bletl ‐ A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle

Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this...

Full description

Saved in:
Bibliographic Details
Published inEngineering in life sciences Vol. 22; no. 3-4; pp. 242 - 259
Main Authors Osthege, Michael, Tenhaef, Niklas, Zyla, Rebecca, Müller, Carolin, Hemmerich, Johannes, Wiechert, Wolfgang, Noack, Stephan, Oldiges, Marco
Format Journal Article
LanguageEnglish
Published Germany John Wiley & Sons, Inc 01.03.2022
John Wiley and Sons Inc
Subjects
Online AccessGet full text
ISSN1618-0240
1618-2863
1618-2863
DOI10.1002/elsc.202100108

Cover

Abstract Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
AbstractList Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate μ ⃗ t based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate μ ⃗ t based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.
Author Osthege, Michael
Tenhaef, Niklas
Müller, Carolin
Hemmerich, Johannes
Wiechert, Wolfgang
Oldiges, Marco
Noack, Stephan
Zyla, Rebecca
AuthorAffiliation 3 Computational Systems Biotechnology (AVT.CSB) RWTH Aachen University Aachen Germany
2 Institute of Biotechnology RWTH Aachen University Aachen Germany
1 Forschungszentrum Jülich GmbH Jülich Germany
AuthorAffiliation_xml – name: 1 Forschungszentrum Jülich GmbH Jülich Germany
– name: 3 Computational Systems Biotechnology (AVT.CSB) RWTH Aachen University Aachen Germany
– name: 2 Institute of Biotechnology RWTH Aachen University Aachen Germany
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0002-2734-7624
  surname: Osthege
  fullname: Osthege, Michael
  organization: RWTH Aachen University
– sequence: 2
  givenname: Niklas
  orcidid: 0000-0002-9375-4156
  surname: Tenhaef
  fullname: Tenhaef, Niklas
  organization: Forschungszentrum Jülich GmbH
– sequence: 3
  givenname: Rebecca
  surname: Zyla
  fullname: Zyla, Rebecca
  organization: Forschungszentrum Jülich GmbH
– sequence: 4
  givenname: Carolin
  orcidid: 0000-0002-6277-1009
  surname: Müller
  fullname: Müller, Carolin
  organization: RWTH Aachen University
– sequence: 5
  givenname: Johannes
  orcidid: 0000-0002-9786-6315
  surname: Hemmerich
  fullname: Hemmerich, Johannes
  organization: Forschungszentrum Jülich GmbH
– sequence: 6
  givenname: Wolfgang
  orcidid: 0000-0001-8501-0694
  surname: Wiechert
  fullname: Wiechert, Wolfgang
  organization: RWTH Aachen University
– sequence: 7
  givenname: Stephan
  orcidid: 0000-0001-9784-3626
  surname: Noack
  fullname: Noack, Stephan
  organization: Forschungszentrum Jülich GmbH
– sequence: 8
  givenname: Marco
  orcidid: 0000-0003-0704-5597
  surname: Oldiges
  fullname: Oldiges, Marco
  email: m.oldiges@fz-juelich.de
  organization: RWTH Aachen University
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35382539$$D View this record in MEDLINE/PubMed
BookMark eNqFkctu1DAUhi1URC-wZYkiselmpr7GzgapHcpFigQSZW05zknGxeMMcTIlOx6BZ-RJ8DBDgW5mdWyf7_99LqfoKHQBEHpO8JxgTC_ARzunmKYLweoROiE5UTOqcna0P2PK8TE6jfE2IVIp8gQdM8EUFaw4Qd8qD4PPfn7_kV1mH6dh2YVsbewX00LWdH3mwgBtbwYX2uzKdSXYIb2unO07O_rBbVIqSWrYOAsx4dmwhOw1RNeGZHo1Ol-neANxSKEE04fMTtbDU_S4MT7Cs308Q5_fXN8s3s3KD2_fLy7LmeU5kzOTV6qS1jaKMC6KwljgggleECtr2VRckIoIKmmtDBQKF5UAYg2XVDSksoydoYud7xjWZroz3ut171amnzTBejtDvZ2hvp9hUrzaKdZjtYLaQhh681fVGaf_zwS31G230arICRYiGZzvDfru65g61ysXLXhvAnRj1DTnMhd5rmhCXz5Ab7uxD2kgW4pTxgtMEvXi34ruS_mzxgTMd0BaS4w9NId75A8E1g2_V5k6cv6g7M55mA58oq_LTwvCpWS_AKD31Sk
CitedBy_id crossref_primary_10_1002_bit_28345
crossref_primary_10_1002_btpr_3528
crossref_primary_10_1002_elsc_202300238
crossref_primary_10_1007_s00253_022_12017_7
crossref_primary_10_1186_s12934_024_02556_1
crossref_primary_10_1186_s12934_024_02295_3
crossref_primary_10_1186_s12934_024_02371_8
crossref_primary_10_1186_s12859_024_05817_3
crossref_primary_10_1093_bioinformatics_btad733
crossref_primary_10_1016_j_ymben_2022_06_004
crossref_primary_10_1186_s12934_023_02078_2
crossref_primary_10_1002_bit_28261
crossref_primary_10_1186_s12934_024_02319_y
crossref_primary_10_1016_j_nbt_2023_06_003
crossref_primary_10_1186_s12934_024_02349_6
Cites_doi 10.1038/s41592-019-0686-2
10.1111/1467-9469.00364
10.1186/s13036-017-0064-5
10.7717/peerj-cs.55
10.1186/1475-2859-11-144
10.1101/2021.06.30.450546
10.1007/s00449-019-02180-z
10.1002/biot.201700141
10.1002/elsc.202000088
10.1038/s41467-019-12266-7
10.1016/j.plasmid.2020.102540
10.1093/biomet/58.3.509
10.1109/TVCG.2017.2745141
10.1016/j.cell.2016.02.004
10.1016/j.neucom.2018.03.067
10.1038/s43586-020-00001-2
10.1002/bit.26192
10.1186/s13104-017-2945-6
10.1038/s41467-019-13056-x
10.25080/Majora-92bf1922-00a
10.1142/S0218213008003753
ContentType Journal Article
Copyright 2022 The Authors. published by Wiley‐VCH GmbH
2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH.
2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 The Authors. published by Wiley‐VCH GmbH
– notice: 2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH.
– notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID 24P
AAYXX
CITATION
NPM
8FE
8FG
8FH
ABJCF
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BGLVJ
BHPHI
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
L6V
LK8
M7P
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
7X8
5PM
ADTOC
UNPAY
DOI 10.1002/elsc.202100108
DatabaseName Wiley Online Library Open Access
CrossRef
PubMed
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Natural Science Journals
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Technology Collection
Natural Science Collection
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Engineering Collection
ProQuest Biological Science Collection
Biological Science Database
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
PubMed
Publicly Available Content Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
Engineering Collection
Engineering Database
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
Biological Science Database
ProQuest SciTech Collection
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Publicly Available Content Database
PubMed


CrossRef
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate OSTHEGE et al
EISSN 1618-2863
EndPage 259
ExternalDocumentID 10.1002/elsc.202100108
PMC8961055
35382539
10_1002_elsc_202100108
ELSC1477
Genre article
Journal Article
GrantInformation_xml – fundername: Bundesministerium für Bildung und Forschung
  funderid: 031B0463A
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  funderid: 491111487
– fundername: ;
  grantid: 031B0463A
– fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
  grantid: 491111487
GroupedDBID ---
.3N
.GA
.Y3
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAFWJ
AAHBH
AAHHS
AANHP
AAONW
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABJNI
ACBWZ
ACCFJ
ACCMX
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADMGS
ADNMO
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPKN
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BBNVY
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BHPHI
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DU5
EBD
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GODZA
GROUPED_DOAJ
H.T
H.X
HCIFZ
HF~
HHY
HVGLF
HZ~
IAO
IGS
ITC
IX1
J0M
JPC
KQQ
LAW
LC2
LC3
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7P
M7S
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
OK1
P2P
P2W
P2X
P4D
PIMPY
PTHSS
Q.N
Q11
QB0
R.K
ROL
RPM
RWI
RX1
SUPJJ
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WIN
WNSPC
WOHZO
WQJ
WRC
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
AEFGJ
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
IEP
PHGZM
PHGZT
PQGLB
NPM
8FE
8FG
8FH
ABUWG
AZQEC
COVID
DWQXO
GNUQQ
L6V
LK8
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7X8
PUEGO
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4637-a6b8b7ccf8134599ace4535491c7d7fb451b15272d8ae9809b5e1ca4725f1bc33
IEDL.DBID 24P
ISSN 1618-0240
1618-2863
IngestDate Sun Oct 26 03:40:12 EDT 2025
Tue Sep 30 16:38:55 EDT 2025
Fri Sep 05 11:58:40 EDT 2025
Wed Aug 13 07:13:27 EDT 2025
Mon Jul 21 05:46:09 EDT 2025
Sat Oct 25 05:10:29 EDT 2025
Thu Apr 24 23:00:05 EDT 2025
Wed Jan 22 16:25:41 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3-4
Keywords uncertainty quantification
growth rate
feature extraction
microbial phenotyping
BioLector
Language English
License Attribution
2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH.
This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4637-a6b8b7ccf8134599ace4535491c7d7fb451b15272d8ae9809b5e1ca4725f1bc33
Notes Michael Osthege and Niklas Tenhaef contributed equally to this study.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0704-5597
0000-0002-2734-7624
0000-0001-9784-3626
0000-0002-6277-1009
0000-0002-9375-4156
0000-0001-8501-0694
0000-0002-9786-6315
OpenAccessLink https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.202100108
PMID 35382539
PQID 2644234901
PQPubID 5069930
PageCount 18
ParticipantIDs unpaywall_primary_10_1002_elsc_202100108
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8961055
proquest_miscellaneous_2647656682
proquest_journals_2644234901
pubmed_primary_35382539
crossref_primary_10_1002_elsc_202100108
crossref_citationtrail_10_1002_elsc_202100108
wiley_primary_10_1002_elsc_202100108_ELSC1477
PublicationCentury 2000
PublicationDate March 2022
2022-03-00
2022-Mar
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: March 2022
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
– name: Weinheim
– name: Hoboken
PublicationTitle Engineering in life sciences
PublicationTitleAlternate Eng Life Sci
PublicationYear 2022
Publisher John Wiley & Sons, Inc
John Wiley and Sons Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: John Wiley and Sons Inc
References 2021; 21
2021; 20
2016; 2
2019; 42
2010
2021
2019; 10
2017; 11
2017; 10
2017; 24
1971; 58
2008; 17
2020; 17
2008; 9
2018; 307
2020; 112
2021; 1
2012; 11
2017; 114
2003; 30
2016; 164
2018; 13
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_33_1
Van der Maaten L (e_1_2_9_27_1) 2008; 9
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
Igwe CL (e_1_2_9_32_1) 2021; 20
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_29_1
References_xml – volume: 30
  start-page: 781
  issue: 4
  year: 2003
  end-page: 796
  article-title: The Cusum Test for Parameter Change in Time Series Models
  publication-title: Scand J Stat
– volume: 13
  issue: 4
  year: 2018
  article-title: Microbioreactor systems for accelerated bioprocess development
  publication-title: Biotechnol J
– volume: 9
  issue: 11
  year: 2008
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 11
  article-title: A systematic evaluation of single cell RNA‐seq analysis pipelines
  publication-title: Nat Commun
– volume: 2
  start-page: e55
  year: 2016
  article-title: Probabilistic programming in Python using PyMC3
  publication-title: PeerJ Computer Science
– volume: 11
  start-page: 1
  issue: 1
  year: 2017
  end-page: 15
  article-title: Prediction of expression performance in microtiter plates by analyzing only the temporal development of scattered light during culture
  publication-title: J Biol Eng
– volume: 112
  year: 2020
  article-title: Improved pEKEx2‐derived expression vectors for tightly controlled production of recombinant proteins in
  publication-title: Plasmid
– volume: 24
  start-page: 553
  issue: 1
  year: 2017
  end-page: 562
  article-title: Visual exploration of semantic relationships in neural word embeddings
  publication-title: IEEE Trans Visual Comput Graphics
– volume: 114
  start-page: 610
  issue: 3
  year: 2017
  end-page: 619
  article-title: Online optimal experimental re‐design in robotic parallel fed‐batch cultivation facilities
  publication-title: Biotechnol Bioeng
– volume: 21
  start-page: 242
  issue: 3‐4
  year: 2021
  end-page: 257
  article-title: pyFOOMB: Python framework for object oriented modeling of bioprocesses
  publication-title: Eng Life Sci
– year: 2021
– volume: 42
  start-page: 1843
  issue: 11
  year: 2019
  end-page: 1852
  article-title: FeedER: a feedback‐regulated enzyme‐based slow‐release system for fed‐batch cultivation in microtiter plates
  publication-title: Bioprocess Biosyst Eng
– volume: 58
  start-page: 509
  issue: 3
  year: 1971
  end-page: 523
  article-title: Inference about the change‐point from cumulative sum tests
  publication-title: Biometrika
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  end-page: 7
  article-title: Automated growth rate determination in high‐throughput microbioreactor systems
  publication-title: BMC Res Notes
– volume: 164
  start-page: 1185
  issue: 6
  year: 2016
  end-page: 1197
  article-title: Engineering cellular metabolism
  publication-title: Cell
– volume: 17
  start-page: 19
  issue: 01
  year: 2008
  end-page: 36
  article-title: OutRank: A Graph‐based outlier detection framework using random walk
  publication-title: Int J Artif Intell Tools
– start-page: 56
  year: 2010
  end-page: 61
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  end-page: 11
  article-title: Scaling production of GFP1‐10 detector protein in for secretion screening by split GFP assay
  publication-title: Microb Cell Fact
– volume: 307
  start-page: 72
  year: 2018
  end-page: 77
  article-title: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh ‐ A Python package)
  publication-title: Neurocomputing
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nat Methods
– volume: 11
  start-page: 1
  issue: 1
  year: 2012
  end-page: 14
  article-title: An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform
  publication-title: Microb Cell Fact
– volume: 1
  start-page: 1
  issue: 1
  year: 2021
  end-page: 26
  article-title: Bayesian statistics and modelling
  publication-title: Nat Rev Methods Primers
– volume: 10
  start-page: 1
  issue: 1
  year: 2019
  end-page: 14
  article-title: The art of using t‐SNE for single‐cell transcriptomics
  publication-title: Nat Commun
– ident: e_1_2_9_15_1
  doi: 10.1038/s41592-019-0686-2
– ident: e_1_2_9_22_1
  doi: 10.1111/1467-9469.00364
– ident: e_1_2_9_14_1
  doi: 10.1186/s13036-017-0064-5
– ident: e_1_2_9_6_1
– ident: e_1_2_9_17_1
– volume: 9
  issue: 11
  year: 2008
  ident: e_1_2_9_27_1
  article-title: Visualizing data using t‐SNE
  publication-title: Journal of Machine Learning Research
– ident: e_1_2_9_7_1
– ident: e_1_2_9_18_1
  doi: 10.7717/peerj-cs.55
– ident: e_1_2_9_3_1
  doi: 10.1186/1475-2859-11-144
– ident: e_1_2_9_13_1
  doi: 10.1101/2021.06.30.450546
– ident: e_1_2_9_9_1
  doi: 10.1007/s00449-019-02180-z
– ident: e_1_2_9_4_1
  doi: 10.1002/biot.201700141
– volume: 20
  start-page: 1
  issue: 1
  year: 2021
  ident: e_1_2_9_32_1
  article-title: Scaling production of GFP1‐10 detector protein in E. coli for secretion screening by split GFP assay
  publication-title: Microb Cell Fact
– ident: e_1_2_9_33_1
  doi: 10.1002/elsc.202000088
– ident: e_1_2_9_16_1
– ident: e_1_2_9_19_1
– ident: e_1_2_9_5_1
  doi: 10.1038/s41467-019-12266-7
– ident: e_1_2_9_31_1
  doi: 10.1016/j.plasmid.2020.102540
– ident: e_1_2_9_21_1
  doi: 10.1093/biomet/58.3.509
– ident: e_1_2_9_24_1
– ident: e_1_2_9_29_1
  doi: 10.1109/TVCG.2017.2745141
– ident: e_1_2_9_2_1
  doi: 10.1016/j.cell.2016.02.004
– ident: e_1_2_9_25_1
  doi: 10.1016/j.neucom.2018.03.067
– ident: e_1_2_9_20_1
  doi: 10.1038/s43586-020-00001-2
– ident: e_1_2_9_8_1
  doi: 10.1002/bit.26192
– ident: e_1_2_9_12_1
– ident: e_1_2_9_30_1
– ident: e_1_2_9_26_1
– ident: e_1_2_9_10_1
  doi: 10.1186/s13104-017-2945-6
– ident: e_1_2_9_28_1
  doi: 10.1038/s41467-019-13056-x
– ident: e_1_2_9_11_1
  doi: 10.25080/Majora-92bf1922-00a
– ident: e_1_2_9_23_1
  doi: 10.1142/S0218213008003753
SSID ssj0017881
Score 2.3857374
Snippet Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 242
SubjectTerms Automation
Bayesian analysis
BioLector
Bioreactors
Data analysis
Data processing
Datasets
Design
Embedding
Feature extraction
Growth rate
Learning algorithms
Machine learning
microbial phenotyping
Microorganisms
Phenotypes
Phenotyping
Random walk
Software
Tooling
uncertainty quantification
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB6V7QE4VPyTUpCRkOASdf0XJweEumWrCpVVBa3UW2Q7XrViyS7QVbs3HoFn5EmY8Sahqwp68sGjJM6MZ8b2-PsAXgVXYWAPRapzhwuUrI9-0HKeVn0lPc-yykfmuY-jbP9YfTjRJ2swau_CUFll6xOjo66mnvbItylwC6kwfL2bfUuJNYpOV1sKDdtQK1RvI8TYLVgXhIzVg_XBcHT4qTtXIPD0FrqxL7Yx_BCMoSAgIiKYvBqaruWb18smb8_rmV1c2MlkNbWNsWnvHmw0SSXbWVrBfVgL9QO4ewVq8CFcOlTQhP3--YvtsMMFIQYwXC5_QXfCMG9lLWwECrPB2fQgbuazr1SuR-AcDQcaq0L0LCjOMHNk72P9Bz50QOza2B7hULCJqK3ML_BrHsHx3vBodz9tWBdSrzJpUpu53BnvxzmXSheF9UFpictI7k1lxk5p7ogLV1S5DUXeL5wO3FtlhB5z56V8DL16WoenwHzwRJQXtHFOCW8IicfyoMdOo4UInkDa_vDSN5DkxIwxKZdgyqIkBZWdghJ43cnPlmAc_5TcavVXNpPyR_nXhBJ42XXjdKIzEluH6TzKGEpxc5HAk6W6u1dJDA5CyyIBs2IInQBBda_21GenEbI7LzJiIk3gTWcyN44gjRZ1g1g5PPi8y5Uxm_8f8TO4I-jiRqye24Le-fd5eI7p1Ll70cyRPzRuIxA
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQ9oA4UN4EFWQkJLikrN_JcVtaKlSqSnSlcopsxyuqbrNVuyvYnvoT-I38EmachwgrtJwSySPHj7Hnm3j8DSFvgivBsIc8VZkDB0UPYR-0jKXlUArPtC59zDz3-UgfjOWnU3XaBMjiXZj--T1_DwYCiQY5UgXhnd4NrQBzD8jG-Oh49BW9Kc2yFIm62neeadGyM65U0Lc-K5ByNTLy7qK6tMvvdjrto9dofvY3yce24XXUyfn2Yu62_c1fnI7re_aA3G8QKB3VKvOQ3AnVI3LvD17Cx-SHg9mc0l-3P-mIHi-RXoCCb30Oew8FkEtbjgkQpjtns8P4559eYGwfMnk0CdNoGeI2BOIUYCb9EINFoNIdTMUNzxMYFHhEilfql9CaJ2S8v3eye5A2KRpSL7UwqdUuc8b7ScaEVHlufZBKgM_JvCnNxEnFHCbO5WVmQ54Nc6cC81YaribMeSGekkE1q8JzQn3wmFUvKOOc5N4gbY9lQU2cAnXiLCFpO3WFb_jLMY3GtKiZl3mBI1p0I5qQt538Zc3c8U_JrVYTimYFXxcIFLmQAJcS8rorhrWHByq2CrNFlDGIhzOekGe14nSfEmBJuBJ5QkxPpToB5PXul1Rn3yK_d5ZrTFuakHed8q3tQRp1c41YsXf4ZZdJY178f9VbZDC_WoSXAL3m7lWz7n4DirAsbw
  priority: 102
  providerName: Unpaywall
Title bletl ‐ A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.202100108
https://www.ncbi.nlm.nih.gov/pubmed/35382539
https://www.proquest.com/docview/2644234901
https://www.proquest.com/docview/2647656682
https://pubmed.ncbi.nlm.nih.gov/PMC8961055
https://doi.org/10.1002/elsc.202100108
UnpaywallVersion publishedVersion
Volume 22
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017881
  issn: 1618-2863
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017881
  issn: 1618-2863
  databaseCode: ABDBF
  dateStart: 20120601
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017881
  issn: 1618-2863
  databaseCode: RPM
  dateStart: 20170101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017881
  issn: 1618-2863
  databaseCode: BENPR
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1618-2863
  databaseCode: DR2
  dateStart: 20010101
  customDbUrl:
  isFulltext: true
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017881
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1618-2863
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017881
  issn: 1618-2863
  databaseCode: 24P
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMcttD0AD4g7GaMyEhK8RKtvsfPYjpYJjaoaqzSeIttxtYmSTtsq6Bsfgc_IJ-EcJw2LJjTxkkjN6SU9xz5_O_bvEPImuBISe8hTZRwMULI-9IOWsbTsS-FZlpU-Vp77NMkOZvLjiTq5tou_5kO0E27YMmJ_jQ3cusu9v9BQSB2IIOQIEcLdvtsMxAzGOJfT9jkCwtJxyJUxkyLNa4Nt7PO97vu7aemG1ry5ZPLuqjq36-92sejK2piXxg_Jg0ZQ0kEdAY_InVA9JvevYQafkB8OnLOgv3_-ogM6XSMtgMJQ-St0JRQ0K90gI8CYDs-Wh3Ein37DpXoI5mjqn9EyxF4FzCmoRvo-rv2ADx1iZW04H8OtwCkSW6lfw695Smbj0fH-QdpUXEi9zIRObeaM097PDRNS5bn1QSoBQ0jmdannTirmsA4uL40NuennTgXmrdRczZnzQjwjW9WyCi8I9cFjkbygtHOSe40UHsuCmjsF0cFZQtLNH174BkeOVTEWRQ1S5gU6qGgdlJC3rf15DeL4p-Xuxn9F0yAvC9R9XEhQPwl53V6GpoTPR2wVlqtoo1HeGp6Q57W7268SkBi4EnlCdCcQWgPEdHevVGenEddt8gyrkCbkXRsyt95BGiPqFrNidPh5n0mtd_7T_iW5x3EXR1xKt0u2ri5W4RVoqyvXi80Hjmb8oUe2h6PJ9KgX5ynweMThtdlkOvjyB9ZKJu8
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7aFwQPwTKGAkEFyirh07Tg4V6rZbbel2VcFW6i3EjldU3WYX2lXZG4_AE_EwPAkz3iR0VUFPPeWQURJnxvNjj78P4LUzBQZ2l4YqMVigxC30gznnYdGSkeVxXFjPPLffj7uH8sOROlqCX_VZGGqrrH2id9TF2NIa-ToFbhFJDF_vJ19DYo2i3dWaQiOvqBWKDQ8xVh3s2HOzCyzhzjZ2t1Hfb4TY6Qy2umHFMhBaGUc6zGOTGG3tMOGRVGmaWydVhGUTt7rQQyMVN8T9Kookd2nSSo1y3OZSCzXkxtKCKIaAFYnfhsXfSrvTP_jY7GMQWHsNFdkS6xjuCDZREPAREVpeDoVX8turbZqr03KSzy7y0WgxlfaxcOcu3KmSWLY5t7p7sOTK-3D7ErThA_hu0CBG7PePn2yTHcwIoYBheX6C7othnsxqmAoUZu3jcc9vHrBTag8kMJCKc40VznsyFGeYqbJt32-CD20TmzdeBzgUvHiUWGZn-DUP4fBG_v8jWC7HpXsCzDpLxHxOaWOksJqQf3Lu1NAotEjBAwjrH57ZCgKdmDhG2Ry8WWSkoKxRUABvG_nJHPzjn5Jrtf6yygmcZX9NNoBXzW2cvrQnk5duPPUymlLqRATweK7u5lURBiOhojQAvWAIjQBBgy_eKY-_eIjwJI2J-TSAd43JXDuC0FvUNWJZp_dpi0utn_5_xC9htTvY72W93f7eM7gl6NCI79xbg-Xzb1P3HFO5c_Oimi8MPt_0FP0DPQVfZg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL2qisRjgXgTKGAkEGyiGTt2nCwQajsdWjpUlWil7tLYcUTFkBloR2V2fALfw-fwJdzrPOiogq66yiJXSZz7tH19DsALZwpM7C4NVWJwghL3MQ7mnIdFX0aWx3FhPfPch514c1--P1AHS_CrPQtDbZVtTPSBuphYWiPvUeIWkcT01SubtojdwfDt9GtIDFK009rSadQmsu3mpzh9O36zNUBdvxRiuLG3vhk2DAOhlXGkwzw2idHWlgmPpErT3DqpIpwycasLXRqpuCHeV1EkuUuTfmqU4zaXWqiSG0uLoRj-r2hCcadT6sN33Q4GwbS3IJF90cNER4CJgiCPiMrybBI8V9meb9C8Nqum-fw0H48Xi2ifBYe34GZTvrLV2t5uw5Kr7sCNM6CGd-G7QVMYs98_frJVtjsnbAKGE_PPGLgYVsisBahAYbZ2NBn5bQP2hRoDCQakYVtjhfMxDMUZ1qhs4DtN8KFrxOON1z0cCl48Piyzc_yae7B_KX__PixXk8o9BGadJUo-p7QxUlhNmD85d6o0Cm1R8ADC9odntgE_Jw6OcVbDNouMFJR1CgrgVSc_rWE__im50uova9z_OPtrrAE8726j49JuTF65yczLaCqmExHAg1rd3asiTENCRWkAesEQOgECBV-8Ux198uDgSRoT52kArzuTuXAEobeoC8SyjdHHdS61fvT_ET-Dq-iY2WhrZ_sxXBd0WsS37K3A8sm3mXuCNdyJeeqdhcHhZXvnH7JfXQA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQ9oA4UN4EFWQkJLikrN_JcVtaKlSqSnSlcopsxyuqbrNVuyvYnvoT-I38EmachwgrtJwSySPHj7Hnm3j8DSFvgivBsIc8VZkDB0UPYR-0jKXlUArPtC59zDz3-UgfjOWnU3XaBMjiXZj--T1_DwYCiQY5UgXhnd4NrQBzD8jG-Oh49BW9Kc2yFIm62neeadGyM65U0Lc-K5ByNTLy7qK6tMvvdjrto9dofvY3yce24XXUyfn2Yu62_c1fnI7re_aA3G8QKB3VKvOQ3AnVI3LvD17Cx-SHg9mc0l-3P-mIHi-RXoCCb30Oew8FkEtbjgkQpjtns8P4559eYGwfMnk0CdNoGeI2BOIUYCb9EINFoNIdTMUNzxMYFHhEilfql9CaJ2S8v3eye5A2KRpSL7UwqdUuc8b7ScaEVHlufZBKgM_JvCnNxEnFHCbO5WVmQ54Nc6cC81YaribMeSGekkE1q8JzQn3wmFUvKOOc5N4gbY9lQU2cAnXiLCFpO3WFb_jLMY3GtKiZl3mBI1p0I5qQt538Zc3c8U_JrVYTimYFXxcIFLmQAJcS8rorhrWHByq2CrNFlDGIhzOekGe14nSfEmBJuBJ5QkxPpToB5PXul1Rn3yK_d5ZrTFuakHed8q3tQRp1c41YsXf4ZZdJY178f9VbZDC_WoSXAL3m7lWz7n4DirAsbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bletl+-+A+Python+package+for+integrating+BioLector+microcultivation+devices+in+the+Design-Build-Test-Learn+cycle&rft.jtitle=Engineering+in+life+sciences&rft.au=Osthege%2C+Michael&rft.au=Tenhaef%2C+Niklas&rft.au=Zyla%2C+Rebecca&rft.au=M%C3%BCller%2C+Carolin&rft.date=2022-03-01&rft.issn=1618-0240&rft.volume=22&rft.issue=3-4&rft.spage=242&rft_id=info:doi/10.1002%2Felsc.202100108&rft_id=info%3Apmid%2F35382539&rft.externalDocID=35382539
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-0240&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-0240&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-0240&client=summon