Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man

The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1 G93A mice. Quantitative pathologi...

Full description

Saved in:
Bibliographic Details
Published inExperimental neurology Vol. 185; no. 2; pp. 232 - 240
Main Authors Fischer, Lindsey R., Culver, Deborah G., Tennant, Philip, Davis, Albert A., Wang, Minsheng, Castellano-Sanchez, Amilcar, Khan, Jaffar, Polak, Meraida A., Glass, Jonathan D.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.02.2004
Elsevier
Subjects
Online AccessGet full text
ISSN0014-4886
1090-2430
DOI10.1016/j.expneurol.2003.10.004

Cover

Abstract The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1 G93A mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 ± 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a “dying back” pattern.
AbstractList The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern.The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern.
The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1(G93A) mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 +/- 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a "dying back" pattern.
The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor neuron disease begins, we performed a comprehensive spatiotemporal analysis of disease progression in SOD1 G93A mice. Quantitative pathological analysis was performed in the same mice at multiple ages at neuromuscular junctions (NMJ), ventral roots, and spinal cord. In addition, a patient with sporadic ALS who died unexpectedly was examined at autopsy. Mice became clinically weak at 80 days and died at 131 ± 5 days. At 47 days, 40% of end-plates were denervated whereas there was no evidence of ventral root or cell body loss. At 80 days, 60% of ventral root axons were lost but there was no loss of motor neurons. Motor neuron loss was well underway by 100 days. Microglial and astrocytic activation around motor neurons was not identified until after the onset of distal axon degeneration. Autopsy of the ALS patient demonstrated denervation and reinnervation changes in muscle but normal appearing motor neurons. We conclude that in this widely studied animal model of human ALS, and in this single human case, motor neuron pathology begins at the distal axon and proceeds in a “dying back” pattern.
Author Wang, Minsheng
Glass, Jonathan D.
Culver, Deborah G.
Castellano-Sanchez, Amilcar
Polak, Meraida A.
Fischer, Lindsey R.
Davis, Albert A.
Khan, Jaffar
Tennant, Philip
Author_xml – sequence: 1
  givenname: Lindsey R.
  surname: Fischer
  fullname: Fischer, Lindsey R.
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 2
  givenname: Deborah G.
  surname: Culver
  fullname: Culver, Deborah G.
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 3
  givenname: Philip
  surname: Tennant
  fullname: Tennant, Philip
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 4
  givenname: Albert A.
  surname: Davis
  fullname: Davis, Albert A.
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 5
  givenname: Minsheng
  surname: Wang
  fullname: Wang, Minsheng
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 6
  givenname: Amilcar
  surname: Castellano-Sanchez
  fullname: Castellano-Sanchez, Amilcar
  organization: Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 7
  givenname: Jaffar
  surname: Khan
  fullname: Khan, Jaffar
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 8
  givenname: Meraida A.
  surname: Polak
  fullname: Polak, Meraida A.
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
– sequence: 9
  givenname: Jonathan D.
  surname: Glass
  fullname: Glass, Jonathan D.
  email: jglas03@emory.edu
  organization: Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=15483992$$DView record in Pascal Francis
https://www.ncbi.nlm.nih.gov/pubmed/14736504$$D View this record in MEDLINE/PubMed
BookMark eNqFkV9rFDEUxYNU7Lb6FXRe9G3Wm5nMnwg-LEWrUPRFn0Pm5oZmmUnWJFu6374z7tqCL4XAhZvfORfOuWBnPnhi7B2HNQfeftyu6X7naR_DuK4A6nm7BhAv2IqDhLISNZyxFQAXpej79pxdpLQFACmq7hU756Kr2wbEiv3YTIeQY9jdOixGnSnqsUg4UgzJpWJ-ujAu5Xmr74MPO51vD58KunOGPFLhfDG5eWpvikn71-yl1WOiN6d5yX5__fLr6lt58_P6-9XmpkTR1rm09YC25rJDsNBgpzsjUVYSewJBFhFlJwdqKg6msdogDl03UMWtqW3FRX3JPhx9dzH82VPKanIJaRy1p7BPqgfOK9lWM_j2BO6HiYzaRTfpeFD_EpiB9ydAJ9SjjdqjS09cI_paysXo85HDOZkUySp0WWcXfI7ajYqDWppRW_XYjFqaWT7g753uP_3jiWeVm6OS5kDvHEWV0C3hGxcJszLBPevxABP2rso
CODEN EXNEAC
CitedBy_id crossref_primary_10_1002_ana_21152
crossref_primary_10_1002_brb3_104
crossref_primary_10_1007_s10571_014_0029_x
crossref_primary_10_1038_srep25960
crossref_primary_10_1002_mus_27360
crossref_primary_10_1016_j_expneurol_2011_05_007
crossref_primary_10_1126_sciadv_adk3229
crossref_primary_10_14336_AD_2015_0506
crossref_primary_10_1002_jnr_20379
crossref_primary_10_1016_j_bbrc_2023_04_103
crossref_primary_10_1097_NEN_0000000000000079
crossref_primary_10_1007_s40263_019_00657_9
crossref_primary_10_1038_s41598_017_12603_0
crossref_primary_10_2174_1570159X20666220915103613
crossref_primary_10_1016_j_expneurol_2019_05_008
crossref_primary_10_1523_JNEUROSCI_3090_16_2017
crossref_primary_10_1016_j_freeradbiomed_2013_04_018
crossref_primary_10_3389_fnagi_2015_00204
crossref_primary_10_1093_hmg_ddp421
crossref_primary_10_1097_NEN_0000000000000081
crossref_primary_10_3389_fbioe_2020_00224
crossref_primary_10_1111_jns_12164
crossref_primary_10_1007_s12035_013_8507_6
crossref_primary_10_1016_j_jns_2011_08_009
crossref_primary_10_1097_NEN_0000000000000086
crossref_primary_10_3390_cells8121578
crossref_primary_10_1007_s13311_014_0329_3
crossref_primary_10_1016_j_neuron_2022_08_017
crossref_primary_10_1038_s41583_020_0269_3
crossref_primary_10_3109_17482968_2012_660953
crossref_primary_10_2217_fnl_12_68
crossref_primary_10_1016_j_nbd_2008_02_009
crossref_primary_10_3390_ijms18112298
crossref_primary_10_1007_s11914_015_0281_0
crossref_primary_10_1371_journal_pone_0198089
crossref_primary_10_1002_jnr_23619
crossref_primary_10_1242_dmm_031997
crossref_primary_10_4103_1673_5374_217319
crossref_primary_10_1038_nrneurol_2016_140
crossref_primary_10_1016_j_celrep_2022_111001
crossref_primary_10_1016_j_neures_2021_11_002
crossref_primary_10_3390_cells10061449
crossref_primary_10_1002_dneu_20747
crossref_primary_10_4103_1673_5374_276320
crossref_primary_10_1016_j_neuroscience_2019_05_017
crossref_primary_10_1002_jnr_24714
crossref_primary_10_1016_j_micinf_2021_104829
crossref_primary_10_1016_j_stemcr_2015_02_010
crossref_primary_10_1038_s41419_019_1451_2
crossref_primary_10_1002_mus_26289
crossref_primary_10_1016_j_celrep_2024_115123
crossref_primary_10_1016_j_jchemneu_2016_03_003
crossref_primary_10_3390_cells13090745
crossref_primary_10_1242_jcs_167544
crossref_primary_10_1002_cm_21580
crossref_primary_10_1186_s12974_016_0620_9
crossref_primary_10_1038_s41598_023_32641_1
crossref_primary_10_7554_eLife_47372
crossref_primary_10_1113_JP277456
crossref_primary_10_1002_brb3_142
crossref_primary_10_1002_cne_25567
crossref_primary_10_1016_j_bbrc_2013_07_060
crossref_primary_10_1002_brb3_143
crossref_primary_10_1002_mus_20768
crossref_primary_10_1177_1759091419886212
crossref_primary_10_1016_j_bbi_2014_05_019
crossref_primary_10_1016_j_clinph_2011_01_045
crossref_primary_10_3934_celltissue_2018_2_91
crossref_primary_10_3390_cells11203263
crossref_primary_10_1038_s41467_017_00911_y
crossref_primary_10_3390_antiox10101522
crossref_primary_10_1002_ana_24618
crossref_primary_10_1242_jcs_214684
crossref_primary_10_3389_fnagi_2021_650038
crossref_primary_10_1113_jphysiol_2007_149286
crossref_primary_10_1093_hmg_ddm367
crossref_primary_10_1111_j_1469_7580_2008_01007_x
crossref_primary_10_1186_s40035_022_00320_2
crossref_primary_10_1016_j_neuint_2008_12_012
crossref_primary_10_1093_brain_awv008
crossref_primary_10_1007_s00018_019_03337_5
crossref_primary_10_1016_j_crneur_2024_100138
crossref_primary_10_1016_j_jns_2007_01_057
crossref_primary_10_1002_nbm_3954
crossref_primary_10_3389_fnmol_2020_00162
crossref_primary_10_1016_j_nbd_2007_07_003
crossref_primary_10_7554_eLife_88250_3
crossref_primary_10_1111_cei_13660
crossref_primary_10_1016_j_pneurobio_2014_03_001
crossref_primary_10_1007_s12640_017_9790_1
crossref_primary_10_1016_j_bbadis_2009_08_012
crossref_primary_10_1016_j_phrs_2018_07_004
crossref_primary_10_1523_ENEURO_0388_19_2020
crossref_primary_10_3389_fnins_2020_00575
crossref_primary_10_1371_journal_pone_0100834
crossref_primary_10_1007_s10126_018_9857_x
crossref_primary_10_1007_s12640_022_00632_1
crossref_primary_10_1016_j_expneurol_2017_03_018
crossref_primary_10_1111_j_1476_5381_2011_01612_x
crossref_primary_10_1038_s41467_021_23224_7
crossref_primary_10_1111_nan_12925
crossref_primary_10_1002_mus_20556
crossref_primary_10_1007_s13311_011_0068_7
crossref_primary_10_1093_brain_awt097
crossref_primary_10_1002_ana_21128
crossref_primary_10_1002_ame2_12112
crossref_primary_10_1016_j_neures_2010_12_009
crossref_primary_10_1371_journal_pone_0056625
crossref_primary_10_1016_j_neuroscience_2020_11_016
crossref_primary_10_1093_jnen_nlw004
crossref_primary_10_3390_cells10030525
crossref_primary_10_1093_jnen_nlw003
crossref_primary_10_1523_JNEUROSCI_2126_14_2015
crossref_primary_10_1016_j_expneurol_2011_06_003
crossref_primary_10_1523_JNEUROSCI_4218_08_2008
crossref_primary_10_1016_j_bbr_2011_06_019
crossref_primary_10_1186_s40035_022_00331_z
crossref_primary_10_1038_s41598_019_39313_z
crossref_primary_10_3109_17482968_2012_701308
crossref_primary_10_1074_jbc_M109_041319
crossref_primary_10_1111_ncn3_12701
crossref_primary_10_1038_s41418_022_01074_0
crossref_primary_10_1186_s40478_022_01373_0
crossref_primary_10_1196_annals_1340_013
crossref_primary_10_3389_fnmol_2022_937974
crossref_primary_10_1016_j_jns_2004_03_010
crossref_primary_10_1007_s00401_019_01989_y
crossref_primary_10_1016_j_neurobiolaging_2019_07_001
crossref_primary_10_15252_emmm_201607298
crossref_primary_10_1371_journal_pone_0109833
crossref_primary_10_1093_hmg_ddw222
crossref_primary_10_1016_j_freeradbiomed_2013_10_002
crossref_primary_10_1038_s41598_019_40553_2
crossref_primary_10_3389_fncel_2014_00148
crossref_primary_10_1111_apha_13982
crossref_primary_10_1016_j_drudis_2018_01_027
crossref_primary_10_1016_j_jneuroim_2006_08_006
crossref_primary_10_1002_acn3_124
crossref_primary_10_1089_ars_2012_4524
crossref_primary_10_4103_1673_5374_320998
crossref_primary_10_1002_ana_20453
crossref_primary_10_1093_icb_icr116
crossref_primary_10_1007_s12041_018_0955_3
crossref_primary_10_3389_fnins_2015_00448
crossref_primary_10_1016_j_expneurol_2008_04_033
crossref_primary_10_1152_physiolgenomics_00017_2007
crossref_primary_10_1016_j_jneumeth_2008_08_032
crossref_primary_10_1007_s00401_016_1633_2
crossref_primary_10_1227_01_NEU_0000255444_44365_B9
crossref_primary_10_1093_hmg_ddv360
crossref_primary_10_1111_j_1471_4159_2011_07298_x
crossref_primary_10_1523_JNEUROSCI_1233_11_2012
crossref_primary_10_34024_rnc_2006_v14_8768
crossref_primary_10_3390_brainsci14080760
crossref_primary_10_1007_s12035_021_02658_6
crossref_primary_10_1002_mus_20566
crossref_primary_10_1177_1073858405281898
crossref_primary_10_1113_jphysiol_2011_204891
crossref_primary_10_1371_journal_pone_0034640
crossref_primary_10_3389_fncel_2014_00131
crossref_primary_10_1016_j_jns_2012_04_003
crossref_primary_10_1016_j_clinph_2024_04_010
crossref_primary_10_1002_ana_20482
crossref_primary_10_1016_j_neuron_2012_02_026
crossref_primary_10_1155_2014_401306
crossref_primary_10_1371_journal_pone_0002334
crossref_primary_10_1016_j_nbd_2009_09_006
crossref_primary_10_1016_j_nbd_2011_01_031
crossref_primary_10_1523_JNEUROSCI_1748_18_2020
crossref_primary_10_3390_ijms231911333
crossref_primary_10_1002_cyto_a_22630
crossref_primary_10_1371_journal_pone_0041182
crossref_primary_10_3389_fnins_2019_00601
crossref_primary_10_1016_j_pneurobio_2007_07_007
crossref_primary_10_1007_s00429_012_0396_3
crossref_primary_10_1371_journal_pone_0231598
crossref_primary_10_1016_j_ejmg_2017_12_001
crossref_primary_10_4252_wjsc_v9_i11_187
crossref_primary_10_1186_1742_2094_8_74
crossref_primary_10_1155_2012_379657
crossref_primary_10_1242_dmm_002113
crossref_primary_10_1111_j_1365_2990_2010_01061_x
crossref_primary_10_1016_j_pneurobio_2011_10_001
crossref_primary_10_1523_JNEUROSCI_3485_15_2016
crossref_primary_10_1002_jbm_a_36312
crossref_primary_10_1016_j_toxlet_2013_11_016
crossref_primary_10_1016_j_brainres_2012_04_031
crossref_primary_10_3390_ijms18102092
crossref_primary_10_3109_17482968_2012_679944
crossref_primary_10_3390_md14050102
crossref_primary_10_1016_j_cub_2015_06_045
crossref_primary_10_1038_s41598_022_11767_8
crossref_primary_10_1080_00222890903272025
crossref_primary_10_3724_SP_J_1008_2009_00208
crossref_primary_10_1073_pnas_0810934106
crossref_primary_10_1016_j_clinph_2016_03_024
crossref_primary_10_1016_j_neurol_2020_03_011
crossref_primary_10_1042_BST20130118
crossref_primary_10_1371_journal_pone_0091643
crossref_primary_10_1111_bph_15276
crossref_primary_10_1016_j_neulet_2007_01_009
crossref_primary_10_1002_hbm_23412
crossref_primary_10_1007_s00018_016_2337_4
crossref_primary_10_1007_s12035_019_1550_1
crossref_primary_10_1101_sqb_2018_83_037622
crossref_primary_10_1002_mus_20341
crossref_primary_10_1093_hmg_ddn426
crossref_primary_10_3233_JND_140068
crossref_primary_10_1002_cne_21160
crossref_primary_10_1093_braincomms_fcac081
crossref_primary_10_1371_journal_pone_0183684
crossref_primary_10_1016_j_neuron_2023_02_028
crossref_primary_10_1371_journal_pone_0032008
crossref_primary_10_1016_j_jaut_2011_06_003
crossref_primary_10_1186_s13287_018_0843_z
crossref_primary_10_3389_fnagi_2024_1421841
crossref_primary_10_3390_ijms20112818
crossref_primary_10_3389_fimmu_2024_1445867
crossref_primary_10_3390_cells10020320
crossref_primary_10_1073_pnas_0508774103
crossref_primary_10_1088_1758_5090_acf39e
crossref_primary_10_1113_JP284143
crossref_primary_10_1002_0471141755_ph0567s69
crossref_primary_10_3389_fncel_2014_00184
crossref_primary_10_1073_pnas_1303279110
crossref_primary_10_1093_hmg_ddae190
crossref_primary_10_1007_s12035_013_8573_9
crossref_primary_10_1523_JNEUROSCI_3463_09_2009
crossref_primary_10_1093_hmg_ddi392
crossref_primary_10_1371_journal_pone_0023244
crossref_primary_10_1016_j_mcn_2012_07_003
crossref_primary_10_3389_fnins_2015_00400
crossref_primary_10_2217_fnl_09_21
crossref_primary_10_3389_fncel_2015_00289
crossref_primary_10_1007_s11481_015_9625_x
crossref_primary_10_3389_fnmol_2022_1000183
crossref_primary_10_3390_ijms25137059
crossref_primary_10_1016_j_nbd_2005_01_010
crossref_primary_10_1038_s41593_023_01496_0
crossref_primary_10_1002_cne_23763
crossref_primary_10_1016_j_jneumeth_2020_109016
crossref_primary_10_3389_fnmol_2020_568426
crossref_primary_10_1002_jnr_20305
crossref_primary_10_1016_j_brainresrev_2010_10_003
crossref_primary_10_1111_j_1471_4159_2009_06080_x
crossref_primary_10_7554_eLife_92644
crossref_primary_10_1007_s00401_024_02689_y
crossref_primary_10_15252_embj_2020107586
crossref_primary_10_1523_JNEUROSCI_1379_14_2015
crossref_primary_10_1080_21678421_2019_1620285
crossref_primary_10_1016_j_neulet_2021_136039
crossref_primary_10_1186_s13024_018_0271_7
crossref_primary_10_20517_and_2023_14
crossref_primary_10_3390_jcm9010261
crossref_primary_10_1016_j_bbadis_2016_03_006
crossref_primary_10_1002_nbm_5037
crossref_primary_10_1073_pnas_0909794107
crossref_primary_10_1186_s13024_021_00511_x
crossref_primary_10_1038_cddis_2015_272
crossref_primary_10_1002_cne_23538
crossref_primary_10_3389_fncel_2016_00011
crossref_primary_10_3389_fnins_2021_711651
crossref_primary_10_1016_j_expneurol_2016_08_013
crossref_primary_10_1016_j_nbd_2005_01_008
crossref_primary_10_1016_j_conb_2008_08_005
crossref_primary_10_1016_j_expneurol_2012_01_015
crossref_primary_10_1002_acn3_179
crossref_primary_10_1038_nrn2946
crossref_primary_10_1371_journal_pone_0001449
crossref_primary_10_1016_j_nbd_2007_12_002
crossref_primary_10_1186_s13024_023_00634_3
crossref_primary_10_1111_j_1460_9568_2007_05845_x
crossref_primary_10_1016_j_expneurol_2011_09_020
crossref_primary_10_1016_j_expneurol_2008_10_014
crossref_primary_10_1016_j_pneurobio_2015_07_004
crossref_primary_10_2147_IJN_S439728
crossref_primary_10_1016_j_phrs_2011_12_001
crossref_primary_10_3390_brainsci8120222
crossref_primary_10_1002_mrm_26685
crossref_primary_10_1016_j_biomaterials_2022_121752
crossref_primary_10_1016_j_neuchi_2008_05_011
crossref_primary_10_3171_2020_8_JNS201461
crossref_primary_10_1016_j_crbeha_2022_100069
crossref_primary_10_1016_j_stemcr_2018_11_005
crossref_primary_10_3109_17482968_2012_662688
crossref_primary_10_1093_brain_awac470
crossref_primary_10_1016_j_neurobiolaging_2010_04_012
crossref_primary_10_1080_21678421_2023_2260194
crossref_primary_10_3390_ijms241411251
crossref_primary_10_1152_ajpregu_00767_2006
crossref_primary_10_3390_jpm11070671
crossref_primary_10_1080_21678421_2023_2260198
crossref_primary_10_1089_ars_2024_0676
crossref_primary_10_1111_j_1460_9568_2006_05103_x
crossref_primary_10_14348_molcells_2016_0233
crossref_primary_10_1186_s13024_023_00623_6
crossref_primary_10_1038_s41467_020_18949_w
crossref_primary_10_1111_joim_12030
crossref_primary_10_1517_14728222_12_10_1229
crossref_primary_10_1371_journal_pone_0097803
crossref_primary_10_1155_2024_1228194
crossref_primary_10_1523_JNEUROSCI_4057_07_2007
crossref_primary_10_1016_j_expneurol_2014_07_001
crossref_primary_10_1186_s40478_020_01039_9
crossref_primary_10_1111_j_1468_1331_2011_03616_x
crossref_primary_10_1134_S2079086415020085
crossref_primary_10_1016_j_nbd_2012_07_011
crossref_primary_10_1016_j_pharmthera_2013_08_003
crossref_primary_10_1111_ejn_14326
crossref_primary_10_1523_JNEUROSCI_3494_08_2008
crossref_primary_10_1016_j_nbd_2018_12_002
crossref_primary_10_1016_j_zool_2015_09_003
crossref_primary_10_1016_j_neubiorev_2021_06_027
crossref_primary_10_1080_15476286_2020_1822638
crossref_primary_10_1016_j_neulet_2019_134462
crossref_primary_10_1038_s10038_022_01055_8
crossref_primary_10_1038_s41467_021_24776_4
crossref_primary_10_1073_pnas_0902505106
crossref_primary_10_1371_journal_pone_0073846
crossref_primary_10_1002_mus_21160
crossref_primary_10_3389_fneur_2021_574919
crossref_primary_10_15252_embr_202256525
crossref_primary_10_1080_14660820500443000
crossref_primary_10_1016_j_nbd_2022_105821
crossref_primary_10_1534_g3_113_005850
crossref_primary_10_1523_ENEURO_0369_19_2020
crossref_primary_10_1016_j_nbd_2023_106377
crossref_primary_10_1016_j_brainres_2018_02_018
crossref_primary_10_1016_j_cub_2016_05_025
crossref_primary_10_3389_fnins_2016_00494
crossref_primary_10_1097_00001756_200504250_00002
crossref_primary_10_1016_j_stemcr_2021_03_029
crossref_primary_10_1523_JNEUROSCI_1965_11_2011
crossref_primary_10_1016_j_expneurol_2009_05_032
crossref_primary_10_3389_fimmu_2020_575792
crossref_primary_10_1016_j_freeradbiomed_2014_02_019
crossref_primary_10_1016_j_celrep_2023_112476
crossref_primary_10_1016_j_expneurol_2021_113815
crossref_primary_10_1080_01616412_2020_1834291
crossref_primary_10_1212_WNL_0b013e31821e553a
crossref_primary_10_1016_j_mcn_2021_103590
crossref_primary_10_1007_s12668_019_00711_2
crossref_primary_10_1242_dmm_029058
crossref_primary_10_1111_bph_15224
crossref_primary_10_1016_j_expneurol_2014_06_018
crossref_primary_10_1007_s00702_021_02353_9
crossref_primary_10_1007_s13311_021_01159_7
crossref_primary_10_1093_brain_awad129
crossref_primary_10_1152_japplphysiol_00049_2021
crossref_primary_10_1038_s41583_020_0315_1
crossref_primary_10_1186_1471_2202_8_79
crossref_primary_10_1242_dmm_050905
crossref_primary_10_1016_j_bbadis_2024_167540
crossref_primary_10_1038_mt_2013_108
crossref_primary_10_1093_hmg_dds215
crossref_primary_10_1371_journal_pone_0082112
crossref_primary_10_1186_1750_1172_9_78
crossref_primary_10_1016_j_molimm_2018_06_007
crossref_primary_10_1159_000446113
crossref_primary_10_1016_j_nbd_2010_03_021
crossref_primary_10_1111_bph_15217
crossref_primary_10_1016_j_brainres_2012_05_018
crossref_primary_10_1016_j_brainres_2009_07_093
crossref_primary_10_1038_s41593_019_0498_9
crossref_primary_10_1080_21678421_2024_2403300
crossref_primary_10_1186_s13395_017_0128_8
crossref_primary_10_1089_scd_2012_0487
crossref_primary_10_1016_j_omtm_2021_03_017
crossref_primary_10_1016_j_expneurol_2012_03_021
crossref_primary_10_1093_hmg_ddr396
crossref_primary_10_3389_fneur_2023_1244385
crossref_primary_10_3390_cells11071150
crossref_primary_10_1016_j_bbadis_2014_02_009
crossref_primary_10_1038_mt_2013_115
crossref_primary_10_1007_s13311_013_0253_y
crossref_primary_10_1073_pnas_0705501104
crossref_primary_10_1038_s41467_020_17514_9
crossref_primary_10_1523_JNEUROSCI_5411_09_2010
crossref_primary_10_3389_fnmol_2020_610964
crossref_primary_10_1186_1471_2202_6_6
crossref_primary_10_1016_j_patter_2021_100261
crossref_primary_10_3389_fncel_2020_604171
crossref_primary_10_1016_j_nbd_2012_06_017
crossref_primary_10_1111_nan_12123
crossref_primary_10_1007_s00401_020_02252_5
crossref_primary_10_1007_s00415_023_11757_4
crossref_primary_10_1007_s11481_013_9489_x
crossref_primary_10_1179_1743132815Y_0000000039
crossref_primary_10_1016_j_neuroscience_2011_05_060
crossref_primary_10_1083_jcb_200504028
crossref_primary_10_1016_j_neulet_2019_134676
crossref_primary_10_3390_biom11101499
crossref_primary_10_1002_cne_21527
crossref_primary_10_1371_journal_pone_0107918
crossref_primary_10_1038_cddis_2016_110
crossref_primary_10_1111_jnc_15244
crossref_primary_10_3233_BPL_140001
crossref_primary_10_1371_journal_pone_0171668
crossref_primary_10_1073_pnas_0913141107
crossref_primary_10_3390_ijms22158194
crossref_primary_10_1007_s12035_015_9676_2
crossref_primary_10_1186_s40478_019_0874_4
crossref_primary_10_7554_eLife_92644_4
crossref_primary_10_1038_s41467_025_57135_8
crossref_primary_10_1016_j_expneurol_2009_02_017
crossref_primary_10_1016_j_nbd_2014_09_009
crossref_primary_10_1172_jci_insight_89530
crossref_primary_10_1212_01_wnl_0000325992_50108_60
crossref_primary_10_1002_cne_20620
crossref_primary_10_1093_hmg_ddu605
crossref_primary_10_1016_j_mcn_2009_08_002
crossref_primary_10_1093_brain_awt029
crossref_primary_10_1016_j_jns_2019_116438
crossref_primary_10_3390_muscles2020014
crossref_primary_10_3389_fnins_2014_00252
crossref_primary_10_1172_jci_insight_97152
crossref_primary_10_1126_science_1250744
crossref_primary_10_1007_s12015_011_9281_3
crossref_primary_10_1016_j_jneumeth_2014_02_005
crossref_primary_10_1016_j_brainresbull_2024_111036
crossref_primary_10_3390_ijms21031115
crossref_primary_10_1007_BF03256320
crossref_primary_10_1186_s12974_016_0538_2
crossref_primary_10_1016_j_nbd_2021_105583
crossref_primary_10_1016_j_brainres_2010_05_067
crossref_primary_10_1002_cne_23917
crossref_primary_10_17816_ACEN_1098
crossref_primary_10_1016_j_stem_2014_02_004
crossref_primary_10_1371_journal_pone_0040998
crossref_primary_10_1111_j_1469_7580_2011_01459_x
crossref_primary_10_1002_mus_24244
crossref_primary_10_1093_brain_awt020
crossref_primary_10_3389_fneur_2019_00068
crossref_primary_10_1093_intimm_dxu099
crossref_primary_10_1007_s13721_012_0020_8
crossref_primary_10_1155_2016_5930621
crossref_primary_10_1186_s40035_018_0122_z
crossref_primary_10_3389_fmmed_2023_1047540
crossref_primary_10_1073_pnas_1117975108
crossref_primary_10_1155_2011_497080
crossref_primary_10_1038_s44319_025_00402_y
crossref_primary_10_1007_s00018_021_04070_8
crossref_primary_10_1007_s11481_023_10072_z
crossref_primary_10_1111_j_1471_4159_2009_06386_x
crossref_primary_10_1016_j_neuint_2014_10_007
crossref_primary_10_1038_s41598_021_91094_6
crossref_primary_10_1038_sdata_2018_241
crossref_primary_10_3390_brainsci9070165
crossref_primary_10_1371_journal_pone_0007357
crossref_primary_10_1186_s40478_016_0340_5
crossref_primary_10_1038_s41598_017_00091_1
crossref_primary_10_3389_fneur_2021_596006
crossref_primary_10_1186_2051_5960_2_38
crossref_primary_10_3389_fnins_2025_1527181
crossref_primary_10_1111_cns_14270
crossref_primary_10_1242_bio_049692
crossref_primary_10_3109_14653249_2011_592521
crossref_primary_10_1093_hmg_ddt528
crossref_primary_10_1227_01_NEU_0000335653_52938_F2
crossref_primary_10_2217_rme_10_72
crossref_primary_10_1007_s00234_020_02528_3
crossref_primary_10_1111_j_1365_2990_2011_01178_x
crossref_primary_10_3389_fneur_2020_592851
crossref_primary_10_1016_j_nbd_2018_01_019
crossref_primary_10_1093_hmg_ddp355
crossref_primary_10_3390_brainsci11030369
crossref_primary_10_1002_jnr_23287
crossref_primary_10_1016_j_mcn_2018_03_001
crossref_primary_10_1016_j_celrep_2018_12_045
crossref_primary_10_1016_j_it_2009_09_003
crossref_primary_10_1016_j_tips_2020_01_006
crossref_primary_10_3389_fnins_2020_00195
crossref_primary_10_1016_j_mcn_2018_03_006
crossref_primary_10_3389_fneur_2021_693309
crossref_primary_10_3389_fnins_2020_00194
crossref_primary_10_1212_WNL_0b013e318249f776
crossref_primary_10_3164_jcbn_16_34
crossref_primary_10_1111_nan_12982
crossref_primary_10_3109_17482960903089775
crossref_primary_10_3390_cells10061307
crossref_primary_10_1097_WNR_0000000000000725
crossref_primary_10_1016_j_tins_2008_01_006
crossref_primary_10_1517_14656566_2013_819344
crossref_primary_10_1371_journal_pone_0005390
crossref_primary_10_3389_fnins_2016_00076
crossref_primary_10_1051_medsci_200824121077
crossref_primary_10_3390_cells10040839
crossref_primary_10_1097_NEN_0b013e318275df4b
crossref_primary_10_1016_j_celrep_2014_08_030
crossref_primary_10_1002_glia_20739
crossref_primary_10_3389_fnmol_2017_00086
crossref_primary_10_1016_j_bbadis_2008_04_001
crossref_primary_10_1093_brain_awt250
crossref_primary_10_1111_j_1365_2990_2012_01295_x
crossref_primary_10_1111_bpa_13078
crossref_primary_10_1016_j_neuroscience_2009_08_031
crossref_primary_10_1113_JP281461
crossref_primary_10_1002_acn3_51174
crossref_primary_10_1111_j_1460_9568_2007_05914_x
crossref_primary_10_1097_NEN_0b013e3181fc9aea
crossref_primary_10_1016_j_expneurol_2011_10_007
crossref_primary_10_1016_j_brainres_2011_11_019
crossref_primary_10_1021_pr100409r
crossref_primary_10_1002_mus_20942
crossref_primary_10_1016_j_nbd_2012_08_010
crossref_primary_10_1016_j_arr_2023_101994
crossref_primary_10_1002_mus_25157
crossref_primary_10_1016_j_nbd_2012_08_019
crossref_primary_10_3390_cells12172163
crossref_primary_10_3389_fimmu_2022_915392
crossref_primary_10_1093_hmg_ddn131
crossref_primary_10_1093_hmg_ddp550
crossref_primary_10_1111_j_1469_7580_2008_00909_x
crossref_primary_10_1371_journal_pone_0079817
crossref_primary_10_1242_jcs_258349
crossref_primary_10_1089_ars_2009_2614
crossref_primary_10_1002_mus_21936
crossref_primary_10_1016_j_neuroscience_2015_06_026
crossref_primary_10_1007_s13311_016_0487_6
crossref_primary_10_1093_hmg_ddw182
crossref_primary_10_1093_hmg_ddv094
crossref_primary_10_4103_NRR_NRR_D_23_01815
crossref_primary_10_7554_eLife_06500
crossref_primary_10_1093_hmg_ddw190
crossref_primary_10_1002_mus_20612
crossref_primary_10_1038_nrn1788
crossref_primary_10_1038_s41598_021_91496_6
crossref_primary_10_1016_j_neuropharm_2012_02_013
crossref_primary_10_1038_nprot_2011_403
crossref_primary_10_1126_science_aad2509
crossref_primary_10_1016_j_celrep_2021_110195
crossref_primary_10_1212_WNL_0b013e3181b6bbbd
crossref_primary_10_1016_j_brainresbull_2018_05_006
crossref_primary_10_1016_j_mito_2005_01_002
crossref_primary_10_1111_j_1471_4159_2012_07771_x
crossref_primary_10_1007_s11481_009_9171_5
crossref_primary_10_1016_j_bbadis_2012_10_011
crossref_primary_10_1038_s41598_022_09332_4
crossref_primary_10_1007_s40265_022_01769_1
crossref_primary_10_1016_j_neurobiolaging_2019_10_022
crossref_primary_10_15252_embj_2020106389
crossref_primary_10_1007_s12031_010_9467_1
crossref_primary_10_1083_jcb_200705046
crossref_primary_10_1016_j_clineuro_2023_107847
crossref_primary_10_1007_s10863_011_9392_1
crossref_primary_10_1016_j_neulet_2021_135899
crossref_primary_10_26508_lsa_202000764
crossref_primary_10_3389_fnins_2014_00304
crossref_primary_10_1038_mt_2008_73
crossref_primary_10_1111_j_1471_4159_2008_05754_x
crossref_primary_10_3390_ijms19020631
crossref_primary_10_1016_j_neuroscience_2010_12_036
crossref_primary_10_1016_j_bbadis_2006_04_002
crossref_primary_10_1093_hmg_ddn156
crossref_primary_10_3109_21678421_2015_1089039
crossref_primary_10_1016_j_neuron_2008_02_017
crossref_primary_10_1097_NEN_0b013e3181922572
crossref_primary_10_1038_mt_2010_271
crossref_primary_10_1038_s41418_020_0543_y
crossref_primary_10_1002_glia_23768
crossref_primary_10_1016_j_yexcr_2006_05_003
crossref_primary_10_1097_01_jnen_0000228202_35163_c4
crossref_primary_10_1002_jmri_29027
crossref_primary_10_1089_ars_2009_2604
crossref_primary_10_1038_s41598_017_05313_0
crossref_primary_10_1038_s41419_021_03907_1
crossref_primary_10_3389_fnins_2017_00473
crossref_primary_10_7554_eLife_41973
crossref_primary_10_1007_s10529_020_02886_1
crossref_primary_10_1093_hmg_ddp324
crossref_primary_10_1148_radiol_13121148
crossref_primary_10_3390_cells12232751
crossref_primary_10_1038_s41593_020_00718_z
crossref_primary_10_1016_j_expneurol_2007_12_022
crossref_primary_10_1038_mt_2010_260
crossref_primary_10_1002_glia_24604
crossref_primary_10_1080_17482960701725646
crossref_primary_10_1002_cne_23266
crossref_primary_10_1016_j_bbrc_2011_12_126
crossref_primary_10_1186_s12974_019_1598_x
crossref_primary_10_1242_dmm_018606
crossref_primary_10_1016_j_nbd_2006_05_009
crossref_primary_10_1371_journal_pone_0015108
crossref_primary_10_1016_j_neuron_2013_12_009
crossref_primary_10_1097_WNR_0b013e32833037ae
crossref_primary_10_1016_j_jns_2013_05_008
crossref_primary_10_1016_j_neuron_2019_02_017
crossref_primary_10_4103_0366_6999_240798
crossref_primary_10_1016_j_neuroscience_2013_03_017
crossref_primary_10_3389_fneur_2020_00101
crossref_primary_10_3390_cells13100792
crossref_primary_10_1007_s12015_011_9268_0
crossref_primary_10_1016_j_pneurobio_2009_05_004
crossref_primary_10_1007_s13167_010_0019_0
crossref_primary_10_1002_jnr_23332
crossref_primary_10_4236_nm_2012_34050
crossref_primary_10_1016_j_nbd_2012_05_014
crossref_primary_10_1016_j_bbadis_2006_03_006
crossref_primary_10_3389_fncel_2024_1340240
crossref_primary_10_3389_fnins_2017_00451
crossref_primary_10_1038_s41598_023_31720_7
crossref_primary_10_1016_j_neuron_2013_12_018
crossref_primary_10_3389_fnins_2021_753870
crossref_primary_10_1016_j_nbd_2009_05_011
crossref_primary_10_1242_dmm_005538
crossref_primary_10_3233_RNN_170809
crossref_primary_10_1016_j_neuroscience_2018_03_022
crossref_primary_10_3389_fncel_2021_686722
crossref_primary_10_1016_j_nbd_2011_08_018
crossref_primary_10_3390_biom12040497
crossref_primary_10_1007_s13311_023_01444_7
crossref_primary_10_3109_17482968_2011_649760
crossref_primary_10_3233_RNN_180820
crossref_primary_10_1038_srep25663
crossref_primary_10_1371_journal_pone_0164103
crossref_primary_10_1002_humu_21394
crossref_primary_10_1155_2012_170426
crossref_primary_10_1016_j_expneurol_2009_08_021
crossref_primary_10_1016_j_expneurol_2009_08_023
crossref_primary_10_1186_1743_0003_2_20
crossref_primary_10_3389_fncel_2019_00063
crossref_primary_10_1016_j_expneurol_2016_01_008
crossref_primary_10_1093_cercor_bhu318
crossref_primary_10_3988_jcn_2011_7_1_31
crossref_primary_10_1167_tvst_9_11_11
crossref_primary_10_1016_j_heliyon_2024_e34587
crossref_primary_10_1038_s41598_021_96064_6
crossref_primary_10_1242_dmm_039552
crossref_primary_10_1111_j_1471_4159_2010_06572_x
crossref_primary_10_3390_ijms24054944
crossref_primary_10_1186_1471_2164_11_203
crossref_primary_10_1016_j_jns_2008_01_011
crossref_primary_10_3389_fnins_2019_00532
crossref_primary_10_1007_s00415_022_11520_1
crossref_primary_10_1016_j_tins_2007_02_004
crossref_primary_10_3390_cells12071016
crossref_primary_10_1016_j_nbd_2012_12_010
crossref_primary_10_1007_s13311_015_0416_0
crossref_primary_10_3390_ijms232415521
crossref_primary_10_1016_j_cnp_2018_10_002
crossref_primary_10_1016_j_abb_2019_01_024
crossref_primary_10_1080_21678421_2020_1813310
crossref_primary_10_1002_adtp_202200009
crossref_primary_10_3389_fnmol_2017_00231
crossref_primary_10_1111_brv_12675
crossref_primary_10_1016_j_phrs_2017_02_003
crossref_primary_10_3390_jpm10030058
crossref_primary_10_1038_s42003_021_02538_8
crossref_primary_10_1007_s00429_009_0226_4
crossref_primary_10_1152_jn_00265_2018
crossref_primary_10_1002_stem_1628
crossref_primary_10_1016_j_devcel_2024_09_023
crossref_primary_10_7554_eLife_34375
crossref_primary_10_1007_s00401_006_0056_x
crossref_primary_10_1523_JNEUROSCI_2276_09_2009
crossref_primary_10_1242_dmm_012013
crossref_primary_10_18632_aging_204450
crossref_primary_10_1083_jcb_201404154
crossref_primary_10_1007_s00401_015_1520_2
crossref_primary_10_1016_j_nbd_2020_104793
crossref_primary_10_1083_jcb_202111053
crossref_primary_10_1016_j_nbd_2024_106614
crossref_primary_10_1016_j_conb_2009_08_003
crossref_primary_10_3390_ijms19051534
crossref_primary_10_1371_journal_pgen_1000350
crossref_primary_10_1016_j_expneurol_2006_08_028
crossref_primary_10_1007_s12264_024_01267_2
crossref_primary_10_1038_nrneurol_2011_152
crossref_primary_10_1371_journal_pone_0065235
crossref_primary_10_1093_brain_awz360
crossref_primary_10_1038_mt_2008_197
crossref_primary_10_1101_cshperspect_a041490
crossref_primary_10_1093_brain_awq314
crossref_primary_10_1038_s41467_024_54004_8
crossref_primary_10_1038_cddis_2013_378
crossref_primary_10_1002_neu_20269
crossref_primary_10_1186_s13395_024_00349_z
crossref_primary_10_1016_j_clinph_2023_03_010
crossref_primary_10_1186_s40478_020_00987_6
crossref_primary_10_3389_fncel_2015_00332
crossref_primary_10_3389_fphys_2020_595800
crossref_primary_10_1038_srep29395
crossref_primary_10_1002_cne_21051
crossref_primary_10_1186_1471_2202_10_148
crossref_primary_10_15252_emmm_201404433
crossref_primary_10_1016_j_neuron_2022_02_011
crossref_primary_10_3389_fncel_2023_1257347
crossref_primary_10_1371_journal_pone_0023141
crossref_primary_10_1007_s13206_018_3202_3
crossref_primary_10_1016_j_jiec_2018_01_014
crossref_primary_10_1523_JNEUROSCI_5427_08_2009
crossref_primary_10_1111_jnc_15289
crossref_primary_10_1038_s41598_025_88292_x
crossref_primary_10_1002_mus_20228
crossref_primary_10_1016_j_nbd_2017_04_010
crossref_primary_10_1242_jcs_031047
crossref_primary_10_1016_j_jsbmb_2020_105650
crossref_primary_10_1093_hmg_ddt278
crossref_primary_10_1177_1073858417705059
crossref_primary_10_1007_s10072_017_2842_8
crossref_primary_10_1016_j_mcn_2011_05_002
crossref_primary_10_1002_cne_24751
crossref_primary_10_1002_biot_200600247
crossref_primary_10_1016_j_nbd_2020_104743
crossref_primary_10_1038_s41598_019_53982_w
crossref_primary_10_3389_fphys_2023_1165811
crossref_primary_10_1016_j_clinph_2006_04_005
crossref_primary_10_1016_j_nbd_2019_104680
crossref_primary_10_1111_j_1365_2990_2007_00850_x
crossref_primary_10_7554_eLife_35664
crossref_primary_10_1016_j_coph_2021_05_001
crossref_primary_10_1007_s00018_019_03029_0
crossref_primary_10_1038_s41598_018_23018_w
crossref_primary_10_1016_j_expneurol_2010_12_007
crossref_primary_10_1016_j_lfs_2021_119300
crossref_primary_10_1093_hmg_dds174
crossref_primary_10_1002_glia_21167
crossref_primary_10_1038_s41598_020_70510_3
crossref_primary_10_1371_journal_pone_0154723
crossref_primary_10_1002_mus_20489
crossref_primary_10_1002_mus_21579
crossref_primary_10_1016_j_neures_2018_08_016
crossref_primary_10_3390_biology11081191
crossref_primary_10_1093_hmg_ddv238
crossref_primary_10_1093_hmg_ddx415
crossref_primary_10_3390_biology8020036
crossref_primary_10_1073_pnas_1419497111
crossref_primary_10_1016_j_expneurol_2009_12_004
crossref_primary_10_3390_cells10020221
crossref_primary_10_1016_j_neulet_2005_12_007
crossref_primary_10_1002_mus_22217
crossref_primary_10_1371_journal_pone_0017910
crossref_primary_10_1016_j_brainres_2011_02_060
crossref_primary_10_1002_cne_21012
crossref_primary_10_7554_eLife_88250
crossref_primary_10_1093_hmg_ddu136
crossref_primary_10_3109_17482968_2011_603731
crossref_primary_10_1007_s12017_007_8002_1
crossref_primary_10_1016_j_tins_2020_07_002
crossref_primary_10_1016_j_celrep_2012_08_004
crossref_primary_10_1016_j_bbadis_2017_05_016
crossref_primary_10_1073_pnas_1314826111
crossref_primary_10_1523_JNEUROSCI_2315_06_2006
crossref_primary_10_1097_NEN_0b013e31821cbd8b
crossref_primary_10_11005_jbm_2020_27_2_97
crossref_primary_10_1113_jphysiol_2009_169748
crossref_primary_10_1007_s12031_014_0426_0
crossref_primary_10_3389_fncel_2014_00279
crossref_primary_10_3858_emm_2009_41_7_054
crossref_primary_10_1016_j_neulet_2016_07_052
crossref_primary_10_1007_s10072_024_07369_z
crossref_primary_10_1016_j_nbd_2018_11_021
crossref_primary_10_1111_imm_13264
crossref_primary_10_1016_j_arr_2023_102162
crossref_primary_10_1186_1471_2202_11_25
crossref_primary_10_3389_fphar_2021_780588
crossref_primary_10_1002_cne_23620
crossref_primary_10_1038_s41467_017_02299_1
crossref_primary_10_1002_adtp_202000133
crossref_primary_10_1186_s40478_020_01116_z
crossref_primary_10_1016_j_neuron_2006_09_018
crossref_primary_10_1002_glia_20836
crossref_primary_10_1371_journal_pone_0089065
crossref_primary_10_1016_j_bbrc_2023_01_023
crossref_primary_10_1016_j_expneurol_2013_05_001
crossref_primary_10_1371_journal_pone_0000689
crossref_primary_10_1093_brain_awad202
crossref_primary_10_1093_hmg_ddt222
crossref_primary_10_2147_DNND_S388455
crossref_primary_10_1016_j_neurobiolaging_2014_04_012
crossref_primary_10_1007_s00109_013_1077_2
crossref_primary_10_3390_jpm10030101
crossref_primary_10_1016_j_biopha_2023_114378
crossref_primary_10_1096_fj_10_171934
crossref_primary_10_1096_fj_201700835R
crossref_primary_10_1016_j_neuroscience_2015_02_013
crossref_primary_10_1172_jci_insight_95934
crossref_primary_10_1002_ctm2_336
crossref_primary_10_1016_j_expneurol_2015_09_014
crossref_primary_10_1186_1750_1326_7_44
crossref_primary_10_1016_j_jneuroim_2010_07_002
crossref_primary_10_1016_j_neuropharm_2021_108637
crossref_primary_10_3389_fphys_2016_00403
crossref_primary_10_1038_s41420_023_01340_1
crossref_primary_10_1038_nrd2665
crossref_primary_10_1007_s00429_012_0501_7
crossref_primary_10_1007_s13238_017_0397_3
crossref_primary_10_1007_s00018_015_1943_x
crossref_primary_10_1093_hmg_ddt005
crossref_primary_10_1016_j_neuroscience_2015_11_018
crossref_primary_10_1155_2012_187234
crossref_primary_10_1016_j_ebiom_2018_11_067
crossref_primary_10_1016_j_nmd_2016_03_003
crossref_primary_10_1093_cercor_bhw254
crossref_primary_10_1111_joa_13463
crossref_primary_10_1016_j_nbd_2016_07_023
crossref_primary_10_1038_nn1653
crossref_primary_10_1093_brain_awh483
crossref_primary_10_3892_mmr_2017_7186
crossref_primary_10_1038_sj_embor_7400826
crossref_primary_10_5966_sctm_2015_0340
crossref_primary_10_1016_j_arr_2016_04_005
crossref_primary_10_1111_j_1460_9568_2004_03783_x
crossref_primary_10_1371_journal_pone_0210752
crossref_primary_10_3389_fnins_2018_00769
crossref_primary_10_3389_fnmol_2016_00160
crossref_primary_10_3389_fnhum_2014_00719
crossref_primary_10_1016_j_clinph_2017_06_039
crossref_primary_10_1016_j_nbd_2013_08_006
crossref_primary_10_3390_ijms12129203
crossref_primary_10_1093_hmg_ddi440
crossref_primary_10_1007_s10439_015_1259_x
crossref_primary_10_1371_journal_pone_0041917
crossref_primary_10_3390_diseases11030089
crossref_primary_10_15252_emmm_201808888
crossref_primary_10_1007_s00415_013_7215_5
crossref_primary_10_3390_biomedicines13010049
crossref_primary_10_1007_s00441_017_2681_1
crossref_primary_10_1016_j_jneuroim_2011_03_011
crossref_primary_10_1016_j_neuroscience_2015_01_018
crossref_primary_10_1007_s12035_016_0322_4
crossref_primary_10_1016_j_resp_2019_01_001
crossref_primary_10_1016_j_neuron_2015_06_026
crossref_primary_10_1111_nan_12473
crossref_primary_10_2174_1871527318666190409103831
crossref_primary_10_1007_s00401_009_0631_z
crossref_primary_10_1111_j_1471_4159_2012_07690_x
crossref_primary_10_1038_mt_2013_239
crossref_primary_10_4103_1673_5374_270309
crossref_primary_10_1016_j_nbd_2006_12_023
crossref_primary_10_1186_s13024_023_00690_9
crossref_primary_10_1523_JNEUROSCI_3396_13_2013
crossref_primary_10_1016_j_neuro_2008_04_016
crossref_primary_10_1002_cne_22718
crossref_primary_10_1093_jnen_64_4_295
crossref_primary_10_1111_ejn_13393
crossref_primary_10_1002_mus_26778
crossref_primary_10_1016_j_micron_2020_102852
crossref_primary_10_1016_j_resp_2013_05_016
crossref_primary_10_1111_j_1460_9568_2010_07260_x
crossref_primary_10_1007_s13311_012_0140_y
crossref_primary_10_1002_mus_25444
crossref_primary_10_1042_NS20220013
crossref_primary_10_1016_j_brainresrev_2004_05_003
crossref_primary_10_1016_j_neuroscience_2011_10_020
crossref_primary_10_1001_jamaneurol_2022_1113
crossref_primary_10_1016_j_nmd_2016_04_010
crossref_primary_10_1113_JP280097
crossref_primary_10_1016_S1138_3593_06_73253_1
crossref_primary_10_1073_pnas_0503862102
crossref_primary_10_1073_pnas_0911405106
crossref_primary_10_1186_s40478_019_0800_9
crossref_primary_10_1007_s00441_012_1362_3
crossref_primary_10_1002_cne_23814
crossref_primary_10_4103_1673_5374_308077
crossref_primary_10_1063_1_4891098
crossref_primary_10_1523_JNEUROSCI_1599_07_2007
crossref_primary_10_1111_nan_12014
crossref_primary_10_1080_14712598_2018_1416089
crossref_primary_10_1111_j_1471_4159_2006_04408_x
crossref_primary_10_1016_j_clinph_2004_02_008
crossref_primary_10_1073_pnas_0609411103
crossref_primary_10_1016_j_bbi_2010_12_008
crossref_primary_10_1007_s13311_021_01025_6
crossref_primary_10_1093_hmg_ddr453
crossref_primary_10_1016_j_brainres_2019_02_003
crossref_primary_10_1089_ars_2006_8_2075
crossref_primary_10_3389_fnins_2019_01233
crossref_primary_10_1038_s41598_022_08455_y
crossref_primary_10_1007_s13311_019_00765_w
crossref_primary_10_1146_annurev_neuro_051508_135722
crossref_primary_10_1371_journal_pgen_1007682
crossref_primary_10_1038_s41434_021_00303_4
crossref_primary_10_1172_jci_insight_123249
crossref_primary_10_1186_s41232_023_00270_w
crossref_primary_10_1016_j_brainres_2016_04_010
crossref_primary_10_1016_j_preteyeres_2005_04_004
crossref_primary_10_1016_j_nbd_2005_06_019
crossref_primary_10_1042_AN20100024
crossref_primary_10_1002_adbi_201800307
crossref_primary_10_1111_j_1460_9568_2005_04389_x
crossref_primary_10_1136_jnnp_2012_304545
crossref_primary_10_1172_JCI142854
crossref_primary_10_1016_j_nbd_2009_10_005
crossref_primary_10_1371_journal_pone_0052605
crossref_primary_10_1371_journal_pgen_1003066
crossref_primary_10_1523_ENEURO_0281_16_2016
crossref_primary_10_1016_j_mcn_2006_03_002
crossref_primary_10_1016_j_clinph_2010_07_019
crossref_primary_10_1016_j_scr_2017_11_005
crossref_primary_10_1186_s10020_024_00942_4
crossref_primary_10_1523_ENEURO_0308_18_2018
crossref_primary_10_3858_emm_2009_41_3_017
crossref_primary_10_1007_s13311_023_01424_x
crossref_primary_10_1016_j_brainres_2011_06_033
crossref_primary_10_1016_j_expneurol_2006_12_021
crossref_primary_10_1016_j_bbi_2018_07_002
crossref_primary_10_1134_S1990747820030113
crossref_primary_10_1002_glia_22601
crossref_primary_10_1371_journal_pone_0093140
crossref_primary_10_1016_j_clinph_2012_07_010
crossref_primary_10_1007_s00401_022_02412_9
crossref_primary_10_1007_s00401_017_1708_8
crossref_primary_10_1210_me_2007_0079
crossref_primary_10_1186_s40035_022_00291_4
crossref_primary_10_1016_j_neuron_2006_08_027
crossref_primary_10_1159_000433581
crossref_primary_10_1111_ene_12291
crossref_primary_10_1016_j_jns_2013_03_019
crossref_primary_10_3389_fneur_2017_00356
crossref_primary_10_1093_hmg_ddt659
crossref_primary_10_1038_s41598_022_06470_7
crossref_primary_10_1038_ncomms10465
crossref_primary_10_3389_fnins_2021_783624
crossref_primary_10_1016_j_neulet_2017_12_062
crossref_primary_10_1007_s10072_015_2418_4
crossref_primary_10_3389_fncel_2023_1253543
crossref_primary_10_1038_ncomms3906
crossref_primary_10_1016_j_nbd_2021_105480
crossref_primary_10_1016_j_expneurol_2016_02_002
crossref_primary_10_1093_hmg_ddac116
crossref_primary_10_1016_j_brainres_2017_11_017
crossref_primary_10_1016_j_expneurol_2013_06_007
crossref_primary_10_1016_j_bbrc_2020_02_027
crossref_primary_10_1038_nrn3430
crossref_primary_10_1093_hmg_ddz190
crossref_primary_10_1002_jnr_21174
crossref_primary_10_1016_j_neuron_2012_08_019
crossref_primary_10_1371_journal_pone_0037258
crossref_primary_10_3390_biom14070878
crossref_primary_10_1534_genetics_116_190850
crossref_primary_10_1038_s41582_020_0377_8
crossref_primary_10_1038_sj_cdd_4401944
crossref_primary_10_1242_bio_20148342
crossref_primary_10_3390_cells8080906
crossref_primary_10_1002_jnr_25100
crossref_primary_10_3390_cells11040706
crossref_primary_10_1523_JNEUROSCI_1139_07_2007
crossref_primary_10_1016_j_isci_2021_102700
crossref_primary_10_1016_j_nicl_2021_102863
crossref_primary_10_1093_hmg_ddy043
crossref_primary_10_1016_j_neuroscience_2020_08_011
crossref_primary_10_3390_ijms21124291
crossref_primary_10_1016_j_nmd_2005_02_005
crossref_primary_10_1089_hum_2009_131
crossref_primary_10_1002_mus_25267
crossref_primary_10_1523_JNEUROSCI_2037_14_2014
crossref_primary_10_1186_s40478_014_0165_z
crossref_primary_10_1007_s12035_010_8159_8
crossref_primary_10_1016_j_brainresbull_2009_08_004
crossref_primary_10_1016_j_neuroscience_2006_04_041
crossref_primary_10_1093_hmg_ddm193
crossref_primary_10_1016_j_ncrna_2018_12_001
crossref_primary_10_3389_fneur_2022_994676
crossref_primary_10_3390_antiox12030705
crossref_primary_10_1371_journal_pgen_1005290
crossref_primary_10_1016_j_ebiom_2019_06_013
crossref_primary_10_1016_j_expneurol_2012_12_008
crossref_primary_10_17116_jnevro2023123071102
crossref_primary_10_4103_1673_5374_382233
crossref_primary_10_1523_JNEUROSCI_4003_12_2013
crossref_primary_10_1111_bph_15738
crossref_primary_10_1073_pnas_1006151107
crossref_primary_10_1016_j_tins_2004_03_002
crossref_primary_10_1016_j_neurol_2024_10_005
crossref_primary_10_1002_jnr_24231
crossref_primary_10_3390_cells9122581
crossref_primary_10_1016_j_smim_2022_101628
crossref_primary_10_1007_s13311_020_00852_3
crossref_primary_10_1038_s42003_021_02302_y
crossref_primary_10_1039_C6MT00270F
crossref_primary_10_1016_j_nbd_2009_10_021
crossref_primary_10_1016_j_nbd_2018_09_024
crossref_primary_10_1093_hmg_ddq106
crossref_primary_10_1016_j_neuroscience_2008_08_073
crossref_primary_10_1097_WNP_0000000000000336
crossref_primary_10_1111_j_1365_2990_2011_01166_x
crossref_primary_10_1002_ana_24012
crossref_primary_10_1016_j_phrs_2018_09_008
crossref_primary_10_3109_17482968_2012_669386
crossref_primary_10_1007_s12035_015_9537_z
crossref_primary_10_1016_j_stemcr_2021_10_010
crossref_primary_10_1186_1742_2094_7_8
crossref_primary_10_1523_JNEUROSCI_4434_08_2009
crossref_primary_10_1016_j_scr_2015_09_006
crossref_primary_10_1016_j_neuroscience_2019_07_041
crossref_primary_10_3233_JND_210730
crossref_primary_10_1007_s13311_022_01297_6
crossref_primary_10_1016_j_ymthe_2024_05_016
crossref_primary_10_3390_brainsci11070906
crossref_primary_10_1016_j_neuro_2012_04_019
crossref_primary_10_1113_JP270213
crossref_primary_10_1002_dvdy_333
Cites_doi 10.1152/jn.00271.2002
10.1002/ar.1092310411
10.1016/S0165-6147(97)01094-8
10.1002/ana.410380510
10.1001/archneur.1984.04050170073021
10.1523/JNEUROSCI.20-04-01333.2000
10.1126/science.1083129
10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-#
10.1007/978-3-642-70699-8_1
10.1001/archneur.1983.04050050074011
10.1002/ana.410140304
10.1006/dbio.1994.1234
10.1016/S0166-2236(02)02255-5
10.1038/4553
10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9
10.1016/S0896-6273(02)00696-7
10.1093/hmg/11.12.1439
10.1002/ana.410230103
10.1097/00001756-199605310-00021
10.1083/jcb.139.5.1307
10.1016/S0960-9822(03)00206-9
10.1038/ng1016
10.1038/ng1123
10.1002/jnr.490210104
10.1002/ana.10374
10.1073/pnas.90.14.6591
10.1083/jcb.200208001
10.1006/mcne.1995.1027
10.1073/pnas.220417997
10.1523/JNEUROSCI.20-07-02534.2000
ContentType Journal Article
Copyright 2003 Elsevier Inc.
2004 INIST-CNRS
Copyright_xml – notice: 2003 Elsevier Inc.
– notice: 2004 INIST-CNRS
DBID AAYXX
CITATION
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.expneurol.2003.10.004
DatabaseName CrossRef
Pascal-Francis
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1090-2430
EndPage 240
ExternalDocumentID 14736504
15483992
10_1016_j_expneurol_2003_10_004
S0014488603004795
Genre Research Support, U.S. Gov't, P.H.S
Comparative Study
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: NINDS NIH HHS
  grantid: P01 NS40405
GroupedDBID ---
--K
--M
-~X
.55
.GJ
.~1
0R~
1B1
1RT
1~.
1~5
29G
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYJJ
ABBQC
ABCQJ
ABFNM
ABFRF
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADFGL
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AETEA
AFFNX
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHPSJ
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
AKRLJ
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HDW
HMK
HMO
HMQ
HVGLF
HZ~
IHE
J1W
K-O
KOM
L7B
LCYCR
LG5
LUGTX
LX8
M29
M2U
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OHT
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPCBC
SSH
SSN
SSZ
T5K
TEORI
WUQ
X7M
XJT
XPP
ZA5
ZGI
ZKB
ZMT
ZU3
ZXP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
ADXHL
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
IQODW
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
ACLOT
~HD
ID FETCH-LOGICAL-c463t-f3bcf3197c0f05c7a7d9c929c8e04efccc979be5210d5fadccb77be21fd3f2143
IEDL.DBID AIKHN
ISSN 0014-4886
IngestDate Sun Sep 28 09:02:43 EDT 2025
Wed Feb 19 02:34:02 EST 2025
Mon Jul 21 09:13:28 EDT 2025
Tue Jul 01 02:20:53 EDT 2025
Thu Apr 24 22:54:18 EDT 2025
Fri Feb 23 02:33:54 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Axonopathy
Sclerosis
Denervation
Animal model
Sporadic
Motor neuron disease
Motor neuron
Neuromuscular junction
Spinal root
Autopsy
Degenerative disease
Degeneration
Quantitative analysis
Human
Nervous system diseases
Rodentia
Axon
Amyotrophic lateral sclerosis
Vertebrata
Anatomic pathology
Mammalia
Mouse
Cell death
Animal
Central nervous system disease
Reinnervation
Spinal cord disease
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-f3bcf3197c0f05c7a7d9c929c8e04efccc979be5210d5fadccb77be21fd3f2143
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PMID 14736504
PQID 80112962
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_80112962
pubmed_primary_14736504
pascalfrancis_primary_15483992
crossref_citationtrail_10_1016_j_expneurol_2003_10_004
crossref_primary_10_1016_j_expneurol_2003_10_004
elsevier_sciencedirect_doi_10_1016_j_expneurol_2003_10_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2004-02-01
PublicationDateYYYYMMDD 2004-02-01
PublicationDate_xml – month: 02
  year: 2004
  text: 2004-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
– name: United States
PublicationTitle Experimental neurology
PublicationTitleAlternate Exp Neurol
PublicationYear 2004
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Zhang, Tu, Abtahian, Trojanowski, Lee (BIB33) 1997; 139
Cifuentes-Dias, Nicole, Velasco, Borra-Cebrian, Panazzo, Frugier, Millet, Roblot, Joshi, Melki (BIB6) 2002; 11
Finn, Weil, Archer, Siman, Srinivasan, Raff (BIB12) 2000; 20
LaMonte, Wallace, Holloway, Shelly, Ascano, Tokito, Van Winkle, Howland, Holzbaur (BIB22) 2002; 34
Graeber, Streit, Kreutzberg (BIB16) 1988; 21
Frey, Schneider, Xu, Borg, Spooren, Caroni (BIB13) 2000; 20
Deckwerth, Johnson (BIB9) 1994; 165
Hafezparast, Klocke, Ruhrberg, Marquardt, Ahmad-Annuar, Bowen, Lalli, Witherden, Hummerich, Nicholson, Morgan, Oozageer, Priestley, Averill, King, Ball, Peters, Toda, Yamamoto, Hiraoka, Augustin, Korthaus, Wattler, Wabnitz, Dickneite, Lampel, Boehme, Peraus, Popp, Rudelius, Schlegel, Fuchs, Hrabe de Angelis, Schiavo, Shima, Russ, Stumm, Martin, Fisher (BIB18) 2003; 300
Cavanagh (BIB4) 1964; 3
Kennel, Finiels, Revah, Mallet (BIB21) 1996; 7
Rich, Wang, Cope, Pinter (BIB25) 2002; 88
Chiu, Zhai, Dal Canto, Peters, Kwon, Prattis, Gurney (BIB5) 1995; 6
Sagot, Vejsada, Kato (BIB27) 1997; 18
Drachman, Frank, Dykes-Hoberg, Teismann, Almer, Przedborski, Rothstein (BIB10) 2002; 52
Spencer, Schaumburg (BIB29) 1976; vol. 3
Bjornskov, Norris, Mower-Kuby (BIB34) 1984; 41
Bommel, Xie, Rossoll, Wiese, Jablonka, Boehm, Sendtner (BIB1) 2002; 159
Griffin, Watson (BIB17) 1988; 23
Rothstein, Jin, Dykes-Hoberg, Kuncl (BIB26) 1993; 90
Coggeshall, Lekan (BIB7) 1996; 364
Sobue, Hashizume, Sahashi, Takahashi, Mukai, Matsuoka, Mukoyama (BIB28) 1983; 40
Tetzlaff, Graeger, Kreutzberg (BIB30) 1986
Puls, Jonnakuty, LaMonte, Holzbaur, Tokito, Mann, Floeter, Bidus, Drayna, Oh, Brown, Robert, Ludlow, Fischbeck (BIB24) 2003; 33
Johnston, Dalton, Gurney, Kopito (BIB20) 2000; 97
Martin, Jaubert, Gounon, Salido, Haase, Szatanik, Guenet (BIB23) 2003; 32
Bradley, Good, Rasool, Adelman (BIB2) 1983; 14
Ferri, Sanes, Coleman, Cunningham, Kato (BIB11) 2003; 13
Williamson, Cleveland (BIB32) 1999; 2
West, Slomianka, Gundersen (BIB31) 1991; 231
Glass (BIB14) 2002; vol. II
Carter, Krivickas, Weydt, Weiss, Miller (BIB3) 2003; 6
Glass, Fedor, Wesselingh, McArthur (BIB15) 1995; 38
Hall, Oostveen, Gurney (BIB19) 1998; 23
Coleman, Perry (BIB8) 2002; 25
Rothstein (10.1016/j.expneurol.2003.10.004_BIB26) 1993; 90
Martin (10.1016/j.expneurol.2003.10.004_BIB23) 2003; 32
Williamson (10.1016/j.expneurol.2003.10.004_BIB32) 1999; 2
West (10.1016/j.expneurol.2003.10.004_BIB31) 1991; 231
Glass (10.1016/j.expneurol.2003.10.004_BIB14) 2002; vol. II
Rich (10.1016/j.expneurol.2003.10.004_BIB25) 2002; 88
Ferri (10.1016/j.expneurol.2003.10.004_BIB11) 2003; 13
Sagot (10.1016/j.expneurol.2003.10.004_BIB27) 1997; 18
Cifuentes-Dias (10.1016/j.expneurol.2003.10.004_BIB6) 2002; 11
Hafezparast (10.1016/j.expneurol.2003.10.004_BIB18) 2003; 300
Cavanagh (10.1016/j.expneurol.2003.10.004_BIB4) 1964; 3
Carter (10.1016/j.expneurol.2003.10.004_BIB3) 2003; 6
Bradley (10.1016/j.expneurol.2003.10.004_BIB2) 1983; 14
Graeber (10.1016/j.expneurol.2003.10.004_BIB16) 1988; 21
Chiu (10.1016/j.expneurol.2003.10.004_BIB5) 1995; 6
Frey (10.1016/j.expneurol.2003.10.004_BIB13) 2000; 20
Zhang (10.1016/j.expneurol.2003.10.004_BIB33) 1997; 139
Finn (10.1016/j.expneurol.2003.10.004_BIB12) 2000; 20
Johnston (10.1016/j.expneurol.2003.10.004_BIB20) 2000; 97
Coleman (10.1016/j.expneurol.2003.10.004_BIB8) 2002; 25
Glass (10.1016/j.expneurol.2003.10.004_BIB15) 1995; 38
Tetzlaff (10.1016/j.expneurol.2003.10.004_BIB30) 1986
Bjornskov (10.1016/j.expneurol.2003.10.004_BIB34) 1984; 41
Coggeshall (10.1016/j.expneurol.2003.10.004_BIB7) 1996; 364
Deckwerth (10.1016/j.expneurol.2003.10.004_BIB9) 1994; 165
Puls (10.1016/j.expneurol.2003.10.004_BIB24) 2003; 33
Griffin (10.1016/j.expneurol.2003.10.004_BIB17) 1988; 23
Kennel (10.1016/j.expneurol.2003.10.004_BIB21) 1996; 7
LaMonte (10.1016/j.expneurol.2003.10.004_BIB22) 2002; 34
Sobue (10.1016/j.expneurol.2003.10.004_BIB28) 1983; 40
Spencer (10.1016/j.expneurol.2003.10.004_BIB29) 1976; vol. 3
Hall (10.1016/j.expneurol.2003.10.004_BIB19) 1998; 23
Drachman (10.1016/j.expneurol.2003.10.004_BIB10) 2002; 52
Bommel (10.1016/j.expneurol.2003.10.004_BIB1) 2002; 159
References_xml – volume: 33
  start-page: 455
  year: 2003
  end-page: 456
  ident: BIB24
  article-title: Mutant dynactin in motor neuron disease
  publication-title: Nat. Genet
– volume: 40
  start-page: 306
  year: 1983
  end-page: 309
  ident: BIB28
  article-title: Amyotrophic lateral sclerosis: lack of central chromatolytic response of motor neurocytons corresponding to active axonal degeneration
  publication-title: Arch. Neurol
– volume: 159
  start-page: 563
  year: 2002
  end-page: 569
  ident: BIB1
  article-title: Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease
  publication-title: J. Cell Biol
– volume: 90
  start-page: 6591
  year: 1993
  end-page: 6595
  ident: BIB26
  article-title: Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 41
  start-page: 527
  year: 1984
  end-page: 530
  ident: BIB34
  article-title: Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis
  publication-title: Arch. Neurol
– start-page: 3
  year: 1986
  end-page: 8
  ident: BIB30
  article-title: Reaction of motoneurons and their microenvironment to axotomy
  publication-title: Exp. Brain Res
– volume: 52
  start-page: 771
  year: 2002
  end-page: 778
  ident: BIB10
  article-title: Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS
  publication-title: Ann. Neurol
– volume: 97
  start-page: 12571
  year: 2000
  end-page: 12576
  ident: BIB20
  article-title: Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
– volume: 11
  start-page: 1439
  year: 2002
  end-page: 1447
  ident: BIB6
  article-title: Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model
  publication-title: Hum. Mol. Genet
– volume: 6
  start-page: 349
  year: 1995
  end-page: 362
  ident: BIB5
  article-title: Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis
  publication-title: Mol. Cell. Neurosci
– volume: 13
  start-page: 669
  year: 2003
  end-page: 673
  ident: BIB11
  article-title: Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease
  publication-title: Curr. Biol
– volume: 7
  start-page: 1427
  year: 1996
  end-page: 1431
  ident: BIB21
  article-title: Neuromuscular function impairment is not caused by motor neuron loss in FALS mice: an electromyographic study
  publication-title: NeuroReport
– volume: 139
  start-page: 1307
  year: 1997
  end-page: 1315
  ident: BIB33
  article-title: Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation
  publication-title: J. Cell Biol
– volume: 364
  start-page: 6
  year: 1996
  end-page: 15
  ident: BIB7
  article-title: Methods for determining numbers of cells and synapses: a case for more uniform standards of review
  publication-title: J. Comp. Neurol
– volume: 21
  start-page: 18
  year: 1988
  end-page: 24
  ident: BIB16
  article-title: Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells
  publication-title: J. Neurosci. Res
– volume: 165
  start-page: 63
  year: 1994
  end-page: 72
  ident: BIB9
  article-title: Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis)
  publication-title: Dev. Biol
– volume: 20
  start-page: 1333
  year: 2000
  end-page: 1341
  ident: BIB12
  article-title: Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases
  publication-title: J. Neurosci
– volume: 300
  start-page: 808
  year: 2003
  end-page: 812
  ident: BIB18
  article-title: Mutations in dynein link motor neuron degeneration to defects in retrograde transport
  publication-title: Science
– volume: 32
  start-page: 443
  year: 2003
  end-page: 447
  ident: BIB23
  article-title: A missense mutation in Tbce causes progressive motor neuronopathy in mice
  publication-title: Nat. Genet
– volume: vol. 3
  start-page: 253
  year: 1976
  end-page: 295
  ident: BIB29
  article-title: Central–peripheral distal axonopathy—The pathogenesis of dying-back polyneuropathies
  publication-title: Prog. Neuropathol
– volume: 38
  start-page: 755
  year: 1995
  end-page: 762
  ident: BIB15
  article-title: Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia
  publication-title: Ann. Neurol
– volume: 34
  start-page: 715
  year: 2002
  end-page: 727
  ident: BIB22
  article-title: Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive deterioration
  publication-title: Neuron
– volume: 14
  start-page: 267
  year: 1983
  end-page: 277
  ident: BIB2
  article-title: Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis
  publication-title: Ann. Neurol
– volume: 88
  start-page: 3305
  year: 2002
  end-page: 3314
  ident: BIB25
  article-title: Reduced neuromuscular quantal content with normal synaptic release time course and depression in canine motor neuron disease
  publication-title: J. Neurophysiol
– volume: 20
  start-page: 2534
  year: 2000
  end-page: 2542
  ident: BIB13
  article-title: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases
  publication-title: J. Neurosci
– volume: 23
  start-page: 249
  year: 1998
  end-page: 256
  ident: BIB19
  article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS
  publication-title: Glia
– volume: 3
  start-page: 219
  year: 1964
  end-page: 267
  ident: BIB4
  article-title: The significance of the “dying back” process in human and experimental neurological diseases
  publication-title: Int. Rev. Exp. Pathol
– volume: 23
  start-page: 3
  year: 1988
  end-page: 13
  ident: BIB17
  article-title: Axonal transport in peripheral neuropathies
  publication-title: Ann. Neurol
– volume: 18
  start-page: 330
  year: 1997
  end-page: 337
  ident: BIB27
  article-title: Clinical and molecular aspects of motoneurone diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein
  publication-title: Trends Pharmacol. Sci
– volume: 6
  start-page: 147
  year: 2003
  end-page: 153
  ident: BIB3
  article-title: Drug therapy for amyotrophic lateral sclerosis: where are we now?
  publication-title: Investig. Drugs J
– volume: 231
  start-page: 482
  year: 1991
  end-page: 497
  ident: BIB31
  article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator
  publication-title: Anat. Rec
– volume: 25
  start-page: 532
  year: 2002
  end-page: 537
  ident: BIB8
  article-title: Axon pathology in neurological disease: a neglected therapeutic target
  publication-title: Trends Neurosci
– volume: vol. II
  start-page: 1075
  year: 2002
  end-page: 1091
  ident: BIB14
  article-title: Pathophysiology of nerve and root disorders
  publication-title: Diseases of the Nervous System: Clinical Neuroscience and Therapeutic Principles
– volume: 2
  start-page: 50
  year: 1999
  end-page: 56
  ident: BIB32
  article-title: Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons
  publication-title: Nat. Neurosci
– volume: 88
  start-page: 3305
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB25
  article-title: Reduced neuromuscular quantal content with normal synaptic release time course and depression in canine motor neuron disease
  publication-title: J. Neurophysiol
  doi: 10.1152/jn.00271.2002
– volume: 6
  start-page: 147
  year: 2003
  ident: 10.1016/j.expneurol.2003.10.004_BIB3
  article-title: Drug therapy for amyotrophic lateral sclerosis: where are we now?
  publication-title: Investig. Drugs J
– volume: 231
  start-page: 482
  year: 1991
  ident: 10.1016/j.expneurol.2003.10.004_BIB31
  article-title: Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator
  publication-title: Anat. Rec
  doi: 10.1002/ar.1092310411
– volume: 18
  start-page: 330
  year: 1997
  ident: 10.1016/j.expneurol.2003.10.004_BIB27
  article-title: Clinical and molecular aspects of motoneurone diseases: animal models, neurotrophic factors and Bcl-2 oncoprotein
  publication-title: Trends Pharmacol. Sci
  doi: 10.1016/S0165-6147(97)01094-8
– volume: 38
  start-page: 755
  year: 1995
  ident: 10.1016/j.expneurol.2003.10.004_BIB15
  article-title: Immunocytochemical quantitation of human immunodeficiency virus in the brain: correlations with dementia
  publication-title: Ann. Neurol
  doi: 10.1002/ana.410380510
– volume: 41
  start-page: 527
  year: 1984
  ident: 10.1016/j.expneurol.2003.10.004_BIB34
  article-title: Quantitative axon terminal and end-plate morphology in amyotrophic lateral sclerosis
  publication-title: Arch. Neurol
  doi: 10.1001/archneur.1984.04050170073021
– volume: 20
  start-page: 1333
  year: 2000
  ident: 10.1016/j.expneurol.2003.10.004_BIB12
  article-title: Evidence that Wallerian degeneration and localized axon degeneration induced by local neurotrophin deprivation do not involve caspases
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.20-04-01333.2000
– volume: 300
  start-page: 808
  year: 2003
  ident: 10.1016/j.expneurol.2003.10.004_BIB18
  article-title: Mutations in dynein link motor neuron degeneration to defects in retrograde transport
  publication-title: Science
  doi: 10.1126/science.1083129
– volume: 23
  start-page: 249
  year: 1998
  ident: 10.1016/j.expneurol.2003.10.004_BIB19
  article-title: Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS
  publication-title: Glia
  doi: 10.1002/(SICI)1098-1136(199807)23:3<249::AID-GLIA7>3.0.CO;2-#
– start-page: 3
  issue: Supp. 13
  year: 1986
  ident: 10.1016/j.expneurol.2003.10.004_BIB30
  article-title: Reaction of motoneurons and their microenvironment to axotomy
  publication-title: Exp. Brain Res
  doi: 10.1007/978-3-642-70699-8_1
– volume: 40
  start-page: 306
  year: 1983
  ident: 10.1016/j.expneurol.2003.10.004_BIB28
  article-title: Amyotrophic lateral sclerosis: lack of central chromatolytic response of motor neurocytons corresponding to active axonal degeneration
  publication-title: Arch. Neurol
  doi: 10.1001/archneur.1983.04050050074011
– volume: 14
  start-page: 267
  year: 1983
  ident: 10.1016/j.expneurol.2003.10.004_BIB2
  article-title: Morphometric and biochemical studies of peripheral nerves in amyotrophic lateral sclerosis
  publication-title: Ann. Neurol
  doi: 10.1002/ana.410140304
– volume: 165
  start-page: 63
  year: 1994
  ident: 10.1016/j.expneurol.2003.10.004_BIB9
  article-title: Neurites can remain viable after destruction of the neuronal soma by programmed cell death (apoptosis)
  publication-title: Dev. Biol
  doi: 10.1006/dbio.1994.1234
– volume: 25
  start-page: 532
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB8
  article-title: Axon pathology in neurological disease: a neglected therapeutic target
  publication-title: Trends Neurosci
  doi: 10.1016/S0166-2236(02)02255-5
– volume: 2
  start-page: 50
  year: 1999
  ident: 10.1016/j.expneurol.2003.10.004_BIB32
  article-title: Slowing of axonal transport is a very early event in the toxicity of ALS-linked SOD1 mutants to motor neurons
  publication-title: Nat. Neurosci
  doi: 10.1038/4553
– volume: 3
  start-page: 219
  year: 1964
  ident: 10.1016/j.expneurol.2003.10.004_BIB4
  article-title: The significance of the “dying back” process in human and experimental neurological diseases
  publication-title: Int. Rev. Exp. Pathol
– volume: 364
  start-page: 6
  year: 1996
  ident: 10.1016/j.expneurol.2003.10.004_BIB7
  article-title: Methods for determining numbers of cells and synapses: a case for more uniform standards of review
  publication-title: J. Comp. Neurol
  doi: 10.1002/(SICI)1096-9861(19960101)364:1<6::AID-CNE2>3.0.CO;2-9
– volume: 34
  start-page: 715
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB22
  article-title: Disruption of dynein/dynactin inhibits axonal transport in motor neurons causing late-onset progressive deterioration
  publication-title: Neuron
  doi: 10.1016/S0896-6273(02)00696-7
– volume: 11
  start-page: 1439
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB6
  article-title: Neurofilament accumulation at the motor endplate and lack of axonal sprouting in a spinal muscular atrophy mouse model
  publication-title: Hum. Mol. Genet
  doi: 10.1093/hmg/11.12.1439
– volume: vol. II
  start-page: 1075
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB14
  article-title: Pathophysiology of nerve and root disorders
– volume: 23
  start-page: 3
  year: 1988
  ident: 10.1016/j.expneurol.2003.10.004_BIB17
  article-title: Axonal transport in peripheral neuropathies
  publication-title: Ann. Neurol
  doi: 10.1002/ana.410230103
– volume: 7
  start-page: 1427
  year: 1996
  ident: 10.1016/j.expneurol.2003.10.004_BIB21
  article-title: Neuromuscular function impairment is not caused by motor neuron loss in FALS mice: an electromyographic study
  publication-title: NeuroReport
  doi: 10.1097/00001756-199605310-00021
– volume: 139
  start-page: 1307
  year: 1997
  ident: 10.1016/j.expneurol.2003.10.004_BIB33
  article-title: Neurofilaments and orthograde transport are reduced in ventral root axons of transgenic mice that express human SOD1 with a G93A mutation
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.139.5.1307
– volume: 13
  start-page: 669
  year: 2003
  ident: 10.1016/j.expneurol.2003.10.004_BIB11
  article-title: Inhibiting axon degeneration and synapse loss attenuates apoptosis and disease progression in a mouse model of motoneuron disease
  publication-title: Curr. Biol
  doi: 10.1016/S0960-9822(03)00206-9
– volume: 32
  start-page: 443
  year: 2003
  ident: 10.1016/j.expneurol.2003.10.004_BIB23
  article-title: A missense mutation in Tbce causes progressive motor neuronopathy in mice
  publication-title: Nat. Genet
  doi: 10.1038/ng1016
– volume: 33
  start-page: 455
  year: 2003
  ident: 10.1016/j.expneurol.2003.10.004_BIB24
  article-title: Mutant dynactin in motor neuron disease
  publication-title: Nat. Genet
  doi: 10.1038/ng1123
– volume: 21
  start-page: 18
  year: 1988
  ident: 10.1016/j.expneurol.2003.10.004_BIB16
  article-title: Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells
  publication-title: J. Neurosci. Res
  doi: 10.1002/jnr.490210104
– volume: vol. 3
  start-page: 253
  year: 1976
  ident: 10.1016/j.expneurol.2003.10.004_BIB29
  article-title: Central–peripheral distal axonopathy—The pathogenesis of dying-back polyneuropathies
– volume: 52
  start-page: 771
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB10
  article-title: Cyclooxygenase 2 inhibition protects motor neurons and prolongs survival in a transgenic mouse model of ALS
  publication-title: Ann. Neurol
  doi: 10.1002/ana.10374
– volume: 90
  start-page: 6591
  year: 1993
  ident: 10.1016/j.expneurol.2003.10.004_BIB26
  article-title: Chronic inhibition of glutamate uptake produces a model of slow neurotoxicity
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.90.14.6591
– volume: 159
  start-page: 563
  year: 2002
  ident: 10.1016/j.expneurol.2003.10.004_BIB1
  article-title: Missense mutation in the tubulin-specific chaperone E (Tbce) gene in the mouse mutant progressive motor neuronopathy, a model of human motoneuron disease
  publication-title: J. Cell Biol
  doi: 10.1083/jcb.200208001
– volume: 6
  start-page: 349
  year: 1995
  ident: 10.1016/j.expneurol.2003.10.004_BIB5
  article-title: Age-dependent penetrance of disease in a transgenic mouse model of familial amyotrophic lateral sclerosis
  publication-title: Mol. Cell. Neurosci
  doi: 10.1006/mcne.1995.1027
– volume: 97
  start-page: 12571
  year: 2000
  ident: 10.1016/j.expneurol.2003.10.004_BIB20
  article-title: Formation of high molecular weight complexes of mutant Cu,Zn-superoxide dismutase in a mouse model for familial amyotrophic lateral sclerosis
  publication-title: Proc. Natl. Acad. Sci. U. S. A
  doi: 10.1073/pnas.220417997
– volume: 20
  start-page: 2534
  year: 2000
  ident: 10.1016/j.expneurol.2003.10.004_BIB13
  article-title: Early and selective loss of neuromuscular synapse subtypes with low sprouting competence in motoneuron diseases
  publication-title: J. Neurosci
  doi: 10.1523/JNEUROSCI.20-07-02534.2000
SSID ssj0009427
Score 2.3967223
Snippet The SOD1 mutant mouse is the most widely used model of human amyotrophic lateral sclerosis (ALS). To determine where and when the pathological changes of motor...
SourceID proquest
pubmed
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 232
SubjectTerms Amyotrophic Lateral Sclerosis - enzymology
Amyotrophic Lateral Sclerosis - genetics
Amyotrophic Lateral Sclerosis - pathology
Animals
Axonopathy
Axons - enzymology
Axons - pathology
Biological and medical sciences
Degenerative and inherited degenerative diseases of the nervous system. Leukodystrophies. Prion diseases
Denervation
Humans
Male
Medical sciences
Mice
Mice, Mutant Strains
Mice, Transgenic
Neurology
Sclerosis
Superoxide Dismutase - biosynthesis
Superoxide Dismutase - genetics
Superoxide Dismutase-1
Time Factors
Title Amyotrophic lateral sclerosis is a distal axonopathy: evidence in mice and man
URI https://dx.doi.org/10.1016/j.expneurol.2003.10.004
https://www.ncbi.nlm.nih.gov/pubmed/14736504
https://www.proquest.com/docview/80112962
Volume 185
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB5BkdBKCPFaKI-uD1wDeTixw61CoALankDiFjl-aLMqSUSL1F747YwTh6oHxAEpp8QTWzP2zGd5PB_AOeciZzTBTY6IfY_mofGEskU_uQwj9A1-rJpsi3EyeqL3z_HzGlx3d2FsWqXz_a1Pb7y1e3PptHlZF4W944ubAc4TP2rqpMfrsBFitOc92BjePYzGy9q71DG3BtSzAitpXnpeN5Ujm2OI6KLJ9KJfBamtWkxRdablvPgalDbB6XYHth2qJMN24Luwpss92Pzrzs33YTx8WVSz16r-V0gyEfbW8YRMsSl2X0wJPoIoiyQnRMyrsrI8xYsroh3lKClKYmnriSgVeRHlATzd3jxejzzHpOBJmkQzz0S5NLjYmPSNH0smmEolAiPJtU-1kVKmLM01hnJfxUYoKXPGch0GRkUmREj1G3plVeojIGmgaY5_5UIjGEgVD6UMYmwvUhYHCe9D0qkuk67MuGW7mGRdPtn_7FPnlgQzsh9Q533wPwXrttLG9yJXnW2ylUmTYTz4XniwYs1lp7iJs-V6-_CnM2-Ga84epIhSV2_TDKM6wqQEWxy2Vl_KUhYh5qXHPxnZCfxq84Ns0swp9Gavb_oMoc8sH8D6xXswcBP8A0-9BPk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58gAoivl2fOXit9pE2qTcRZX3tScFbSfPAytoWdwW9-NudtKnLHsSD0FM704SZJPOFTOYDOOZc5IwmuMkRse_RPDSeULboJ5dhhGuDH6sm22KQ9B_pzVP8NAMX3V0Ym1bp1v52TW9Wa_fm1FnztC4Ke8cXNwOcJ37U1EmPZ2GeWpoDHNQnX5M8j5Q63taAelZ8KslLf9RN3cjmECI6afK86G8harkWIzScaRkvfoekTWi6WoUVhynJedvtNZjR5Tos3LtT8w0YnL9-VuO3qn4uJBkKe-d4SEYois0XI4KPIMriyCERH1VZWZbizzOiHeEoKUpiSeuJKBV5FeUmPF5dPlz0Pcej4EmaRGPPRLk0ONWY9I0fSyaYSiXCIsm1T7WRUqYszTUGcl_FRigpc8ZyHQZGRSZEQLUFc2VV6h0gaaBpjn_lQiMUSBUPpQxilBcpi4OE9yDpTJdJV2Tccl0Msy6b7CX7sbmlwIzsB7R5D_wfxbqts_G3ylnnm2xqyGQYDf5WPpzy5qRR3MLZYr09OOrcm-GMs8cootTV-yjDmI4gKUGJ7dbrE13KIkS8dPc_PTuCxf7D_V12dz243YOlNlPIps_sw9z47V0fIAga54fNIP8GcKwFuw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Amyotrophic+lateral+sclerosis+is+a+distal+axonopathy%3A+evidence+in+mice+and+man&rft.jtitle=Experimental+neurology&rft.au=Fischer%2C+Lindsey+R&rft.au=Culver%2C+Deborah+G&rft.au=Tennant%2C+Philip&rft.au=Davis%2C+Albert+A&rft.date=2004-02-01&rft.issn=0014-4886&rft.volume=185&rft.issue=2&rft.spage=232&rft_id=info:doi/10.1016%2Fj.expneurol.2003.10.004&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0014-4886&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0014-4886&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0014-4886&client=summon