Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)
The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the...
Saved in:
| Published in | Renewable energy Vol. 55; pp. 128 - 137 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Elsevier Ltd
01.07.2013
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-1481 1879-0682 |
| DOI | 10.1016/j.renene.2012.11.035 |
Cover
| Abstract | The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies.
► Optimum diameter ratio of coaxial pipes in an EGS application to minimize pressure drop does not dependent on the flow regime. ► Optimum geofluid mass flow rate for maximum extracted heat energy from the Earth's underground to increase exponentially with the flow Reynolds number. ► First- and second-law efficiencies are maximized by higher Earth's temperature gradient and lower geofluid rejection temperatures. |
|---|---|
| AbstractList | The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies. The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies. ► Optimum diameter ratio of coaxial pipes in an EGS application to minimize pressure drop does not dependent on the flow regime. ► Optimum geofluid mass flow rate for maximum extracted heat energy from the Earth's underground to increase exponentially with the flow Reynolds number. ► First- and second-law efficiencies are maximized by higher Earth's temperature gradient and lower geofluid rejection temperatures. The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies. |
| Author | Bello-Ochende, T. Yekoladio, P.J. Meyer, J.P. |
| Author_xml | – sequence: 1 givenname: P.J. surname: Yekoladio fullname: Yekoladio, P.J. – sequence: 2 givenname: T. surname: Bello-Ochende fullname: Bello-Ochende, T. email: tunde.bello-ochende@up.ac.za, tbochende@up.ac.za – sequence: 3 givenname: J.P. surname: Meyer fullname: Meyer, J.P. |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27140685$$DView record in Pascal Francis |
| BookMark | eNqFkU9v1DAQxSNUJLaFb4CEL0jlsGEmie2EAxIqpSBV4lB6tlx7vOtVEi-2Cy2fHi8pFw5UPows_d78ee-4OprDTFX1EqFGQPF2V0eay6sbwKZGrKHlT6oV9nJYg-ibo2oFg4A1dj0-q45T2gEg72W3quxHSn4zMz1bFvbZT_6Xzj7MLDimmQ0_520YiZmg77we2ZZ0ZnRntnreUGQuxKJkNJe_Ics2FPKW4lTIdJ8yTez0_OLqzfPqqdNjohcP9aS6_nT-7ezz-vLrxZezD5dr04k2r_sb6YAcGd44aGAgY6lFQSiwk1J3VoKwHZfyxgrZCys018a13DVcIgy2PalOl777GL7fUspq8snQOOqZwm1SKHohG94BPo5ygB5g4H1BXz-gOhk9ulhu9Unto590vFeNxK6YzAv3buFMDClFcsr4_MfMHLUfFYI6pKV2aklLHdJSiKqkVcTdP-K__R-RvVpkTgelN7HsdX1VgLI9SuhRFOL9QlAx_oenqJLxdEjLRzJZ2eD_P-I3sdi7PA |
| CitedBy_id | crossref_primary_10_1007_s10973_020_09582_2 crossref_primary_10_1038_s41598_024_51226_0 crossref_primary_10_1016_j_applthermaleng_2023_121008 crossref_primary_10_1016_j_rser_2024_114286 crossref_primary_10_1016_j_apenergy_2013_07_041 crossref_primary_10_1016_j_applthermaleng_2024_122337 crossref_primary_10_1016_j_renene_2021_02_129 crossref_primary_10_1016_j_energy_2019_115858 crossref_primary_10_1016_j_enconman_2020_113437 crossref_primary_10_1016_j_apenergy_2017_03_054 crossref_primary_10_1186_s40517_021_00201_3 crossref_primary_10_1016_j_geothermics_2021_102218 crossref_primary_10_1007_s40948_023_00659_4 crossref_primary_10_1016_j_enbenv_2020_10_002 crossref_primary_10_1016_j_applthermaleng_2022_119093 crossref_primary_10_1016_j_apenergy_2019_113447 crossref_primary_10_32604_EE_2021_014464 crossref_primary_10_3390_buildings15020243 crossref_primary_10_1016_j_energy_2021_121676 crossref_primary_10_4028_p_6ovleZ crossref_primary_10_1016_j_applthermaleng_2024_124492 crossref_primary_10_1016_j_renene_2019_06_005 crossref_primary_10_1016_j_renene_2015_12_062 crossref_primary_10_1016_j_jobe_2024_110488 crossref_primary_10_1016_j_renene_2017_08_088 crossref_primary_10_1007_s40948_024_00764_y crossref_primary_10_1080_10916466_2023_2183964 crossref_primary_10_1016_j_energy_2020_117549 crossref_primary_10_3390_su16041603 crossref_primary_10_1002_htj_21692 crossref_primary_10_1016_j_energy_2022_125986 crossref_primary_10_1016_j_applthermaleng_2024_122488 crossref_primary_10_1016_j_renene_2021_10_038 crossref_primary_10_3390_en15030742 crossref_primary_10_1002_er_3326 crossref_primary_10_1016_j_energy_2018_08_056 crossref_primary_10_1007_s11770_022_0995_6 crossref_primary_10_1016_j_geothermics_2018_09_009 crossref_primary_10_1016_j_plrev_2013_03_012 |
| Cites_doi | 10.1016/j.renene.2009.07.023 10.1016/0142-727X(92)90061-D 10.1002/(SICI)1099-114X(19991025)23:13<1111::AID-ER541>3.0.CO;2-N 10.1016/j.renene.2008.01.017 10.1016/S0375-6505(02)00032-9 10.1016/0196-8904(88)90010-6 10.1016/j.energy.2007.01.005 10.1029/93RG01249 10.1016/S1164-0235(01)00034-6 10.1016/S0017-9310(00)00074-0 10.1016/j.geothermics.2003.10.003 10.1016/j.geothermics.2009.08.001 10.1016/j.geothermics.2011.10.001 10.1180/0026461026610089 |
| ContentType | Journal Article |
| Copyright | 2012 Elsevier Ltd 2014 INIST-CNRS |
| Copyright_xml | – notice: 2012 Elsevier Ltd – notice: 2014 INIST-CNRS |
| DBID | FBQ AAYXX CITATION IQODW 7SU 7TB 8FD C1K FR3 H8D KR7 L7M 7S9 L.6 |
| DOI | 10.1016/j.renene.2012.11.035 |
| DatabaseName | AGRIS CrossRef Pascal-Francis Environmental Engineering Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Environmental Engineering Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Environmental Sciences and Pollution Management AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Aerospace Database AGRICOLA |
| Database_xml | – sequence: 1 dbid: FBQ name: AGRIS url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1879-0682 |
| EndPage | 137 |
| ExternalDocumentID | 27140685 10_1016_j_renene_2012_11_035 US201500170816 S0960148112007707 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- ABPIF ABPTK FBQ AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH 7SU 7TB 8FD C1K FR3 H8D KR7 L7M 7S9 L.6 |
| ID | FETCH-LOGICAL-c463t-8b7f0efec52f0209ecde316e161477a4d706d4577bd6786d6a5acf35f257109d3 |
| IEDL.DBID | .~1 |
| ISSN | 0960-1481 |
| IngestDate | Sun Sep 28 11:01:07 EDT 2025 Tue Oct 07 09:36:30 EDT 2025 Mon Jul 21 09:16:50 EDT 2025 Wed Oct 01 04:00:28 EDT 2025 Thu Apr 24 22:52:40 EDT 2025 Wed Dec 27 19:18:17 EST 2023 Fri Feb 23 02:20:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Binary cycle Downhole coaxial heat exchanger Exergy analysis Enhanced geothermal system Entropy generation minimization analysis Energy analysis Renewable energy Heat exchanger Optimization |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c463t-8b7f0efec52f0209ecde316e161477a4d706d4577bd6786d6a5acf35f257109d3 |
| Notes | http://dx.doi.org/10.1016/j.renene.2012.11.035 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1500800958 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_1686725401 proquest_miscellaneous_1500800958 pascalfrancis_primary_27140685 crossref_citationtrail_10_1016_j_renene_2012_11_035 crossref_primary_10_1016_j_renene_2012_11_035 fao_agris_US201500170816 elsevier_sciencedirect_doi_10_1016_j_renene_2012_11_035 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-07-01 |
| PublicationDateYYYYMMDD | 2013-07-01 |
| PublicationDate_xml | – month: 07 year: 2013 text: 2013-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Renewable energy |
| PublicationYear | 2013 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Madhawa, Mihajlo, Worek, Yasuyuki (bib19) 2007; 32 Pollack, Hurter, Johnson (bib6) 1993; 30 Yari (bib22) 2010; 35 Bejan (bib28) 1988 Subbiah, Natarajan (bib33) 1988; 28 Bejan, Lorente (bib24) 2008 Geothermal Energy Association (bib11) 2010 Bejan, Tsatsaronis, Moran (bib25) 1996 Kutscher (bib14) 2000 Alfe, Gillan, Price (bib3) 2003; 67 Turcotte, Schubert (bib4) 2002 Bertani (bib9) 2012; 41 Zimparov (bib30) 2001; 44 Bassfeld Technology Transfer (bib5) 2009 Gnielinski (bib31) 1983 White (bib26) 2008 DiPippo (bib1) 1998 Kanoglu, Bolatturk (bib23) 2008; 33 EIA 2010 (bib7) 2010 Bejan (bib21) 1993 Entingh, Easwaran, McLarty (bib27) 1994; 18 Franco, Villani (bib18) 2009; 38 Bejan (bib15) 1999; 23 Yilmaz, Sara, Karsli (bib16) 2001; 4 DiPippo (bib20) 2004; 33 Tester, Anderson, Batchelor, Blackwell, DiPippo, Drake (bib12) 2006 Kanoglu (bib32) 2002; 31 EERE (bib13) 2009 Rybach (bib2) 2007; vol. 28(3) Fridleifsson, Bertani, Huenges, Lund, Ragnarsson, Rybach (bib8) 2009 Sonntag, Borgnakke, Van Wylen (bib29) 2003 IEA ETSAP (bib10) 2010 Lim, Bejan, Kim (bib17) 1992; 13 Entingh (10.1016/j.renene.2012.11.035_bib27) 1994; 18 IEA ETSAP (10.1016/j.renene.2012.11.035_bib10) 2010 Madhawa (10.1016/j.renene.2012.11.035_bib19) 2007; 32 Gnielinski (10.1016/j.renene.2012.11.035_bib31) 1983 Bejan (10.1016/j.renene.2012.11.035_bib25) 1996 Yari (10.1016/j.renene.2012.11.035_bib22) 2010; 35 Bejan (10.1016/j.renene.2012.11.035_bib28) 1988 Subbiah (10.1016/j.renene.2012.11.035_bib33) 1988; 28 Kanoglu (10.1016/j.renene.2012.11.035_bib23) 2008; 33 Zimparov (10.1016/j.renene.2012.11.035_bib30) 2001; 44 Rybach (10.1016/j.renene.2012.11.035_bib2) Franco (10.1016/j.renene.2012.11.035_bib18) 2009; 38 Kanoglu (10.1016/j.renene.2012.11.035_bib32) 2002; 31 EIA 2010 (10.1016/j.renene.2012.11.035_bib7) 2010 Fridleifsson (10.1016/j.renene.2012.11.035_bib8) 2009 Bejan (10.1016/j.renene.2012.11.035_bib15) 1999; 23 EERE (10.1016/j.renene.2012.11.035_bib13) 2009 Lim (10.1016/j.renene.2012.11.035_bib17) 1992; 13 Turcotte (10.1016/j.renene.2012.11.035_bib4) 2002 White (10.1016/j.renene.2012.11.035_bib26) 2008 DiPippo (10.1016/j.renene.2012.11.035_bib1) 1998 Kutscher (10.1016/j.renene.2012.11.035_bib14) 2000 DiPippo (10.1016/j.renene.2012.11.035_bib20) 2004; 33 Alfe (10.1016/j.renene.2012.11.035_bib3) 2003; 67 Bejan (10.1016/j.renene.2012.11.035_bib21) 1993 Bassfeld Technology Transfer (10.1016/j.renene.2012.11.035_bib5) 2009 Bejan (10.1016/j.renene.2012.11.035_bib24) 2008 Bertani (10.1016/j.renene.2012.11.035_bib9) 2012; 41 Pollack (10.1016/j.renene.2012.11.035_bib6) 1993; 30 Tester (10.1016/j.renene.2012.11.035_bib12) 2006 Yilmaz (10.1016/j.renene.2012.11.035_bib16) 2001; 4 Sonntag (10.1016/j.renene.2012.11.035_bib29) 2003 Geothermal Energy Association (10.1016/j.renene.2012.11.035_bib11) 2010 |
| References_xml | – volume: 67 start-page: 113 year: 2003 end-page: 123 ident: bib3 article-title: Thermodynamics from first principles: temperature and composition of the Earth's core publication-title: Mineralogical Magazine – year: 2002 ident: bib4 article-title: Geodynamics – year: 2006 ident: bib12 article-title: The future of geothermal energy, impact of enhanced geothermal systems (EGS) on the United States in the 21st century: an assessment – year: 2009 ident: bib5 article-title: Geothermal power generation: economically viable electricity generation through advanced geothermal energy technologies – year: 1988 ident: bib28 article-title: Advanced engineering thermodynamics – year: 1993 ident: bib21 article-title: Heat transfer – year: 1996 ident: bib25 article-title: Thermal design and optimization – volume: 18 start-page: 39 year: 1994 end-page: 46 ident: bib27 article-title: Small geothermal electric systems for remote powering publication-title: Geothermal Resources Council Transactions – year: 2010 ident: bib10 article-title: Geothermal heat and power – volume: 28 start-page: 47 year: 1988 end-page: 52 ident: bib33 article-title: Thermodynamic analysis of binary-fluid rankine cycles for geothermal power plants publication-title: Energy Conversion and Management – year: 2009 ident: bib8 article-title: The possible role and contribution of geothermal energy to the mitigation of climate change – start-page: 8.27 year: 1998 end-page: 8.60 ident: bib1 article-title: Geothermal power systems publication-title: Standard handbook of power plant engineering – volume: 31 start-page: 709 year: 2002 end-page: 724 ident: bib32 article-title: Exergy analysis of a dual-level binary geothermal power plant publication-title: Geothermics – year: 2010 ident: bib11 article-title: Geothermal energy: international market update – volume: 4 start-page: 278 year: 2001 end-page: 294 ident: bib16 article-title: Performance evaluation criteria for heat exchangers based on the second law analysis publication-title: Exergy, An International Journal – year: 2010 ident: bib7 article-title: International energy outlook 2010 – volume: 44 start-page: 169 year: 2001 end-page: 180 ident: bib30 article-title: Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux publication-title: International Journal of Heat and Mass Transfer – volume: 41 start-page: 1 year: 2012 end-page: 29 ident: bib9 article-title: Geothermal power generation in the world 2005–2010 update report publication-title: Geothermics – volume: 35 start-page: 112 year: 2010 end-page: 121 ident: bib22 article-title: Exergetic analysis of various types of geothermal power plants publication-title: Renewable Energy – volume: vol. 28(3) year: 2007 ident: bib2 article-title: Geothermal sustainability publication-title: Geo-heat Centre Quarterly Bulletin – volume: 32 start-page: 1698 year: 2007 end-page: 1706 ident: bib19 article-title: Optimum design criteria for an organic Rankine cycle using low temperature geothermal heat sources publication-title: Energy – year: 2008 ident: bib26 article-title: Fluid mechanics – volume: 30 start-page: 267 year: 1993 end-page: 280 ident: bib6 article-title: Heat flow from the Earth's interior: analysis of the global data set publication-title: Reviews of Geophysics – start-page: 2.5.1-1 year: 1983 end-page: 2.5.1-10 ident: bib31 article-title: Forced convection in ducts publication-title: Heat exchanger design handbook – year: 2008 ident: bib24 article-title: Design with constructal theory – volume: 38 start-page: 379 year: 2009 end-page: 391 ident: bib18 article-title: Optimum design of binary cycle power plants for water-dominated, medium-temperature geothermal fields publication-title: Geothermics – volume: 33 start-page: 565 year: 2004 end-page: 586 ident: bib20 article-title: Second law assessment of binary plants generating power from low-temperature geothermal fluids publication-title: Geothermics – volume: 33 start-page: 2366 year: 2008 end-page: 2374 ident: bib23 article-title: Performance and parametric investigation of a binary geothermal power plant by exergy publication-title: Renewable Energy – year: 2000 ident: bib14 article-title: The status and future of geothermal electric power publication-title: American Solar Energy Society Conference, Madison, June 16–21, 2000 – year: 2003 ident: bib29 article-title: Fundamentals of thermodynamics – year: 2009 ident: bib13 article-title: Geothermal technologies program – recovery act funding opportunities – volume: 23 start-page: 1111 year: 1999 end-page: 1121 ident: bib15 article-title: Thermodynamic optimization alternatives: minimization of physical size subject to fixed power publication-title: International Journal of Energy Research – volume: 13 start-page: 71 year: 1992 end-page: 77 ident: bib17 article-title: Thermodynamics of energy extraction from fractured hot dry rock publication-title: International Journal of Heat and Fluid Flow – volume: 35 start-page: 112 issue: 1 year: 2010 ident: 10.1016/j.renene.2012.11.035_bib22 article-title: Exergetic analysis of various types of geothermal power plants publication-title: Renewable Energy doi: 10.1016/j.renene.2009.07.023 – year: 1993 ident: 10.1016/j.renene.2012.11.035_bib21 – year: 2002 ident: 10.1016/j.renene.2012.11.035_bib4 – volume: 13 start-page: 71 issue: 1 year: 1992 ident: 10.1016/j.renene.2012.11.035_bib17 article-title: Thermodynamics of energy extraction from fractured hot dry rock publication-title: International Journal of Heat and Fluid Flow doi: 10.1016/0142-727X(92)90061-D – ident: 10.1016/j.renene.2012.11.035_bib2 – year: 2009 ident: 10.1016/j.renene.2012.11.035_bib13 – year: 2008 ident: 10.1016/j.renene.2012.11.035_bib24 – year: 2006 ident: 10.1016/j.renene.2012.11.035_bib12 – volume: 23 start-page: 1111 issue: 1 year: 1999 ident: 10.1016/j.renene.2012.11.035_bib15 article-title: Thermodynamic optimization alternatives: minimization of physical size subject to fixed power publication-title: International Journal of Energy Research doi: 10.1002/(SICI)1099-114X(19991025)23:13<1111::AID-ER541>3.0.CO;2-N – volume: 33 start-page: 2366 issue: 1 year: 2008 ident: 10.1016/j.renene.2012.11.035_bib23 article-title: Performance and parametric investigation of a binary geothermal power plant by exergy publication-title: Renewable Energy doi: 10.1016/j.renene.2008.01.017 – year: 2008 ident: 10.1016/j.renene.2012.11.035_bib26 – year: 2003 ident: 10.1016/j.renene.2012.11.035_bib29 – volume: 31 start-page: 709 issue: 1 year: 2002 ident: 10.1016/j.renene.2012.11.035_bib32 article-title: Exergy analysis of a dual-level binary geothermal power plant publication-title: Geothermics doi: 10.1016/S0375-6505(02)00032-9 – year: 2009 ident: 10.1016/j.renene.2012.11.035_bib8 – volume: 28 start-page: 47 issue: 1 year: 1988 ident: 10.1016/j.renene.2012.11.035_bib33 article-title: Thermodynamic analysis of binary-fluid rankine cycles for geothermal power plants publication-title: Energy Conversion and Management doi: 10.1016/0196-8904(88)90010-6 – volume: 32 start-page: 1698 issue: 1 year: 2007 ident: 10.1016/j.renene.2012.11.035_bib19 article-title: Optimum design criteria for an organic Rankine cycle using low temperature geothermal heat sources publication-title: Energy doi: 10.1016/j.energy.2007.01.005 – volume: 30 start-page: 267 issue: 3 year: 1993 ident: 10.1016/j.renene.2012.11.035_bib6 article-title: Heat flow from the Earth's interior: analysis of the global data set publication-title: Reviews of Geophysics doi: 10.1029/93RG01249 – volume: 4 start-page: 278 issue: 1 year: 2001 ident: 10.1016/j.renene.2012.11.035_bib16 article-title: Performance evaluation criteria for heat exchangers based on the second law analysis publication-title: Exergy, An International Journal doi: 10.1016/S1164-0235(01)00034-6 – year: 2010 ident: 10.1016/j.renene.2012.11.035_bib10 – volume: 44 start-page: 169 issue: 1 year: 2001 ident: 10.1016/j.renene.2012.11.035_bib30 article-title: Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux publication-title: International Journal of Heat and Mass Transfer doi: 10.1016/S0017-9310(00)00074-0 – year: 2009 ident: 10.1016/j.renene.2012.11.035_bib5 – year: 2010 ident: 10.1016/j.renene.2012.11.035_bib11 – year: 1988 ident: 10.1016/j.renene.2012.11.035_bib28 – volume: 33 start-page: 565 issue: 1 year: 2004 ident: 10.1016/j.renene.2012.11.035_bib20 article-title: Second law assessment of binary plants generating power from low-temperature geothermal fluids publication-title: Geothermics doi: 10.1016/j.geothermics.2003.10.003 – year: 2010 ident: 10.1016/j.renene.2012.11.035_bib7 – volume: 38 start-page: 379 issue: 1 year: 2009 ident: 10.1016/j.renene.2012.11.035_bib18 article-title: Optimum design of binary cycle power plants for water-dominated, medium-temperature geothermal fields publication-title: Geothermics doi: 10.1016/j.geothermics.2009.08.001 – volume: 18 start-page: 39 issue: 1 year: 1994 ident: 10.1016/j.renene.2012.11.035_bib27 article-title: Small geothermal electric systems for remote powering publication-title: Geothermal Resources Council Transactions – year: 2000 ident: 10.1016/j.renene.2012.11.035_bib14 article-title: The status and future of geothermal electric power – start-page: 2.5.1-1 year: 1983 ident: 10.1016/j.renene.2012.11.035_bib31 article-title: Forced convection in ducts – volume: 41 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.renene.2012.11.035_bib9 article-title: Geothermal power generation in the world 2005–2010 update report publication-title: Geothermics doi: 10.1016/j.geothermics.2011.10.001 – start-page: 8.27 year: 1998 ident: 10.1016/j.renene.2012.11.035_bib1 article-title: Geothermal power systems – year: 1996 ident: 10.1016/j.renene.2012.11.035_bib25 – volume: 67 start-page: 113 issue: 1 year: 2003 ident: 10.1016/j.renene.2012.11.035_bib3 article-title: Thermodynamics from first principles: temperature and composition of the Earth's core publication-title: Mineralogical Magazine doi: 10.1180/0026461026610089 |
| SSID | ssj0015874 |
| Score | 2.3028915 |
| Snippet | The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The... |
| SourceID | proquest pascalfrancis crossref fao elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 128 |
| SubjectTerms | Applied sciences Binary cycle Computational fluid dynamics cooling Devices using thermal energy Downhole coaxial heat exchanger Earth Energy Energy. Thermal use of fuels Enhanced geothermal system entropy Entropy generation minimization analysis Exact sciences and technology Exergy analysis Fluid flow friction Geothermal Heat exchangers Heat exchangers (included heat transformers, condensers, cooling towers) heat transfer mass flow Natural energy Optimization pipes renewable energy sources temperature Turbulence Turbulent flow |
| Title | Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS) |
| URI | https://dx.doi.org/10.1016/j.renene.2012.11.035 https://www.proquest.com/docview/1500800958 https://www.proquest.com/docview/1686725401 |
| Volume | 55 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAXuCA-gDxaFeuxAEOYZP4mSOi0G0ruGxX4mY5sQ2LIEGwSJz47cw4yaoIBFKv0TiyPPbM52Tm-wjZcUL4Ik9dUoQQUMJMJJbZkBSSV5pJrWzUBjw5laMJ_30mzhbIYd8Lg2WVXexvY3qM1t2TYbeaw5vpdDhG8A1gHgADctLEjnLOFaoY7D_OyzwyoVsmZjBO0Lpvn4s1XsgaWSNZZpbvI5dnFH17NT0tBttg3aS9g6ULrebFi_Adc9LxR7LagUl60M73E1nw9Wey8g_F4BfifsQSDWprRxsID9dd3yVtArXUwR0cBXJp1dgH2IkUQzP1D107MAVECyOpry9ioQA997Fh6xosWwpounv0c7y3RibHR38PR0mnrJBUXLJZoksVUh98JfIAeLHwlfMskx7gH1fKcqdS6bhQqnSQzKSTVtgqMBHggGdp4dg6Waqb2m8QWlgLLuDMBQADhbQlQDK4EzLHS8ACQW4S1i-oqTracVS_uDJ9fdmlad1g0A1wIzHghk2SzEfdtLQb79ir3lfm2fYxkBneGbkBrjX2HGKqmYxz_AKEnEI6g6kPnvl7PpMcWQ6lhrHf-w1g4FTirxZb--b-zuBLNMJX_YaN1FLB_TzNtv579ttkOY_6HFg__JUszW7v_TdASbNyEI_BgHw4-PVndPoELFsO2g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAeKtqCoOXhShzgEDaJnzkiXtvyuCwrcbOc2OahkqCySJz62zvjJCsQFUhco3E08tgz3yQz3xCy4YTwRZ66pAgh4AgzkVhmQ1JIXmkmtbJxNuDJqRyO-a9zcT5DdvteGCyr7Hx_69Ojt-6eDLrdHNxeXQ1GCL4BzANgQE4a7Ch_z0WuMAPb_jut88iEbqmYQTpB8b5_LhZ5IW1kjWyZWb6NZJ5x6tt_49O7YBssnLR3sHehHXrxzH_HoHQwTz51aJLutAp_JjO-_kI-PuIY_ErcXqzRoLZ2tAH_cNM1XtImUEsdJOE4IZdWjX2Ao0jRN1P_0PUDU4C0sJL6-jJWCtALHzu2bkCy5YCmm_uHo60FMj7YP9sdJt1ohaTikk0SXaqQ-uArkQcAjIWvnGeZ9ID_uFKWO5VKx4VSpYNoJp20wlaBiQA3PEsLxxbJbN3UfonQwlqwAWcuABoopC0Bk0FSyBwvAQwEuUxYv6Gm6njHcfzFb9MXmF2b1gwGzQApiQEzLJNkuuq25d14RV71tjJPzo-B0PDKyiUwrbEX4FTNeJTjJyAkFdIZqL72xN5TTXKkOZQa1v7oD4CBa4n_Wmztm_s7gy_RiF_1CzJSSwUJepp9e7P262RueHZybI5_nh59Jx_yOKwDi4lXyOzkz71fBcg0KdfilfgHUfEQbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+downhole+coaxial+heat+exchanger+for+an+enhanced+geothermal+system+%28EGS%29&rft.jtitle=Renewable+energy&rft.au=Yekoladio%2C+P+J&rft.au=Bello-Ochende%2C+T&rft.au=Meyer%2C+J+P&rft.date=2013-07-01&rft.issn=0960-1481&rft.volume=55+p.128-137&rft.spage=128&rft.epage=137&rft_id=info:doi/10.1016%2Fj.renene.2012.11.035&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |