Optimization algorithms exploiting unitary constraints

This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f (X) subject to the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. The algorithms are derived by reformulating the constrained optimiza...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 50; no. 3; pp. 635 - 650
Main Author Manton, J.H.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.03.2002
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/78.984753

Cover

Abstract This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f (X) subject to the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. The algorithms are derived by reformulating the constrained optimization problem as an unconstrained one on a suitable manifold. This significantly reduces the dimensionality of the optimization problem. Pertinent features of the proposed framework are illustrated by using the framework to derive an algorithm for computing the eigenvector associated with either the largest or the smallest eigenvalue of a Hermitian matrix.
AbstractList This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f(X) subject to the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. The algorithms are derived by reformulating the constrained optimization problem as an unconstrained one on a suitable manifold. This significantly reduces the dimensionality of the optimization problem. Pertinent features of the proposed framework are illustrated by using the framework to derive an algorithm for computing the eigenvector associated with either the largest or the smallest eigenvalue of a Hermitian matrix.
This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f (X) subject to the constraint that the columns of the complex-valued matrix X are mutually orthogonal and have unit norm. The algorithms are derived by reformulating the constrained optimization problem as an unconstrained one on a suitable manifold. This significantly reduces the dimensionality of the optimization problem. Pertinent features of the proposed framework are illustrated by using the framework to derive an algorithm for computing the eigenvector associated with either the largest or the smallest eigenvalue of a Hermitian matrix
Author Manton, J.H.
Author_xml – sequence: 1
  givenname: J.H.
  surname: Manton
  fullname: Manton, J.H.
  organization: Dept. of Electr. & Electron. Eng., Melbourne Univ., Parkville, Vic., Australia
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=13499101$$DView record in Pascal Francis
BookMark eNqF0U1LAzEQBuAgFWyrB6-eiqDiYduk-T5K8QsKvSh4C2k2W1O2SU2yoP56t7T0UERPGcgzA_NOD3R88BaAcwSHCEE54mIoBeEUH4EukgQVkHDWaWtIcUEFfzsBvZSWECJCJOsCNltnt3LfOrvgB7pehOjy-yoN7Oe6Di47vxg03mUdvwYm-JSjdj6nU3Bc6TrZs93bB68P9y-Tp2I6e3ye3E0LQxjOBeWYMqNLjY0hpYXQ2DE1tqoqgY2lFSJ8XhJWYk2EYbAqNaNzWwrBiYGYG9wHN9u56xg-GpuyWrlkbF1rb0OTlIRcUiEoaeX1n3IsKIUcyf8hZxISRFt4eQCXoYm-XVcJQbCEWKIWXe2QTkbXVdTeuKTW0a3ayBTCREoEN260dSaGlKKtlGlD3YS-SbRWCKrN_RQXanu_tuP2oGM_9Bd7sbXOWrt3u88fZsWkow
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_LCOMM_2023_3333411
crossref_primary_10_1109_ACCESS_2024_3477495
crossref_primary_10_1007_s10915_024_02495_4
crossref_primary_10_1109_TSP_2014_2301137
crossref_primary_10_1002_nla_2592
crossref_primary_10_1103_PhysRevB_95_195152
crossref_primary_10_1109_TSP_2017_2711522
crossref_primary_10_1007_s10915_013_9740_x
crossref_primary_10_1137_140967994
crossref_primary_10_3390_e21040332
crossref_primary_10_1137_21M1405551
crossref_primary_10_1103_PhysRevResearch_3_023148
crossref_primary_10_1109_TASLP_2020_2966891
crossref_primary_10_1109_TSP_2021_3130997
crossref_primary_10_1109_JSTSP_2017_2726979
crossref_primary_10_1109_LSP_2007_910234
crossref_primary_10_1214_12_EJS744
crossref_primary_10_1007_s40819_024_01689_6
crossref_primary_10_1103_PhysRevLett_117_210402
crossref_primary_10_1109_TVT_2018_2798360
crossref_primary_10_1137_15M1018022
crossref_primary_10_1137_060659880
crossref_primary_10_1007_s11277_014_2170_8
crossref_primary_10_1103_PhysRevB_110_085127
crossref_primary_10_1016_j_cam_2021_113853
crossref_primary_10_1016_j_patrec_2021_11_007
crossref_primary_10_1007_s10107_018_1285_1
crossref_primary_10_1109_TSP_2005_845433
crossref_primary_10_1109_JSAC_2014_2328391
crossref_primary_10_1109_LCOMM_2014_2353643
crossref_primary_10_1109_TSP_2013_2266323
crossref_primary_10_1103_PhysRevA_80_042301
crossref_primary_10_1016_j_knosys_2019_105381
crossref_primary_10_1016_j_asoc_2018_04_051
crossref_primary_10_1016_j_neucom_2015_05_143
crossref_primary_10_1109_LSP_2002_803613
crossref_primary_10_1049_sfw2_12073
crossref_primary_10_1109_TAC_2022_3148381
crossref_primary_10_1109_TSP_2025_3529722
crossref_primary_10_1109_LSP_2024_3409213
crossref_primary_10_1109_JLT_2009_2027912
crossref_primary_10_1109_LSP_2021_3132276
crossref_primary_10_1109_TSP_2006_881251
crossref_primary_10_1109_LGRS_2020_3030711
crossref_primary_10_1016_j_amc_2013_11_055
crossref_primary_10_1007_s11235_017_0410_4
crossref_primary_10_1088_1751_8113_41_4_045205
crossref_primary_10_1109_TSP_2007_896112
crossref_primary_10_1109_TSP_2018_2811746
crossref_primary_10_1109_TSP_2022_3188177
crossref_primary_10_1109_TCOMM_2015_2388584
crossref_primary_10_1137_20M1383720
crossref_primary_10_1016_j_cviu_2022_103415
crossref_primary_10_1016_j_isatra_2018_06_010
crossref_primary_10_1007_s40314_020_01184_w
crossref_primary_10_1007_s11590_018_1319_x
crossref_primary_10_1016_j_apnum_2020_08_018
crossref_primary_10_1016_j_acha_2016_05_004
crossref_primary_10_1109_TSP_2007_894381
crossref_primary_10_1002_dac_2430
crossref_primary_10_1016_j_jmva_2012_04_014
crossref_primary_10_1109_TQE_2022_3176870
crossref_primary_10_1016_j_ifacol_2021_06_119
crossref_primary_10_1007_s40314_021_01630_3
crossref_primary_10_1109_TCNS_2019_2940244
crossref_primary_10_1016_j_neucom_2004_11_035
crossref_primary_10_1016_S0167_6911_02_00316_X
crossref_primary_10_1109_TSP_2016_2605073
crossref_primary_10_1109_TSP_2006_889983
crossref_primary_10_1137_20M1354313
crossref_primary_10_1109_TVT_2017_2717925
crossref_primary_10_1109_TSP_2004_823473
crossref_primary_10_1109_TWC_2010_112310_091576
crossref_primary_10_1063_1_3670415
crossref_primary_10_1587_transfun_E102_A_404
crossref_primary_10_3390_e23070887
crossref_primary_10_1109_TSP_2014_2336621
crossref_primary_10_1155_2009_645041
crossref_primary_10_1109_TSP_2023_3241776
crossref_primary_10_1109_TSP_2014_2299513
crossref_primary_10_1109_ACCESS_2024_3368631
crossref_primary_10_1109_TSP_2019_2904018
crossref_primary_10_1016_j_jprocont_2023_02_003
crossref_primary_10_1088_2632_2153_ac48a2
crossref_primary_10_1109_TRO_2016_2597321
crossref_primary_10_1007_s10851_020_00961_w
crossref_primary_10_1016_j_neucom_2004_11_040
crossref_primary_10_1016_j_physa_2018_05_117
crossref_primary_10_1109_TSP_2019_2896229
crossref_primary_10_1109_TASL_2006_885905
crossref_primary_10_1109_LSP_2014_2354258
crossref_primary_10_1186_s12859_023_05401_1
crossref_primary_10_1016_j_sigpro_2009_03_015
crossref_primary_10_1109_TKDE_2016_2603983
crossref_primary_10_1007_s11222_021_10047_1
crossref_primary_10_1016_j_neunet_2008_09_009
crossref_primary_10_1137_140970860
crossref_primary_10_1109_TSP_2023_3269664
crossref_primary_10_1109_TSP_2020_2979550
crossref_primary_10_1109_TSP_2013_2281784
crossref_primary_10_1109_TCOMM_2011_022811_090744
crossref_primary_10_1088_1751_8121_ac5189
crossref_primary_10_1016_j_laa_2025_01_031
crossref_primary_10_1109_TSP_2014_2365764
crossref_primary_10_1007_s11590_021_01801_5
crossref_primary_10_1109_TWC_2011_120511_111088
crossref_primary_10_1109_TSP_2005_859331
crossref_primary_10_1186_s12859_022_04826_4
crossref_primary_10_1561_2200000090
crossref_primary_10_1109_TCOMM_2017_2695598
crossref_primary_10_1137_16M1098759
crossref_primary_10_3390_fractalfract8040225
crossref_primary_10_1016_j_cam_2022_114915
crossref_primary_10_1109_TSP_2005_859339
crossref_primary_10_1109_JSTSP_2013_2260320
crossref_primary_10_3390_electronics13101846
crossref_primary_10_1016_j_sigpro_2007_12_013
crossref_primary_10_1177_1550147718759219
crossref_primary_10_1007_s00034_013_9624_1
crossref_primary_10_1109_TWC_2020_2966973
crossref_primary_10_1137_140988875
crossref_primary_10_1016_j_sigpro_2019_05_003
crossref_primary_10_1109_LWC_2024_3386155
crossref_primary_10_1016_j_sigpro_2021_108116
crossref_primary_10_1109_TSP_2010_2094615
crossref_primary_10_1109_TSP_2016_2599494
crossref_primary_10_1016_S0167_6911_02_00317_1
crossref_primary_10_1016_j_patcog_2018_04_018
crossref_primary_10_1214_10_AOS826
crossref_primary_10_1214_10_EJS587
crossref_primary_10_1109_TSP_2010_2040687
crossref_primary_10_1109_TSP_2012_2188717
crossref_primary_10_1016_j_ins_2023_03_104
crossref_primary_10_1109_TSMC_2017_2724068
crossref_primary_10_1016_j_neucom_2018_10_021
crossref_primary_10_1162_NECO_a_00382
crossref_primary_10_1109_JSTSP_2013_2261799
crossref_primary_10_1109_TSP_2010_2051431
crossref_primary_10_1145_3708498
crossref_primary_10_1080_10556788_2017_1415337
crossref_primary_10_1109_TSP_2009_2015114
crossref_primary_10_1109_MSP_2020_3004034
crossref_primary_10_1016_j_ins_2021_04_067
crossref_primary_10_1016_j_jcp_2014_02_033
crossref_primary_10_1016_j_jvcir_2022_103552
crossref_primary_10_1142_S0129065708001415
crossref_primary_10_1109_LCOMM_2022_3149639
crossref_primary_10_1021_ct400793q
crossref_primary_10_1002_rob_21893
crossref_primary_10_1038_s41534_024_00858_1
crossref_primary_10_1109_TPAMI_2007_70797
crossref_primary_10_1016_j_laa_2016_08_031
crossref_primary_10_1109_JSTSP_2015_2469641
crossref_primary_10_1007_s10589_023_00481_4
crossref_primary_10_1371_journal_pcbi_1002889
crossref_primary_10_1049_iet_spr_2011_0234
crossref_primary_10_1109_TWC_2012_012412_110747
crossref_primary_10_1137_23M1552243
crossref_primary_10_1088_1361_6420_acbe5f
crossref_primary_10_1007_s10107_014_0816_7
crossref_primary_10_1109_TSP_2015_2512535
crossref_primary_10_1080_10556788_2020_1852236
crossref_primary_10_1109_TIP_2023_3289064
crossref_primary_10_1016_j_laa_2024_02_001
crossref_primary_10_1137_130922537
crossref_primary_10_1109_TVT_2015_2392152
crossref_primary_10_1007_s00211_014_0630_4
crossref_primary_10_1109_TSP_2011_2123891
crossref_primary_10_1007_s10957_023_02242_z
crossref_primary_10_1109_TSP_2007_908999
crossref_primary_10_1016_j_sigpro_2019_107310
crossref_primary_10_1007_s10589_018_0046_7
crossref_primary_10_1016_j_sigpro_2015_11_012
crossref_primary_10_1109_JSAC_2008_081023
