Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)

The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 55; pp. 128 - 137
Main Authors Yekoladio, P.J., Bello-Ochende, T., Meyer, J.P.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.07.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0960-1481
1879-0682
DOI10.1016/j.renene.2012.11.035

Cover

Abstract The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies. ► Optimum diameter ratio of coaxial pipes in an EGS application to minimize pressure drop does not dependent on the flow regime. ► Optimum geofluid mass flow rate for maximum extracted heat energy from the Earth's underground to increase exponentially with the flow Reynolds number. ► First- and second-law efficiencies are maximized by higher Earth's temperature gradient and lower geofluid rejection temperatures.
AbstractList The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies.
The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies. ► Optimum diameter ratio of coaxial pipes in an EGS application to minimize pressure drop does not dependent on the flow regime. ► Optimum geofluid mass flow rate for maximum extracted heat energy from the Earth's underground to increase exponentially with the flow Reynolds number. ► First- and second-law efficiencies are maximized by higher Earth's temperature gradient and lower geofluid rejection temperatures.
The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The optimum mass flow rate of the geothermal fluid for minimum pumping power and maximum extracted heat energy was determined. In addition, the coaxial pipes of the downhole heat exchanger were sized based on the optimum geothermal mass flow rate and steady-state operation. Transient effect or time-dependent cooling of the Earth underground, and the optimum amount and size of perforations at the inner pipe entrance region to regulate the flow of the geothermal fluid were disregarded to simplify the analysis. The paper consists of an analytical and numerical thermodynamic optimization of a downhole coaxial heat exchanger used to extract the maximum possible energy from the Earth's deep underground (2 km and deeper below the surface) for direct usage, and subject to a nearly linear increase in geothermal gradient with depth. The thermodynamic optimization process and entropy generation minimization (EGM) analysis were performed to minimize heat transfer and fluid friction irreversibilities. An optimum diameter ratio of the coaxial pipes for minimum pressure drop in both limits of the fully turbulent and laminar fully-developed flow regime was determined and observed to be nearly the same irrespective of the flow regime. Furthermore, an optimum geothermal mass flow rate and an optimum geometry of the downhole coaxial heat exchanger were determined for maximum net power output. Conducting an energetic and exergetic analysis to evaluate the performance of binary power cycle, higher Earth's temperature gradient and lower geofluid rejection temperatures were observed to yield maximum first- and second-law efficiencies.
Author Bello-Ochende, T.
Yekoladio, P.J.
Meyer, J.P.
Author_xml – sequence: 1
  givenname: P.J.
  surname: Yekoladio
  fullname: Yekoladio, P.J.
– sequence: 2
  givenname: T.
  surname: Bello-Ochende
  fullname: Bello-Ochende, T.
  email: tunde.bello-ochende@up.ac.za, tbochende@up.ac.za
– sequence: 3
  givenname: J.P.
  surname: Meyer
  fullname: Meyer, J.P.
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=27140685$$DView record in Pascal Francis
