_x crossref_primary_10_1038_srep25960 crossref_primary_10_1002_mus_27360 crossref_primary_10_1016_j_expneurol_2011_05_007 crossref_primary_10_1126_sciadv_adk3229 crossref_primary_10_14336_AD_2015_0506 crossref_primary_10_1002_jnr_20379 crossref_primary_10_1016_j_bbrc_2023_04_103 crossref_primary_10_1097_NEN_0000000000000079 crossref_primary_10_1007_s40263_019_00657_9 crossref_primary_10_1038_s41598_017_12603_0 crossref_primary_10_2174_1570159X20666220915103613 crossref_primary_10_1016_j_expneurol_2019_05_008 crossref_primary_10_1523_JNEUROSCI_3090_16_2017 crossref_primary_10_1016_j_freeradbiomed_2013_04_018 crossref_primary_10_3389_fnagi_2015_00204 crossref_primary_10_1093_hmg_ddp421 crossref_primary_10_1097_NEN_0000000000000081 crossref_primary_10_3389_fbioe_2020_00224 crossref_primary_10_1111_jns_12164 crossref_primary_10_1007_s12035_013_8507_6 crossref_primary_10_1016_j_jns_2011_08_009 crossref_primary_10_1097_NEN_0000000000000086 crossref_primary_10_3390_cells8121578 crossref_primary_10_1007_s13311_014_0329_3 crossref_primary_10_1016_j_neuron_2022_08_017 crossref_primary_10_1038_s41583_020_0269_3 crossref_primary_10_3109_17482968_2012_660953 crossref_primary_10_2217_fnl_12_68 crossref_primary_10_1016_j_nbd_2008_02_009 crossref_primary_10_3390_ijms18112298 crossref_primary_10_1007_s11914_015_0281_0 crossref_primary_10_1371_journal_pone_0198089 crossref_primary_10_1002_jnr_23619 crossref_primary_10_1242_dmm_031997 crossref_primary_10_4103_1673_5374_217319 crossref_primary_10_1038_nrneurol_2016_140 crossref_primary_10_1016_j_celrep_2022_111001 crossref_primary_10_1016_j_neures_2021_11_002 crossref_primary_10_3390_cells10061449 crossref_primary_10_1002_dneu_20747 crossref_primary_10_4103_1673_5374_276320 crossref_primary_10_1016_j_neuroscience_2019_05_017 crossref_primary_10_1002_jnr_24714 crossref_primary_10_1016_j_micinf_2021_104829 crossref_primary_10_1016_j_stemcr_2015_02_010 crossref_primary_10_1038_s41419_019_1451_2 crossref_primary_10_1002_mus_26289 crossref_primary_10_1016_j_celrep_2024_115123 crossref_primary_10_1016_j_jchemneu_2016_03_003 crossref_primary_10_3390_cells13090745 crossref_primary_10_1242_jcs_167544 crossref_primary_10_1002_cm_21580 crossref_primary_10_1186_s12974_016_0620_9 crossref_primary_10_1038_s41598_023_32641_1 crossref_primary_10_7554_eLife_47372 crossref_primary_10_1113_JP277456 crossref_primary_10_1002_brb3_142 crossref_primary_10_1002_cne_25567 crossref_primary_10_1016_j_bbrc_2013_07_060 crossref_primary_10_1002_brb3_143 crossref_primary_10_1002_mus_20768 crossref_primary_10_1177_1759091419886212 crossref_primary_10_1016_j_bbi_2014_05_019 crossref_primary_10_1016_j_clinph_2011_01_045 crossref_primary_10_3934_celltissue_2018_2_91 crossref_primary_10_3390_cells11203263 crossref_primary_10_1038_s41467_017_00911_y crossref_primary_10_3390_antiox10101522 crossref_primary_10_1002_ana_24618 crossref_primary_10_1242_jcs_214684 crossref_primary_10_3389_fnagi_2021_650038 crossref_primary_10_1113_jphysiol_2007_149286 crossref_primary_10_1093_hmg_ddm367 crossref_primary_10_1111_j_1469_7580_2008_01007_x crossref_primary_10_1186_s40035_022_00320_2 crossref_primary_10_1016_j_neuint_2008_12_012 crossref_primary_10_1093_brain_awv008 crossref_primary_10_1007_s00018_019_03337_5 crossref_primary_10_1016_j_crneur_2024_100138 crossref_primary_10_1016_j_jns_2007_01_057 crossref_primary_10_1002_nbm_3954 crossref_primary_10_3389_fnmol_2020_00162 crossref_primary_10_1016_j_nbd_2007_07_003 crossref_primary_10_7554_eLife_88250_3 crossref_primary_10_1111_cei_13660 crossref_primary_10_1016_j_pneurobio_2014_03_001 crossref_primary_10_1007_s12640_017_9790_1 crossref_primary_10_1016_j_bbadis_2009_08_012 crossref_primary_10_1016_j_phrs_2018_07_004 crossref_primary_10_1523_ENEURO_0388_19_2020 crossref_primary_10_3389_fnins_2020_00575 crossref_primary_10_1371_journal_pone_0100834 crossref_primary_10_1007_s10126_018_9857_x crossref_primary_10_1007_s12640_022_00632_1 crossref_primary_10_1016_j_expneurol_2017_03_018 crossref_primary_10_1111_j_1476_5381_2011_01612_x crossref_primary_10_1038_s41467_021_23224_7 crossref_primary_10_1111_nan_12925 crossref_primary_10_1002_mus_20556 crossref_primary_10_1007_s13311_011_0068_7 crossref_primary_10_1093_brain_awt097 crossref_primary_10_1002_ana_21128 crossref_primary_10_1002_ame2_12112 crossref_primary_10_1016_j_neures_2010_12_009 crossref_primary_10_1371_journal_pone_0056625 crossref_primary_10_1016_j_neuroscience_2020_11_016 crossref_primary_10_1093_jnen_nlw004 crossref_primary_10_3390_cells10030525 crossref_primary_10_1093_jnen_nlw003 crossref_primary_10_1523_JNEUROSCI_2126_14_2015 crossref_primary_10_1016_j_expneurol_2011_06_003 crossref_primary_10_1523_JNEUROSCI_4218_08_2008 crossref_primary_10_1016_j_bbr_2011_06_019 crossref_primary_10_1186_s40035_022_00331_z crossref_primary_10_1038_s41598_019_39313_z crossref_primary_10_3109_17482968_2012_701308 crossref_primary_10_1074_jbc_M109_041319 crossref_primary_10_1111_ncn3_12701 crossref_primary_10_1038_s41418_022_01074_0 crossref_primary_10_1186_s40478_022_01373_0 crossref_primary_10_1196_annals_1340_013 crossref_primary_10_3389_fnmol_2022_937974 crossref_primary_10_1016_j_jns_2004_03_010 crossref_primary_10_1007_s00401_019_01989_y crossref_primary_10_1016_j_neurobiolaging_2019_07_001 crossref_primary_10_15252_emmm_201607298 crossref_primary_10_1371_journal_pone_0109833 crossref_primary_10_1093_hmg_ddw222 crossref_primary_10_1016_j_freeradbiomed_2013_10_002 crossref_primary_10_1038_s41598_019_40553_2 crossref_primary_10_3389_fncel_2014_00148 crossref_primary_10_1111_apha_13982 crossref_primary_10_1016_j_drudis_2018_01_027 crossref_primary_10_1016_j_jneuroim_2006_08_006 crossref_primary_10_1002_acn3_124 crossref_primary_10_1089_ars_2012_4524 crossref_primary_10_4103_1673_5374_320998 crossref_primary_10_1002_ana_20453 crossref_primary_10_1093_icb_icr116 crossref_primary_10_1007_s12041_018_0955_3 crossref_primary_10_3389_fnins_2015_00448 crossref_primary_10_1016_j_expneurol_2008_04_033 crossref_primary_10_1152_physiolgenomics_00017_2007 crossref_primary_10_1016_j_jneumeth_2008_08_032 crossref_primary_10_1007_s00401_016_1633_2 crossref_primary_10_1227_01_NEU_0000255444_44365_B9 crossref_primary_10_1093_hmg_ddv360 crossref_primary_10_1111_j_1471_4159_2011_07298_x crossref_primary_10_1523_JNEUROSCI_1233_11_2012 crossref_primary_10_34024_rnc_2006_v14_8768 crossref_primary_10_3390_brainsci14080760 crossref_primary_10_1007_s12035_021_02658_6 crossref_primary_10_1002_mus_20566 crossref_primary_10_1177_1073858405281898 crossref_primary_10_1113_jphysiol_2011_204891 crossref_primary_10_1371_journal_pone_0034640 crossref_primary_10_3389_fncel_2014_00131 crossref_primary_10_1016_j_jns_2012_04_003 crossref_primary_10_1016_j_clinph_2024_04_010 crossref_primary_10_1002_ana_20482 crossref_primary_10_1016_j_neuron_2012_02_026 crossref_primary_10_1155_2014_401306 crossref_primary_10_1371_journal_pone_0002334 crossref_primary_10_1016_j_nbd_2009_09_006 crossref_primary_10_1016_j_nbd_2011_01_031 crossref_primary_10_1523_JNEUROSCI_1748_18_2020 crossref_primary_10_3390_ijms231911333 crossref_primary_10_1002_cyto_a_22630 crossref_primary_10_1371_journal_pone_0041182 crossref_primary_10_3389_fnins_2019_00601 crossref_primary_10_1016_j_pneurobio_2007_07_007 crossref_primary_10_1007_s00429_012_0396_3 crossref_primary_10_1371_journal_pone_0231598 crossref_primary_10_1016_j_ejmg_2017_12_001 crossref_primary_10_4252_wjsc_v9_i11_187 crossref_primary_10_1186_1742_2094_8_74 crossref_primary_10_1155_2012_379657 crossref_primary_10_1242_dmm_002113 crossref_primary_10_1111_j_1365_2990_2010_01061_x crossref_primary_10_1016_j_pneurobio_2011_10_001 crossref_primary_10_1523_JNEUROSCI_3485_15_2016 crossref_primary_10_1002_jbm_a_36312 crossref_primary_10_1016_j_toxlet_2013_11_016 crossref_primary_10_1016_j_brainres_2012_04_031 crossref_primary_10_3390_ijms18102092 crossref_primary_10_3109_17482968_2012_679944 crossref_primary_10_3390_md14050102 crossref_primary_10_1016_j_cub_2015_06_045 crossref_primary_10_1038_s41598_022_11767_8 crossref_primary_10_1080_00222890903272025 crossref_primary_10_3724_SP_J_1008_2009_00208 crossref_primary_10_1073_pnas_0810934106 crossref_primary_10_1016_j_clinph_2016_03_024 crossref_primary_10_1016_j_neurol_2020_03_011 crossref_primary_10_1042_BST20130118 crossref_primary_10_1371_journal_pone_0091643 crossref_primary_10_1111_bph_15276 crossref_primary_10_1016_j_neulet_2007_01_009 