crossref_primary_10_1016_j_dsp_2014_02_005
crossref_primary_10_1016_j_physd_2010_02_013
crossref_primary_10_1109_TPAMI_2021_3058852
crossref_primary_10_1007_s10543_010_0253_9
crossref_primary_10_1109_TSP_2022_3182883
crossref_primary_10_1016_j_sigpro_2016_08_015
crossref_primary_10_1109_TII_2023_3258443
crossref_primary_10_1155_2007_80301
crossref_primary_10_1007_s11063_006_9016_7
crossref_primary_10_1109_ACCESS_2018_2880967
crossref_primary_10_1109_TSP_2015_2403284
crossref_primary_10_1137_19M1308384
crossref_primary_10_1109_JSTSP_2013_2264798
crossref_primary_10_1137_100802529
crossref_primary_10_1088_1742_6596_2620_1_012007
crossref_primary_10_1016_j_asoc_2020_106773
crossref_primary_10_1142_S1793962312500286
crossref_primary_10_1007_s10044_019_00834_y
crossref_primary_10_1109_LCOMM_2008_081019
crossref_primary_10_1103_PRXQuantum_4_010325
crossref_primary_10_1109_TSP_2008_2006587
crossref_primary_10_1007_s11075_020_01001_9
crossref_primary_10_1109_TCYB_2016_2602358
crossref_primary_10_3182_20080706_5_KR_1001_02425
crossref_primary_10_1109_TVT_2017_2712774
crossref_primary_10_1109_TCSVT_2022_3206865
crossref_primary_10_1109_TNNLS_2012_2218060
crossref_primary_10_1109_TSP_2009_2016887
crossref_primary_10_1109_TSP_2021_3058442
crossref_primary_10_1109_TSP_2010_2084997
crossref_primary_10_1007_s10589_022_00374_y
crossref_primary_10_1109_TSP_2014_2388437
crossref_primary_10_1142_S0219530524500088
crossref_primary_10_1007_s11075_020_00948_z
crossref_primary_10_1007_s40314_017_0501_6
crossref_primary_10_1090_mcom_3936
crossref_primary_10_1109_TWC_2005_858296
crossref_primary_10_1016_j_cam_2021_113814
crossref_primary_10_1109_TCOMM_2018_2890263
crossref_primary_10_1016_j_patcog_2015_10_003
Cites_doi 10.1109/29.35393
10.1109/31.76486
10.1109/78.886996
10.1049/ip-f-2.1993.0054
10.56021/9781421407944
10.1016/0024-3795(95)00171-9
10.1109/97.554471
10.1109/81.596949
10.1109/TASSP.1982.1163905
10.1109/5.58320
10.1109/78.875456
10.1007/978-1-4612-0663-7
10.1017/S033427000001078X
10.1007/978-94-015-8390-9
10.1109/78.348123
10.1109/29.1516
10.1109/78.740120
10.1007/978-1-4757-6434-5
10.1109/TASSP.1986.1164943
10.1109/5.720249
10.5962/p.361360
10.1109/ICASSP.2001.940721
10.1109/78.536680
10.1109/78.771042
10.1007/978-1-4471-3467-1
10.1109/78.845952
10.1109/TSP.2002.807002
10.1109/78.502327
10.1109/78.554307
10.1109/78.700961
10.1137/S0895479895290954
10.1016/0024-3795(91)90021-N
ContentType Journal Article
Copyright 2002 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
Copyright_xml – notice: 2002 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2002
DBID RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/78.984753
DatabaseName IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

Computer and Information Systems Abstracts
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 650
ExternalDocumentID 2430263441
13499101
10_1109_78_984753
984753
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c463t-57356cada3cc4de00ce25cefff83ce5f147bd46d3a48c60fda65bed8874c037c3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Wed Oct 01 14:38:50 EDT 2025
Thu Oct 02 10:45:38 EDT 2025
Thu Oct 02 10:14:17 EDT 2025
Fri Jul 25 19:09:50 EDT 2025
Mon Jul 21 09:11:00 EDT 2025
Wed Oct 01 06:34:42 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Tue Aug 26 16:34:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Performance evaluation
Simulation
Steepest descent method
Convergence rate
Signal processing
Eigenvalue problem
Algorithm
Newton method
Constrained optimization
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-57356cada3cc4de00ce25cefff83ce5f147bd46d3a48c60fda65bed8874c037c3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
content type line 23
PQID 884390391
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_907958854
crossref_citationtrail_10_1109_78_984753
crossref_primary_10_1109_78_984753
ieee_primary_984753
pascalfrancis_primary_13499101
proquest_miscellaneous_28550719
proquest_miscellaneous_27690415
proquest_journals_884390391
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2002-03-01
PublicationDateYYYYMMDD 2002-03-01
PublicationDate_xml – month: 03
  year: 2002
  text: 2002-03-01
  day: 01
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2002
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref34
ref15
ref37
ref14
Mahony (ref16)
ref36
ref31
ref30
ref11
ref33
ref32
ref1
ref17
Helmke (ref10) 1994
ref19
ref18
ref23
ref26
ref25
ref20
ref21
Polak (ref22) 1997
Rahbar (ref24)
ref27
ref29
ref8
ref7
ref9
ref4
ref3
Wilkinson (ref35) 1988
ref6
ref5
Boothby (ref2) 1986
Smith (ref28) 1993
References_xml – ident: ref37
  doi: 10.1109/29.35393
– ident: ref30
  doi: 10.1109/31.76486
– volume-title: Geometric optimization methods for adaptive filtering
  year: 1993
  ident: ref28
– ident: ref11
  doi: 10.1109/78.886996
– ident: ref4
  doi: 10.1049/ip-f-2.1993.0054
– ident: ref9
  doi: 10.56021/9781421407944
– ident: ref14
  doi: 10.1016/0024-3795(95)00171-9
– volume-title: Proc. IEEE Int. Conf. Acoust., Speech, Signal Process.
  ident: ref24
  article-title: Blindin in in source separation of convolved sources by joint approximate diagonalization of cross-spectral density matrices
– ident: ref34
  doi: 10.1109/97.554471
– ident: ref12
  doi: 10.1109/81.596949
– volume-title: An Introduction to Differentiable Manifolds and Riemannian Geometry
  year: 1986
  ident: ref2
– ident: ref26
  doi: 10.1109/TASSP.1982.1163905
– ident: ref6
  doi: 10.1109/5.58320
– ident: ref29
  doi: 10.1109/78.875456
– volume-title: Optimization: Algorithms and Consistent Approximations
  year: 1997
  ident: ref22
  doi: 10.1007/978-1-4612-0663-7
– ident: ref15
  doi: 10.1017/S033427000001078X
– ident: ref31
  doi: 10.1007/978-94-015-8390-9
– ident: ref19
  doi: 10.1109/78.348123
– ident: ref36
  doi: 10.1109/29.1516
– ident: ref20
  doi: 10.1109/78.740120
– ident: ref21
  doi: 10.1007/978-1-4757-6434-5
– ident: ref27
  doi: 10.1109/TASSP.1986.1164943
– volume-title: The Algebraic Eigenvalue Problem
  year: 1988
  ident: ref35
– ident: ref32
  doi: 10.1109/5.720249
– ident: ref13
  doi: 10.5962/p.361360
– ident: ref17
  doi: 10.1109/ICASSP.2001.940721
– ident: ref16
  article-title: The geometry of the Newton method on noncompact Lie groups
  publication-title: J. Global Optimiz.
– ident: ref23
  doi: 10.1109/78.536680
– ident: ref25
  doi: 10.1109/78.771042
– volume-title: Optimization and Dynamical Systems
  year: 1994
  ident: ref10
  doi: 10.1007/978-1-4471-3467-1
– ident: ref7
  doi: 10.1109/78.845952
– ident: ref18
  doi: 10.1109/TSP.2002.807002
– ident: ref33
  doi: 10.1109/78.502327
– ident: ref1
  doi: 10.1109/78.554307
– ident: ref5
  doi: 10.1109/78.700961
– ident: ref8
  doi: 10.1137/S0895479895290954
– ident: ref3
  doi: 10.1016/0024-3795(91)90021-N
SSID ssj0014496
Score 2.261896
Snippet This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f (X) subject to the constraint that the columns of...