BookMark eNqFkU9v1DAQxSNUJLaFb4CEL0jlsGEmie2EAxIqpSBV4lB6tlx7vOtVEi-2Cy2fHi8pFw5UPows_d78ee-4OprDTFX1EqFGQPF2V0eay6sbwKZGrKHlT6oV9nJYg-ibo2oFg4A1dj0-q45T2gEg72W3quxHSn4zMz1bFvbZT_6Xzj7MLDimmQ0_520YiZmg77we2ZZ0ZnRntnreUGQuxKJkNJe_Ics2FPKW4lTIdJ8yTez0_OLqzfPqqdNjohcP9aS6_nT-7ezz-vLrxZezD5dr04k2r_sb6YAcGd44aGAgY6lFQSiwk1J3VoKwHZfyxgrZCys018a13DVcIgy2PalOl777GL7fUspq8snQOOqZwm1SKHohG94BPo5ygB5g4H1BXz-gOhk9ulhu9Unto590vFeNxK6YzAv3buFMDClFcsr4_MfMHLUfFYI6pKV2aklLHdJSiKqkVcTdP-K__R-RvVpkTgelN7HsdX1VgLI9SuhRFOL9QlAx_oenqJLxdEjLRzJZ2eD_P-I3sdi7PA
CitedBy_id crossref_primary_10_1007_s10973_020_09582_2
crossref_primary_10_1038_s41598_024_51226_0
crossref_primary_10_1016_j_applthermaleng_2023_121008
crossref_primary_10_1016_j_rser_2024_114286
crossref_primary_10_1016_j_apenergy_2013_07_041
crossref_primary_10_1016_j_applthermaleng_2024_122337
crossref_primary_10_1016_j_renene_2021_02_129
crossref_primary_10_1016_j_energy_2019_115858
crossref_primary_10_1016_j_enconman_2020_113437
crossref_primary_10_1016_j_apenergy_2017_03_054
crossref_primary_10_1186_s40517_021_00201_3
crossref_primary_10_1016_j_geothermics_2021_102218
crossref_primary_10_1007_s40948_023_00659_4
crossref_primary_10_1016_j_enbenv_2020_10_002
crossref_primary_10_1016_j_applthermaleng_2022_119093
crossref_primary_10_1016_j_apenergy_2019_113447
crossref_primary_10_32604_EE_2021_014464
crossref_primary_10_3390_buildings15020243
crossref_primary_10_1016_j_energy_2021_121676
crossref_primary_10_4028_p_6ovleZ
crossref_primary_10_1016_j_applthermaleng_2024_124492
crossref_primary_10_1016_j_renene_2019_06_005
crossref_primary_10_1016_j_renene_2015_12_062
crossref_primary_10_1016_j_jobe_2024_110488
crossref_primary_10_1016_j_renene_2017_08_088
crossref_primary_10_1007_s40948_024_00764_y
crossref_primary_10_1080_10916466_2023_2183964
crossref_primary_10_1016_j_energy_2020_117549
crossref_primary_10_3390_su16041603
crossref_primary_10_1002_htj_21692
crossref_primary_10_1016_j_energy_2022_125986
crossref_primary_10_1016_j_applthermaleng_2024_122488
crossref_primary_10_1016_j_renene_2021_10_038
crossref_primary_10_3390_en15030742
crossref_primary_10_1002_er_3326
crossref_primary_10_1016_j_energy_2018_08_056
crossref_primary_10_1007_s11770_022_0995_6
crossref_primary_10_1016_j_geothermics_2018_09_009
crossref_primary_10_1016_j_plrev_2013_03_012
Cites_doi 10.1016/j.renene.2009.07.023
10.1016/0142-727X(92)90061-D
10.1002/(SICI)1099-114X(19991025)23:13<1111::AID-ER541>3.0.CO;2-N
10.1016/j.renene.2008.01.017
10.1016/S0375-6505(02)00032-9
10.1016/0196-8904(88)90010-6
10.1016/j.energy.2007.01.005
10.1029/93RG01249
10.1016/S1164-0235(01)00034-6
10.1016/S0017-9310(00)00074-0
10.1016/j.geothermics.2003.10.003
10.1016/j.geothermics.2009.08.001
10.1016/j.geothermics.2011.10.001
10.1180/0026461026610089
ContentType Journal Article
Copyright 2012 Elsevier Ltd
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier Ltd
– notice: 2014 INIST-CNRS
DBID FBQ
AAYXX
CITATION
IQODW
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
7S9
L.6
DOI 10.1016/j.renene.2012.11.035
DatabaseName AGRIS
CrossRef
Pascal-Francis
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Aerospace Database
AGRICOLA


Database_xml – sequence: 1
  dbid: FBQ
  name: AGRIS
  url: http://www.fao.org/agris/Centre.asp?Menu_1ID=DB&Menu_2ID=DB1&Language=EN&Content=http://www.fao.org/agris/search?Language=EN
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1879-0682
EndPage 137
ExternalDocumentID 27140685
10_1016_j_renene_2012_11_035
US201500170816
S0960148112007707
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
ABPIF
ABPTK
FBQ
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SU
7TB
8FD
C1K
FR3
H8D
KR7
L7M
7S9
L.6
ID FETCH-LOGICAL-c463t-8b7f0efec52f0209ecde316e161477a4d706d4577bd6786d6a5acf35f257109d3
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Sun Sep 28 11:01:07 EDT 2025
Tue Oct 07 09:36:30 EDT 2025
