bletl ‐ A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle
Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this...
Saved in:
| Published in | Engineering in life sciences Vol. 22; no. 3-4; pp. 242 - 259 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Germany
John Wiley & Sons, Inc
01.03.2022
John Wiley and Sons Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1618-0240 1618-2863 1618-2863 |
| DOI | 10.1002/elsc.202100108 |
Cover
| Abstract | Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. |
|---|---|
| AbstractList | Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate μ ⃗ t based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes.Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate μ ⃗ t based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python-based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline-based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time-variable specific growth rate based on unsupervised switchpoint detection with Student-t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time-variable growth rate with Bayesian uncertainty quantification and automatically detect switch-points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t-SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t$\overrightarrow{\mu }_t$ based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate μ⃗t based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a wealth of online process data in a highly parallelized manner. Such datasets are difficult to interpret in short time by manual workflows. In this study, we present the Python package bletl and show how it enables robust data analyses and the application of machine learning techniques without tedious data parsing and preprocessing. bletl reads raw result files from BioLector I, II and Pro devices to make all the contained information available to Python‐based data analysis workflows. Together with standard tooling from the Python scientific computing ecosystem, interactive visualizations and spline‐based derivative calculations can be performed. Additionally, we present a new method for unbiased quantification of time‐variable specific growth rate based on unsupervised switchpoint detection with Student‐t distributed random walks. With an adequate calibration model, this method enables practitioners to quantify time‐variable growth rate with Bayesian uncertainty quantification and automatically detect switch‐points that indicate relevant metabolic changes. Finally, we show how time series feature extraction enables the application of machine learning methods to MBR data, resulting in unsupervised phenotype characterization. As an example, Neighbor Embedding (t‐SNE) is performed to visualize datasets comprising a variety of growth/DO/pH phenotypes. |
| Author | Osthege, Michael Tenhaef, Niklas Müller, Carolin Hemmerich, Johannes Wiechert, Wolfgang Oldiges, Marco Noack, Stephan Zyla, Rebecca |
| AuthorAffiliation | 3 Computational Systems Biotechnology (AVT.CSB) RWTH Aachen University Aachen Germany 2 Institute of Biotechnology RWTH Aachen University Aachen Germany 1 Forschungszentrum Jülich GmbH Jülich Germany |
| AuthorAffiliation_xml | – name: 1 Forschungszentrum Jülich GmbH Jülich Germany – name: 3 Computational Systems Biotechnology (AVT.CSB) RWTH Aachen University Aachen Germany – name: 2 Institute of Biotechnology RWTH Aachen University Aachen Germany |
| Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0002-2734-7624 surname: Osthege fullname: Osthege, Michael organization: RWTH Aachen University – sequence: 2 givenname: Niklas orcidid: 0000-0002-9375-4156 surname: Tenhaef fullname: Tenhaef, Niklas organization: Forschungszentrum Jülich GmbH – sequence: 3 givenname: Rebecca surname: Zyla fullname: Zyla, Rebecca organization: Forschungszentrum Jülich GmbH – sequence: 4 givenname: Carolin orcidid: 0000-0002-6277-1009 surname: Müller fullname: Müller, Carolin organization: RWTH Aachen University – sequence: 5 givenname: Johannes orcidid: 0000-0002-9786-6315 surname: Hemmerich fullname: Hemmerich, Johannes organization: Forschungszentrum Jülich GmbH – sequence: 6 givenname: Wolfgang orcidid: 0000-0001-8501-0694 surname: Wiechert fullname: Wiechert, Wolfgang organization: RWTH Aachen University – sequence: 7 givenname: Stephan orcidid: 0000-0001-9784-3626 surname: Noack fullname: Noack, Stephan organization: Forschungszentrum Jülich GmbH – sequence: 8 givenname: Marco orcidid: 0000-0003-0704-5597 surname: Oldiges fullname: Oldiges, Marco email: m.oldiges@fz-juelich.de organization: RWTH Aachen University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35382539$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctu1DAUhi1URC-wZYkiselmpr7GzgapHcpFigQSZW05zknGxeMMcTIlOx6BZ-RJ8DBDgW5mdWyf7_99LqfoKHQBEHpO8JxgTC_ARzunmKYLweoROiE5UTOqcna0P2PK8TE6jfE2IVIp8gQdM8EUFaw4Qd8qD4PPfn7_kV1mH6dh2YVsbewX00LWdH3mwgBtbwYX2uzKdSXYIb2unO07O_rBbVIqSWrYOAsx4dmwhOw1RNeGZHo1Ol-neANxSKEE04fMTtbDU_S4MT7Cs308Q5_fXN8s3s3KD2_fLy7LmeU5kzOTV6qS1jaKMC6KwljgggleECtr2VRckIoIKmmtDBQKF5UAYg2XVDSksoydoYud7xjWZroz3ut171amnzTBejtDvZ2hvp9hUrzaKdZjtYLaQhh681fVGaf_zwS31G230arICRYiGZzvDfru65g61ysXLXhvAnRj1DTnMhd5rmhCXz5Ab7uxD2kgW4pTxgtMEvXi34ruS_mzxgTMd0BaS4w9NId75A8E1g2_V5k6cv6g7M55mA58oq_LTwvCpWS_AKD31Sk |
| CitedBy_id | crossref_primary_10_1002_bit_28345 crossref_primary_10_1002_btpr_3528 crossref_primary_10_1002_elsc_202300238 crossref_primary_10_1007_s00253_022_12017_7 crossref_primary_10_1186_s12934_024_02556_1 crossref_primary_10_1186_s12934_024_02295_3 crossref_primary_10_1186_s12934_024_02371_8 crossref_primary_10_1186_s12859_024_05817_3 crossref_primary_10_1093_bioinformatics_btad733 crossref_primary_10_1016_j_ymben_2022_06_004 crossref_primary_10_1186_s12934_023_02078_2 crossref_primary_10_1002_bit_28261 crossref_primary_10_1186_s12934_024_02319_y crossref_primary_10_1016_j_nbt_2023_06_003 crossref_primary_10_1186_s12934_024_02349_6 |
| Cites_doi | 10.1038/s41592-019-0686-2 10.1111/1467-9469.00364 10.1186/s13036-017-0064-5 10.7717/peerj-cs.55 10.1186/1475-2859-11-144 10.1101/2021.06.30.450546 10.1007/s00449-019-02180-z 10.1002/biot.201700141 10.1002/elsc.202000088 10.1038/s41467-019-12266-7 10.1016/j.plasmid.2020.102540 10.1093/biomet/58.3.509 10.1109/TVCG.2017.2745141 10.1016/j.cell.2016.02.004 10.1016/j.neucom.2018.03.067 10.1038/s43586-020-00001-2 10.1002/bit.26192 10.1186/s13104-017-2945-6 10.1038/s41467-019-13056-x 10.25080/Majora-92bf1922-00a 10.1142/S0218213008003753 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. published by Wiley‐VCH GmbH 2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH. 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 The Authors. published by Wiley‐VCH GmbH – notice: 2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH. – notice: 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION NPM 8FE 8FG 8FH ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU COVID DWQXO GNUQQ HCIFZ L6V LK8 M7P M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS 7X8 5PM ADTOC UNPAY |
| DOI | 10.1002/elsc.202100108 |
| DatabaseName | Wiley Online Library Open Access CrossRef PubMed ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Journals Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Engineering Collection ProQuest Biological Science Collection Biological Science Database Engineering Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef PubMed Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) Engineering Collection Engineering Database ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection Biological Science Database ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic Publicly Available Content Database PubMed CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| DocumentTitleAlternate | OSTHEGE et al |
| EISSN | 1618-2863 |
| EndPage | 259 |
| ExternalDocumentID | 10.1002/elsc.202100108 PMC8961055 35382539 10_1002_elsc_202100108 ELSC1477 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Bundesministerium für Bildung und Forschung funderid: 031B0463A – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) funderid: 491111487 – fundername: ; grantid: 031B0463A – fundername: Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grantid: 491111487 |
| GroupedDBID | --- .3N .GA .Y3 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAFWJ AAHBH AAHHS AANHP AAONW AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ABJNI ACBWZ ACCFJ ACCMX ACGFS ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEOM ADIZJ ADMGS ADNMO ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPKN AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BBNVY BDRZF BENPR BFHJK BGLVJ BHBCM BHPHI BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DU5 EBD EBS EJD F00 F01 F04 FEDTE G-S G.N GNP GODZA GROUPED_DOAJ H.T H.X HCIFZ HF~ HHY HVGLF HZ~ IAO IGS ITC IX1 J0M JPC KQQ LAW LC2 LC3 LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7P M7S MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG OK1 P2P P2W P2X P4D PIMPY PTHSS Q.N Q11 QB0 R.K ROL RPM RWI RX1 SUPJJ TUS UB1 W8V W99 WBKPD WIH WIK WIN WNSPC WOHZO WQJ WRC WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX AEFGJ AGQPQ AGXDD AIDQK AIDYY CITATION IEP PHGZM PHGZT PQGLB NPM 8FE 8FG 8FH ABUWG AZQEC COVID DWQXO GNUQQ L6V LK8 PKEHL PQEST PQQKQ PQUKI PRINS 7X8 PUEGO 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c4637-a6b8b7ccf8134599ace4535491c7d7fb451b15272d8ae9809b5e1ca4725f1bc33 |
| IEDL.DBID | 24P |
| ISSN | 1618-0240 1618-2863 |
| IngestDate | Sun Oct 26 03:40:12 EDT 2025 Tue Sep 30 16:38:55 EDT 2025 Fri Sep 05 11:58:40 EDT 2025 Wed Aug 13 07:13:27 EDT 2025 Mon Jul 21 05:46:09 EDT 2025 Sat Oct 25 05:10:29 EDT 2025 Thu Apr 24 23:00:05 EDT 2025 Wed Jan 22 16:25:41 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3-4 |
| Keywords | uncertainty quantification growth rate feature extraction microbial phenotyping BioLector |
| Language | English |
| License | Attribution 2022 The Authors. Engineering in Life Sciences published by Wiley‐VCH GmbH. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c4637-a6b8b7ccf8134599ace4535491c7d7fb451b15272d8ae9809b5e1ca4725f1bc33 |
| Notes | Michael Osthege and Niklas Tenhaef contributed equally to this study. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0704-5597 0000-0002-2734-7624 0000-0001-9784-3626 0000-0002-6277-1009 0000-0002-9375-4156 0000-0001-8501-0694 0000-0002-9786-6315 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.202100108 |
| PMID | 35382539 |
| PQID | 2644234901 |
| PQPubID | 5069930 |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1002_elsc_202100108 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8961055 proquest_miscellaneous_2647656682 proquest_journals_2644234901 pubmed_primary_35382539 crossref_primary_10_1002_elsc_202100108 crossref_citationtrail_10_1002_elsc_202100108 wiley_primary_10_1002_elsc_202100108_ELSC1477 |
| PublicationCentury | 2000 |
| PublicationDate | March 2022 2022-03-00 2022-Mar 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: March 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim – name: Hoboken |
| PublicationTitle | Engineering in life sciences |
| PublicationTitleAlternate | Eng Life Sci |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc John Wiley and Sons Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: John Wiley and Sons Inc |
| References | 2021; 21 2021; 20 2016; 2 2019; 42 2010 2021 2019; 10 2017; 11 2017; 10 2017; 24 1971; 58 2008; 17 2020; 17 2008; 9 2018; 307 2020; 112 2021; 1 2012; 11 2017; 114 2003; 30 2016; 164 2018; 13 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_33_1 Van der Maaten L (e_1_2_9_27_1) 2008; 9 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 Igwe CL (e_1_2_9_32_1) 2021; 20 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_29_1 |
| References_xml | – volume: 30 start-page: 781 issue: 4 year: 2003 end-page: 796 article-title: The Cusum Test for Parameter Change in Time Series Models publication-title: Scand J Stat – volume: 13 issue: 4 year: 2018 article-title: Microbioreactor systems for accelerated bioprocess development publication-title: Biotechnol J – volume: 9 issue: 11 year: 2008 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 11 article-title: A systematic evaluation of single cell RNA‐seq analysis pipelines publication-title: Nat Commun – volume: 2 start-page: e55 year: 2016 article-title: Probabilistic programming in Python using PyMC3 publication-title: PeerJ Computer Science – volume: 11 start-page: 1 issue: 1 year: 2017 end-page: 15 article-title: Prediction of expression performance in microtiter plates by analyzing only the temporal development of scattered light during culture publication-title: J Biol Eng – volume: 112 year: 2020 article-title: Improved pEKEx2‐derived expression vectors for tightly controlled production of recombinant proteins in publication-title: Plasmid – volume: 24 start-page: 553 issue: 1 year: 2017 end-page: 562 article-title: Visual exploration of semantic relationships in neural word embeddings publication-title: IEEE Trans Visual Comput Graphics – volume: 114 start-page: 610 issue: 3 year: 2017 end-page: 619 article-title: Online optimal experimental re‐design in robotic parallel fed‐batch cultivation facilities publication-title: Biotechnol Bioeng – volume: 21 start-page: 242 issue: 3‐4 year: 2021 end-page: 257 article-title: pyFOOMB: Python framework for object oriented modeling of bioprocesses publication-title: Eng Life Sci – year: 2021 – volume: 42 start-page: 1843 issue: 11 year: 2019 end-page: 1852 article-title: FeedER: a feedback‐regulated enzyme‐based slow‐release system for fed‐batch cultivation in microtiter plates publication-title: Bioprocess Biosyst Eng – volume: 58 start-page: 509 issue: 3 year: 1971 end-page: 523 article-title: Inference about the change‐point from cumulative sum tests publication-title: Biometrika – volume: 10 start-page: 1 issue: 1 year: 2017 end-page: 7 article-title: Automated growth rate determination in high‐throughput microbioreactor systems publication-title: BMC Res Notes – volume: 164 start-page: 1185 issue: 6 year: 2016 end-page: 1197 article-title: Engineering cellular metabolism publication-title: Cell – volume: 17 start-page: 19 issue: 01 year: 2008 end-page: 36 article-title: OutRank: A Graph‐based outlier detection framework using random walk publication-title: Int J Artif Intell Tools – start-page: 56 year: 2010 end-page: 61 – volume: 20 start-page: 1 issue: 1 year: 2021 end-page: 11 article-title: Scaling production of GFP1‐10 detector protein in for secretion screening by split GFP assay publication-title: Microb Cell Fact – volume: 307 start-page: 72 year: 2018 end-page: 77 article-title: Time Series FeatuRe Extraction on basis of Scalable Hypothesis tests (tsfresh ‐ A Python package) publication-title: Neurocomputing – volume: 17 start-page: 261 year: 2020 end-page: 272 article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python publication-title: Nat Methods – volume: 11 start-page: 1 issue: 1 year: 2012 end-page: 14 article-title: An automated workflow for enhancing microbial bioprocess optimization on a novel microbioreactor platform publication-title: Microb Cell Fact – volume: 1 start-page: 1 issue: 1 year: 2021 end-page: 26 article-title: Bayesian statistics and modelling publication-title: Nat Rev Methods Primers – volume: 10 start-page: 1 issue: 1 year: 2019 end-page: 14 article-title: The art of using t‐SNE for single‐cell transcriptomics publication-title: Nat Commun – ident: e_1_2_9_15_1 doi: 10.1038/s41592-019-0686-2 – ident: e_1_2_9_22_1 doi: 10.1111/1467-9469.00364 – ident: e_1_2_9_14_1 doi: 10.1186/s13036-017-0064-5 – ident: e_1_2_9_6_1 – ident: e_1_2_9_17_1 – volume: 9 issue: 11 year: 2008 ident: e_1_2_9_27_1 article-title: Visualizing data using t‐SNE publication-title: Journal of Machine Learning Research – ident: e_1_2_9_7_1 – ident: e_1_2_9_18_1 doi: 10.7717/peerj-cs.55 – ident: e_1_2_9_3_1 doi: 10.1186/1475-2859-11-144 – ident: e_1_2_9_13_1 doi: 10.1101/2021.06.30.450546 – ident: e_1_2_9_9_1 doi: 10.1007/s00449-019-02180-z – ident: e_1_2_9_4_1 doi: 10.1002/biot.201700141 – volume: 20 start-page: 1 issue: 1 year: 2021 ident: e_1_2_9_32_1 article-title: Scaling production of GFP1‐10 detector protein in E. coli for secretion screening by split GFP assay publication-title: Microb Cell Fact – ident: e_1_2_9_33_1 doi: 10.1002/elsc.202000088 – ident: e_1_2_9_16_1 – ident: e_1_2_9_19_1 – ident: e_1_2_9_5_1 doi: 10.1038/s41467-019-12266-7 – ident: e_1_2_9_31_1 doi: 10.1016/j.plasmid.2020.102540 – ident: e_1_2_9_21_1 doi: 10.1093/biomet/58.3.509 – ident: e_1_2_9_24_1 – ident: e_1_2_9_29_1 doi: 10.1109/TVCG.2017.2745141 – ident: e_1_2_9_2_1 doi: 10.1016/j.cell.2016.02.004 – ident: e_1_2_9_25_1 doi: 10.1016/j.neucom.2018.03.067 – ident: e_1_2_9_20_1 doi: 10.1038/s43586-020-00001-2 – ident: e_1_2_9_8_1 doi: 10.1002/bit.26192 – ident: e_1_2_9_12_1 – ident: e_1_2_9_30_1 – ident: e_1_2_9_26_1 – ident: e_1_2_9_10_1 doi: 10.1186/s13104-017-2945-6 – ident: e_1_2_9_28_1 doi: 10.1038/s41467-019-13056-x – ident: e_1_2_9_11_1 doi: 10.25080/Majora-92bf1922-00a – ident: e_1_2_9_23_1 doi: 10.1142/S0218213008003753 |
| SSID | ssj0017881 |
| Score | 2.3857374 |
| Snippet | Microbioreactor (MBR) devices have emerged as powerful cultivation tools for tasks of microbial phenotyping and bioprocess characterization and provide a... |
| SourceID | unpaywall pubmedcentral proquest pubmed crossref wiley |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 242 |
| SubjectTerms | Automation Bayesian analysis BioLector Bioreactors Data analysis Data processing Datasets Design Embedding Feature extraction Growth rate Learning algorithms Machine learning microbial phenotyping Microorganisms Phenotypes Phenotyping Random walk Software Tooling uncertainty quantification |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3NbtQwEB6V7QE4VPyTUpCRkOASdf0XJweEumWrCpVVBa3UW2Q7XrViyS7QVbs3HoFn5EmY8Sahqwp68sGjJM6MZ8b2-PsAXgVXYWAPRapzhwuUrI9-0HKeVn0lPc-yykfmuY-jbP9YfTjRJ2swau_CUFll6xOjo66mnvbItylwC6kwfL2bfUuJNYpOV1sKDdtQK1RvI8TYLVgXhIzVg_XBcHT4qTtXIPD0FrqxL7Yx_BCMoSAgIiKYvBqaruWb18smb8_rmV1c2MlkNbWNsWnvHmw0SSXbWVrBfVgL9QO4ewVq8CFcOlTQhP3--YvtsMMFIQYwXC5_QXfCMG9lLWwECrPB2fQgbuazr1SuR-AcDQcaq0L0LCjOMHNk72P9Bz50QOza2B7hULCJqK3ML_BrHsHx3vBodz9tWBdSrzJpUpu53BnvxzmXSheF9UFpictI7k1lxk5p7ogLV1S5DUXeL5wO3FtlhB5z56V8DL16WoenwHzwRJQXtHFOCW8IicfyoMdOo4UInkDa_vDSN5DkxIwxKZdgyqIkBZWdghJ43cnPlmAc_5TcavVXNpPyR_nXhBJ42XXjdKIzEluH6TzKGEpxc5HAk6W6u1dJDA5CyyIBs2IInQBBda_21GenEbI7LzJiIk3gTWcyN44gjRZ1g1g5PPi8y5Uxm_8f8TO4I-jiRqye24Le-fd5eI7p1Ll70cyRPzRuIxA priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQ9oA4UN4EFWQkJLikrN_JcVtaKlSqSnSlcopsxyuqbrNVuyvYnvoT-I38EmachwgrtJwSySPHj7Hnm3j8DSFvgivBsIc8VZkDB0UPYR-0jKXlUArPtC59zDz3-UgfjOWnU3XaBMjiXZj--T1_DwYCiQY5UgXhnd4NrQBzD8jG-Oh49BW9Kc2yFIm62neeadGyM65U0Lc-K5ByNTLy7qK6tMvvdjrto9dofvY3yce24XXUyfn2Yu62_c1fnI7re_aA3G8QKB3VKvOQ3AnVI3LvD17Cx-SHg9mc0l-3P-mIHi-RXoCCb30Oew8FkEtbjgkQpjtns8P4559eYGwfMnk0CdNoGeI2BOIUYCb9EINFoNIdTMUNzxMYFHhEilfql9CaJ2S8v3eye5A2KRpSL7UwqdUuc8b7ScaEVHlufZBKgM_JvCnNxEnFHCbO5WVmQ54Nc6cC81YaribMeSGekkE1q8JzQn3wmFUvKOOc5N4gbY9lQU2cAnXiLCFpO3WFb_jLMY3GtKiZl3mBI1p0I5qQt538Zc3c8U_JrVYTimYFXxcIFLmQAJcS8rorhrWHByq2CrNFlDGIhzOekGe14nSfEmBJuBJ5QkxPpToB5PXul1Rn3yK_d5ZrTFuakHed8q3tQRp1c41YsXf4ZZdJY178f9VbZDC_WoSXAL3m7lWz7n4DirAsbw priority: 102 providerName: Unpaywall |
| Title | bletl ‐ A Python package for integrating BioLector microcultivation devices in the Design‐Build‐Test‐Learn cycle |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Felsc.202100108 https://www.ncbi.nlm.nih.gov/pubmed/35382539 https://www.proquest.com/docview/2644234901 https://www.proquest.com/docview/2647656682 https://pubmed.ncbi.nlm.nih.gov/PMC8961055 https://doi.org/10.1002/elsc.202100108 |
| UnpaywallVersion | publishedVersion |
| Volume | 22 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1618-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017881 issn: 1618-2863 databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1618-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017881 issn: 1618-2863 databaseCode: ABDBF dateStart: 20120601 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1618-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017881 issn: 1618-2863 databaseCode: RPM dateStart: 20170101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1618-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017881 issn: 1618-2863 databaseCode: BENPR dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1618-2863 databaseCode: DR2 dateStart: 20010101 customDbUrl: isFulltext: true eissn: 1618-2863 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017881 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1618-2863 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017881 issn: 1618-2863 databaseCode: 24P dateStart: 20200101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bb9MwFMcttD0AD4g7GaMyEhK8RKtvsfPYjpYJjaoaqzSeIttxtYmSTtsq6Bsfgc_IJ-EcJw2LJjTxkkjN6SU9xz5_O_bvEPImuBISe8hTZRwMULI-9IOWsbTsS-FZlpU-Vp77NMkOZvLjiTq5tou_5kO0E27YMmJ_jQ3cusu9v9BQSB2IIOQIEcLdvtsMxAzGOJfT9jkCwtJxyJUxkyLNa4Nt7PO97vu7aemG1ry5ZPLuqjq36-92sejK2piXxg_Jg0ZQ0kEdAY_InVA9JvevYQafkB8OnLOgv3_-ogM6XSMtgMJQ-St0JRQ0K90gI8CYDs-Wh3Ein37DpXoI5mjqn9EyxF4FzCmoRvo-rv2ADx1iZW04H8OtwCkSW6lfw695Smbj0fH-QdpUXEi9zIRObeaM097PDRNS5bn1QSoBQ0jmdannTirmsA4uL40NuennTgXmrdRczZnzQjwjW9WyCi8I9cFjkbygtHOSe40UHsuCmjsF0cFZQtLNH174BkeOVTEWRQ1S5gU6qGgdlJC3rf15DeL4p-Xuxn9F0yAvC9R9XEhQPwl53V6GpoTPR2wVlqtoo1HeGp6Q57W7268SkBi4EnlCdCcQWgPEdHevVGenEddt8gyrkCbkXRsyt95BGiPqFrNidPh5n0mtd_7T_iW5x3EXR1xKt0u2ri5W4RVoqyvXi80Hjmb8oUe2h6PJ9KgX5ynweMThtdlkOvjyB9ZKJu8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwEB5V7aFwQPwTKGAkEFyirh07Tg4V6rZbbel2VcFW6i3EjldU3WYX2lXZG4_AE_EwPAkz3iR0VUFPPeWQURJnxvNjj78P4LUzBQZ2l4YqMVigxC30gznnYdGSkeVxXFjPPLffj7uH8sOROlqCX_VZGGqrrH2id9TF2NIa-ToFbhFJDF_vJ19DYo2i3dWaQiOvqBWKDQ8xVh3s2HOzCyzhzjZ2t1Hfb4TY6Qy2umHFMhBaGUc6zGOTGG3tMOGRVGmaWydVhGUTt7rQQyMVN8T9Kookd2nSSo1y3OZSCzXkxtKCKIaAFYnfhsXfSrvTP_jY7GMQWHsNFdkS6xjuCDZREPAREVpeDoVX8turbZqr03KSzy7y0WgxlfaxcOcu3KmSWLY5t7p7sOTK-3D7ErThA_hu0CBG7PePn2yTHcwIoYBheX6C7othnsxqmAoUZu3jcc9vHrBTag8kMJCKc40VznsyFGeYqbJt32-CD20TmzdeBzgUvHiUWGZn-DUP4fBG_v8jWC7HpXsCzDpLxHxOaWOksJqQf3Lu1NAotEjBAwjrH57ZCgKdmDhG2Ry8WWSkoKxRUABvG_nJHPzjn5Jrtf6yygmcZX9NNoBXzW2cvrQnk5duPPUymlLqRATweK7u5lURBiOhojQAvWAIjQBBgy_eKY-_eIjwJI2J-TSAd43JXDuC0FvUNWJZp_dpi0utn_5_xC9htTvY72W93f7eM7gl6NCI79xbg-Xzb1P3HFO5c_Oimi8MPt_0FP0DPQVfZg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFL2qisRjgXgTKGAkEGyiGTt2nCwQajsdWjpUlWil7tLYcUTFkBloR2V2fALfw-fwJdzrPOiogq66yiJXSZz7tH19DsALZwpM7C4NVWJwghL3MQ7mnIdFX0aWx3FhPfPch514c1--P1AHS_CrPQtDbZVtTPSBuphYWiPvUeIWkcT01SubtojdwfDt9GtIDFK009rSadQmsu3mpzh9O36zNUBdvxRiuLG3vhk2DAOhlXGkwzw2idHWlgmPpErT3DqpIpwycasLXRqpuCHeV1EkuUuTfmqU4zaXWqiSG0uLoRj-r2hCcadT6sN33Q4GwbS3IJF90cNER4CJgiCPiMrybBI8V9meb9C8Nqum-fw0H48Xi2ifBYe34GZTvrLV2t5uw5Kr7sCNM6CGd-G7QVMYs98_frJVtjsnbAKGE_PPGLgYVsisBahAYbZ2NBn5bQP2hRoDCQakYVtjhfMxDMUZ1qhs4DtN8KFrxOON1z0cCl48Piyzc_yae7B_KX__PixXk8o9BGadJUo-p7QxUlhNmD85d6o0Cm1R8ADC9odntgE_Jw6OcVbDNouMFJR1CgrgVSc_rWE__im50uova9z_OPtrrAE8726j49JuTF65yczLaCqmExHAg1rd3asiTENCRWkAesEQOgECBV-8Ux198uDgSRoT52kArzuTuXAEobeoC8SyjdHHdS61fvT_ET-Dq-iY2WhrZ_sxXBd0WsS37K3A8sm3mXuCNdyJeeqdhcHhZXvnH7JfXQA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbQ9oA4UN4EFWQkJLikrN_JcVtaKlSqSnSlcopsxyuqbrNVuyvYnvoT-I38EmachwgrtJwSySPHj7Hnm3j8DSFvgivBsIc8VZkDB0UPYR-0jKXlUArPtC59zDz3-UgfjOWnU3XaBMjiXZj--T1_DwYCiQY5UgXhnd4NrQBzD8jG-Oh49BW9Kc2yFIm62neeadGyM65U0Lc-K5ByNTLy7qK6tMvvdjrto9dofvY3yce24XXUyfn2Yu62_c1fnI7re_aA3G8QKB3VKvOQ3AnVI3LvD17Cx-SHg9mc0l-3P-mIHi-RXoCCb30Oew8FkEtbjgkQpjtns8P4559eYGwfMnk0CdNoGeI2BOIUYCb9EINFoNIdTMUNzxMYFHhEilfql9CaJ2S8v3eye5A2KRpSL7UwqdUuc8b7ScaEVHlufZBKgM_JvCnNxEnFHCbO5WVmQ54Nc6cC81YaribMeSGekkE1q8JzQn3wmFUvKOOc5N4gbY9lQU2cAnXiLCFpO3WFb_jLMY3GtKiZl3mBI1p0I5qQt538Zc3c8U_JrVYTimYFXxcIFLmQAJcS8rorhrWHByq2CrNFlDGIhzOekGe14nSfEmBJuBJ5QkxPpToB5PXul1Rn3yK_d5ZrTFuakHed8q3tQRp1c41YsXf4ZZdJY178f9VbZDC_WoSXAL3m7lWz7n4DirAsbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=bletl+-+A+Python+package+for+integrating+BioLector+microcultivation+devices+in+the+Design-Build-Test-Learn+cycle&rft.jtitle=Engineering+in+life+sciences&rft.au=Osthege%2C+Michael&rft.au=Tenhaef%2C+Niklas&rft.au=Zyla%2C+Rebecca&rft.au=M%C3%BCller%2C+Carolin&rft.date=2022-03-01&rft.issn=1618-0240&rft.volume=22&rft.issue=3-4&rft.spage=242&rft_id=info:doi/10.1002%2Felsc.202100108&rft_id=info%3Apmid%2F35382539&rft.externalDocID=35382539 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1618-0240&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1618-0240&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1618-0240&client=summon |