crossref_primary_10_1002_hbm_23412 crossref_primary_10_1007_s00018_016_2337_4 crossref_primary_10_1007_s12035_019_1550_1 crossref_primary_10_1101_sqb_2018_83_037622 crossref_primary_10_1002_mus_20341 crossref_primary_10_1093_hmg_ddn426 crossref_primary_10_3233_JND_140068 crossref_primary_10_1002_cne_21160 crossref_primary_10_1093_braincomms_fcac081 crossref_primary_10_1371_journal_pone_0183684 crossref_primary_10_1016_j_neuron_2023_02_028 crossref_primary_10_1371_journal_pone_0032008 crossref_primary_10_1016_j_jaut_2011_06_003 crossref_primary_10_1186_s13287_018_0843_z crossref_primary_10_3389_fnagi_2024_1421841 crossref_primary_10_3390_ijms20112818 crossref_primary_10_3389_fimmu_2024_1445867 crossref_primary_10_3390_cells10020320 crossref_primary_10_1073_pnas_0508774103 crossref_primary_10_1088_1758_5090_acf39e crossref_primary_10_1113_JP284143 crossref_primary_10_1002_0471141755_ph0567s69 crossref_primary_10_3389_fncel_2014_00184 crossref_primary_10_1073_pnas_1303279110 crossref_primary_10_1093_hmg_ddae190 crossref_primary_10_1007_s12035_013_8573_9 crossref_primary_10_1523_JNEUROSCI_3463_09_2009 crossref_primary_10_1093_hmg_ddi392 crossref_primary_10_1371_journal_pone_0023244 crossref_primary_10_1016_j_mcn_2012_07_003 crossref_primary_10_3389_fnins_2015_00400 crossref_primary_10_2217_fnl_09_21 crossref_primary_10_3389_fncel_2015_00289 crossref_primary_10_1007_s11481_015_9625_x crossref_primary_10_3389_fnmol_2022_1000183 crossref_primary_10_3390_ijms25137059 crossref_primary_10_1016_j_nbd_2005_01_010 crossref_primary_10_1038_s41593_023_01496_0 crossref_primary_10_1002_cne_23763 crossref_primary_10_1016_j_jneumeth_2020_109016 crossref_primary_10_3389_fnmol_2020_568426 crossref_primary_10_1002_jnr_20305 crossref_primary_10_1016_j_brainresrev_2010_10_003 crossref_primary_10_1111_j_1471_4159_2009_06080_x crossref_primary_10_7554_eLife_92644 crossref_primary_10_1007_s00401_024_02689_y crossref_primary_10_15252_embj_2020107586 crossref_primary_10_1523_JNEUROSCI_1379_14_2015 crossref_primary_10_1080_21678421_2019_1620285 crossref_primary_10_1016_j_neulet_2021_136039 crossref_primary_10_1186_s13024_018_0271_7 crossref_primary_10_20517_and_2023_14 crossref_primary_10_3390_jcm9010261 crossref_primary_10_1016_j_bbadis_2016_03_006 crossref_primary_10_1002_nbm_5037 crossref_primary_10_1073_pnas_0909794107 crossref_primary_10_1186_s13024_021_00511_x crossref_primary_10_1038_cddis_2015_272 crossref_primary_10_1002_cne_23538 crossref_primary_10_3389_fncel_2016_00011 crossref_primary_10_3389_fnins_2021_711651 crossref_primary_10_1016_j_expneurol_2016_08_013 crossref_primary_10_1016_j_nbd_2005_01_008 crossref_primary_10_1016_j_conb_2008_08_005 crossref_primary_10_1016_j_expneurol_2012_01_015 crossref_primary_10_1002_acn3_179 crossref_primary_10_1038_nrn2946 crossref_primary_10_1371_journal_pone_0001449 crossref_primary_10_1016_j_nbd_2007_12_002 crossref_primary_10_1186_s13024_023_00634_3 crossref_primary_10_1111_j_1460_9568_2007_05845_x crossref_primary_10_1016_j_expneurol_2011_09_020 crossref_primary_10_1016_j_expneurol_2008_10_014 crossref_primary_10_1016_j_pneurobio_2015_07_004 crossref_primary_10_2147_IJN_S439728 crossref_primary_10_1016_j_phrs_2011_12_001 crossref_primary_10_3390_brainsci8120222 crossref_primary_10_1002_mrm_26685 crossref_primary_10_1016_j_biomaterials_2022_121752 crossref_primary_10_1016_j_neuchi_2008_05_011 crossref_primary_10_3171_2020_8_JNS201461 crossref_primary_10_1016_j_crbeha_2022_100069 crossref_primary_10_1016_j_stemcr_2018_11_005 crossref_primary_10_3109_17482968_2012_662688 crossref_primary_10_1093_brain_awac470 crossref_primary_10_1016_j_neurobiolaging_2010_04_012 crossref_primary_10_1080_21678421_2023_2260194 crossref_primary_10_3390_ijms241411251 crossref_primary_10_1152_ajpregu_00767_2006 crossref_primary_10_3390_jpm11070671 crossref_primary_10_1080_21678421_2023_2260198 crossref_primary_10_1089_ars_2024_0676 crossref_primary_10_1111_j_1460_9568_2006_05103_x crossref_primary_10_14348_molcells_2016_0233 crossref_primary_10_1186_s13024_023_00623_6 crossref_primary_10_1038_s41467_020_18949_w crossref_primary_10_1111_joim_12030 crossref_primary_10_1517_14728222_12_10_1229 crossref_primary_10_1371_journal_pone_0097803 crossref_primary_10_1155_2024_1228194 crossref_primary_10_1523_JNEUROSCI_4057_07_2007 crossref_primary_10_1016_j_expneurol_2014_07_001 crossref_primary_10_1186_s40478_020_01039_9 crossref_primary_10_1111_j_1468_1331_2011_03616_x crossref_primary_10_1134_S2079086415020085 crossref_primary_10_1016_j_nbd_2012_07_011 crossref_primary_10_1016_j_pharmthera_2013_08_003 crossref_primary_10_1111_ejn_14326 crossref_primary_10_1523_JNEUROSCI_3494_08_2008 crossref_primary_10_1016_j_nbd_2018_12_002 crossref_primary_10_1016_j_zool_2015_09_003 crossref_primary_10_1016_j_neubiorev_2021_06_027 crossref_primary_10_1080_15476286_2020_1822638 crossref_primary_10_1016_j_neulet_2019_134462 crossref_primary_10_1038_s10038_022_01055_8 crossref_primary_10_1038_s41467_021_24776_4 crossref_primary_10_1073_pnas_0902505106 crossref_primary_10_1371_journal_pone_0073846 crossref_primary_10_1002_mus_21160 crossref_primary_10_3389_fneur_2021_574919 crossref_primary_10_15252_embr_202256525 crossref_primary_10_1080_14660820500443000 crossref_primary_10_1016_j_nbd_2022_105821 crossref_primary_10_1534_g3_113_005850 crossref_primary_10_1523_ENEURO_0369_19_2020 crossref_primary_10_1016_j_nbd_2023_106377 crossref_primary_10_1016_j_brainres_2018_02_018 crossref_primary_10_1016_j_cub_2016_05_025 crossref_primary_10_3389_fnins_2016_00494 crossref_primary_10_1097_00001756_200504250_00002 crossref_primary_10_1016_j_stemcr_2021_03_029 crossref_primary_10_1523_JNEUROSCI_1965_11_2011 crossref_primary_10_1016_j_expneurol_2009_05_032 crossref_primary_10_3389_fimmu_2020_575792 crossref_primary_10_1016_j_freeradbiomed_2014_02_019 crossref_primary_10_1016_j_celrep_2023_112476 crossref_primary_10_1016_j_expneurol_2021_113815 crossref_primary_10_1080_01616412_2020_1834291 crossref_primary_10_1212_WNL_0b013e31821e553a crossref_primary_10_1016_j_mcn_2021_103590 crossref_primary_10_1007_s12668_019_00711_2 crossref_primary_10_1242_dmm_029058 crossref_primary_10_1111_bph_15224 crossref_primary_10_1016_j_expneurol_2014_06_018 crossref_primary_10_1007_s00702_021_02353_9 crossref_primary_10_1007_s13311_021_01159_7 crossref_primary_10_1093_brain_awad129 crossref_primary_10_1152_japplphysiol_00049_2021 crossref_primary_10_1038_s41583_020_0315_1 crossref_primary_10_1186_1471_2202_8_79 crossref_primary_10_1242_dmm_050905 crossref_primary_10_1016_j_bbadis_2024_167540 crossref_primary_10_1038_mt_2013_108 crossref_primary_10_1093_hmg_dds215 crossref_primary_10_1371_journal_pone_0082112 crossref_primary_10_1186_1750_1172_9_78 crossref_primary_10_1016_j_molimm_2018_06_007 crossref_primary_10_1159_000446113 crossref_primary_10_1016_j_nbd_2010_03_021 crossref_primary_10_1111_bph_15217 crossref_primary_10_1016_j_brainres_2012_05_018 crossref_primary_10_1016_j_brainres_2009_07_093 crossref_primary_10_1038_s41593_019_0498_9 crossref_primary_10_1080_21678421_2024_2403300 crossref_primary_10_1186_s13395_017_0128_8 crossref_primary_10_1089_scd_2012_0487 crossref_primary_10_1016_j_omtm_2021_03_017 crossref_primary_10_1016_j_expneurol_2012_03_021 crossref_primary_10_1093_hmg_ddr396 crossref_primary_10_3389_fneur_2023_1244385 crossref_primary_10_3390_cells11071150 crossref_primary_10_1016_j_bbadis_2014_02_009 crossref_primary_10_1038_mt_2013_115 crossref_primary_10_1007_s13311_013_0253_y crossref_primary_10_1073_pnas_0705501104 crossref_primary_10_1038_s41467_020_17514_9 crossref_primary_10_1523_JNEUROSCI_5411_09_2010 crossref_primary_10_3389_fnmol_2020_610964 crossref_primary_10_1186_1471_2202_6_6 crossref_primary_10_1016_j_patter_2021_100261 crossref_primary_10_3389_fncel_2020_604171 crossref_primary_10_1016_j_nbd_2012_06_017 crossref_primary_10_1111_nan_12123 crossref_primary_10_1007_s00401_020_02252_5 crossref_primary_10_1007_s00415_023_11757_4 crossref_primary_10_1007_s11481_013_9489_x crossref_primary_10_1179_1743132815Y_0000000039 crossref_primary_10_1016_j_neuroscience_2011_05_060 crossref_primary_10_1083_jcb_200504028 crossref_primary_10_1016_j_neulet_2019_134676 crossref_primary_10_3390_biom11101499 crossref_primary_10_1002_cne_21527 crossref_primary_10_1371_journal_pone_0107918 crossref_primary_10_1038_cddis_2016_110 crossref_primary_10_1111_jnc_15244 