Mon Jul 21 09:16:50 EDT 2025
Wed Oct 01 04:00:28 EDT 2025
Thu Apr 24 22:52:40 EDT 2025
Wed Dec 27 19:18:17 EST 2023
Fri Feb 23 02:20:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Binary cycle
Downhole coaxial heat exchanger
Exergy analysis
Enhanced geothermal system
Entropy generation minimization analysis
Energy analysis
Renewable energy
Heat exchanger
Optimization
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-8b7f0efec52f0209ecde316e161477a4d706d4577bd6786d6a5acf35f257109d3
Notes http://dx.doi.org/10.1016/j.renene.2012.11.035
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1500800958
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_1686725401
proquest_miscellaneous_1500800958
pascalfrancis_primary_27140685
crossref_citationtrail_10_1016_j_renene_2012_11_035
crossref_primary_10_1016_j_renene_2012_11_035
fao_agris_US201500170816
elsevier_sciencedirect_doi_10_1016_j_renene_2012_11_035
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-07-01
PublicationDateYYYYMMDD 2013-07-01
PublicationDate_xml – month: 07
  year: 2013
  text: 2013-07-01
  day: 01
PublicationDecade 2010
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Renewable energy
PublicationYear 2013
Publisher Elsevier Ltd
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier
References Madhawa, Mihajlo, Worek, Yasuyuki (bib19) 2007; 32
Pollack, Hurter, Johnson (bib6) 1993; 30
Yari (bib22) 2010; 35
Bejan (bib28) 1988
Subbiah, Natarajan (bib33) 1988; 28
Bejan, Lorente (bib24) 2008
Geothermal Energy Association (bib11) 2010
Bejan, Tsatsaronis, Moran (bib25) 1996
Kutscher (bib14) 2000
Alfe, Gillan, Price (bib3) 2003; 67
Turcotte, Schubert (bib4) 2002
Bertani (bib9) 2012; 41
Zimparov (bib30) 2001; 44
Bassfeld Technology Transfer (bib5) 2009
Gnielinski (bib31) 1983
White (bib26) 2008
DiPippo (bib1) 1998
Kanoglu, Bolatturk (bib23) 2008; 33
EIA 2010 (bib7) 2010
Bejan (bib21) 1993
Entingh, Easwaran, McLarty (bib27) 1994; 18
Franco, Villani (bib18) 2009; 38
Bejan (bib15) 1999; 23
Yilmaz, Sara, Karsli (bib16) 2001; 4
DiPippo (bib20) 2004; 33
Tester, Anderson, Batchelor, Blackwell, DiPippo, Drake (bib12) 2006
Kanoglu (bib32) 2002; 31
EERE (bib13) 2009
Rybach (bib2) 2007; vol. 28(3)
Fridleifsson, Bertani, Huenges, Lund, Ragnarsson, Rybach (bib8) 2009
Sonntag, Borgnakke, Van Wylen (bib29) 2003
IEA ETSAP (bib10) 2010
Lim, Bejan, Kim (bib17) 1992; 13
Entingh (10.1016/j.renene.2012.11.035_bib27) 1994; 18
IEA ETSAP (10.1016/j.renene.2012.11.035_bib10) 2010
Madhawa (10.1016/j.renene.2012.11.035_bib19) 2007; 32
Gnielinski (10.1016/j.renene.2012.11.035_bib31) 1983
Bejan (10.1016/j.renene.2012.11.035_bib25) 1996
Yari (10.1016/j.renene.2012.11.035_bib22) 2010; 35
Bejan (10.1016/j.renene.2012.11.035_bib28) 1988
Subbiah (10.1016/j.renene.2012.11.035_bib33) 1988; 28
Kanoglu (10.1016/j.renene.2012.11.035_bib23) 2008; 33
Zimparov (10.1016/j.renene.2012.11.035_bib30) 2001; 44
Rybach (10.1016/j.renene.2012.11.035_bib2)
Franco (10.1016/j.renene.2012.11.035_bib18) 2009; 38
Kanoglu (10.1016/j.renene.2012.11.035_bib32) 2002; 31
EIA 2010 (10.1016/j.renene.2012.11.035_bib7) 2010
Fridleifsson (10.1016/j.renene.2012.11.035_bib8) 2009
Bejan (10.1016/j.renene.2012.11.035_bib15) 1999; 23
EERE (10.1016/j.renene.2012.11.035_bib13) 2009
Lim (10.1016/j.renene.2012.11.035_bib17) 1992; 13
Turcotte (10.1016/j.renene.2012.11.035_bib4) 2002
White (10.1016/j.renene.2012.11.035_bib26) 2008
DiPippo (10.1016/j.renene.2012.11.035_bib1) 1998
Kutscher (10.1016/j.renene.2012.11.035_bib14) 2000
DiPippo (10.1016/j.renene.2012.11.035_bib20) 2004; 33
Alfe (10.1016/j.renene.2012.11.035_bib3) 2003; 67
Bejan (10.1016/j.renene.2012.11.035_bib21) 1993
Bassfeld Technology Transfer (10.1016/j.renene.2012.11.035_bib5) 2009
Bejan (10.1016/j.renene.2012.11.035_bib24) 2008
Bertani (10.1016/j.renene.2012.11.035_bib9) 2012; 41
Pollack (10.1016/j.renene.2012.11.035_bib6) 1993; 30
Tester (10.1016/j.renene.2012.11.035_bib12) 2006
Yilmaz (10.1016/j.renene.2012.11.035_bib16) 2001; 4
Sonntag (10.1016/j.renene.2012.11.035_bib29) 2003
Geothermal Energy Association (10.1016/j.renene.2012.11.035_bib11) 2010
References_xml – volume: 67
  start-page: 113
  year: 2003
  end-page: 123
  ident: bib3
  article-title: Thermodynamics from first principles: temperature and composition of the Earth's core
  publication-title: Mineralogical Magazine
– year: 2002
  ident: bib4
  article-title: Geodynamics
– year: 2006
  ident: bib12
  article-title: The future of geothermal energy, impact of enhanced geothermal systems (EGS) on the United States in the 21st century: an assessment
– year: 2009
  ident: bib5
  article-title: Geothermal power generation: economically viable electricity generation through advanced geothermal energy technologies
– year: 1988
  ident: bib28
  article-title: Advanced engineering thermodynamics
– year: 1993
  ident: bib21
  article-title: Heat transfer
– year: 1996
  ident: bib25
  article-title: Thermal design and optimization
– volume: 18
  start-page: 39
  year: 1994
  end-page: 46
  ident: bib27
  article-title: Small geothermal electric systems for remote powering
  publication-title: Geothermal Resources Council Transactions
– year: 2010
  ident: bib10
  article-title: Geothermal heat and power
– volume: 28
  start-page: 47
  year: 1988
  end-page: 52
  ident: bib33
  article-title: Thermodynamic analysis of binary-fluid rankine cycles for geothermal power plants
  publication-title: Energy Conversion and Management
– year: 2009
  ident: bib8
  article-title: The possible role and contribution of geothermal energy to the mitigation of climate change
– start-page: 8.27
  year: 1998
  end-page: 8.60
  ident: bib1
  article-title: Geothermal power systems
  publication-title: Standard handbook of power plant engineering
– volume: 31
  start-page: 709
  year: 2002
  end-page: 724
  ident: bib32
  article-title: Exergy analysis of a dual-level binary geothermal power plant
  publication-title: Geothermics
– year: 2010
  ident: bib11
  article-title: Geothermal energy: international market update
– volume: 4
  start-page: 278
  year: 2001
  end-page: 294
  ident: bib16
  article-title: Performance evaluation criteria for heat exchangers based on the second law analysis
  publication-title: Exergy, An International Journal
– year: 2010
  ident: bib7
  article-title: International energy outlook 2010
– volume: 44
  start-page: 169
  year: 2001
  end-page: 180
  ident: bib30
  article-title: Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux
  publication-title: International Journal of Heat and Mass Transfer
– volume: 41
  start-page: 1
  year: 2012
  end-page: 29
  ident: bib9
  article-title: Geothermal power generation in the world 2005–2010 update report
  publication-title: Geothermics
– volume: 35
  start-page: 112
  year: 2010
  end-page: 121
  ident: bib22
  article-title: Exergetic analysis of various types of geothermal power plants
  publication-title: Renewable Energy
– volume: vol. 28(3)
  year: 2007
  ident: bib2
  article-title: Geothermal sustainability
  publication-title: Geo-heat Centre Quarterly Bulletin
– volume: 32
  start-page: 1698
  year: 2007
  end-page: 1706
  ident: bib19
  article-title: Optimum design criteria for an organic Rankine cycle using low temperature geothermal heat sources
  publication-title: Energy
– year: 2008
  ident: bib26
  article-title: Fluid mechanics
– volume: 30
  start-page: 267
  year: 1993
  end-page: 280
  ident: bib6
  article-title: Heat flow from the Earth's interior: analysis of the global data set
  publication-title: Reviews of Geophysics
– start-page: 2.5.1-1
  year: 1983
  end-page: 2.5.1-10
  ident: bib31
  article-title: Forced convection in ducts
  publication-title: Heat exchanger design handbook
– year: 2008
  ident: bib24
  article-title: Design with constructal theory
– volume: 38
  start-page: 379
  year: 2009
  end-page: 391
  ident: bib18
  article-title: Optimum design of binary cycle power plants for water-dominated, medium-temperature geothermal fields
  publication-title: Geothermics
– volume: 33
  start-page: 565
  year: 2004
  end-page: 586
  ident: bib20
  article-title: Second law assessment of binary plants generating power from low-temperature geothermal fluids
  publication-title: Geothermics
– volume: 33
  start-page: 2366
  year: 2008
  end-page: 2374
  ident: bib23
  article-title: Performance and parametric investigation of a binary geothermal power plant by exergy
  publication-title: Renewable Energy
– year: 2000
  ident: bib14
  article-title: The status and future of geothermal electric power
  publication-title: American Solar Energy Society Conference, Madison, June 16–21, 2000
– year: 2003
  ident: bib29
  article-title: Fundamentals of thermodynamics
– year: 2009
  ident: bib13
  article-title: Geothermal technologies program – recovery act funding opportunities
– volume: 23
  start-page: 1111
  year: 1999
  end-page: 1121
  ident: bib15
  article-title: Thermodynamic optimization alternatives: minimization of physical size subject to fixed power
  publication-title: International Journal of Energy Research
– volume: 13
  start-page: 71
  year: 1992
  end-page: 77
  ident: bib17
  article-title: Thermodynamics of energy extraction from fractured hot dry rock
  publication-title: International Journal of Heat and Fluid Flow
– volume: 35
  start-page: 112
  issue: 1
  year: 2010
  ident: 10.1016/j.renene.2012.11.035_bib22
  article-title: Exergetic analysis of various types of geothermal power plants
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2009.07.023
– year: 1993
  ident: 10.1016/j.renene.2012.11.035_bib21
– year: 2002
  ident: 10.1016/j.renene.2012.11.035_bib4
– volume: 13
  start-page: 71
  issue: 1
  year: 1992
  ident: 10.1016/j.renene.2012.11.035_bib17
  article-title: Thermodynamics of energy extraction from fractured hot dry rock
  publication-title: International Journal of Heat and Fluid Flow
  doi: 10.1016/0142-727X(92)90061-D
– ident: 10.1016/j.renene.2012.11.035_bib2
– year: 2009
  ident: 10.1016/j.renene.2012.11.035_bib13
– year: 2008
  ident: 10.1016/j.renene.2012.11.035_bib24
– year: 2006
  ident: 10.1016/j.renene.2012.11.035_bib12
– volume: 23
  start-page: 1111
  issue: 1
  year: 1999
  ident: 10.1016/j.renene.2012.11.035_bib15
  article-title: Thermodynamic optimization alternatives: minimization of physical size subject to fixed power
  publication-title: International Journal of Energy Research
  doi: 10.1002/(SICI)1099-114X(19991025)23:13<1111::AID-ER541>3.0.CO;2-N
– volume: 33
  start-page: 2366
  issue: 1
  year: 2008
  ident: 10.1016/j.renene.2012.11.035_bib23
  article-title: Performance and parametric investigation of a binary geothermal power plant by exergy
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2008.01.017
– year: 2008
  ident: 10.1016/j.renene.2012.11.035_bib26
– year: 2003
  ident: 10.1016/j.renene.2012.11.035_bib29
– volume: 31
  start-page: 709
  issue: 1
  year: 2002
  ident: 10.1016/j.renene.2012.11.035_bib32
  article-title: Exergy analysis of a dual-level binary geothermal power plant
  publication-title: Geothermics