This paper presents novel algorithms that iteratively converge to a local minimum of a real-valued function f(X) subject to the constraint that the columns of...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 635
SubjectTerms Algorithms
Applied sciences
Constraint optimization
Cost function
Eigenvalues
Eigenvalues and eigenfunctions
Eigenvectors
Exact sciences and technology
Frequency estimation
Information, signal and communications theory
Iterative algorithms
Manifolds
Mathematical analysis
Mathematical methods
Norms
Operational research and scientific management
Operational research. Management science
Optimization
Optimization. Search problems
Signal processing
Signal processing algorithms
Space technology
Subspace constraints
Symmetric matrices
Telecommunications and information theory
Title Optimization algorithms exploiting unitary constraints
URI https://ieeexplore.ieee.org/document/984753
https://www.proquest.com/docview/884390391
https://www.proquest.com/docview/27690415
https://www.proquest.com/docview/28550719
https://www.proquest.com/docview/907958854
Volume 50
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED4BEwy8EeEZIQaWlLR-ZkQIhJCABaRukXO2AQEtapIBfj22k5Y3YouSc2Sf7fNn--47gH3bI7ZXKJ1whphQSnRScJomkightZUmDQf6F5f87Iae91m_5dkOsTDGmOB8Zjr-Mdzl6yHW_qjsMHOmlJFpmBaSN6FakwsDSkMqLocWSMKk6LckQt00OxSy0xT8tPSEXCreE1KVThm2yWLxzSCHVeZ0oQnfLgM5oXcueejUVdHB1y_Ujf9swCLMt2gzPmqGxxJMmcEyzH3gIFwBfuWMxlMbjRmrx9vh6L66eyrj8P977xUd127eq9FLjB5M-pwSVbkKN6cn18dnSZtMIUHKSZUwQRhHpRVBpNp1AZoeQ2OtlQQNs10qCk25JopK5KnVirPCaGeDKKZEIFmDmcFwYNYhJlxLUzioqQq3PUSjHITz2cSZVYwpRSM4GOs5x5Zp3FfuMQ87jjTLhcwbVUSwNxF9bug1fhJa9qqcCIzf7nzqu_fyxO3inKWJYHPcmXk7MctcSofAPCt-BLuTr25G-WsSNTDDusx7gmeeuOAPicAC180iiH-RyFKRMSkZ3fix7pswG7LKBF-2LZipRrXZduCmKnbCsH4DfAT6YQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VcgAOLRSqpoU2Qhy4ZJtdjx85VqjV0heXVtpb5IztUtHuok1ygF9f28kuLRTELUrGkT22x5_tmW8APrgRc6NKm0xwogyRmawSmGeKaamMUzaPB_pn52J8iccTPul5tmMsjLU2Op_ZQXiMd_lmRm04KtsvvCnl7Ak85YjIu2Ct5ZUBYkzG5fECy7iSk55GaJgX-1INuqIPFp-YTSX4Quraq8N1eSz-MMlxnTla7wK460hPGNxLvg3aphrQz9_IG_-zCS9hrceb6UE3QF7Bip1uwIt7LISvQXzxZuO2j8dM9c3VbH7dfL2t0_j_6-AXnbZ-5uv5j5QCnAxZJZr6DVweHV58Gmd9OoWMULAm45JxQdpoRoTGdwLZESfrnFOMLHdDlJVBYZhGRSJ3RgteWeOtEFLOJLFNWJ3OpnYLUiaMspUHm7ryG0Sy2oO4kE-cO8251pjAx4WeS-q5xkPlbsq458iLUqqyU0UC75ei3zuCjceENoIqlwKLt7sP-u5Xeeb3cd7WJLCz6Myyn5p1qZTHYIEXP4G95Vc_p8JFiZ7aWVuXIymKQF3wD4nIAzcsEkj_IlHksuBKcdx-tO578Gx8cXZann4-P9mB5zHHTPRsewurzby17zzUaardOMTvALRb_a4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimization+algorithms+exploiting+unitary+constraints&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Manton%2C+J.H.&rft.date=2002-03-01&rft.issn=1053-587X&rft.volume=50&rft.issue=3&rft.spage=635&rft.epage=650&rft_id=info:doi/10.1109%2F78.984753&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_78_984753
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon