Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research

In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects model...

Full description

Saved in:
Bibliographic Details
Published inNeuron (Cambridge, Mass.) Vol. 110; no. 1; pp. 21 - 35
Main Authors Yu, Zhaoxia, Guindani, Michele, Grieco, Steven F., Chen, Lujia, Holmes, Todd C., Xu, Xiangmin
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 05.01.2022
Subjects
Online AccessGet full text
ISSN0896-6273
1097-4199
1097-4199
DOI10.1016/j.neuron.2021.10.030

Cover

Abstract In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings. In this Primer, Yu et al. introduce linear and generalized mixed-effects models for improved statistical analysis in neuroscience research and provide clear instruction on how to recognize when they are needed and how to apply them.
AbstractList In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings.
In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings.In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings.
In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and ANOVA do not take data dependence into account and thus are often misused. This Primer introduces linear and generalized mixed-effects models that consider data dependence and provides clear instruction on how to recognize when they are needed and how to apply them. The appropriate use of mixed-effects models will help researchers improve their experimental design and will lead to data analyses with greater validity and higher reproducibility of the experimental findings. In this Primer, Yu et al. introduce linear and generalized mixed-effects models for improved statistical analysis in neuroscience research and provide clear instruction on how to recognize when they are needed and how to apply them.
Author Holmes, Todd C.
Guindani, Michele
Chen, Lujia
Yu, Zhaoxia
Xu, Xiangmin
Grieco, Steven F.
AuthorAffiliation 1. Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA 92697-3425
2. Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275
4. Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715
7. The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697
6. Department of Computer Science, University of California, Irvine, Irvine, CA 92697-3435
5. Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025
3. Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697-4560
AuthorAffiliation_xml – name: 1. Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA 92697-3425
– name: 4. Department of Biomedical Engineering, University of California, Irvine, CA 92697-2715
– name: 3. Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA 92697-4560
– name: 7. The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697
– name: 5. Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA 92697-4025
– name: 2. Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275
– name: 6. Department of Computer Science, University of California, Irvine, Irvine, CA 92697-3435
Author_xml – sequence: 1
  givenname: Zhaoxia
  surname: Yu
  fullname: Yu, Zhaoxia
  email: zhaoxia@ics.uci.edu
  organization: Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697-3425, USA
– sequence: 2
  givenname: Michele
  surname: Guindani
  fullname: Guindani, Michele
  organization: Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, Irvine, CA 92697-3425, USA
– sequence: 3
  givenname: Steven F.
  surname: Grieco
  fullname: Grieco, Steven F.
  organization: Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
– sequence: 4
  givenname: Lujia
  surname: Chen
  fullname: Chen, Lujia
  organization: Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
– sequence: 5
  givenname: Todd C.
  orcidid: 0000-0001-8152-8832
  surname: Holmes
  fullname: Holmes, Todd C.
  organization: Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA 92697- 4560, USA
– sequence: 6
  givenname: Xiangmin
  orcidid: 0000-0002-5828-1533
  surname: Xu
  fullname: Xu, Xiangmin
  email: xiangmix@uci.edu
  organization: Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34784504$$D View this record in MEDLINE/PubMed
BookMark eNqNUk1v1DAQtVAR3Rb-AUI-csnWThwn6QFpqYAiVfQCXC3HmbReOfZiO4U98N-Z7S6fB9STR-P33ozf8wk58sEDIc85W3LG5dl66WGOwS9LVnJsLVnFHpEFZ11TCN51R2TB2k4WsmyqY3KS0poxLuqOPyHHlWhaUTOxIN9fwzb4gWaaIWWqsVx9uP68Oqd6s3HW6GyDTzSMdLLfYChgHMHkRKcwgEt0DBHLCDTamxDDnGjKSEkZmQ7VtNsmm6j19H7ZZCx4g2hIoKO5fUoej9oleHY4T8mnt28-XlwWV9fv3l-srgojZJWLmtVCsL5pjTTG1LplYy0GMO1omh460faske3Au7osZaUHI3uBHdljv4dmqE5Jvded_UZvv2rn1CbaScet4kzt7FRrtbdT7ezcddFO5L3a8zZzP8FgwOeof3ODturvG29v1U24U20jK8l2Ai8PAjF8mdFhNdlkwDntAd1SZd21-DZelgh98eesX0N-ZoUAsQcYNDJFGB_6hvN_aMbm-1hxY-seaACGDXcWojpEONiI_0ANwf5f4Ad_x9cW
CitedBy_id crossref_primary_10_1371_journal_pone_0271668
crossref_primary_10_3390_bioengineering11121277
crossref_primary_10_1038_s41593_024_01612_8
crossref_primary_10_3389_fnmol_2024_1351280
crossref_primary_10_1109_TNSRE_2022_3177254
crossref_primary_10_1152_jn_00551_2021
crossref_primary_10_3390_vision8010002
crossref_primary_10_5219_2028
crossref_primary_10_1016_j_yebeh_2022_108858
crossref_primary_10_1038_s44318_024_00218_x
crossref_primary_10_3389_fpubh_2025_1538665
crossref_primary_10_1007_s12021_024_09657_7
crossref_primary_10_1016_j_neuron_2022_01_011
crossref_primary_10_1002_hbm_26515
crossref_primary_10_1017_S0033291722001593
crossref_primary_10_1016_j_crbeha_2023_100108
crossref_primary_10_1038_s41467_024_48576_8
crossref_primary_10_1038_s42003_023_04855_6
crossref_primary_10_1016_j_cognition_2022_105104
crossref_primary_10_1016_j_isci_2023_106200
crossref_primary_10_1113_JP283708
crossref_primary_10_2478_orga_2024_0027
crossref_primary_10_1016_j_ebiom_2023_104847
crossref_primary_10_1080_23335432_2024_2332212
crossref_primary_10_1098_rspb_2023_1118
crossref_primary_10_3354_meps14348
crossref_primary_10_1111_mms_13083
crossref_primary_10_7554_eLife_100988_3
crossref_primary_10_1016_j_nbd_2024_106570
crossref_primary_10_1113_JP283381
crossref_primary_10_7554_eLife_95802
crossref_primary_10_1093_oons_kvad011
crossref_primary_10_1249_JES_0000000000000308
crossref_primary_10_1038_s41583_023_00692_y
crossref_primary_10_1002_mar_22118
crossref_primary_10_1038_s41598_023_33318_5
crossref_primary_10_1002_pen_26684
crossref_primary_10_3390_brainsci14020172
crossref_primary_10_7554_eLife_86439
crossref_primary_10_1002_hipo_23530
crossref_primary_10_1152_jn_00462_2022
crossref_primary_10_1038_s41398_024_03158_6
crossref_primary_10_1080_08990220_2025_2476945
crossref_primary_10_1111_ejn_15891
crossref_primary_10_1126_science_adn1011
crossref_primary_10_1016_j_pmn_2024_08_009
crossref_primary_10_1016_j_brainresbull_2023_04_001
crossref_primary_10_46557_001c_120190
crossref_primary_10_4236_me_2023_1411083
crossref_primary_10_1016_j_neuropsychologia_2024_108907
crossref_primary_10_7554_eLife_90944
crossref_primary_10_1016_j_celrep_2023_112003
crossref_primary_10_1523_JNEUROSCI_0866_24_2024
crossref_primary_10_7554_eLife_95802_3
crossref_primary_10_1016_j_nbd_2022_105820
crossref_primary_10_1152_jn_00184_2022
crossref_primary_10_1016_j_isci_2025_112104
crossref_primary_10_1016_j_isci_2023_108047
crossref_primary_10_3389_fncel_2021_788262
crossref_primary_10_1523_JNEUROSCI_0120_24_2024
crossref_primary_10_3390_bs14090754
crossref_primary_10_1016_j_nbd_2022_105939
crossref_primary_10_1212_WNL_0000000000209713
crossref_primary_10_1038_s44220_023_00154_5
crossref_primary_10_7454_jessd_v7i2_1258
crossref_primary_10_1016_j_clinph_2024_09_023
crossref_primary_10_7554_eLife_91010
crossref_primary_10_1186_s13229_022_00528_z
crossref_primary_10_1016_j_buildenv_2023_110674
crossref_primary_10_1152_japplphysiol_00604_2023
crossref_primary_10_1016_j_jneumeth_2024_110111
crossref_primary_10_1109_JSEN_2023_3303436
crossref_primary_10_3389_fnbeh_2022_969871
crossref_primary_10_1007_s11055_023_01547_w
crossref_primary_10_1016_j_actbio_2024_04_039
crossref_primary_10_1038_s41598_023_45107_1
crossref_primary_10_1080_13506285_2024_2375202
crossref_primary_10_37251_sjpe_v4i4_921
crossref_primary_10_1016_j_evalprogplan_2024_102415
crossref_primary_10_1140_epjs_s11734_023_01054_6
crossref_primary_10_1098_rsif_2022_0809
crossref_primary_10_3390_ijms25052613
crossref_primary_10_3389_fpubh_2025_1541866
crossref_primary_10_17116_jnevro202312305228
crossref_primary_10_1177_09544089241270849
crossref_primary_10_1038_s41380_022_01866_3
crossref_primary_10_1002_jnr_25190
crossref_primary_10_1007_s00018_023_05111_0
crossref_primary_10_1016_j_addicn_2023_100132
crossref_primary_10_1016_j_beproc_2023_104838
crossref_primary_10_1093_cercor_bhad123
crossref_primary_10_7759_cureus_75310
crossref_primary_10_1016_j_neuroimage_2023_119901
crossref_primary_10_3389_fnhum_2022_1001171
crossref_primary_10_1093_braincomms_fcac106
crossref_primary_10_1016_j_scib_2023_08_010
crossref_primary_10_1523_JNEUROSCI_0572_22_2022
crossref_primary_10_1016_j_trd_2024_104240
crossref_primary_10_1007_s00774_024_01558_8
crossref_primary_10_1111_jnc_16205
crossref_primary_10_1523_JNEUROSCI_0455_24_2024
crossref_primary_10_1016_j_cub_2024_01_021
crossref_primary_10_3389_fnagi_2022_894994
crossref_primary_10_3389_fnhum_2023_1274299
crossref_primary_10_3390_jcm13020624
crossref_primary_10_3389_fnana_2024_1426042
crossref_primary_10_3390_s23042195
crossref_primary_10_1109_ACCESS_2024_3373558
crossref_primary_10_2196_58206
crossref_primary_10_1016_j_phymed_2024_156197
crossref_primary_10_3390_su152115318
crossref_primary_10_1016_j_celrep_2024_115046
crossref_primary_10_1523_ENEURO_0454_24_2025
crossref_primary_10_1038_s41467_022_33204_0
crossref_primary_10_1523_JNEUROSCI_1514_22_2023
crossref_primary_10_1016_j_physbeh_2025_114860
crossref_primary_10_1038_s41598_025_87154_w
crossref_primary_10_1007_s00421_022_05101_3
crossref_primary_10_1038_s41586_024_08487_6
crossref_primary_10_1016_j_srs_2024_100193
crossref_primary_10_1016_j_brs_2024_05_005
crossref_primary_10_1007_s00125_024_06121_8
crossref_primary_10_3390_app13148511
crossref_primary_10_1113_JP284192
crossref_primary_10_1249_MSS_0000000000003105
crossref_primary_10_69725_raida_v1i3_168
crossref_primary_10_1093_ce_zkae077
crossref_primary_10_1038_s42003_022_04326_4
crossref_primary_10_1162_imag_a_00258
crossref_primary_10_1523_JNEUROSCI_0103_23_2023
crossref_primary_10_1016_j_dcn_2023_101339
crossref_primary_10_1016_j_cpnec_2024_100232
crossref_primary_10_1016_j_celrep_2023_112523
crossref_primary_10_1016_j_neuron_2023_04_015
crossref_primary_10_7554_eLife_91010_3
crossref_primary_10_1113_JP288448
crossref_primary_10_1371_journal_pone_0316717
crossref_primary_10_1016_j_ocecoaman_2024_107236
crossref_primary_10_1113_JP286143
crossref_primary_10_1523_JNEUROSCI_0457_24_2024
crossref_primary_10_1186_s12974_023_02932_5
crossref_primary_10_1111_aor_14897
crossref_primary_10_1038_s41586_024_08075_8
crossref_primary_10_1177_20552076251327039
crossref_primary_10_1007_s00213_022_06082_z
crossref_primary_10_1523_JNEUROSCI_0353_23_2023
crossref_primary_10_1093_rheumatology_keae706
crossref_primary_10_7554_eLife_100988
crossref_primary_10_1016_j_jia_2023_02_011
crossref_primary_10_1113_JP285867
crossref_primary_10_1016_j_pbb_2024_173951
crossref_primary_10_1016_j_neuroimage_2024_120557
crossref_primary_10_1016_j_jshs_2023_06_004
crossref_primary_10_1113_JP285181
crossref_primary_10_1186_s43055_024_01223_0
crossref_primary_10_1523_JNEUROSCI_2366_23_2024
crossref_primary_10_1002_jeab_745
crossref_primary_10_1016_j_kint_2024_01_031
crossref_primary_10_1016_j_isci_2023_108138
crossref_primary_10_1016_j_neubiorev_2023_105460
crossref_primary_10_1016_j_brs_2024_08_008
crossref_primary_10_1016_j_neuroimage_2023_120271
crossref_primary_10_1097_WNR_0000000000001943
crossref_primary_10_1016_j_brainresbull_2023_110805
crossref_primary_10_1016_j_brs_2025_01_025
crossref_primary_10_1523_JNEUROSCI_0034_23_2023
crossref_primary_10_3390_s24020567
crossref_primary_10_7554_eLife_90944_3
crossref_primary_10_1007_s12110_022_09434_y
crossref_primary_10_1016_j_clinph_2024_11_004
crossref_primary_10_1111_epi_17716
crossref_primary_10_1038_s41467_024_49129_9
crossref_primary_10_1007_s11571_022_09862_7
crossref_primary_10_1109_LRA_2024_3433202
crossref_primary_10_1111_ejn_16137
crossref_primary_10_3389_fnagi_2022_907496
crossref_primary_10_1111_joa_14180
crossref_primary_10_3390_bs14090855
crossref_primary_10_1186_s40478_022_01481_x
crossref_primary_10_3389_fpsyg_2023_1086699
crossref_primary_10_1038_s41386_022_01437_8
crossref_primary_10_1038_s41467_023_38574_7
crossref_primary_10_1167_jov_24_7_8
crossref_primary_10_3389_fcvm_2024_1306159
crossref_primary_10_1038_s41586_022_05450_1
crossref_primary_10_1002_advs_202400662
crossref_primary_10_1016_j_cub_2022_01_053
crossref_primary_10_1016_j_brs_2024_05_014
crossref_primary_10_1038_s41586_022_04954_0
crossref_primary_10_1016_j_xpro_2024_103334
crossref_primary_10_1111_ejn_15858
crossref_primary_10_1016_j_neuroscience_2022_06_021
crossref_primary_10_1016_j_bbr_2022_113747
crossref_primary_10_1093_pnasnexus_pgac016
crossref_primary_10_2108_zs230123
crossref_primary_10_1126_sciadv_ado2600
crossref_primary_10_1016_j_jpsychires_2024_08_037
crossref_primary_10_1113_JP284043
crossref_primary_10_1113_JP284164
crossref_primary_10_1007_s11696_023_03165_9
crossref_primary_10_1007_s00421_024_05595_z
crossref_primary_10_1016_j_jvoice_2025_02_038
crossref_primary_10_1016_j_jwpe_2024_105310
crossref_primary_10_1038_s41422_022_00719_6
crossref_primary_10_1007_s11069_023_06377_0
crossref_primary_10_1525_mp_2024_42_2_135
crossref_primary_10_1016_j_biopsych_2023_01_019
crossref_primary_10_1371_journal_pbio_3002954
crossref_primary_10_1038_s41386_023_01592_6
crossref_primary_10_7554_eLife_82729
crossref_primary_10_14474_ptrs_2024_13_3_261
crossref_primary_10_1038_s41586_025_08634_7
crossref_primary_10_2478_amns_2024_2095
crossref_primary_10_1126_sciadv_add8687
crossref_primary_10_1186_s41687_023_00573_z
crossref_primary_10_1093_brain_awae387
crossref_primary_10_1186_s12909_024_06581_x
crossref_primary_10_1073_pnas_2303985120
crossref_primary_10_1097_BRS_0000000000004715
Cites_doi 10.1111/j.1541-0420.2006.00582.x
10.2307/2527669
10.1080/01621459.1995.10476572
10.2307/2344614
10.1080/01621459.1990.10476213
10.1080/00273170701540537
10.1007/s11222-012-9373-1
10.1016/j.jneumeth.2017.01.003
10.2307/2531248
10.2307/2529876
10.1093/esr/jcy053
10.1136/bmj.311.7003.485
10.1371/journal.pbio.2005282
10.2307/2531734
10.1080/00031305.2018.1543135
10.1177/1745691611400237
10.1371/journal.pbio.1002165
10.1016/j.jml.2012.11.001
10.1038/nature11556
10.1523/JNEUROSCI.0362-10.2010
10.1371/journal.pone.0007824
10.1080/00031305.2016.1154108
10.1093/biomet/57.1.97
10.1016/j.jml.2007.12.005
10.1080/01621459.1991.10475006
10.1093/biomet/73.1.13
10.1146/annurev-statistics-031017-100307
10.1136/amiajnl-2014-002974
10.1111/j.2517-6161.1995.tb02031.x
10.1111/biom.12447
10.1016/j.cub.2020.07.008
10.2307/2531147
10.1080/00949659308811554
10.1093/biostatistics/kxp053
10.11613/BM.2011.029
10.1016/j.jml.2017.01.001
10.1198/000313006X152649
10.1111/1467-9868.00346
10.1214/009053604000001048
10.1038/nn.3648
10.1371/journal.pcbi.1008198
10.1198/016214504000001583
10.1016/j.neuron.2014.10.042
10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V
10.32614/RJ-2018-017
10.1016/j.tree.2008.10.008
10.1016/j.neubiorev.2016.05.034
10.1016/0370-2693(87)91197-X
10.1207/S15327906MBR3703_4
10.1016/S0140-6736(13)62329-6
10.1063/1.1699114
10.2105/AJPH.86.5.726
10.1080/01621459.1993.10594284
10.1111/2041-210X.12504
10.1073/pnas.1404402111
10.1080/00031305.1992.10475878
10.1038/nrd3439-c1
ContentType Journal Article
Copyright 2021 Elsevier Inc.
Copyright © 2021 Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Inc.
– notice: Copyright © 2021 Elsevier Inc. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1016/j.neuron.2021.10.030
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Biology
EISSN 1097-4199
EndPage 35
ExternalDocumentID oai:pubmedcentral.nih.gov:8763600
PMC8763600
34784504
10_1016_j_neuron_2021_10_030
S089662732100845X
Genre Research Support, U.S. Gov't, Non-P.H.S
Review
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NEI NIH HHS
  grantid: R01 EY028212
– fundername: NIMH NIH HHS
  grantid: RF1 MH120020
– fundername: NIMH NIH HHS
  grantid: R01 MH105427
– fundername: NINDS NIH HHS
  grantid: R01 NS104897
– fundername: NIMH NIH HHS
  grantid: R01 MH113026
– fundername: NIGMS NIH HHS
  grantid: R35 GM127102
GroupedDBID ---
--K
-DZ
-~X
0R~
123
1RT
1~5
26-
2WC
4.4
457
4G.
53G
5RE
62-
7-5
8C1
8FE
8FH
AACTN
AAEDW
AAFTH
AAIAV
AAKRW
AAKUH
AALRI
AAUCE
AAVLU
AAXUO
ABJNI
ABMAC
ABMWF
ABVKL
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADEZE
ADFRT
ADJPV
AEFWE
AENEX
AEXQZ
AFTJW
AGKMS
AHHHB
AHMBA
AITUG
ALKID
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AQUVI
ASPBG
AVWKF
AZFZN
BAWUL
BKEYQ
BKNYI
BPHCQ
BVXVI
CS3
DIK
DU5
E3Z
EBS
F5P
FCP
FDB
FEDTE
FIRID
HVGLF
IAO
IHE
IHR
INH
IXB
J1W
JIG
K-O
KQ8
L7B
LK8
LX5
M2O
M3Z
M41
N9A
O-L
O9-
OK1
P2P
P6G
PQQKQ
PROAC
RCE
ROL
RPZ
SCP
SDP
SES
SSZ
TR2
WOW
WQ6
ZA5
.55
.GJ
29N
3O-
5VS
AAEDT
AAFWJ
AAIKJ
AAMRU
AAQFI
AAQXK
AAYWO
AAYXX
ABDGV
ABWVN
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADVLN
AEUPX
AFPUW
AGHFR
AGQPQ
AIGII
AKAPO
AKBMS
AKRWK
AKYEP
APXCP
CITATION
EFKBS
EJD
FGOYB
G-2
HZ~
ITC
MVM
OZT
R2-
X7M
ZGI
ZKB
AGCQF
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c463t-505440b78c6ccc5a80f54dec8fc7be948b0768d1952263adc6b40766bb07be7d3
IEDL.DBID IXB
ISSN 0896-6273
1097-4199
IngestDate Sun Oct 26 04:16:02 EDT 2025
Tue Sep 30 17:17:16 EDT 2025
Thu Oct 02 11:26:20 EDT 2025
Mon Jul 21 06:01:28 EDT 2025
Thu Apr 24 22:49:23 EDT 2025
Thu Oct 16 04:37:52 EDT 2025
Fri Feb 23 02:40:33 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords clustered data
generalized linear mixed-effects model
linear mixed-effects model
linear regression model
Bayesian analysis
repeated measures
Language English
License Copyright © 2021 Elsevier Inc. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-505440b78c6ccc5a80f54dec8fc7be948b0768d1952263adc6b40766bb07be7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Z.Y., S.F.G., M.G., L.C., T.C.H. and X.X. prepared the figures and wrote the manuscript. X.X. conceived and oversaw this work.
Author contributions
ORCID 0000-0001-8152-8832
0000-0002-5828-1533
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/8763600
PMID 34784504
PQID 2598544122
PQPubID 23479
PageCount 15
ParticipantIDs unpaywall_primary_10_1016_j_neuron_2021_10_030
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8763600
proquest_miscellaneous_2598544122
pubmed_primary_34784504
crossref_primary_10_1016_j_neuron_2021_10_030
crossref_citationtrail_10_1016_j_neuron_2021_10_030
elsevier_sciencedirect_doi_10_1016_j_neuron_2021_10_030
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neuron (Cambridge, Mass.)
PublicationTitleAlternate Neuron
PublicationYear 2022
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Dutta, Datta (bib16) 2016; 72
Jiang, Nguyen (bib39) 2021
Lazic, Clarke-Williams, Munafò (bib47) 2018; 16
Freedman, Cockburn, Simcoe (bib24) 2015; 13
Duane, Kennedy, Pendleton, Roweth (bib15) 1987; 195
Fitzmaurice, Laird, Ware (bib21) 2012; Volume 998
Rosner, Grove (bib61) 1999; 18
Wolak, Wolak (bib70) 2015
Wedderburn (bib67) 1974; 61
Zeger, Liang (bib73) 1986; 42
Bürkner (bib11) 2017; 80
Kass, Raftery (bib40) 1995; 90
Grieco, Qiao, Zheng, Liu, Chen, Zhang, Yu, Gavornik, Lai, Gandhi (bib30) 2020; 30
Goodman (bib80) 2008
Aarts, Verhage, Veenvliet, Dolan, van der Sluis (bib1) 2014; 17
Henderson (bib36) 1949; 32
Wilson, Sethi, Lein, Keil (bib69) 2017; 279
Breslow, Clayton (bib10) 1993; 88
Stiratelli, Laird, Ware (bib65) 1984; 40
Fiedler (bib18) 2011; 6
Laird, Ware (bib45) 1982; 38
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (bib55) 1953; 21
Hastings (bib33) 1970; 57
.
Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv 1701.02434v2
Kish (bib42) 1965
Macleod, Michie, Roberts, Dirnagl, Chalmers, Ioannidis, Al-Shahi Salman, Chan, Glasziou (bib51) 2014; 383
Wei, Lin, Chen, Daie, Svoboda, Druckmann (bib68) 2020; 16
Barr, Levy, Scheepers, Tily (bib4) 2013; 68
Gelman, Hill (bib28) 2006
Held, Ott (bib35) 2018; 5
Rosner, Glynn, Lee (bib62) 2006; 62
(bib60) 2020
Baayen, Davidson, Bates (bib3) 2008; 59
Bolker, Brooks, Clark, Geange, Poulsen, Stevens, White (bib9) 2009; 24
Fong, Rue, Wakefield (bib22) 2010; 11
Shahbaba, Lan, Johnson, Neal (bib63) 2014; 24
Datta, Satten (bib14) 2005; 100
Neal (bib56) 2011
Boisgontier, Cheval (bib8) 2016; 68
Heisig, Schaeffer (bib34) 2019; 35
Liang, Zeger (bib49) 1986; 73
Zeger, Liang, Albert (bib74) 1988; 44
Altman, Bland (bib77) 1995; 311
Wolfinger, O’connell (bib71) 1993; 48
Alberts, Kirschner, Tilghman, Varmus (bib2) 2014; 111
Holm (bib81) 1979
Aickin, Gensler (bib76) 1996; 86
McCullagh, Nelder (bib54) 2019
Pinheiro, Bates, DebRoy, Sarkar, Heisterkamp, Van Willigen, Ranke (bib58) 2007
Kilkenny, Parsons, Kadyszewski, Festing, Cuthill, Fry, Hutton, Altman (bib41) 2009; 4
Bates, Mächler, Bolker, Walker (bib5) 2014; 67
Fisher (bib20) 1919
Gelman (bib27) 2005; 33
Casella, George (bib13) 1992; 46
Fox, Weisberg (bib23) 2018
Oberpriller, de Souza Leite, Pichler (bib75) 2021
Ferron, Dailey, Yi (bib17) 2002; 37
McHugh (bib82) 2011; 21
Gelman, Stern (bib79) 2006; 60
Lüdecke (bib50) 2018
Henderson, Kempthorne, Searle, Von Krosigk (bib37) 1959; 15
Prinz, Schlange, Asadullah (bib59) 2011; 10
Green, MacLeod (bib29) 2016; 7
Nelder, Wedderburn (bib57) 1972; 135
Bürkner (bib12) 2018; 10
Gelfand, Smith (bib26) 1990; 85
Benjamin, Berger (bib6) 2019; 73
Kuznetsova, Brockhoff, Christensen (bib43) 2017; 82
Wasserstein, R.L., & Lazar, N.A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose, The American Statistician 70, 129-133.
Hoffman, Gelman (bib38) 2014; 15
Galbraith, Daniel, Vissel (bib25) 2010; 30
Kwok, West, Green (bib44) 2007; 42
Landis, Amara, Asadullah, Austin, Blumenstein, Bradley, Crystal, Darnell, Ferrante, Fillit (bib46) 2012; 490
Zeger, Karim (bib72) 1991; 86
Matuschek, Kliegl, Vasishth, Baayen, Bates (bib53) 2017; 94
Hadfield (bib31) 2010; 33
Steward, Balice-Gordon (bib64) 2014; 84
Fischer (bib19) 1944
Lenth, Singmann, Love, Buerkner, Herve (bib48) 2019
Storey (bib83) 2002; 64
Halekoh, Højsgaard (bib32) 2014; 59
Benjamini, Hochberg (bib78) 1995; 57
Margolis, Derr, Dunn, Huerta, Larkin, Sheehan, Guyer, Green (bib52) 2014; 21
Casella (10.1016/j.neuron.2021.10.030_bib13) 1992; 46
Lenth (10.1016/j.neuron.2021.10.030_bib48) 2019
Wedderburn (10.1016/j.neuron.2021.10.030_bib67) 1974; 61
Datta (10.1016/j.neuron.2021.10.030_bib14) 2005; 100
Hadfield (10.1016/j.neuron.2021.10.030_bib31) 2010; 33
Margolis (10.1016/j.neuron.2021.10.030_bib52) 2014; 21
10.1016/j.neuron.2021.10.030_bib84
Fong (10.1016/j.neuron.2021.10.030_bib22) 2010; 11
Hastings (10.1016/j.neuron.2021.10.030_bib33) 1970; 57
Wolfinger (10.1016/j.neuron.2021.10.030_bib71) 1993; 48
Kish (10.1016/j.neuron.2021.10.030_bib42) 1965
Rosner (10.1016/j.neuron.2021.10.030_bib62) 2006; 62
Steward (10.1016/j.neuron.2021.10.030_bib64) 2014; 84
McCullagh (10.1016/j.neuron.2021.10.030_bib54) 2019
Jiang (10.1016/j.neuron.2021.10.030_bib39) 2021
Wolak (10.1016/j.neuron.2021.10.030_bib70) 2015
Grieco (10.1016/j.neuron.2021.10.030_bib30) 2020; 30
Storey (10.1016/j.neuron.2021.10.030_bib83) 2002; 64
Oberpriller (10.1016/j.neuron.2021.10.030_bib75) 2021
Metropolis (10.1016/j.neuron.2021.10.030_bib55) 1953; 21
Zeger (10.1016/j.neuron.2021.10.030_bib74) 1988; 44
Prinz (10.1016/j.neuron.2021.10.030_bib59) 2011; 10
Fischer (10.1016/j.neuron.2021.10.030_bib19) 1944
Held (10.1016/j.neuron.2021.10.030_bib35) 2018; 5
Zeger (10.1016/j.neuron.2021.10.030_bib73) 1986; 42
Lüdecke (10.1016/j.neuron.2021.10.030_bib50) 2018
Matuschek (10.1016/j.neuron.2021.10.030_bib53) 2017; 94
Fisher (10.1016/j.neuron.2021.10.030_bib20) 1919
Landis (10.1016/j.neuron.2021.10.030_bib46) 2012; 490
Fitzmaurice (10.1016/j.neuron.2021.10.030_bib21) 2012; Volume 998
Kass (10.1016/j.neuron.2021.10.030_bib40) 1995; 90
Barr (10.1016/j.neuron.2021.10.030_bib4) 2013; 68
Ferron (10.1016/j.neuron.2021.10.030_bib17) 2002; 37
Zeger (10.1016/j.neuron.2021.10.030_bib72) 1991; 86
Altman (10.1016/j.neuron.2021.10.030_bib77) 1995; 311
Wilson (10.1016/j.neuron.2021.10.030_bib69) 2017; 279
Alberts (10.1016/j.neuron.2021.10.030_bib2) 2014; 111
Kilkenny (10.1016/j.neuron.2021.10.030_bib41) 2009; 4
Halekoh (10.1016/j.neuron.2021.10.030_bib32) 2014; 59
Goodman (10.1016/j.neuron.2021.10.030_bib80) 2008
Laird (10.1016/j.neuron.2021.10.030_bib45) 1982; 38
Heisig (10.1016/j.neuron.2021.10.030_bib34) 2019; 35
Lazic (10.1016/j.neuron.2021.10.030_bib47) 2018; 16
Stiratelli (10.1016/j.neuron.2021.10.030_bib65) 1984; 40
Aarts (10.1016/j.neuron.2021.10.030_bib1) 2014; 17
10.1016/j.neuron.2021.10.030_bib7
Breslow (10.1016/j.neuron.2021.10.030_bib10) 1993; 88
Bates (10.1016/j.neuron.2021.10.030_bib5) 2014; 67
Gelman (10.1016/j.neuron.2021.10.030_bib79) 2006; 60
Boisgontier (10.1016/j.neuron.2021.10.030_bib8) 2016; 68
Macleod (10.1016/j.neuron.2021.10.030_bib51) 2014; 383
Galbraith (10.1016/j.neuron.2021.10.030_bib25) 2010; 30
Hoffman (10.1016/j.neuron.2021.10.030_bib38) 2014; 15
Kuznetsova (10.1016/j.neuron.2021.10.030_bib43) 2017; 82
Duane (10.1016/j.neuron.2021.10.030_bib15) 1987; 195
Henderson (10.1016/j.neuron.2021.10.030_bib37) 1959; 15
Henderson (10.1016/j.neuron.2021.10.030_bib36) 1949; 32
Kwok (10.1016/j.neuron.2021.10.030_bib44) 2007; 42
Dutta (10.1016/j.neuron.2021.10.030_bib16) 2016; 72
Neal (10.1016/j.neuron.2021.10.030_bib56) 2011
Pinheiro (10.1016/j.neuron.2021.10.030_bib58) 2007
Bürkner (10.1016/j.neuron.2021.10.030_bib12) 2018; 10
Gelman (10.1016/j.neuron.2021.10.030_bib28) 2006
Benjamin (10.1016/j.neuron.2021.10.030_bib6) 2019; 73
Nelder (10.1016/j.neuron.2021.10.030_bib57) 1972; 135
Gelfand (10.1016/j.neuron.2021.10.030_bib26) 1990; 85
Wei (10.1016/j.neuron.2021.10.030_bib68) 2020; 16
Liang (10.1016/j.neuron.2021.10.030_bib49) 1986; 73
Benjamini (10.1016/j.neuron.2021.10.030_bib78) 1995; 57
Green (10.1016/j.neuron.2021.10.030_bib29) 2016; 7
Shahbaba (10.1016/j.neuron.2021.10.030_bib63) 2014; 24
Holm (10.1016/j.neuron.2021.10.030_bib81) 1979
Bolker (10.1016/j.neuron.2021.10.030_bib9) 2009; 24
McHugh (10.1016/j.neuron.2021.10.030_bib82) 2011; 21
Rosner (10.1016/j.neuron.2021.10.030_bib61) 1999; 18
Bürkner (10.1016/j.neuron.2021.10.030_bib11) 2017; 80
Fox (10.1016/j.neuron.2021.10.030_bib23) 2018
Gelman (10.1016/j.neuron.2021.10.030_bib27) 2005; 33
Baayen (10.1016/j.neuron.2021.10.030_bib3) 2008; 59
Aickin (10.1016/j.neuron.2021.10.030_bib76) 1996; 86
(10.1016/j.neuron.2021.10.030_bib60) 2020
Fiedler (10.1016/j.neuron.2021.10.030_bib18) 2011; 6
Freedman (10.1016/j.neuron.2021.10.030_bib24) 2015; 13
References_xml – volume: 16
  start-page: e1008198
  year: 2020
  ident: bib68
  article-title: A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology
  publication-title: PLoS Comput. Biol.
– volume: 135
  start-page: 370
  year: 1972
  end-page: 384
  ident: bib57
  article-title: Generalized linear models
  publication-title: J. R. Stat. Soc. [Ser A]
– volume: 86
  start-page: 726
  year: 1996
  end-page: 728
  ident: bib76
  article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods
  publication-title: American Journal of Public Health
– year: 2018
  ident: bib23
  article-title: An R Companion to Applied Regression
– volume: 61
  start-page: 439
  year: 1974
  end-page: 447
  ident: bib67
  article-title: Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method
  publication-title: Biometrika
– volume: 86
  start-page: 79
  year: 1991
  end-page: 86
  ident: bib72
  article-title: Generalized linear models with random effects; a Gibbs sampling approach
  publication-title: J. Am. Stat. Assoc.
– start-page: 518
  year: 1944
  ident: bib19
  article-title: Statistical Methods for Research Workers, 1925
– volume: 11
  start-page: 397
  year: 2010
  end-page: 412
  ident: bib22
  article-title: Bayesian inference for generalized linear mixed models
  publication-title: Biostatistics
– volume: 16
  start-page: e2005282
  year: 2018
  ident: bib47
  article-title: What exactly is ‘N’ in cell culture and animal experiments?
  publication-title: PLoS Biol.
– volume: 10
  start-page: 712
  year: 2011
  ident: bib59
  article-title: Believe it or not: how much can we rely on published data on potential drug targets?
  publication-title: Nat. Rev. Drug Discov.
– start-page: 113
  year: 2011
  end-page: 162
  ident: bib56
  article-title: MCMC using Hamiltonian dynamics
  publication-title: Handbook of Markov Chain Monte Carlo
– volume: 24
  start-page: 127
  year: 2009
  end-page: 135
  ident: bib9
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends Ecol. Evol.
– volume: 10
  start-page: 395
  year: 2018
  ident: bib12
  article-title: Advanced Bayesian Multilevel Modeling with the R Package brms
  publication-title: R J.
– volume: 94
  start-page: 305
  year: 2017
  end-page: 315
  ident: bib53
  article-title: Balancing type I error and power in linear mixed models
  publication-title: J. Mem. Lang.
– volume: 72
  start-page: 432
  year: 2016
  end-page: 440
  ident: bib16
  article-title: A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative
  publication-title: Biometrics
– volume: 59
  start-page: 1
  year: 2014
  end-page: 30
  ident: bib32
  article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest
  publication-title: J. Stat. Softw.
– volume: 60
  start-page: 328
  year: 2006
  end-page: 331
  ident: bib79
  article-title: The difference between “significant” and “not significant” is not itself statistically significant
  publication-title: The American Statistician
– year: 2021
  ident: bib39
  article-title: Linear and Generalized Linear Mixed Models and Their Applications
– volume: 100
  start-page: 908
  year: 2005
  end-page: 915
  ident: bib14
  article-title: Rank-sum tests for clustered data
  publication-title: J. Am. Stat. Assoc.
– volume: 32
  start-page: 706
  year: 1949
  ident: bib36
  article-title: Estimation of changes in herd environment
  publication-title: J. Dairy Sci.
– volume: 42
  start-page: 121
  year: 1986
  end-page: 130
  ident: bib73
  article-title: Longitudinal data analysis for discrete and continuous outcomes
  publication-title: Biometrics
– volume: 30
  start-page: 10601
  year: 2010
  end-page: 10608
  ident: bib25
  article-title: A study of clustered data and approaches to its analysis
  publication-title: J. Neurosci.
– volume: 64
  start-page: 479
  year: 2002
  end-page: 498
  ident: bib83
  article-title: A direct approach to false discovery rates
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
– volume: 21
  start-page: 957
  year: 2014
  end-page: 958
  ident: bib52
  article-title: The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data
  publication-title: J. Am. Med. Inform. Assoc.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: bib55
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 44
  start-page: 1049
  year: 1988
  end-page: 1060
  ident: bib74
  article-title: Models for longitudinal data: a generalized estimating equation approach
  publication-title: Biometrics
– volume: 279
  start-page: 33
  year: 2017
  end-page: 43
  ident: bib69
  article-title: Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models
  publication-title: J. Neurosci. Methods
– volume: 62
  start-page: 1251
  year: 2006
  end-page: 1259
  ident: bib62
  article-title: Extension of the rank sum test for clustered data: two-group comparisons with group membership defined at the subunit level
  publication-title: Biometrics
– volume: 35
  start-page: 258
  year: 2019
  end-page: 279
  ident: bib34
  article-title: Why you should always include a random slope for the lower-level variable involved in a cross-level interaction
  publication-title: Eur. Sociol. Rev.
– volume: 17
  start-page: 491
  year: 2014
  end-page: 496
  ident: bib1
  article-title: A solution to dependency: using multilevel analysis to accommodate nested data
  publication-title: Nat. Neurosci.
– volume: 21
  start-page: 203
  year: 2011
  end-page: 209
  ident: bib82
  article-title: Multiple comparison analysis testing in ANOVA
  publication-title: Biochemia Medica
– volume: 68
  start-page: 1004
  year: 2016
  end-page: 1005
  ident: bib8
  article-title: The anova to mixed model transition
  publication-title: Neurosci. Biobehav. Rev.
– volume: 42
  start-page: 557
  year: 2007
  end-page: 592
  ident: bib44
  article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: a Monte Carlo study
  publication-title: Multivariate Behav. Res.
– year: 2006
  ident: bib28
  article-title: Data Analysis Using Regression and Multilevel/Hierarchical Models
– volume: 46
  start-page: 167
  year: 1992
  end-page: 174
  ident: bib13
  article-title: Explaining the Gibbs sampler
  publication-title: Am. Stat.
– volume: 6
  start-page: 163
  year: 2011
  end-page: 171
  ident: bib18
  article-title: Voodoo Correlations Are Everywhere-Not Only in Neuroscience
  publication-title: Perspect. Psychol. Sci.
– reference: Betancourt, M. (2017). A conceptual introduction to Hamiltonian Monte Carlo. arXiv 1701.02434v2,
– volume: 38
  start-page: 963
  year: 1982
  end-page: 974
  ident: bib45
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
– year: 1965
  ident: bib42
  article-title: Survey Sampling
– reference: Wasserstein, R.L., & Lazar, N.A. (2016). The ASA Statement on p-Values: Context, Process, and Purpose, The American Statistician 70, 129-133.
– volume: 80
  start-page: 1
  year: 2017
  end-page: 28
  ident: bib11
  article-title: brms: an R package for Bayesian multilevel models using Stan
  publication-title: J. Stat. Softw.
– volume: 490
  start-page: 187
  year: 2012
  end-page: 191
  ident: bib46
  article-title: A call for transparent reporting to optimize the predictive value of preclinical research
  publication-title: Nature
– volume: 37
  start-page: 379
  year: 2002
  end-page: 403
  ident: bib17
  article-title: Effects of misspecifying the first-level error structure in two-level models of change
  publication-title: Multivariate Behav. Res.
– volume: 5
  start-page: 393
  year: 2018
  end-page: 419
  ident: bib35
  article-title: On p-Values and Bayes Factors
  publication-title: Annu. Rev. Stat. Appl.
– volume: 4
  start-page: e7824
  year: 2009
  ident: bib41
  article-title: Survey of the quality of experimental design, statistical analysis and reporting of research using animals
  publication-title: PLoS ONE
– year: 2018
  ident: bib50
  article-title: sjPlot: data visualization for statistics in social science. R package version 2
– volume: 59
  start-page: 390
  year: 2008
  end-page: 412
  ident: bib3
  article-title: Mixed-effects modeling with crossed random effects for subjects and items
  publication-title: J. Mem. Lang.
– volume: 33
  start-page: 1
  year: 2010
  end-page: 22
  ident: bib31
  article-title: MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package
  publication-title: J. Stat. Softw.
– year: 2019
  ident: bib48
  article-title: Estimated marginal means, aka least-squares means. R package version 1.3.2
– volume: Volume 998
  year: 2012
  ident: bib21
  article-title: Applied Longitudinal Analysis
– volume: 24
  start-page: 339
  year: 2014
  end-page: 349
  ident: bib63
  article-title: Split hamiltonian monte carlo
  publication-title: Stat. Comput.
– year: 2021
  ident: bib75
  article-title: Fixed or random? On the reliability of mixed-effect models for a small number of levels in grouping variables
  publication-title: bioRxiv
– volume: 18
  start-page: 1387
  year: 1999
  end-page: 1400
  ident: bib61
  article-title: Use of the Mann-Whitney U-test for clustered data
  publication-title: Stat. Med.
– volume: 57
  start-page: 97
  year: 1970
  end-page: 109
  ident: bib33
  article-title: Monte-Carlo Sampling Methods Using Markov Chains and Their Applications
  publication-title: Biometrika
– volume: 85
  start-page: 398
  year: 1990
  end-page: 409
  ident: bib26
  article-title: Sampling-based approaches to calculating marginal densities
  publication-title: J. Am. Stat. Assoc.
– volume: 40
  start-page: 961
  year: 1984
  end-page: 971
  ident: bib65
  article-title: Random-effects models for serial observations with binary response
  publication-title: Biometrics
– volume: 73
  start-page: 186
  year: 2019
  end-page: 191
  ident: bib6
  article-title: Three recommendations for improving the use of p-values
  publication-title: Am. Stat.
– year: 2015
  ident: bib70
  article-title: R Package “ICC.” Facilitating estimation of the intraclass correlation coefficient
– volume: 30
  start-page: 3591
  year: 2020
  end-page: 3603.e8
  ident: bib30
  article-title: Subanesthetic Ketamine Reactivates Adult Cortical Plasticity to Restore Vision from Amblyopia
  publication-title: Curr. Biol.
– volume: 67
  start-page: 1
  year: 2014
  end-page: 48
  ident: bib5
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
– volume: 111
  start-page: 5773
  year: 2014
  end-page: 5777
  ident: bib2
  article-title: Rescuing US biomedical research from its systemic flaws
  publication-title: Proc. Natl. Acad. Sci. USA
– year: 2007
  ident: bib58
  article-title: nlme: linear and nonlinear mixed effects models. R package version 3
– volume: 7
  start-page: 493
  year: 2016
  end-page: 498
  ident: bib29
  article-title: SIMR: an R package for power analysis of generalized linear mixed models by simulation
  publication-title: Methods Ecol. Evol.
– start-page: 65
  year: 1979
  end-page: 70
  ident: bib81
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib78
  article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
– volume: 84
  start-page: 572
  year: 2014
  end-page: 581
  ident: bib64
  article-title: Rigor or mortis: best practices for preclinical research in neuroscience
  publication-title: Neuron
– year: 2019
  ident: bib54
  article-title: Generalized Linear Models
– year: 2020
  ident: bib60
  article-title: R: A language and environment for statistical computing
– volume: 311
  start-page: 485
  year: 1995
  ident: bib77
  article-title: Statistics notes: Absence of evidence is not evidence of absence
  publication-title: BMJ
– volume: 33
  start-page: 1
  year: 2005
  end-page: 53
  ident: bib27
  article-title: Analysis of variance—why it is more important than ever
  publication-title: Ann. Stat.
– volume: 90
  start-page: 773
  year: 1995
  end-page: 795
  ident: bib40
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
– volume: 48
  start-page: 233
  year: 1993
  end-page: 243
  ident: bib71
  article-title: Generalized linear mixed models a pseudo-likelihood approach
  publication-title: J. Stat. Comput. Simul.
– volume: 88
  start-page: 9
  year: 1993
  end-page: 25
  ident: bib10
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
– volume: 15
  start-page: 192
  year: 1959
  end-page: 218
  ident: bib37
  article-title: The estimation of environmental and genetic trends from records subject to culling
  publication-title: Biometrics
– volume: 73
  start-page: 13
  year: 1986
  end-page: 22
  ident: bib49
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
– reference: .
– volume: 13
  start-page: e1002165
  year: 2015
  ident: bib24
  article-title: The Economics of Reproducibility in Preclinical Research
  publication-title: PLoS Biol.
– year: 1919
  ident: bib20
  article-title: XV.—The correlation between relatives on the supposition of Mendelian inheritance
– volume: 15
  start-page: 1593
  year: 2014
  end-page: 1623
  ident: bib38
  article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J. Mach. Learn. Res.
– volume: 383
  start-page: 101
  year: 2014
  end-page: 104
  ident: bib51
  article-title: Biomedical research: increasing value, reducing waste
  publication-title: Lancet
– volume: 68
  start-page: 255
  year: 2013
  end-page: 278
  ident: bib4
  article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal
  publication-title: J. Mem. Lang.
– volume: 195
  start-page: 216
  year: 1987
  end-page: 222
  ident: bib15
  article-title: Hybrid monte carlo
  publication-title: Phys. Lett. B
– volume: 82
  start-page: 1
  year: 2017
  end-page: 26
  ident: bib43
  article-title: lmerTest Package: Tests in Linear Mixed Effects Models
  publication-title: J. Stat. Softw.
– start-page: 135
  year: 2008
  end-page: 140
  ident: bib80
  article-title: A dirty dozen: twelve p-value misconceptions
  publication-title: Seminars in Hematology 45
– volume: 62
  start-page: 1251
  year: 2006
  ident: 10.1016/j.neuron.2021.10.030_bib62
  article-title: Extension of the rank sum test for clustered data: two-group comparisons with group membership defined at the subunit level
  publication-title: Biometrics
  doi: 10.1111/j.1541-0420.2006.00582.x
– year: 2015
  ident: 10.1016/j.neuron.2021.10.030_bib70
– volume: 15
  start-page: 192
  year: 1959
  ident: 10.1016/j.neuron.2021.10.030_bib37
  article-title: The estimation of environmental and genetic trends from records subject to culling
  publication-title: Biometrics
  doi: 10.2307/2527669
– ident: 10.1016/j.neuron.2021.10.030_bib7
– volume: 59
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib32
  article-title: A kenward-roger approximation and parametric bootstrap methods for tests in linear mixed models–the R package pbkrtest
  publication-title: J. Stat. Softw.
– start-page: 518
  year: 1944
  ident: 10.1016/j.neuron.2021.10.030_bib19
– volume: 90
  start-page: 773
  year: 1995
  ident: 10.1016/j.neuron.2021.10.030_bib40
  article-title: Bayes factors
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1995.10476572
– volume: 67
  start-page: 1
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib5
  article-title: Fitting linear mixed-effects models using lme4
  publication-title: J. Stat. Softw.
– year: 2021
  ident: 10.1016/j.neuron.2021.10.030_bib75
  article-title: Fixed or random? On the reliability of mixed-effect models for a small number of levels in grouping variables
  publication-title: bioRxiv
– volume: Volume 998
  year: 2012
  ident: 10.1016/j.neuron.2021.10.030_bib21
– volume: 135
  start-page: 370
  year: 1972
  ident: 10.1016/j.neuron.2021.10.030_bib57
  article-title: Generalized linear models
  publication-title: J. R. Stat. Soc. [Ser A]
  doi: 10.2307/2344614
– volume: 85
  start-page: 398
  year: 1990
  ident: 10.1016/j.neuron.2021.10.030_bib26
  article-title: Sampling-based approaches to calculating marginal densities
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1990.10476213
– volume: 42
  start-page: 557
  year: 2007
  ident: 10.1016/j.neuron.2021.10.030_bib44
  article-title: The impact of misspecifying the within-subject covariance structure in multiwave longitudinal multilevel models: a Monte Carlo study
  publication-title: Multivariate Behav. Res.
  doi: 10.1080/00273170701540537
– volume: 24
  start-page: 339
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib63
  article-title: Split hamiltonian monte carlo
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-012-9373-1
– volume: 279
  start-page: 33
  year: 2017
  ident: 10.1016/j.neuron.2021.10.030_bib69
  article-title: Valid statistical approaches for analyzing sholl data: Mixed effects versus simple linear models
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2017.01.003
– volume: 80
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuron.2021.10.030_bib11
  article-title: brms: an R package for Bayesian multilevel models using Stan
  publication-title: J. Stat. Softw.
– volume: 42
  start-page: 121
  year: 1986
  ident: 10.1016/j.neuron.2021.10.030_bib73
  article-title: Longitudinal data analysis for discrete and continuous outcomes
  publication-title: Biometrics
  doi: 10.2307/2531248
– volume: 38
  start-page: 963
  year: 1982
  ident: 10.1016/j.neuron.2021.10.030_bib45
  article-title: Random-effects models for longitudinal data
  publication-title: Biometrics
  doi: 10.2307/2529876
– volume: 33
  start-page: 1
  year: 2010
  ident: 10.1016/j.neuron.2021.10.030_bib31
  article-title: MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package
  publication-title: J. Stat. Softw.
– volume: 35
  start-page: 258
  year: 2019
  ident: 10.1016/j.neuron.2021.10.030_bib34
  article-title: Why you should always include a random slope for the lower-level variable involved in a cross-level interaction
  publication-title: Eur. Sociol. Rev.
  doi: 10.1093/esr/jcy053
– volume: 311
  start-page: 485
  year: 1995
  ident: 10.1016/j.neuron.2021.10.030_bib77
  article-title: Statistics notes: Absence of evidence is not evidence of absence
  publication-title: BMJ
  doi: 10.1136/bmj.311.7003.485
– volume: 82
  start-page: 1
  year: 2017
  ident: 10.1016/j.neuron.2021.10.030_bib43
  article-title: lmerTest Package: Tests in Linear Mixed Effects Models
  publication-title: J. Stat. Softw.
– volume: 16
  start-page: e2005282
  year: 2018
  ident: 10.1016/j.neuron.2021.10.030_bib47
  article-title: What exactly is ‘N’ in cell culture and animal experiments?
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2005282
– volume: 61
  start-page: 439
  year: 1974
  ident: 10.1016/j.neuron.2021.10.030_bib67
  article-title: Quasi-likelihood functions, generalized linear models, and the Gauss—Newton method
  publication-title: Biometrika
– volume: 44
  start-page: 1049
  year: 1988
  ident: 10.1016/j.neuron.2021.10.030_bib74
  article-title: Models for longitudinal data: a generalized estimating equation approach
  publication-title: Biometrics
  doi: 10.2307/2531734
– volume: 73
  start-page: 186
  year: 2019
  ident: 10.1016/j.neuron.2021.10.030_bib6
  article-title: Three recommendations for improving the use of p-values
  publication-title: Am. Stat.
  doi: 10.1080/00031305.2018.1543135
– volume: 6
  start-page: 163
  year: 2011
  ident: 10.1016/j.neuron.2021.10.030_bib18
  article-title: Voodoo Correlations Are Everywhere-Not Only in Neuroscience
  publication-title: Perspect. Psychol. Sci.
  doi: 10.1177/1745691611400237
– volume: 13
  start-page: e1002165
  year: 2015
  ident: 10.1016/j.neuron.2021.10.030_bib24
  article-title: The Economics of Reproducibility in Preclinical Research
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.1002165
– volume: 68
  start-page: 255
  year: 2013
  ident: 10.1016/j.neuron.2021.10.030_bib4
  article-title: Random effects structure for confirmatory hypothesis testing: Keep it maximal
  publication-title: J. Mem. Lang.
  doi: 10.1016/j.jml.2012.11.001
– volume: 490
  start-page: 187
  year: 2012
  ident: 10.1016/j.neuron.2021.10.030_bib46
  article-title: A call for transparent reporting to optimize the predictive value of preclinical research
  publication-title: Nature
  doi: 10.1038/nature11556
– year: 2021
  ident: 10.1016/j.neuron.2021.10.030_bib39
– volume: 30
  start-page: 10601
  year: 2010
  ident: 10.1016/j.neuron.2021.10.030_bib25
  article-title: A study of clustered data and approaches to its analysis
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.0362-10.2010
– volume: 4
  start-page: e7824
  year: 2009
  ident: 10.1016/j.neuron.2021.10.030_bib41
  article-title: Survey of the quality of experimental design, statistical analysis and reporting of research using animals
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0007824
– ident: 10.1016/j.neuron.2021.10.030_bib84
  doi: 10.1080/00031305.2016.1154108
– volume: 57
  start-page: 97
  year: 1970
  ident: 10.1016/j.neuron.2021.10.030_bib33
  article-title: Monte-Carlo Sampling Methods Using Markov Chains and Their Applications
  publication-title: Biometrika
  doi: 10.1093/biomet/57.1.97
– volume: 59
  start-page: 390
  year: 2008
  ident: 10.1016/j.neuron.2021.10.030_bib3
  article-title: Mixed-effects modeling with crossed random effects for subjects and items
  publication-title: J. Mem. Lang.
  doi: 10.1016/j.jml.2007.12.005
– volume: 86
  start-page: 79
  year: 1991
  ident: 10.1016/j.neuron.2021.10.030_bib72
  article-title: Generalized linear models with random effects; a Gibbs sampling approach
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1991.10475006
– volume: 32
  start-page: 706
  year: 1949
  ident: 10.1016/j.neuron.2021.10.030_bib36
  article-title: Estimation of changes in herd environment
  publication-title: J. Dairy Sci.
– volume: 73
  start-page: 13
  year: 1986
  ident: 10.1016/j.neuron.2021.10.030_bib49
  article-title: Longitudinal data analysis using generalized linear models
  publication-title: Biometrika
  doi: 10.1093/biomet/73.1.13
– year: 2007
  ident: 10.1016/j.neuron.2021.10.030_bib58
– volume: 5
  start-page: 393
  year: 2018
  ident: 10.1016/j.neuron.2021.10.030_bib35
  article-title: On p-Values and Bayes Factors
  publication-title: Annu. Rev. Stat. Appl.
  doi: 10.1146/annurev-statistics-031017-100307
– volume: 21
  start-page: 957
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib52
  article-title: The National Institutes of Health’s Big Data to Knowledge (BD2K) initiative: capitalizing on biomedical big data
  publication-title: J. Am. Med. Inform. Assoc.
  doi: 10.1136/amiajnl-2014-002974
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.neuron.2021.10.030_bib78
  article-title: Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing
  publication-title: Journal of the Royal Statistical Society: Series B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 72
  start-page: 432
  year: 2016
  ident: 10.1016/j.neuron.2021.10.030_bib16
  article-title: A rank-sum test for clustered data when the number of subjects in a group within a cluster is informative
  publication-title: Biometrics
  doi: 10.1111/biom.12447
– year: 2018
  ident: 10.1016/j.neuron.2021.10.030_bib23
– volume: 30
  start-page: 3591
  year: 2020
  ident: 10.1016/j.neuron.2021.10.030_bib30
  article-title: Subanesthetic Ketamine Reactivates Adult Cortical Plasticity to Restore Vision from Amblyopia
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2020.07.008
– year: 2019
  ident: 10.1016/j.neuron.2021.10.030_bib48
– volume: 40
  start-page: 961
  year: 1984
  ident: 10.1016/j.neuron.2021.10.030_bib65
  article-title: Random-effects models for serial observations with binary response
  publication-title: Biometrics
  doi: 10.2307/2531147
– volume: 48
  start-page: 233
  year: 1993
  ident: 10.1016/j.neuron.2021.10.030_bib71
  article-title: Generalized linear mixed models a pseudo-likelihood approach
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949659308811554
– volume: 11
  start-page: 397
  year: 2010
  ident: 10.1016/j.neuron.2021.10.030_bib22
  article-title: Bayesian inference for generalized linear mixed models
  publication-title: Biostatistics
  doi: 10.1093/biostatistics/kxp053
– volume: 21
  start-page: 203
  year: 2011
  ident: 10.1016/j.neuron.2021.10.030_bib82
  article-title: Multiple comparison analysis testing in ANOVA
  publication-title: Biochemia Medica
  doi: 10.11613/BM.2011.029
– volume: 94
  start-page: 305
  year: 2017
  ident: 10.1016/j.neuron.2021.10.030_bib53
  article-title: Balancing type I error and power in linear mixed models
  publication-title: J. Mem. Lang.
  doi: 10.1016/j.jml.2017.01.001
– volume: 60
  start-page: 328
  year: 2006
  ident: 10.1016/j.neuron.2021.10.030_bib79
  article-title: The difference between “significant” and “not significant” is not itself statistically significant
  publication-title: The American Statistician
  doi: 10.1198/000313006X152649
– volume: 64
  start-page: 479
  year: 2002
  ident: 10.1016/j.neuron.2021.10.030_bib83
  article-title: A direct approach to false discovery rates
  publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology)
  doi: 10.1111/1467-9868.00346
– volume: 33
  start-page: 1
  year: 2005
  ident: 10.1016/j.neuron.2021.10.030_bib27
  article-title: Analysis of variance—why it is more important than ever
  publication-title: Ann. Stat.
  doi: 10.1214/009053604000001048
– volume: 15
  start-page: 1593
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib38
  article-title: The No-U-Turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo
  publication-title: J. Mach. Learn. Res.
– volume: 17
  start-page: 491
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib1
  article-title: A solution to dependency: using multilevel analysis to accommodate nested data
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.3648
– volume: 16
  start-page: e1008198
  year: 2020
  ident: 10.1016/j.neuron.2021.10.030_bib68
  article-title: A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology
  publication-title: PLoS Comput. Biol.
  doi: 10.1371/journal.pcbi.1008198
– year: 2018
  ident: 10.1016/j.neuron.2021.10.030_bib50
– volume: 100
  start-page: 908
  year: 2005
  ident: 10.1016/j.neuron.2021.10.030_bib14
  article-title: Rank-sum tests for clustered data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1198/016214504000001583
– start-page: 65
  year: 1979
  ident: 10.1016/j.neuron.2021.10.030_bib81
  article-title: A simple sequentially rejective multiple test procedure
  publication-title: Scandinavian Journal of Statistics
– year: 1965
  ident: 10.1016/j.neuron.2021.10.030_bib42
– volume: 84
  start-page: 572
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib64
  article-title: Rigor or mortis: best practices for preclinical research in neuroscience
  publication-title: Neuron
  doi: 10.1016/j.neuron.2014.10.042
– volume: 18
  start-page: 1387
  year: 1999
  ident: 10.1016/j.neuron.2021.10.030_bib61
  article-title: Use of the Mann-Whitney U-test for clustered data
  publication-title: Stat. Med.
  doi: 10.1002/(SICI)1097-0258(19990615)18:11<1387::AID-SIM126>3.0.CO;2-V
– start-page: 113
  year: 2011
  ident: 10.1016/j.neuron.2021.10.030_bib56
  article-title: MCMC using Hamiltonian dynamics
– volume: 10
  start-page: 395
  year: 2018
  ident: 10.1016/j.neuron.2021.10.030_bib12
  article-title: Advanced Bayesian Multilevel Modeling with the R Package brms
  publication-title: R J.
  doi: 10.32614/RJ-2018-017
– year: 1919
  ident: 10.1016/j.neuron.2021.10.030_bib20
– volume: 24
  start-page: 127
  year: 2009
  ident: 10.1016/j.neuron.2021.10.030_bib9
  article-title: Generalized linear mixed models: a practical guide for ecology and evolution
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2008.10.008
– year: 2020
  ident: 10.1016/j.neuron.2021.10.030_bib60
– volume: 68
  start-page: 1004
  year: 2016
  ident: 10.1016/j.neuron.2021.10.030_bib8
  article-title: The anova to mixed model transition
  publication-title: Neurosci. Biobehav. Rev.
  doi: 10.1016/j.neubiorev.2016.05.034
– volume: 195
  start-page: 216
  year: 1987
  ident: 10.1016/j.neuron.2021.10.030_bib15
  article-title: Hybrid monte carlo
  publication-title: Phys. Lett. B
  doi: 10.1016/0370-2693(87)91197-X
– year: 2006
  ident: 10.1016/j.neuron.2021.10.030_bib28
– volume: 37
  start-page: 379
  year: 2002
  ident: 10.1016/j.neuron.2021.10.030_bib17
  article-title: Effects of misspecifying the first-level error structure in two-level models of change
  publication-title: Multivariate Behav. Res.
  doi: 10.1207/S15327906MBR3703_4
– volume: 383
  start-page: 101
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib51
  article-title: Biomedical research: increasing value, reducing waste
  publication-title: Lancet
  doi: 10.1016/S0140-6736(13)62329-6
– start-page: 135
  year: 2008
  ident: 10.1016/j.neuron.2021.10.030_bib80
  article-title: A dirty dozen: twelve p-value misconceptions
– volume: 21
  start-page: 1087
  year: 1953
  ident: 10.1016/j.neuron.2021.10.030_bib55
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 86
  start-page: 726
  year: 1996
  ident: 10.1016/j.neuron.2021.10.030_bib76
  article-title: Adjusting for multiple testing when reporting research results: the Bonferroni vs Holm methods
  publication-title: American Journal of Public Health
  doi: 10.2105/AJPH.86.5.726
– volume: 88
  start-page: 9
  year: 1993
  ident: 10.1016/j.neuron.2021.10.030_bib10
  article-title: Approximate inference in generalized linear mixed models
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1993.10594284
– volume: 7
  start-page: 493
  year: 2016
  ident: 10.1016/j.neuron.2021.10.030_bib29
  article-title: SIMR: an R package for power analysis of generalized linear mixed models by simulation
  publication-title: Methods Ecol. Evol.
  doi: 10.1111/2041-210X.12504
– year: 2019
  ident: 10.1016/j.neuron.2021.10.030_bib54
– volume: 111
  start-page: 5773
  year: 2014
  ident: 10.1016/j.neuron.2021.10.030_bib2
  article-title: Rescuing US biomedical research from its systemic flaws
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1404402111
– volume: 46
  start-page: 167
  year: 1992
  ident: 10.1016/j.neuron.2021.10.030_bib13
  article-title: Explaining the Gibbs sampler
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475878
– volume: 10
  start-page: 712
  year: 2011
  ident: 10.1016/j.neuron.2021.10.030_bib59
  article-title: Believe it or not: how much can we rely on published data on potential drug targets?
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd3439-c1
SSID ssj0014591
Score 2.7176569
SecondaryResourceType review_article
Snippet In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t test and...
In basic neuroscience research, data are often clustered or collected with repeated measures, hence correlated. The most widely used methods such as t-test and...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 21
SubjectTerms Analysis of Variance
Bayesian analysis
clustered data
generalized linear mixed-effects model
linear mixed-effects model
Linear Models
linear regression model
Models, Statistical
Neurosciences
repeated measures
Reproducibility of Results
Research Design
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anRB74WODURjISIi3ZPlwYpu3CG2akCgIUTSeIn8kI9CmVZcKirT_vmsnqTqGNPYWJXZiJyfxcXzuuQCvA8VFaKy_XSkCj-qw9LiKuIcfTJPEUcm4sMHJH0bpyZi-P01OtyDsY2GcaF-ryq8nU7-uvjtt5XyqD3ud2KG1UMNR-g5spwnS7wFsj0efsm-OLYrUSyPWiuoFsyucog-Xc5ou5xFpXU-j0LeaLqt9_vdwdJ1uXldN3lvWc7n6JSeTjSHp-AF87jvTKlF--stG-frPXz6Pt-rtQ7jfEVSStYcewVZR78JeVuPkfLoib4iTjLp_8btwt81kudqDizYShjQEqWtDJG5mo49fs7dkc4WczEoyrX4XxutkJMQl4jknyJyJVfySRXU2W8yW58QGOjkPaWyL7IxTSFWTDf9NLN3JBh_D-Pjoy7sTr8vs4Gmaxo2HtIvSQDGuU611InlQJtQUmpeaqUJQruwCoQmFZYexNDpVOPFMU4X7VcFM_AQG9awungIxhgdxKQoTSEEpCyQzkis8oYg1noINIe4fcK4723ObfWOS9_q2H3kLi9zCwu5FWAzBW9eat7YfN5RnPXby7h60lCTHkemGmq96qOX4ZtvlGlkXeKNznJhymyEuioaw30Jv3ZaYMk6TgOJ1r4ByXcC6hl89gvBy7uEdoobgr-H7X118dtsKz2EnsrEi9n9VcgCDZrEsXiCDa9TL7p29BBggSHM
  priority: 102
  providerName: Unpaywall
Title Beyond t test and ANOVA: applications of mixed-effects models for more rigorous statistical analysis in neuroscience research
URI https://dx.doi.org/10.1016/j.neuron.2021.10.030
https://www.ncbi.nlm.nih.gov/pubmed/34784504
https://www.proquest.com/docview/2598544122
https://pubmed.ncbi.nlm.nih.gov/PMC8763600
https://www.ncbi.nlm.nih.gov/pmc/articles/8763600
UnpaywallVersion submittedVersion
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: KQ8
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: ScienceDirect Free & Delayed Access Titles
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: IXB
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1097-4199
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: DIK
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1097-4199
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0014591
  issn: 0896-6273
  databaseCode: AKRWK
  dateStart: 19880301
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5VRQguiLY8AjRaJMRtm429ttfcTNWqBRGQICicrH1ZNUqdqHUEOfDfmVk_lKiVirhFm7G99oxnZ7zffEPIG65lOrbIb1eknAkzLpjUgWTgMG0UBkUiUyxO_jSJz6biwyya7ZDjrhYGYZWt7298uvfW7ciofZqjZVmOvnKZIns5FqFwKaIZ-OFQSGzfcD573-8kiKjpmgfCDKW78jmP8fKckciCGoyPEOOFWOjbl6eb4edNFOWDVbVU619qPt9Yok4fk0dtbEmzZvp7ZMdV--QgqyCvvlzTt9SjPf1n9H1yv2lCuT4gf5oiFlpTiDprquBnNvn8PXtHNze36aKgl-VvZ1mLAKG-h841haCXIliXQpq_uFqsrinWKHn6Z5iLajlPaFnRDepMkG4Rf0_I9PTk2_EZa5syMCPisGYQMQnBdSJNbIyJlORFJKwzsjCJdqmQGvf27DjFwC5U1sQacsY41jCuXWLDp2S3WlTuOaHWSh4WqbNcpUIkXCVWSQ0nTEMDp0gGJOx0kZuWsRwbZ8zzDpr2M280mKMGcRQ0OCCsP2rZMHbcIZ90as63LC-HReWOI193VpHDS4k7Lapy8KBzyCklNncLggF51lhJP5dQJGCtXMB1t-ynF0DC7-1_qvLCE38jeyAEqANy1FvaP93ii_--xZfkYYD1HvjNKXpFduurlTuEKKzWQ8g_zj8O_cs2JPemky_Zj7-dSzYR
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEB6VIlQuCFoe4blIiJubjb2219xCRRWgDQdalNtqXxZGqRO1jiAH_jszfilRkYq4RZuxvfaMd7_1fvMNwBtuZDZypG-XZzwQdpQH0oQywAHTxVGYpzKj5OTTaTI5F59m8WwHjrpcGKJVtmN_M6bXo3XbMmyf5nBZFMOvXGakXk5JKFyKeHYLbosY0Qll8c3e91sJIm7K5qF1QOZd_lxN8qpFI0kGNRwdEsmLyNB_n5-u48_rNMq9VbnU6596Pt-Yo47vw70WXLJx0_8HsOPLfTgYl7iwvlizt6yme9bf0ffhTlOFcn0Av5ssFlYxhJ0V0_hzPP3ybfyObe5us0XOLopf3gUtBYTVRXSuGKJeRmxdhuv8xeVidcUoSanWf8a-6Fb0hBUl29DOROuW8vcQzo8_nB1NgrYqQ2BFElUBQiYhuEmlTay1sZY8j4XzVuY2NT4T0tDmnhtlhOwi7WxicNGYJAbbjU9d9Ah2y0XpnwBzTvIoz7zjOhMi5Tp1Who8YRZZPEU6gKjzhbKtZDlVzpirjpv2QzUeVORBakUPDiDoj1o2kh032Kedm9VW6CmcVW448nUXFQrfStpq0aXHB61wUSmpulsYDuBxEyV9XyKRYrhygdfdip_egBS_t_8pi--18jfJByJCHcBhH2n_dItP__sWX8He5Oz0RJ18nH5-BndDSv6gD1Dxc9itLlf-BUKyyrysX7k_O9M2jg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1db9MwFL0anRB74WODURjISIi3ZPlwYpu3CG2akCgIUTSeIn8kI9CmVZcKirT_vmsnqTqGNPYWJXZiJyfxcXzuuQCvA8VFaKy_XSkCj-qw9LiKuIcfTJPEUcm4sMHJH0bpyZi-P01OtyDsY2GcaF-ryq8nU7-uvjtt5XyqD3ud2KG1UMNR-g5spwnS7wFsj0efsm-OLYrUSyPWiuoFsyucog-Xc5ou5xFpXU-j0LeaLqt9_vdwdJ1uXldN3lvWc7n6JSeTjSHp-AF87jvTKlF--stG-frPXz6Pt-rtQ7jfEVSStYcewVZR78JeVuPkfLoib4iTjLp_8btwt81kudqDizYShjQEqWtDJG5mo49fs7dkc4WczEoyrX4XxutkJMQl4jknyJyJVfySRXU2W8yW58QGOjkPaWyL7IxTSFWTDf9NLN3JBh_D-Pjoy7sTr8vs4Gmaxo2HtIvSQDGuU611InlQJtQUmpeaqUJQruwCoQmFZYexNDpVOPFMU4X7VcFM_AQG9awungIxhgdxKQoTSEEpCyQzkis8oYg1noINIe4fcK4723ObfWOS9_q2H3kLi9zCwu5FWAzBW9eat7YfN5RnPXby7h60lCTHkemGmq96qOX4ZtvlGlkXeKNznJhymyEuioaw30Jv3ZaYMk6TgOJ1r4ByXcC6hl89gvBy7uEdoobgr-H7X118dtsKz2EnsrEi9n9VcgCDZrEsXiCDa9TL7p29BBggSHM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Beyond+t+test+and+ANOVA%3A+applications+of+mixed-effects+models+for+more+rigorous+statistical+analysis+in+neuroscience+research&rft.jtitle=Neuron+%28Cambridge%2C+Mass.%29&rft.au=Yu%2C+Zhaoxia&rft.au=Guindani%2C+Michele&rft.au=Grieco%2C+Steven+F&rft.au=Chen%2C+Lujia&rft.date=2022-01-05&rft.issn=1097-4199&rft.eissn=1097-4199&rft.volume=110&rft.issue=1&rft.spage=21&rft_id=info:doi/10.1016%2Fj.neuron.2021.10.030&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0896-6273&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0896-6273&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0896-6273&client=summon