crossref_primary_10_3233_BPL_140001 crossref_primary_10_1371_journal_pone_0171668 crossref_primary_10_1073_pnas_0913141107 crossref_primary_10_3390_ijms22158194 crossref_primary_10_1007_s12035_015_9676_2 crossref_primary_10_1186_s40478_019_0874_4 crossref_primary_10_7554_eLife_92644_4 crossref_primary_10_1038_s41467_025_57135_8 crossref_primary_10_1016_j_expneurol_2009_02_017 crossref_primary_10_1016_j_nbd_2014_09_009 crossref_primary_10_1172_jci_insight_89530 crossref_primary_10_1212_01_wnl_0000325992_50108_60 crossref_primary_10_1002_cne_20620 crossref_primary_10_1093_hmg_ddu605 crossref_primary_10_1016_j_mcn_2009_08_002 crossref_primary_10_1093_brain_awt029 crossref_primary_10_1016_j_jns_2019_116438 crossref_primary_10_3390_muscles2020014 crossref_primary_10_3389_fnins_2014_00252 crossref_primary_10_1172_jci_insight_97152 crossref_primary_10_1126_science_1250744 crossref_primary_10_1007_s12015_011_9281_3 crossref_primary_10_1016_j_jneumeth_2014_02_005 crossref_primary_10_1016_j_brainresbull_2024_111036 crossref_primary_10_3390_ijms21031115 crossref_primary_10_1007_BF03256320 crossref_primary_10_1186_s12974_016_0538_2 crossref_primary_10_1016_j_nbd_2021_105583 crossref_primary_10_1016_j_brainres_2010_05_067 crossref_primary_10_1002_cne_23917 crossref_primary_10_17816_ACEN_1098 crossref_primary_10_1016_j_stem_2014_02_004 crossref_primary_10_1371_journal_pone_0040998 crossref_primary_10_1111_j_1469_7580_2011_01459_x crossref_primary_10_1002_mus_24244 crossref_primary_10_1093_brain_awt020 crossref_primary_10_3389_fneur_2019_00068 crossref_primary_10_1093_intimm_dxu099 crossref_primary_10_1007_s13721_012_0020_8 crossref_primary_10_1155_2016_5930621 crossref_primary_10_1186_s40035_018_0122_z crossref_primary_10_3389_fmmed_2023_1047540 crossref_primary_10_1073_pnas_1117975108 crossref_primary_10_1155_2011_497080 crossref_primary_10_1038_s44319_025_00402_y crossref_primary_10_1007_s00018_021_04070_8 crossref_primary_10_1007_s11481_023_10072_z crossref_primary_10_1111_j_1471_4159_2009_06386_x crossref_primary_10_1016_j_neuint_2014_10_007 crossref_primary_10_1038_s41598_021_91094_6 crossref_primary_10_1038_sdata_2018_241 crossref_primary_10_3390_brainsci9070165 crossref_primary_10_1371_journal_pone_0007357 crossref_primary_10_1186_s40478_016_0340_5 crossref_primary_10_1038_s41598_017_00091_1 crossref_primary_10_3389_fneur_2021_596006 crossref_primary_10_1186_2051_5960_2_38 crossref_primary_10_3389_fnins_2025_1527181 crossref_primary_10_1111_cns_14270 crossref_primary_10_1242_bio_049692 crossref_primary_10_3109_14653249_2011_592521 crossref_primary_10_1093_hmg_ddt528 crossref_primary_10_1227_01_NEU_0000335653_52938_F2 crossref_primary_10_2217_rme_10_72 crossref_primary_10_1007_s00234_020_02528_3 crossref_primary_10_1111_j_1365_2990_2011_01178_x crossref_primary_10_3389_fneur_2020_592851 crossref_primary_10_1016_j_nbd_2018_01_019 crossref_primary_10_1093_hmg_ddp355 crossref_primary_10_3390_brainsci11030369 crossref_primary_10_1002_jnr_23287 crossref_primary_10_1016_j_mcn_2018_03_001 crossref_primary_10_1016_j_celrep_2018_12_045 crossref_primary_10_1016_j_it_2009_09_003 crossref_primary_10_1016_j_tips_2020_01_006 crossref_primary_10_3389_fnins_2020_00195 crossref_primary_10_1016_j_mcn_2018_03_006 crossref_primary_10_3389_fneur_2021_693309 crossref_primary_10_3389_fnins_2020_00194 crossref_primary_10_1212_WNL_0b013e318249f776 crossref_primary_10_3164_jcbn_16_34 crossref_primary_10_1111_nan_12982 crossref_primary_10_3109_17482960903089775 crossref_primary_10_3390_cells10061307 crossref_primary_10_1097_WNR_0000000000000725 crossref_primary_10_1016_j_tins_2008_01_006 crossref_primary_10_1517_14656566_2013_819344 crossref_primary_10_1371_journal_pone_0005390 crossref_primary_10_3389_fnins_2016_00076 crossref_primary_10_1051_medsci_200824121077 crossref_primary_10_3390_cells10040839 crossref_primary_10_1097_NEN_0b013e318275df4b crossref_primary_10_1016_j_celrep_2014_08_030 crossref_primary_10_1002_glia_20739 crossref_primary_10_3389_fnmol_2017_00086 crossref_primary_10_1016_j_bbadis_2008_04_001 crossref_primary_10_1093_brain_awt250 crossref_primary_10_1111_j_1365_2990_2012_01295_x crossref_primary_10_1111_bpa_13078 crossref_primary_10_1016_j_neuroscience_2009_08_031 crossref_primary_10_1113_JP281461 crossref_primary_10_1002_acn3_51174 crossref_primary_10_1111_j_1460_9568_2007_05914_x crossref_primary_10_1097_NEN_0b013e3181fc9aea crossref_primary_10_1016_j_expneurol_2011_10_007 crossref_primary_10_1016_j_brainres_2011_11_019 crossref_primary_10_1021_pr100409r crossref_primary_10_1002_mus_20942 crossref_primary_10_1016_j_nbd_2012_08_010 crossref_primary_10_1016_j_arr_2023_101994 crossref_primary_10_1002_mus_25157 crossref_primary_10_1016_j_nbd_2012_08_019 crossref_primary_10_3390_cells12172163 crossref_primary_10_3389_fimmu_2022_915392 crossref_primary_10_1093_hmg_ddn131 crossref_primary_10_1093_hmg_ddp550 crossref_primary_10_1111_j_1469_7580_2008_00909_x crossref_primary_10_1371_journal_pone_0079817 crossref_primary_10_1242_jcs_258349 crossref_primary_10_1089_ars_2009_2614 crossref_primary_10_1002_mus_21936 crossref_primary_10_1016_j_neuroscience_2015_06_026 crossref_primary_10_1007_s13311_016_0487_6 crossref_primary_10_1093_hmg_ddw182 crossref_primary_10_1093_hmg_ddv094 crossref_primary_10_4103_NRR_NRR_D_23_01815 crossref_primary_10_7554_eLife_06500 crossref_primary_10_1093_hmg_ddw190 crossref_primary_10_1002_mus_20612 crossref_primary_10_1038_nrn1788 crossref_primary_10_1038_s41598_021_91496_6 crossref_primary_10_1016_j_neuropharm_2012_02_013 crossref_primary_10_1038_nprot_2011_403 crossref_primary_10_1126_science_aad2509 crossref_primary_10_1016_j_celrep_2021_110195 crossref_primary_10_1212_WNL_0b013e3181b6bbbd crossref_primary_10_1016_j_brainresbull_2018_05_006 crossref_primary_10_1016_j_mito_2005_01_002 crossref_primary_10_1111_j_1471_4159_2012_07771_x crossref_primary_10_1007_s11481_009_9171_5 crossref_primary_10_1016_j_bbadis_2012_10_011 crossref_primary_10_1038_s41598_022_09332_4 crossref_primary_10_1007_s40265_022_01769_1 crossref_primary_10_1016_j_neurobiolaging_2019_10_022 crossref_primary_10_15252_embj_2020106389 crossref_primary_10_1007_s12031_010_9467_1 crossref_primary_10_1083_jcb_200705046 crossref_primary_10_1016_j_clineuro_2023_107847 crossref_primary_10_1007_s10863_011_9392_1 crossref_primary_10_1016_j_neulet_2021_135899 crossref_primary_10_26508_lsa_202000764 crossref_primary_10_3389_fnins_2014_00304 crossref_primary_10_1038_mt_2008_73 crossref_primary_10_1111_j_1471_4159_2008_05754_x crossref_primary_10_3390_ijms19020631 crossref_primary_10_1016_j_neuroscience_2010_12_036 crossref_primary_10_1016_j_bbadis_2006_04_002 crossref_primary_10_1093_hmg_ddn156 crossref_primary_10_3109_21678421_2015_1089039 crossref_primary_10_1016_j_neuron_2008_02_017 crossref_primary_10_1097_NEN_0b013e3181922572 crossref_primary_10_1038_mt_2010_271 crossref_primary_10_1038_s41418_020_0543_y crossref_primary_10_1002_glia_23768 crossref_primary_10_1016_j_yexcr_2006_05_003 crossref_primary_10_1097_01_jnen_0000228202_35163_c4 crossref_primary_10_1002_jmri_29027 crossref_primary_10_1089_ars_2009_2604 crossref_primary_10_1038_s41598_017_05313_0 crossref_primary_10_1038_s41419_021_03907_1 crossref_primary_10_3389_fnins_2017_00473 crossref_primary_10_7554_eLife_41973 crossref_primary_10_1007_s10529_020_02886_1 crossref_primary_10_1093_hmg_ddp324 crossref_primary_10_1148_radiol_13121148 crossref_primary_10_3390_cells12232751 crossref_primary_10_1038_s41593_020_00718_z crossref_primary_10_1016_j_expneurol_2007_12_022 crossref_primary_10_1038_mt_2010_260 crossref_primary_10_1002_glia_24604 crossref_primary_10_1080_17482960701725646 crossref_primary_10_1002_cne_23266 crossref_primary_10_1016_j_bbrc_2011_12_126 crossref_primary_10_1186_s12974_019_1598_x crossref_primary_10_1242_dmm_018606 crossref_primary_10_1016_j_nbd_2006_05_009 crossref_primary_10_1371_journal_pone_0015108 crossref_primary_10_1016_j_neuron_2013_12_009 crossref_primary_10_1097_WNR_0b013e32833037ae crossref_primary_10_1016_j_jns_2013_05_008 crossref_primary_10_1016_j_neuron_2019_02_017 crossref_primary_10_4103_0366_6999_240798 crossref_primary_10_1016_j_neuroscience_2013_03_017 crossref_primary_10_3389_fneur_2020_00101 crossref_primary_10_3390_cells13100792 crossref_primary_10_1007_s12015_011_9268_0 crossref_primary_10_1016_j_pneurobio_2009_05_004 crossref_primary_10_1007_s13167_010_0019_0 crossref_primary_10_1002_jnr_23332 crossref_primary_10_4236_nm_2012_34050 crossref_primary_10_1016_j_nbd_2012_05_014 crossref_primary_10_1016_j_bbadis_2006_03_006 crossref_primary_10_3389_fncel_2024_1340240 crossref_primary_10_3389_fnins_2017_00451 crossref_primary_10_1038_s41598_023_31720_7 crossref_primary_10_1016_j_neuron_2013_12_018 crossref_primary_10_3389_fnins_2021_753870 crossref_primary_10_1016_j_nbd_2009_05_011 crossref_primary_10_1242_dmm_005538 crossref_primary_10_3233_RNN_170809 crossref_primary_10_1016_j_neuroscience_2018_03_022 crossref_primary_10_3389_fncel_2021_686722 crossref_primary_10_1016_j_nbd_2011_08_018 crossref_primary_10_3390_biom12040497 crossref_primary_10_1007_s13311_023_01444_7 crossref_primary_10_3109_17482968_2011_649760 crossref_primary_10_3233_RNN_180820 crossref_primary_10_1038_srep25663 crossref_primary_10_1371_journal_pone_0164103 crossref_primary_10_1002_humu_21394 crossref_primary_10_1155_2012_170426 crossref_primary_10_1016_j_expneurol_2009_08_021 crossref_primary_10_1016_j_expneurol_2009_08_023 crossref_primary_10_1186_1743_0003_2_20 crossref_primary_10_3389_fncel_2019_00063 crossref_primary_10_1016_j_expneurol_2016_01_008 crossref_primary_10_1093_cercor_bhu318 crossref_primary_10_3988_jcn_2011_7_1_31 crossref_primary_10_1167_tvst_9_11_11 crossref_primary_10_1016_j_heliyon_2024_e34587 crossref_primary_10_1038_s41598_021_96064_6 crossref_primary_10_1242_dmm_039552 crossref_primary_10_1111_j_1471_4159_2010_06572_x crossref_primary_10_3390_ijms24054944 crossref_primary_10_1186_1471_2164_11_203 crossref_primary_10_1016_j_jns_2008_01_011 crossref_primary_10_3389_fnins_2019_00532 crossref_primary_10_1007_s00415_022_11520_1 crossref_primary_10_1016_j_tins_2007_02_004 crossref_primary_10_3390_cells12071016 crossref_primary_10_1016_j_nbd_2012_12_010 crossref_primary_10_1007_s13311_015_0416_0 crossref_primary_10_3390_ijms232415521 crossref_primary_10_1016_j_cnp_2018_10_002 crossref_primary_10_1016_j_abb_2019_01_024 crossref_primary_10_1080_21678421_2020_1813310 crossref_primary_10_1002_adtp_202200009 crossref_primary_10_3389_fnmol_2017_00231 crossref_primary_10_1111_brv_12675 crossref_primary_10_1016_j_phrs_2017_02_003 crossref_primary_10_3390_jpm10030058 crossref_primary_10_1038_s42003_021_02538_8 crossref_primary_10_1007_s00429_009_0226_4 crossref_primary_10_1152_jn_00265_2018 crossref_primary_10_1002_stem_1628 crossref_primary_10_1016_j_devcel_2024_09_023 crossref_primary_10_7554_eLife_34375 crossref_primary_10_1007_s00401_006_0056_x crossref_primary_10_1523_JNEUROSCI_2276_09_2009 crossref_primary_10_1242_dmm_012013 crossref_primary_10_18632_aging_204450 crossref_primary_10_1083_jcb_201404154 crossref_primary_10_1007_s00401_015_1520_2 crossref_primary_10_1016_j_nbd_2020_104793 crossref_primary_10_1083_jcb_202111053 crossref_primary_10_1016_j_nbd_2024_106614 crossref_primary_10_1016_j_conb_2009_08_003 crossref_primary_10_3390_ijms19051534 crossref_primary_10_1371_journal_pgen_1000350 crossref_primary_10_1016_j_expneurol_2006_08_028 crossref_primary_10_1007_s12264_024_01267_2 crossref_primary_10_1038_nrneurol_2011_152 crossref_primary_10_1371_journal_pone_0065235 crossref_primary_10_1093_brain_awz360 crossref_primary_10_1038_mt_2008_197 crossref_primary_10_1101_cshperspect_a041490 crossref_primary_10_1093_brain_awq314 crossref_primary_10_1038_s41467_024_54004_8 crossref_primary_10_1038_cddis_2013_378 crossref_primary_10_1002_neu_20269 crossref_primary_10_1186_s13395_024_00349_z crossref_primary_10_1016_j_clinph_2023_03_010 crossref_primary_10_1186_s40478_020_00987_6 crossref_primary_10_3389_fncel_2015_00332 crossref_primary_10_3389_fphys_2020_595800 crossref_primary_10_1038_srep29395 crossref_primary_10_1002_cne_21051 crossref_primary_10_1186_1471_2202_10_148 crossref_primary_10_15252_emmm_201404433 crossref_primary_10_1016_j_neuron_2022_02_011 crossref_primary_10_3389_fncel_2023_1257347 crossref_primary_10_1371_journal_pone_0023141 crossref_primary_10_1007_s13206_018_3202_3 crossref_primary_10_1016_j_jiec_2018_01_014 crossref_primary_10_1523_JNEUROSCI_5427_08_2009 crossref_primary_10_1111_jnc_15289 crossref_primary_10_1038_s41598_025_88292_x crossref_primary_10_1002_mus_20228 crossref_primary_10_1016_j_nbd_2017_04_010 crossref_primary_10_1242_jcs_031047 crossref_primary_10_1016_j_jsbmb_2020_105650 crossref_primary_10_1093_hmg_ddt278 crossref_primary_10_1177_1073858417705059 crossref_primary_10_1007_s10072_017_2842_8 crossref_primary_10_1016_j_mcn_2011_05_002 crossref_primary_10_1002_cne_24751 crossref_primary_10_1002_biot_200600247 crossref_primary_10_1016_j_nbd_2020_104743 crossref_primary_10_1038_s41598_019_53982_w crossref_primary_10_3389_fphys_2023_1165811 crossref_primary_10_1016_j_clinph_2006_04_005 crossref_primary_10_1016_j_nbd_2019_104680 crossref_primary_10_1111_j_1365_2990_2007_00850_x crossref_primary_10_7554_eLife_35664 crossref_primary_10_1016_j_coph_2021_05_001 crossref_primary_10_1007_s00018_019_03029_0 crossref_primary_10_1038_s41598_018_23018_w crossref_primary_10_1016_j_expneurol_2010_12_007 crossref_primary_10_1016_j_lfs_2021_119300 crossref_primary_10_1093_hmg_dds174 crossref_primary_10_1002_glia_21167 crossref_primary_10_1038_s41598_020_70510_3 crossref_primary_10_1371_journal_pone_0154723 crossref_primary_10_1002_mus_20489 crossref_primary_10_1002_mus_21579 crossref_primary_10_1016_j_neures_2018_08_016 crossref_primary_10_3390_biology11081191 crossref_primary_10_1093_hmg_ddv238 crossref_primary_10_1093_hmg_ddx415 crossref_primary_10_3390_biology8020036 crossref_primary_10_1073_pnas_1419497111 crossref_primary_10_1016_j_expneurol_2009_12_004 crossref_primary_10_3390_cells10020221 crossref_primary_10_1016_j_neulet_2005_12_007 crossref_primary_10_1002_mus_22217 crossref_primary_10_1371_journal_pone_0017910 crossref_primary_10_1016_j_brainres_2011_02_060 crossref_primary_10_1002_cne_21012 crossref_primary_10_7554_eLife_88250 crossref_primary_10_1093_hmg_ddu136 crossref_primary_10_3109_17482968_2011_603731 crossref_primary_10_1007_s12017_007_8002_1 crossref_primary_10_1016_j_tins_2020_07_002 crossref_primary_10_1016_j_celrep_2012_08_004 crossref_primary_10_1016_j_bbadis_2017_05_016 crossref_primary_10_1073_pnas_1314826111 crossref_primary_10_1523_JNEUROSCI_2315_06_2006 crossref_primary_10_1097_NEN_0b013e31821cbd8b crossref_primary_10_11005_jbm_2020_27_2_97 crossref_primary_10_1113_jphysiol_2009_169748 crossref_primary_10_1007_s12031_014_0426_0 crossref_primary_10_3389_fncel_2014_00279 crossref_primary_10_3858_emm_2009_41_7_054 crossref_primary_10_1016_j_neulet_2016_07_052 crossref_primary_10_1007_s10072_024_07369_z crossref_primary_10_1016_j_nbd_2018_11_021 crossref_primary_10_1111_imm_13264 crossref_primary_10_1016_j_arr_2023_102162 crossref_primary_10_1186_1471_2202_11_25 crossref_primary_10_3389_fphar_2021_780588 crossref_primary_10_1002_cne_23620 crossref_primary_10_1038_s41467_017_02299_1 crossref_primary_10_1002_adtp_202000133 crossref_primary_10_1186_s40478_020_01116_z crossref_primary_10_1016_j_neuron_2006_09_018 crossref_primary_10_1002_glia_20836 crossref_primary_10_1371_journal_pone_0089065 crossref_primary_10_1016_j_bbrc_2023_01_023 crossref_primary_10_1016_j_expneurol_2013_05_001 crossref_primary_10_1371_journal_pone_0000689 crossref_primary_10_1093_brain_awad202 crossref_primary_10_1093_hmg_ddt222 crossref_primary_10_2147_DNND_S388455 crossref_primary_10_1016_j_neurobiolaging_2014_04_012 crossref_primary_10_1007_s00109_013_1077_2 crossref_primary_10_3390_jpm10030101 crossref_primary_10_1016_j_biopha_2023_114378 crossref_primary_10_1096_fj_10_171934 crossref_primary_10_1096_fj_201700835R crossref_primary_10_1016_j_neuroscience_2015_02_013 crossref_primary_10_1172_jci_insight_95934 crossref_primary_10_1002_ctm2_336 crossref_primary_10_1016_j_expneurol_2015_09_014 crossref_primary_10_1186_1750_1326_7_44 crossref_primary_10_1016_j_jneuroim_2010_07_002 crossref_primary_10_1016_j_neuropharm_2021_108637 crossref_primary_10_3389_fphys_2016_00403 crossref_primary_10_1038_s41420_023_01340_1 crossref_primary_10_1038_nrd2665 crossref_primary_10_1007_s00429_012_0501_7 crossref_primary_10_1007_s13238_017_0397_3 crossref_primary_10_1007_s00018_015_1943_x crossref_primary_10_1093_hmg_ddt005 crossref_primary_10_1016_j_neuroscience_2015_11_018 crossref_primary_10_1155_2012_187234 crossref_primary_10_1016_j_ebiom_2018_11_067 crossref_primary_10_1016_j_nmd_2016_03_003 crossref_primary_10_1093_cercor_bhw254 crossref_primary_10_1111_joa_13463 