  doi: 10.1016/S0375-6505(02)00032-9
– year: 2009
  ident: 10.1016/j.renene.2012.11.035_bib8
– volume: 28
  start-page: 47
  issue: 1
  year: 1988
  ident: 10.1016/j.renene.2012.11.035_bib33
  article-title: Thermodynamic analysis of binary-fluid rankine cycles for geothermal power plants
  publication-title: Energy Conversion and Management
  doi: 10.1016/0196-8904(88)90010-6
– volume: 32
  start-page: 1698
  issue: 1
  year: 2007
  ident: 10.1016/j.renene.2012.11.035_bib19
  article-title: Optimum design criteria for an organic Rankine cycle using low temperature geothermal heat sources
  publication-title: Energy
  doi: 10.1016/j.energy.2007.01.005
– volume: 30
  start-page: 267
  issue: 3
  year: 1993
  ident: 10.1016/j.renene.2012.11.035_bib6
  article-title: Heat flow from the Earth's interior: analysis of the global data set
  publication-title: Reviews of Geophysics
  doi: 10.1029/93RG01249
– volume: 4
  start-page: 278
  issue: 1
  year: 2001
  ident: 10.1016/j.renene.2012.11.035_bib16
  article-title: Performance evaluation criteria for heat exchangers based on the second law analysis
  publication-title: Exergy, An International Journal
  doi: 10.1016/S1164-0235(01)00034-6
– year: 2010
  ident: 10.1016/j.renene.2012.11.035_bib10
– volume: 44
  start-page: 169
  issue: 1
  year: 2001
  ident: 10.1016/j.renene.2012.11.035_bib30
  article-title: Extended performance evaluation criteria for enhanced heat transfer surfaces: heat transfer through ducts with constant heat flux
  publication-title: International Journal of Heat and Mass Transfer
  doi: 10.1016/S0017-9310(00)00074-0
– year: 2009
  ident: 10.1016/j.renene.2012.11.035_bib5
– year: 2010
  ident: 10.1016/j.renene.2012.11.035_bib11
– year: 1988
  ident: 10.1016/j.renene.2012.11.035_bib28
– volume: 33
  start-page: 565
  issue: 1
  year: 2004
  ident: 10.1016/j.renene.2012.11.035_bib20
  article-title: Second law assessment of binary plants generating power from low-temperature geothermal fluids
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2003.10.003
– year: 2010
  ident: 10.1016/j.renene.2012.11.035_bib7
– volume: 38
  start-page: 379
  issue: 1
  year: 2009
  ident: 10.1016/j.renene.2012.11.035_bib18
  article-title: Optimum design of binary cycle power plants for water-dominated, medium-temperature geothermal fields
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.08.001
– volume: 18
  start-page: 39
  issue: 1
  year: 1994
  ident: 10.1016/j.renene.2012.11.035_bib27
  article-title: Small geothermal electric systems for remote powering
  publication-title: Geothermal Resources Council Transactions
– year: 2000
  ident: 10.1016/j.renene.2012.11.035_bib14
  article-title: The status and future of geothermal electric power
– start-page: 2.5.1-1
  year: 1983
  ident: 10.1016/j.renene.2012.11.035_bib31
  article-title: Forced convection in ducts
– volume: 41
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.renene.2012.11.035_bib9
  article-title: Geothermal power generation in the world 2005–2010 update report
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2011.10.001
– start-page: 8.27
  year: 1998
  ident: 10.1016/j.renene.2012.11.035_bib1
  article-title: Geothermal power systems
– year: 1996
  ident: 10.1016/j.renene.2012.11.035_bib25
– volume: 67
  start-page: 113
  issue: 1
  year: 2003
  ident: 10.1016/j.renene.2012.11.035_bib3
  article-title: Thermodynamics from first principles: temperature and composition of the Earth's core
  publication-title: Mineralogical Magazine
  doi: 10.1180/0026461026610089
SSID ssj0015874
Score 2.3028915
Snippet The present study considers the design, performance analysis and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS). The...