crossref_primary_10_1016_j_nbd_2016_07_023 crossref_primary_10_1038_nn1653 crossref_primary_10_1093_brain_awh483 crossref_primary_10_3892_mmr_2017_7186 crossref_primary_10_1038_sj_embor_7400826 crossref_primary_10_5966_sctm_2015_0340 crossref_primary_10_1016_j_arr_2016_04_005 crossref_primary_10_1111_j_1460_9568_2004_03783_x crossref_primary_10_1371_journal_pone_0210752 crossref_primary_10_3389_fnins_2018_00769 crossref_primary_10_3389_fnmol_2016_00160 crossref_primary_10_3389_fnhum_2014_00719 crossref_primary_10_1016_j_clinph_2017_06_039 crossref_primary_10_1016_j_nbd_2013_08_006 crossref_primary_10_3390_ijms12129203 crossref_primary_10_1093_hmg_ddi440 crossref_primary_10_1007_s10439_015_1259_x crossref_primary_10_1371_journal_pone_0041917 crossref_primary_10_3390_diseases11030089 crossref_primary_10_15252_emmm_201808888 crossref_primary_10_1007_s00415_013_7215_5 crossref_primary_10_3390_biomedicines13010049 crossref_primary_10_1007_s00441_017_2681_1 crossref_primary_10_1016_j_jneuroim_2011_03_011 crossref_primary_10_1016_j_neuroscience_2015_01_018 crossref_primary_10_1007_s12035_016_0322_4 crossref_primary_10_1016_j_resp_2019_01_001 crossref_primary_10_1016_j_neuron_2015_06_026 crossref_primary_10_1111_nan_12473 crossref_primary_10_2174_1871527318666190409103831 crossref_primary_10_1007_s00401_009_0631_z crossref_primary_10_1111_j_1471_4159_2012_07690_x crossref_primary_10_1038_mt_2013_239 crossref_primary_10_4103_1673_5374_270309 crossref_primary_10_1016_j_nbd_2006_12_023 crossref_primary_10_1186_s13024_023_00690_9 crossref_primary_10_1523_JNEUROSCI_3396_13_2013 crossref_primary_10_1016_j_neuro_2008_04_016 crossref_primary_10_1002_cne_22718 crossref_primary_10_1093_jnen_64_4_295 crossref_primary_10_1111_ejn_13393 crossref_primary_10_1002_mus_26778 crossref_primary_10_1016_j_micron_2020_102852 crossref_primary_10_1016_j_resp_2013_05_016 crossref_primary_10_1111_j_1460_9568_2010_07260_x crossref_primary_10_1007_s13311_012_0140_y crossref_primary_10_1002_mus_25444 crossref_primary_10_1042_NS20220013 crossref_primary_10_1016_j_brainresrev_2004_05_003 crossref_primary_10_1016_j_neuroscience_2011_10_020 crossref_primary_10_1001_jamaneurol_2022_1113 crossref_primary_10_1016_j_nmd_2016_04_010 crossref_primary_10_1113_JP280097 crossref_primary_10_1016_S1138_3593_06_73253_1 crossref_primary_10_1073_pnas_0503862102 crossref_primary_10_1073_pnas_0911405106 crossref_primary_10_1186_s40478_019_0800_9 crossref_primary_10_1007_s00441_012_1362_3 crossref_primary_10_1002_cne_23814 crossref_primary_10_4103_1673_5374_308077 crossref_primary_10_1063_1_4891098 crossref_primary_10_1523_JNEUROSCI_1599_07_2007 crossref_primary_10_1111_nan_12014 crossref_primary_10_1080_14712598_2018_1416089 crossref_primary_10_1111_j_1471_4159_2006_04408_x crossref_primary_10_1016_j_clinph_2004_02_008 crossref_primary_10_1073_pnas_0609411103 crossref_primary_10_1016_j_bbi_2010_12_008 crossref_primary_10_1007_s13311_021_01025_6 crossref_primary_10_1093_hmg_ddr453 crossref_primary_10_1016_j_brainres_2019_02_003 crossref_primary_10_1089_ars_2006_8_2075 crossref_primary_10_3389_fnins_2019_01233 crossref_primary_10_1038_s41598_022_08455_y crossref_primary_10_1007_s13311_019_00765_w crossref_primary_10_1146_annurev_neuro_051508_135722 crossref_primary_10_1371_journal_pgen_1007682 crossref_primary_10_1038_s41434_021_00303_4 crossref_primary_10_1172_jci_insight_123249 crossref_primary_10_1186_s41232_023_00270_w crossref_primary_10_1016_j_brainres_2016_04_010 crossref_primary_10_1016_j_preteyeres_2005_04_004 crossref_primary_10_1016_j_nbd_2005_06_019 crossref_primary_10_1042_AN20100024 crossref_primary_10_1002_adbi_201800307 crossref_primary_10_1111_j_1460_9568_2005_04389_x crossref_primary_10_1136_jnnp_2012_304545 crossref_primary_10_1172_JCI142854 crossref_primary_10_1016_j_nbd_2009_10_005 crossref_primary_10_1371_journal_pone_0052605 crossref_primary_10_1371_journal_pgen_1003066 crossref_primary_10_1523_ENEURO_0281_16_2016 crossref_primary_10_1016_j_mcn_2006_03_002 crossref_primary_10_1016_j_clinph_2010_07_019 crossref_primary_10_1016_j_scr_2017_11_005 crossref_primary_10_1186_s10020_024_00942_4 crossref_primary_10_1523_ENEURO_0308_18_2018 crossref_primary_10_3858_emm_2009_41_3_017 crossref_primary_10_1007_s13311_023_01424_x crossref_primary_10_1016_j_brainres_2011_06_033 crossref_primary_10_1016_j_expneurol_2006_12_021 crossref_primary_10_1016_j_bbi_2018_07_002 crossref_primary_10_1134_S1990747820030113 crossref_primary_10_1002_glia_22601 crossref_primary_10_1371_journal_pone_0093140 crossref_primary_10_1016_j_clinph_2012_07_010 crossref_primary_10_1007_s00401_022_02412_9 crossref_primary_10_1007_s00401_017_1708_8 crossref_primary_10_1210_me_2007_0079 crossref_primary_10_1186_s40035_022_00291_4 crossref_primary_10_1016_j_neuron_2006_08_027 crossref_primary_10_1159_000433581 crossref_primary_10_1111_ene_12291 crossref_primary_10_1016_j_jns_2013_03_019 crossref_primary_10_3389_fneur_2017_00356 crossref_primary_10_1093_hmg_ddt659 crossref_primary_10_1038_s41598_022_06470_7 crossref_primary_10_1038_ncomms10465 crossref_primary_10_3389_fnins_2021_783624 crossref_primary_10_1016_j_neulet_2017_12_062 crossref_primary_10_1007_s10072_015_2418_4 crossref_primary_10_3389_fncel_2023_1253543 crossref_primary_10_1038_ncomms3906 crossref_primary_10_1016_j_nbd_2021_105480 crossref_primary_10_1016_j_expneurol_2016_02_002 crossref_primary_10_1093_hmg_ddac116 crossref_primary_10_1016_j_brainres_2017_11_017 crossref_primary_10_1016_j_expneurol_2013_06_007 crossref_primary_10_1016_j_bbrc_2020_02_027 crossref_primary_10_1038_nrn3430 crossref_primary_10_1093_hmg_ddz190 crossref_primary_10_1002_jnr_21174 crossref_primary_10_1016_j_neuron_2012_08_019 crossref_primary_10_1371_journal_pone_0037258 crossref_primary_10_3390_biom14070878 crossref_primary_10_1534_genetics_116_190850 crossref_primary_10_1038_s41582_020_0377_8 crossref_primary_10_1038_sj_cdd_4401944 crossref_primary_10_1242_bio_20148342 crossref_primary_10_3390_cells8080906 crossref_primary_10_1002_jnr_25100 crossref_primary_10_3390_cells11040706 crossref_primary_10_1523_JNEUROSCI_1139_07_2007 crossref_primary_10_1016_j_isci_2021_102700 crossref_primary_10_1016_j_nicl_2021_102863 crossref_primary_10_1093_hmg_ddy043 crossref_primary_10_1016_j_neuroscience_2020_08_011 crossref_primary_10_3390_ijms21124291 crossref_primary_10_1016_j_nmd_2005_02_005 crossref_primary_10_1089_hum_2009_131 crossref_primary_10_1002_mus_25267 crossref_primary_10_1523_JNEUROSCI_2037_14_2014 crossref_primary_10_1186_s40478_014_0165_z crossref_primary_10_1007_s12035_010_8159_8 crossref_primary_10_1016_j_brainresbull_2009_08_004 crossref_primary_10_1016_j_neuroscience_2006_04_041 crossref_primary_10_1093_hmg_ddm193 crossref_primary_10_1016_j_ncrna_2018_12_001 crossref_primary_10_3389_fneur_2022_994676 crossref_primary_10_3390_antiox12030705 crossref_primary_10_1371_journal_pgen_1005290 crossref_primary_10_1016_j_ebiom_2019_06_013 crossref_primary_10_1016_j_expneurol_2012_12_008 crossref_primary_10_17116_jnevro2023123071102 crossref_primary_10_4103_1673_5374_382233 crossref_primary_10_1523_JNEUROSCI_4003_12_2013 crossref_primary_10_1111_bph_15738 crossref_primary_10_1073_pnas_1006151107 crossref_primary_10_1016_j_tins_2004_03_002 crossref_primary_10_1016_j_neurol_2024_10_005 crossref_primary_10_1002_jnr_24231 crossref_primary_10_3390_cells9122581 crossref_primary_10_1016_j_smim_2022_101628 crossref_primary_10_1007_s13311_020_00852_3 crossref_primary_10_1038_s42003_021_02302_y crossref_primary_10_1039_C6MT00270F crossref_primary_10_1016_j_nbd_2009_10_021 crossref_primary_10_1016_j_nbd_2018_09_024 crossref_primary_10_1093_hmg_ddq106 crossref_primary_10_1016_j_neuroscience_2008_08_073 crossref_primary_10_1097_WNP_0000000000000336 crossref_primary_10_1111_j_1365_2990_2011_01166_x crossref_primary_10_1002_ana_24012 crossref_primary_10_1016_j_phrs_2018_09_008 crossref_primary_10_3109_17482968_2012_669386 crossref_primary_10_1007_s12035_015_9537_z crossref_primary_10_1016_j_stemcr_2021_10_010 crossref_primary_10_1186_1742_2094_7_8 crossref_primary_10_1523_JNEUROSCI_4434_08_2009 crossref_primary_10_1016_j_scr_2015_09_006 crossref_primary_10_1016_j_neuroscience_2019_07_041 crossref_primary_10_3233_JND_210730 crossref_primary_10_1007_s13311_022_01297_6 crossref_primary_10_1016_j_ymthe_2024_05_016 crossref_primary_10_3390_brainsci11070906 crossref_primary_10_1016_j_neuro_2012_04_019 crossref_primary_10_1113_JP270213 crossref_primary_10_1002_dvdy_333 |
Cites_doi | 10.1152/jn.00271.2002 10.1002/ar.1092310411 10.1016/S0165-6147(97)01094-8 10.1002/ana.410380510 10.1001/archneur.1984.04050170073021 10.1523/JNEUROSCI.20-04-01333.2000 10.1126/science.1083129 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-# 10.1007/978-3-642-70699-8_1 10.1001/archneur.1983.04050050074011 10.1002/ana.410140304 10.1006/dbio.1994.1234 10.1016/S0166-2236(02)02255-5 10.1038/4553 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 10.1016/S0896-6273(02)00696-7 10.1093/hmg/11.12.1439 10.1002/ana.410230103 10.1097/00001756-199605310-00021 10.1083/jcb.139.5.1307 10.1016/S0960-9822(03)00206-9 10.1038/ng1016 10.1038/ng1123 10.1002/jnr.490210104 10.1002/ana.10374 10.1073/pnas.90.14.6591 10.1083/jcb.200208001 10.1006/mcne.1995.1027 10.1073/pnas.220417997 10.1523/JNEUROSCI.20-07-02534.2000 |
ContentType | Journal Article |
Copyright | 2003 Elsevier Inc. 2004 INIST-CNRS |
Copyright_xml | – notice: 2003 Elsevier Inc. – notice: 2004 INIST-CNRS |
DBID | AAYXX CITATION IQODW CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.expneurol.2003.10.004 |
DatabaseName | CrossRef Pascal-Francis Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1090-2430 |
EndPage | 240 |
ExternalDocumentID | 14736504 15483992 10_1016_j_expneurol_2003_10_004 S0014488603004795 |
Genre | Research Support, U.S. Gov't, P.H.S Comparative Study Research Support, Non-U.S. Gov't Journal Article |
GrantInformation_xml | – fundername: NINDS NIH HHS grantid: P01 NS40405 |
GroupedDBID | --- --K --M -~X .55 .GJ .~1 0R~ 1B1 1RT 1~. 1~5 29G 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 7-5 71M 8P~ 9JM AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYJJ ABBQC ABCQJ ABFNM ABFRF ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFO ACGFS ACNCT ACRLP ADBBV ADEZE ADFGL ADMUD AEBSH AEFWE AEKER AENEX AETEA AFFNX AFKWA AFTJW AFXIZ AGEKW AGHFR AGUBO AGWIK AGYEJ AHHHB AHPSJ AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY AKRLJ ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV C45 CAG COF CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HDW HMK HMO HMQ HVGLF HZ~ IHE J1W K-O KOM L7B LCYCR LG5 LUGTX LX8 M29 M2U M41 MO0 MOBAO N9A O-L O9- OAUVE OHT OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAE SCC SDF SDG SDP SES SEW SNS SPCBC SSH SSN SSZ T5K TEORI WUQ X7M XJT XPP ZA5 ZGI ZKB ZMT ZU3 ZXP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACRPL ACVFH ADCNI ADNMO ADXHL AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS IQODW CGR CUY CVF ECM EIF NPM PKN 7X8 ACLOT ~HD |
ID | FETCH-LOGICAL-c463t-f3bcf3197c0f05c7a7d9c929c8e04efccc979be5210d5fadccb77be21fd3f2143 |
IEDL.DBID | AIKHN |
ISSN | 0014-4886 |
IngestDate | Sun Sep 28 09:02:43 EDT 2025 Wed Feb 19 02:34:02 EST 2025 Mon Jul 21 09:13:28 EDT 2025 Tue Jul 01 02:20:53 EDT 2025 Thu Apr 24 22:54:18 EDT 2025 Fri Feb 23 02:33:54 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | Axonopathy Sclerosis Denervation Animal model Sporadic Motor neuron disease Motor neuron Neuromuscular junction Spinal root Autopsy Degenerative disease Degeneration Quantitative analysis Human Nervous system diseases Rodentia Axon Amyotrophic lateral sclerosis Vertebrata Anatomic pathology Mammalia Mouse Cell death Animal Central nervous system disease Reinnervation Spinal cord disease |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-f3bcf3197c0f05c7a7d9c929c8e04efccc979be5210d5fadccb77be21fd3f2143 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
PMID | 14736504 |
PQID | 80112962 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_80112962 pubmed_primary_14736504 pascalfrancis_primary_15483992 crossref_citationtrail_10_1016_j_expneurol_2003_10_004 crossref_primary_10_1016_j_expneurol_2003_10_004 elsevier_sciencedirect_doi_10_1016_j_expneurol_2003_10_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2004-02-01 |
PublicationDateYYYYMMDD | 2004-02-01 |
PublicationDate_xml | – month: 02 year: 2004 text: 2004-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Amsterdam |
PublicationPlace_xml | – name: Amsterdam – name: United States |
PublicationTitle | Experimental neurology |
PublicationTitleAlternate | Exp Neurol |
PublicationYear | 2004 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Zhang, Tu, Abtahian, Trojanowski, Lee (BIB33) 1997; 139 Cifuentes-Dias, Nicole, Velasco, Borra-Cebrian, Panazzo, Frugier, Millet, Roblot, Joshi, Melki (BIB6) 2002; 11 Finn, Weil, Archer, Siman, Srinivasan, Raff (BIB12) 2000; 20 LaMonte, Wallace, Holloway, Shelly, Ascano, Tokito, Van Winkle, Howland, Holzbaur (BIB22) 2002; 34 Graeber, Streit, Kreutzberg (BIB16) 1988; 21 Frey, Schneider, Xu, Borg, Spooren, Caroni (BIB13) 2000; 20 Deckwerth, Johnson (BIB9) 1994; 165 Hafezparast, Klocke, Ruhrberg, Marquardt, Ahmad-Annuar, Bowen, Lalli, Witherden, Hummerich, Nicholson, Morgan, Oozageer, Priestley, Averill, King, Ball, Peters, Toda, Yamamoto, Hiraoka, Augustin, Korthaus, Wattler, Wabnitz, Dickneite, Lampel, Boehme, Peraus, Popp, Rudelius, Schlegel, Fuchs, Hrabe de Angelis, Schiavo, Shima, Russ, Stumm, Martin, Fisher (BIB18) 2003; 300 Cavanagh (BIB4) 1964; 3 Kennel, Finiels, Revah, Mallet (BIB21) 1996; 7 Rich, Wang, Cope, Pinter (BIB25) 2002; 88 Chiu, Zhai, Dal Canto, Peters, Kwon, Prattis, Gurney (BIB5) 1995; 6 Sagot, Vejsada, Kato (BIB27) 1997; 18 Drachman, Frank, Dykes-Hoberg, Teismann, Almer, Przedborski, Rothstein (BIB10) 2002; 52 Spencer, Schaumburg (BIB29) 1976; vol. 3 Bjornskov, Norris, Mower-Kuby (BIB34) 1984; 41 Bommel, Xie, Rossoll, Wiese, Jablonka, Boehm, Sendtner (BIB1) 2002; 159 Griffin, Watson (BIB17) 1988; 23 Rothstein, Jin, Dykes-Hoberg, Kuncl (BIB26) 1993; 90 Coggeshall, Lekan (BIB7) 1996; 364 Sobue, Hashizume, Sahashi, Takahashi, Mukai, Matsuoka, Mukoyama (BIB28) 1983; 40 Tetzlaff, Graeger, Kreutzberg (BIB30) 1986 Puls, Jonnakuty, LaMonte, Holzbaur, Tokito, Mann, Floeter, Bidus, Drayna, Oh, Brown, Robert, Ludlow, Fischbeck (BIB24) 2003; 33 Johnston, Dalton, Gurney, Kopito (BIB20) 2000; 97 Martin, Jaubert, Gounon, Salido, Haase, Szatanik, Guenet (BIB23) 2003; 32 Bradley, Good, Rasool, Adelman (BIB2) 1983; 14 Ferri, Sanes, Coleman, Cunningham, Kato (BIB11) 2003; 13 Williamson, Cleveland (BIB32) 1999; 2 West, Slomianka, Gundersen (BIB31) 1991; 231 Glass (BIB14) 2002; vol. II Carter, Krivickas, Weydt, Weiss, Miller (BIB3) 2003; 6 Glass, Fedor, Wesselingh, McArthur (BIB15) 1995; 38 Hall, Oostveen, Gurney (BIB19) 1998; 23 Coleman, Perry (BIB8) 2002; 25 Rothstein (10.1016/j.expneurol.2003.10.004_BIB26) 1993; 90 Martin (10.1016/j.expneurol.2003.10.004_BIB23) 2003; 32 Williamson (10.1016/j.expneurol.2003.10.004_BIB32) 1999; 2 West (10.1016/j.expneurol.2003.10.004_BIB31) 1991; 231 Glass (10.1016/j.expneurol.2003.10.004_BIB14) 2002; vol. II Rich (10.1016/j.expneurol.2003.10.004_BIB25) 2002; 88 Ferri (10.1016/j.expneurol.2003.10.004_BIB11) 2003; 13 Sagot (10.1016/j.expneurol.2003.10.004_BIB27) 1997; 18 Cifuentes-Dias (10.1016/j.expneurol.2003.10.004_BIB6) 2002; 11 Hafezparast (10.1016/j.expneurol.2003.10.004_BIB18) 2003; 300 Cavanagh (10.1016/j.expneurol.2003.10.004_BIB4) 1964; 3 Carter (10.1016/j.expneurol.2003.10.004_BIB3) 2003; 6 Bradley (10.1016/j.expneurol.2003.10.004_BIB2) 1983; 14 Graeber (10.1016/j.expneurol.2003.10.004_BIB16) 1988; 21 Chiu (10.1016/j.expneurol.2003.10.004_BIB5) 1995; 6 Frey (10.1016/j.expneurol.2003.10.004_BIB13) 2000; 20 Zhang (10.1016/j.expneurol.2003.10.004_BIB33) 1997; 139 Finn (10.1016/j.expneurol.2003.10.004_BIB12) 2000; 20 Johnston (10.1016/j.expneurol.2003.10.004_BIB20) 2000; 97 Coleman (10.1016/j.expneurol.2003.10.004_BIB8) 2002; 25 Glass (10.1016/j.expneurol.2003.10.004_BIB15) 1995; 38 Tetzlaff (10.1016/j.expneurol.2003.10.004_BIB30) 1986 Bjornskov (10.1016/j.expneurol.2003.10.004_BIB34) 1984; 41 Coggeshall (10.1016/j.expneurol.2003.10.004_BIB7) 1996; 364 Deckwerth (10.1016/j.expneurol.2003.10.004_BIB9) 1994; 165 Puls (10.1016/j.expneurol.2003.10.004_BIB24) 2003; 33 Griffin (10.1016/j.expneurol.2003.10.004_BIB17) 1988; 23 Kennel (10.1016/j.expneurol.2003.10.004_BIB21) 1996; 7 LaMonte (10.1016/j.expneurol.2003.10.004_BIB22) 2002; 34 Sobue (10.1016/j.expneurol.2003.10.004_BIB28) 1983; 40 Spencer (10.1016/j.expneurol.2003.10.004_BIB29) 1976; vol. 3 Hall (10.1016/j.expneurol.2003.10.004_BIB19) 1998; 23 Drachman (10.1016/j.expneurol.2003.10.004_BIB10) 2002; 52 Bommel (10.1016/j.expneurol.2003.10.004_BIB1) 2002; 159 |
References_xml | – volume: 33 start-page: 455 year: 2003 end-page: 456 ident: BIB24 article-title: Mutant dynactin in motor neuron disease publication-title: Nat. Genet – volume: 40 start-page: 306 year: 1983 end-page: 309 ident: BIB28 article-title: Amyotrophic lateral sclerosis: lack of central chromatolytic response of motor neurocytons corresponding to active axonal degeneration publication-title: Arch. Neurol – volume: 159 start-page: 563 year: 2002 end-page: 569 ident: BIB1 article-title: Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease publication-title: J. Cell Biol – volume: 90 start-page: 6591 year: 1993 end-page: 6595 ident: BIB26 article-title: Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 41 start-page: 527 year: 1984 end-page: 530 ident: BIB34 article-title: Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis publication-title: Arch. Neurol – start-page: 3 year: 1986 end-page: 8 ident: BIB30 article-title: Reaction of motoneurons and their microenvironment to axotomy publication-title: Exp. Brain Res – volume: 52 start-page: 771 year: 2002 end-page: 778 ident: BIB10 article-title: Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS publication-title: Ann. Neurol – volume: 97 start-page: 12571 year: 2000 end-page: 12576 ident: BIB20 article-title: Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis publication-title: Proc. Natl. Acad. Sci. U. S. A – volume: 11 start-page: 1439 year: 2002 end-page: 1447 ident: BIB6 article-title: Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model publication-title: Hum. Mol. Genet – volume: 6 start-page: 349 year: 1995 end-page: 362 ident: BIB5 article-title: Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis publication-title: Mol. Cell. Neurosci – volume: 13 start-page: 669 year: 2003 end-page: 673 ident: BIB11 article-title: Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease publication-title: Curr. Biol – volume: 7 start-page: 1427 year: 1996 end-page: 1431 ident: BIB21 article-title: Neuromuscular function impairment is not caused by motor neuron loss in FALS mice: an electromyographic study publication-title: NeuroReport – volume: 139 start-page: 1307 year: 1997 end-page: 1315 ident: BIB33 article-title: Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation publication-title: J. Cell Biol – volume: 364 start-page: 6 year: 1996 end-page: 15 ident: BIB7 article-title: Methods for determining numbers of cells and synapses: a case for more uniform standards of review publication-title: J. Comp. Neurol – volume: 21 start-page: 18 year: 1988 end-page: 24 ident: BIB16 article-title: Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells publication-title: J. Neurosci. Res – volume: 165 start-page: 63 year: 1994 end-page: 72 ident: BIB9 article-title: Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis) publication-title: Dev. Biol – volume: 20 start-page: 1333 year: 2000 end-page: 1341 ident: BIB12 article-title: Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases publication-title: J. Neurosci – volume: 300 start-page: 808 year: 2003 end-page: 812 ident: BIB18 article-title: Mutations in dynein link motor neuron degeneration to defects in retrograde transport publication-title: Science – volume: 32 start-page: 443 year: 2003 end-page: 447 ident: BIB23 article-title: A missense mutation in Tbce causes progressive motor neuronopathy in mice publication-title: Nat. Genet – volume: vol. 3 start-page: 253 year: 1976 end-page: 295 ident: BIB29 article-title: Central–peripheral distal axonopathy—The pathogenesis of dying-back polyneuropathies publication-title: Prog. Neuropathol – volume: 38 start-page: 755 year: 1995 end-page: 762 ident: BIB15 article-title: Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia publication-title: Ann. Neurol – volume: 34 start-page: 715 year: 2002 end-page: 727 ident: BIB22 article-title: Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive deterioration publication-title: Neuron – volume: 14 start-page: 267 year: 1983 end-page: 277 ident: BIB2 article-title: Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis publication-title: Ann. Neurol – volume: 88 start-page: 3305 year: 2002 end-page: 3314 ident: BIB25 article-title: Reduced neuromuscular quantal content with normal synaptic release time course and depression in canine motor neuron disease publication-title: J. Neurophysiol – volume: 20 start-page: 2534 year: 2000 end-page: 2542 ident: BIB13 article-title: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases publication-title: J. Neurosci – volume: 23 start-page: 249 year: 1998 end-page: 256 ident: BIB19 article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS publication-title: Glia – volume: 3 start-page: 219 year: 1964 end-page: 267 ident: BIB4 article-title: The significance of the “dying back” process in human and experimental neurological diseases publication-title: Int. Rev. Exp. Pathol – volume: 23 start-page: 3 year: 1988 end-page: 13 ident: BIB17 article-title: Axonal transport in peripheral neuropathies publication-title: Ann. Neurol – volume: 18 start-page: 330 year: 1997 end-page: 337 ident: BIB27 article-title: Clinical and molecular aspects of motoneurone diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein publication-title: Trends Pharmacol. Sci – volume: 6 start-page: 147 year: 2003 end-page: 153 ident: BIB3 article-title: Drug therapy for amyotrophic lateral sclerosis: where are we now? publication-title: Investig. Drugs J – volume: 231 start-page: 482 year: 1991 end-page: 497 ident: BIB31 article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator publication-title: Anat. Rec – volume: 25 start-page: 532 year: 2002 end-page: 537 ident: BIB8 article-title: Axon pathology in neurological disease: a neglected therapeutic target publication-title: Trends Neurosci – volume: vol. II start-page: 1075 year: 2002 end-page: 1091 ident: BIB14 article-title: Pathophysiology of nerve and root disorders publication-title: Diseases of the Nervous System: Clinical Neuroscience and Therapeutic Principles – volume: 2 start-page: 50 year: 1999 end-page: 56 ident: BIB32 article-title: Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons publication-title: Nat. Neurosci – volume: 88 start-page: 3305 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB25 article-title: Reduced neuromuscular quantal content with normal synaptic release time course and depression in canine motor neuron disease publication-title: J. Neurophysiol doi: 10.1152/jn.00271.2002 – volume: 6 start-page: 147 year: 2003 ident: 10.1016/j.expneurol.2003.10.004_BIB3 article-title: Drug therapy for amyotrophic lateral sclerosis: where are we now? publication-title: Investig. Drugs J – volume: 231 start-page: 482 year: 1991 ident: 10.1016/j.expneurol.2003.10.004_BIB31 article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator publication-title: Anat. Rec doi: 10.1002/ar.1092310411 – volume: 18 start-page: 330 year: 1997 ident: 10.1016/j.expneurol.2003.10.004_BIB27 article-title: Clinical and molecular aspects of motoneurone diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein publication-title: Trends Pharmacol. Sci doi: 10.1016/S0165-6147(97)01094-8 – volume: 38 start-page: 755 year: 1995 ident: 10.1016/j.expneurol.2003.10.004_BIB15 article-title: Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia publication-title: Ann. Neurol doi: 10.1002/ana.410380510 – volume: 41 start-page: 527 year: 1984 ident: 10.1016/j.expneurol.2003.10.004_BIB34 article-title: Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis publication-title: Arch. Neurol doi: 10.1001/archneur.1984.04050170073021 – volume: 20 start-page: 1333 year: 2000 ident: 10.1016/j.expneurol.2003.10.004_BIB12 article-title: Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.20-04-01333.2000 – volume: 300 start-page: 808 year: 2003 ident: 10.1016/j.expneurol.2003.10.004_BIB18 article-title: Mutations in dynein link motor neuron degeneration to defects in retrograde transport publication-title: Science doi: 10.1126/science.1083129 – volume: 23 start-page: 249 year: 1998 ident: 10.1016/j.expneurol.2003.10.004_BIB19 article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS publication-title: Glia doi: 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-# – start-page: 3 issue: Supp. 13 year: 1986 ident: 10.1016/j.expneurol.2003.10.004_BIB30 article-title: Reaction of motoneurons and their microenvironment to axotomy publication-title: Exp. Brain Res doi: 10.1007/978-3-642-70699-8_1 – volume: 40 start-page: 306 year: 1983 ident: 10.1016/j.expneurol.2003.10.004_BIB28 article-title: Amyotrophic lateral sclerosis: lack of central chromatolytic response of motor neurocytons corresponding to active axonal degeneration publication-title: Arch. Neurol doi: 10.1001/archneur.1983.04050050074011 – volume: 14 start-page: 267 year: 1983 ident: 10.1016/j.expneurol.2003.10.004_BIB2 article-title: Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis publication-title: Ann. Neurol doi: 10.1002/ana.410140304 – volume: 165 start-page: 63 year: 1994 ident: 10.1016/j.expneurol.2003.10.004_BIB9 article-title: Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis) publication-title: Dev. Biol doi: 10.1006/dbio.1994.1234 – volume: 25 start-page: 532 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB8 article-title: Axon pathology in neurological disease: a neglected therapeutic target publication-title: Trends Neurosci doi: 10.1016/S0166-2236(02)02255-5 – volume: 2 start-page: 50 year: 1999 ident: 10.1016/j.expneurol.2003.10.004_BIB32 article-title: Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons publication-title: Nat. Neurosci doi: 10.1038/4553 – volume: 3 start-page: 219 year: 1964 ident: 10.1016/j.expneurol.2003.10.004_BIB4 article-title: The significance of the “dying back” process in human and experimental neurological diseases publication-title: Int. Rev. Exp. Pathol – volume: 364 start-page: 6 year: 1996 ident: 10.1016/j.expneurol.2003.10.004_BIB7 article-title: Methods for determining numbers of cells and synapses: a case for more uniform standards of review publication-title: J. Comp. Neurol doi: 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9 – volume: 34 start-page: 715 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB22 article-title: Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive deterioration publication-title: Neuron doi: 10.1016/S0896-6273(02)00696-7 – volume: 11 start-page: 1439 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB6 article-title: Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model publication-title: Hum. Mol. Genet doi: 10.1093/hmg/11.12.1439 – volume: vol. II start-page: 1075 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB14 article-title: Pathophysiology of nerve and root disorders – volume: 23 start-page: 3 year: 1988 ident: 10.1016/j.expneurol.2003.10.004_BIB17 article-title: Axonal transport in peripheral neuropathies publication-title: Ann. Neurol doi: 10.1002/ana.410230103 – volume: 7 start-page: 1427 year: 1996 ident: 10.1016/j.expneurol.2003.10.004_BIB21 article-title: Neuromuscular function impairment is not caused by motor neuron loss in FALS mice: an electromyographic study publication-title: NeuroReport doi: 10.1097/00001756-199605310-00021 – volume: 139 start-page: 1307 year: 1997 ident: 10.1016/j.expneurol.2003.10.004_BIB33 article-title: Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation publication-title: J. Cell Biol doi: 10.1083/jcb.139.5.1307 – volume: 13 start-page: 669 year: 2003 ident: 10.1016/j.expneurol.2003.10.004_BIB11 article-title: Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease publication-title: Curr. Biol doi: 10.1016/S0960-9822(03)00206-9 – volume: 32 start-page: 443 year: 2003 ident: 10.1016/j.expneurol.2003.10.004_BIB23 article-title: A missense mutation in Tbce causes progressive motor neuronopathy in mice publication-title: Nat. Genet doi: 10.1038/ng1016 – volume: 33 start-page: 455 year: 2003 ident: 10.1016/j.expneurol.2003.10.004_BIB24 article-title: Mutant dynactin in motor neuron disease publication-title: Nat. Genet doi: 10.1038/ng1123 – volume: 21 start-page: 18 year: 1988 ident: 10.1016/j.expneurol.2003.10.004_BIB16 article-title: Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells publication-title: J. Neurosci. Res doi: 10.1002/jnr.490210104 – volume: vol. 3 start-page: 253 year: 1976 ident: 10.1016/j.expneurol.2003.10.004_BIB29 article-title: Central–peripheral distal axonopathy—The pathogenesis of dying-back polyneuropathies – volume: 52 start-page: 771 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB10 article-title: Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS publication-title: Ann. Neurol doi: 10.1002/ana.10374 – volume: 90 start-page: 6591 year: 1993 ident: 10.1016/j.expneurol.2003.10.004_BIB26 article-title: Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.90.14.6591 – volume: 159 start-page: 563 year: 2002 ident: 10.1016/j.expneurol.2003.10.004_BIB1 article-title: Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease publication-title: J. Cell Biol doi: 10.1083/jcb.200208001 – volume: 6 start-page: 349 year: 1995 ident: 10.1016/j.expneurol.2003.10.004_BIB5 article-title: Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis publication-title: Mol. Cell. Neurosci doi: 10.1006/mcne.1995.1027 – volume: 97 start-page: 12571 year: 2000 ident: 10.1016/j.expneurol.2003.10.004_BIB20 article-title: Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis publication-title: Proc. Natl. Acad. Sci. U. S. A doi: 10.1073/pnas.220417997 – volume: 20 start-page: 2534 year: 2000 ident: 10.1016/j.expneurol.2003.10.004_BIB13 article-title: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases publication-title: J. Neurosci doi: 10.1523/JNEUROSCI.20-07-02534.2000 |
SSID | ssj0009427 |
Score | 2.3967223 |
Snippet | The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor... |
SourceID | proquest pubmed pascalfrancis crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 232 |
SubjectTerms | Amyotrophic Lateral Sclerosis - enzymology Amyotrophic Lateral Sclerosis - genetics Amyotrophic Lateral Sclerosis - pathology Animals Axonopathy Axons - enzymology Axons - pathology Biological and medical sciences Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases Denervation Humans Male Medical sciences Mice Mice, Mutant Strains Mice, Transgenic Neurology Sclerosis Superoxide Dismutase - biosynthesis Superoxide Dismutase - genetics Superoxide Dismutase-1 Time Factors |
Title | Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man |
URI | https://dx.doi.org/10.1016/j.expneurol.2003.10.004 https://www.ncbi.nlm.nih.gov/pubmed/14736504 https://www.proquest.com/docview/80112962 |
Volume | 185 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkdBKCPFaKI-uD1wDeTixw61CoALankDiFjl-aLMqSUSL1F747YwTh6oHxAEpp8QTWzP2zGd5PB_AOeciZzTBTY6IfY_mofGEskU_uQwj9A1-rJpsi3EyeqL3z_HzGlx3d2FsWqXz_a1Pb7y1e3PptHlZF4W944ubAc4TP2rqpMfrsBFitOc92BjePYzGy9q71DG3BtSzAitpXnpeN5Ujm2OI6KLJ9KJfBamtWkxRdablvPgalDbB6XYHth2qJMN24Luwpss92Pzrzs33YTx8WVSz16r-V0gyEfbW8YRMsSl2X0wJPoIoiyQnRMyrsrI8xYsroh3lKClKYmnriSgVeRHlATzd3jxejzzHpOBJmkQzz0S5NLjYmPSNH0smmEolAiPJtU-1kVKmLM01hnJfxUYoKXPGch0GRkUmREj1G3plVeojIGmgaY5_5UIjGEgVD6UMYmwvUhYHCe9D0qkuk67MuGW7mGRdPtn_7FPnlgQzsh9Q533wPwXrttLG9yJXnW2ylUmTYTz4XniwYs1lp7iJs-V6-_CnM2-Ga84epIhSV2_TDKM6wqQEWxy2Vl_KUhYh5qXHPxnZCfxq84Ns0swp9Gavb_oMoc8sH8D6xXswcBP8A0-9BPk |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gAoivl2fOXit9pE2qTcRZX3tScFbSfPAytoWdwW9-NudtKnLHsSD0FM704SZJPOFTOYDOOZc5IwmuMkRse_RPDSeULboJ5dhhGuDH6sm22KQ9B_pzVP8NAMX3V0Ym1bp1v52TW9Wa_fm1FnztC4Ke8cXNwOcJ37U1EmPZ2GeWpoDHNQnX5M8j5Q63taAelZ8KslLf9RN3cjmECI6afK86G8harkWIzScaRkvfoekTWi6WoUVhynJedvtNZjR5Tos3LtT8w0YnL9-VuO3qn4uJBkKe-d4SEYois0XI4KPIMriyCERH1VZWZbizzOiHeEoKUpiSeuJKBV5FeUmPF5dPlz0Pcej4EmaRGPPRLk0ONWY9I0fSyaYSiXCIsm1T7WRUqYszTUGcl_FRigpc8ZyHQZGRSZEQLUFc2VV6h0gaaBpjn_lQiMUSBUPpQxilBcpi4OE9yDpTJdJV2Tccl0Msy6b7CX7sbmlwIzsB7R5D_wfxbqts_G3ylnnm2xqyGQYDf5WPpzy5qRR3MLZYr09OOrcm-GMs8cootTV-yjDmI4gKUGJ7dbrE13KIkS8dPc_PTuCxf7D_V12dz243YOlNlPIps_sw9z47V0fIAga54fNIP8GcKwFuw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyotrophic+lateral+sclerosis+is+a+distal+axonopathy%3A+evidence+in+mice+and+man&rft.jtitle=Experimental+neurology&rft.au=Fischer%2C+Lindsey+R&rft.au=Culver%2C+Deborah+G&rft.au=Tennant%2C+Philip&rft.au=Davis%2C+Albert+A&rft.date=2004-02-01&rft.issn=0014-4886&rft.volume=185&rft.issue=2&rft.spage=232&rft_id=info:doi/10.1016%2Fj.expneurol.2003.10.004&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4886&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4886&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4886&client=summon |