SourceID proquest
pascalfrancis
crossref
fao
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 128
SubjectTerms Applied sciences
Binary cycle
Computational fluid dynamics
cooling
Devices using thermal energy
Downhole coaxial heat exchanger
Earth
Energy
Energy. Thermal use of fuels
Enhanced geothermal system
entropy
Entropy generation minimization analysis
Exact sciences and technology
Exergy analysis
Fluid flow
friction
Geothermal
Heat exchangers
Heat exchangers (included heat transformers, condensers, cooling towers)
heat transfer
mass flow
Natural energy
Optimization
pipes
renewable energy sources
temperature
Turbulence
Turbulent flow
Title Design and optimization of a downhole coaxial heat exchanger for an enhanced geothermal system (EGS)
URI https://dx.doi.org/10.1016/j.renene.2012.11.035
https://www.proquest.com/docview/1500800958
https://www.proquest.com/docview/1686725401
Volume 55
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELaAXuCA-gDxaFeuxAEOYZP4mSOi0G0ruGxX4mY5sQ2LIEGwSJz47cw4yaoIBFKv0TiyPPbM52Tm-wjZcUL4Ik9dUoQQUMJMJJbZkBSSV5pJrWzUBjw5laMJ_30mzhbIYd8Lg2WVXexvY3qM1t2TYbeaw5vpdDhG8A1gHgADctLEjnLOFaoY7D_OyzwyoVsmZjBO0Lpvn4s1XsgaWSNZZpbvI5dnFH17NT0tBttg3aS9g6ULrebFi_Adc9LxR7LagUl60M73E1nw9Wey8g_F4BfifsQSDWprRxsID9dd3yVtArXUwR0cBXJp1dgH2IkUQzP1D107MAVECyOpry9ioQA997Fh6xosWwpounv0c7y3RibHR38PR0mnrJBUXLJZoksVUh98JfIAeLHwlfMskx7gH1fKcqdS6bhQqnSQzKSTVtgqMBHggGdp4dg6Waqb2m8QWlgLLuDMBQADhbQlQDK4EzLHS8ACQW4S1i-oqTracVS_uDJ9fdmlad1g0A1wIzHghk2SzEfdtLQb79ir3lfm2fYxkBneGbkBrjX2HGKqmYxz_AKEnEI6g6kPnvl7PpMcWQ6lhrHf-w1g4FTirxZb--b-zuBLNMJX_YaN1FLB_TzNtv579ttkOY_6HFg__JUszW7v_TdASbNyEI_BgHw4-PVndPoELFsO2g
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYoPdAeKtqCoOXhShzgEDaJnzkiXtvyuCwrcbOc2OahkqCySJz62zvjJCsQFUhco3E08tgz3yQz3xCy4YTwRZ66pAgh4AgzkVhmQ1JIXmkmtbJxNuDJqRyO-a9zcT5DdvteGCyr7Hx_69Ojt-6eDLrdHNxeXQ1GCL4BzANgQE4a7Ch_z0WuMAPb_jut88iEbqmYQTpB8b5_LhZ5IW1kjWyZWb6NZJ5x6tt_49O7YBssnLR3sHehHXrxzH_HoHQwTz51aJLutAp_JjO-_kI-PuIY_ErcXqzRoLZ2tAH_cNM1XtImUEsdJOE4IZdWjX2Ao0jRN1P_0PUDU4C0sJL6-jJWCtALHzu2bkCy5YCmm_uHo60FMj7YP9sdJt1ohaTikk0SXaqQ-uArkQcAjIWvnGeZ9ID_uFKWO5VKx4VSpYNoJp20wlaBiQA3PEsLxxbJbN3UfonQwlqwAWcuABoopC0Bk0FSyBwvAQwEuUxYv6Gm6njHcfzFb9MXmF2b1gwGzQApiQEzLJNkuuq25d14RV71tjJPzo-B0PDKyiUwrbEX4FTNeJTjJyAkFdIZqL72xN5TTXKkOZQa1v7oD4CBa4n_Wmztm_s7gy_RiF_1CzJSSwUJepp9e7P262RueHZybI5_nh59Jx_yOKwDi4lXyOzkz71fBcg0KdfilfgHUfEQbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Design+and+optimization+of+a+downhole+coaxial+heat+exchanger+for+an+enhanced+geothermal+system+%28EGS%29&rft.jtitle=Renewable+energy&rft.au=Yekoladio%2C+P+J&rft.au=Bello-Ochende%2C+T&rft.au=Meyer%2C+J+P&rft.date=2013-07-01&rft.issn=0960-1481&rft.volume=55+p.128-137&rft.spage=128&rft.epage=137&rft_id=info:doi/10.1016%2Fj.renene.2012.11.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon