Gene selection and classification of microarray data using random forest

Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice)...

Full description

Saved in:
Bibliographic Details
Published inBMC bioinformatics Vol. 7; no. 1; p. 3
Main Authors Diaz-Uriarte, Ramon, Alvarez de Andres, Sara
Format Journal Article
LanguageEnglish
Published England BioMed Central 06.01.2006
BMC
Subjects
Online AccessGet full text
ISSN1471-2105
1471-2105
DOI10.1186/1471-2105-7-3

Cover

Abstract Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.
AbstractList Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.
Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection.BACKGROUNDSelection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection.We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy.RESULTSWe investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy.Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.CONCLUSIONBecause of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.
Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.
Abstract Background Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. Results We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Conclusion Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.
ArticleNumber 3
Author Díaz-Uriarte, Ramón
Alvarez de Andrés, Sara
AuthorAffiliation 2 Cytogenetics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
1 Bioinformatics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
AuthorAffiliation_xml – name: 2 Cytogenetics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain
– name: 1 Bioinformatics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain
Author_xml – sequence: 1
  givenname: Ramon
  surname: Diaz-Uriarte
  fullname: Diaz-Uriarte, Ramon
– sequence: 2
  givenname: Sara
  surname: Alvarez de Andres
  fullname: Alvarez de Andres, Sara
BackLink https://www.ncbi.nlm.nih.gov/pubmed/16398926$$D View this record in MEDLINE/PubMed
BookMark eNqFUU1vFSEUJabGfujSrZmVu6kwzMCwMTGNtk2auNE1uQOXJw0DT5inef9e3kdqa6KugMs5J-eec05OYopIyGtGLxkbxTvWS9Z2jA6tbPkzcvbwPnl0PyXnpdxTyuRIhxfklAmuRtWJM3JzjRGbggHN4lNsINrGBCjFO29gP0qumb3JCXKGbWNhgWZTfFw1uYLT3LiUsSwvyXMHoeCr43lBvn76-OXqpr37fH179eGuNb3gvJUKp8lK7N004OSolXQcB8EpGCUn6B0qSyVHLvoBzTRaSq3oUfKOOxRc8Atye9C1Ce71OvsZ8lYn8Ho_SHmlIS_eBNRm7EF13UCtc71VFsQIyjlwjDmrAKvW5UFrE9ew_QkhPAgyqnfx6l2EehehlppXwvsDYb2ZZrQG45IhPHHx9Cf6b3qVfmhWnfNBVoG3R4Gcvm9qbHr2xWAIEDFtihZS9KNU7L9ApnrORTdU4JvHln4vcKy4AvgBUCssJaPTxi_7ZqtDH_66afsH69_J_AKW3sjX
CitedBy_id crossref_primary_10_1017_eds_2022_34
crossref_primary_10_1177_1471082X17705992
crossref_primary_10_1016_j_apenergy_2018_12_034
crossref_primary_10_1016_j_eswa_2020_114333
crossref_primary_10_1198_tast_2009_08199
crossref_primary_10_1186_s12859_018_2318_8
crossref_primary_10_1109_JSTARS_2013_2295513
crossref_primary_10_1016_j_biopsych_2011_06_009
crossref_primary_10_3389_fbinf_2023_1131021
crossref_primary_10_1007_s11306_011_0274_7
crossref_primary_10_1016_j_compbiomed_2010_03_006
crossref_primary_10_1016_j_agrformet_2021_108450
crossref_primary_10_1016_j_rechem_2022_100508
crossref_primary_10_1007_s10142_023_01040_0
crossref_primary_10_1016_j_compbiomed_2009_07_006
crossref_primary_10_1109_TBIOM_2020_2997004
crossref_primary_10_3390_math12223618
crossref_primary_10_3390_w11081540
crossref_primary_10_3389_fmars_2022_863693
crossref_primary_10_1080_10543406_2017_1397006
crossref_primary_10_1155_2016_8748156
crossref_primary_10_1080_19475705_2016_1255667
crossref_primary_10_1186_s12864_017_3498_8
crossref_primary_10_3389_fendo_2022_957010
crossref_primary_10_1007_s13369_015_1945_x
crossref_primary_10_1038_s41467_025_57078_0
crossref_primary_10_1038_s41598_020_77183_y
crossref_primary_10_1088_1742_6596_2845_1_012006
crossref_primary_10_1038_s41598_024_59501_w
crossref_primary_10_1088_1478_3975_abc09a
crossref_primary_10_1093_jee_toaa147
crossref_primary_10_1016_j_quascirev_2017_04_001
crossref_primary_10_1016_j_jmva_2015_06_009
crossref_primary_10_1016_j_neucom_2015_05_022
crossref_primary_10_1016_j_scs_2021_103158
crossref_primary_10_1016_j_jag_2019_101978
crossref_primary_10_1016_j_geoderma_2014_04_036
crossref_primary_10_1371_journal_pone_0236874
crossref_primary_10_1371_journal_pone_0182507
crossref_primary_10_3390_rs13152988
crossref_primary_10_1109_TBCAS_2018_2848477
crossref_primary_10_1016_j_jbi_2013_03_009
crossref_primary_10_1109_ACCESS_2018_2883537
crossref_primary_10_1186_s12911_021_01688_3
crossref_primary_10_3390_rs13122273
crossref_primary_10_1016_j_postharvbio_2020_111318
crossref_primary_10_3390_en11040949
crossref_primary_10_5194_hess_27_4551_2023
crossref_primary_10_1016_j_molmet_2018_11_003
crossref_primary_10_1016_j_ab_2015_02_021
crossref_primary_10_1016_j_ress_2020_106858
crossref_primary_10_3390_en16176360
crossref_primary_10_1177_1550147719894532
crossref_primary_10_1371_journal_pone_0258658
crossref_primary_10_1109_JBHI_2013_2256920
crossref_primary_10_1002_prca_200800149
crossref_primary_10_1093_bioinformatics_btx784
crossref_primary_10_1371_journal_pone_0177552
crossref_primary_10_1186_s12859_020_03692_2
crossref_primary_10_5194_essd_15_395_2023
crossref_primary_10_1016_j_envint_2020_105601
crossref_primary_10_1002_nbm_1777
crossref_primary_10_1038_nbt_1524
crossref_primary_10_1155_2015_471371
crossref_primary_10_1007_s10651_016_0349_8
crossref_primary_10_3390_rs8020144
crossref_primary_10_1007_s00438_020_01664_y
crossref_primary_10_1164_rccm_201106_1143OC
crossref_primary_10_1016_j_neucom_2013_11_023
crossref_primary_10_1080_00949655_2020_1814776
crossref_primary_10_1109_TR_2014_2372432
crossref_primary_10_1038_srep39943
crossref_primary_10_1093_bioinformatics_btm344
crossref_primary_10_3390_land9110420
crossref_primary_10_1016_j_ctarc_2021_100396
crossref_primary_10_1080_03610926_2020_1764042
crossref_primary_10_3897_neobiota_65_67192
crossref_primary_10_1016_j_petrol_2020_107879
crossref_primary_10_1016_j_ygeno_2021_04_028
crossref_primary_10_1186_1471_2105_10_S11_S19
crossref_primary_10_1289_EHP6076
crossref_primary_10_1038_s41598_021_00932_0
crossref_primary_10_2174_1389202923666220511162038
crossref_primary_10_1016_j_procs_2018_05_127
crossref_primary_10_1038_nsmb_2675
crossref_primary_10_1007_s10796_017_9789_4
crossref_primary_10_2196_48892
crossref_primary_10_1021_jasms_4c00324
crossref_primary_10_1080_10962247_2017_1416314
crossref_primary_10_1002_qj_4134
crossref_primary_10_1016_j_jtbi_2006_08_011
crossref_primary_10_3390_f15010218
crossref_primary_10_4018_IJITSA_290003
crossref_primary_10_1177_15330338211027900
crossref_primary_10_3390_rs16111962
crossref_primary_10_1016_j_csda_2007_08_015
crossref_primary_10_1016_j_engappai_2020_104073
crossref_primary_10_1093_rheumatology_kez615
crossref_primary_10_1016_j_cosrev_2021_100370
crossref_primary_10_1111_sjos_12777
crossref_primary_10_1007_s00500_016_2468_4
crossref_primary_10_3390_ijms131013587
crossref_primary_10_1007_s00248_018_1176_2
crossref_primary_10_1186_s12893_024_02687_7
crossref_primary_10_3389_fgene_2020_00328
crossref_primary_10_1007_s00477_025_02957_7
crossref_primary_10_1016_j_still_2019_03_006
crossref_primary_10_1186_s40246_025_00733_w
crossref_primary_10_1371_journal_pone_0014579
crossref_primary_10_1016_j_agwat_2023_108416
crossref_primary_10_1016_j_scitotenv_2020_137249
crossref_primary_10_1007_s10637_010_9571_7
crossref_primary_10_1016_j_media_2018_05_004
crossref_primary_10_1109_TGRS_2021_3105482
crossref_primary_10_1016_j_apsusc_2023_157225
crossref_primary_10_1186_1471_2105_14_261
crossref_primary_10_1016_j_jbi_2024_104736
crossref_primary_10_1007_s11042_024_18802_y
crossref_primary_10_1016_j_mehy_2020_109577
crossref_primary_10_1038_ejhg_2013_109
crossref_primary_10_1017_S0021859613000543
crossref_primary_10_1111_j_1365_2389_2011_01375_x
crossref_primary_10_1089_cmb_2015_0206
crossref_primary_10_1186_1471_2105_10_S1_S22
crossref_primary_10_7717_peerj_1804
crossref_primary_10_1186_1471_2105_10_213
crossref_primary_10_1007_s00779_019_01318_w
crossref_primary_10_1162_posc_a_00638
crossref_primary_10_1016_j_patter_2021_100333
crossref_primary_10_4137_CIN_S14054
crossref_primary_10_1007_s42081_022_00176_w
crossref_primary_10_1080_1354750X_2025_2461698
crossref_primary_10_1093_comjnl_bxz161
crossref_primary_10_3389_fpls_2021_639253
crossref_primary_10_1002_gepi_20280
crossref_primary_10_1111_avsc_12552
crossref_primary_10_1016_j_jss_2021_110939
crossref_primary_10_1371_journal_pcbi_1002957
crossref_primary_10_3389_fonc_2023_1207175
crossref_primary_10_1371_journal_pcbi_1002956
crossref_primary_10_1371_journal_pone_0164649
crossref_primary_10_1016_j_apsoil_2024_105687
crossref_primary_10_1007_s10346_016_0761_z
crossref_primary_10_1016_j_procs_2018_05_195
crossref_primary_10_1016_j_bbagen_2024_130597
crossref_primary_10_1016_j_compbiomed_2018_06_030
crossref_primary_10_1080_19371918_2024_2318372
crossref_primary_10_1111_exsy_12486
crossref_primary_10_1515_CCLM_2010_248
crossref_primary_10_1111_nph_13982
crossref_primary_10_1093_bioinformatics_bty239
crossref_primary_10_1080_21678421_2017_1418003
crossref_primary_10_3390_earth4030037
crossref_primary_10_1186_2049_2618_1_11
crossref_primary_10_1161_CIRCOUTCOMES_116_003039
crossref_primary_10_1007_s00500_019_04330_7
crossref_primary_10_1080_10485252_2023_2219783
crossref_primary_10_1080_10618600_2022_2069777
crossref_primary_10_1093_bioinformatics_btn245
crossref_primary_10_1016_j_scitotenv_2023_167534
crossref_primary_10_1109_TCBB_2018_2868341
crossref_primary_10_2751_jcac_17_1
crossref_primary_10_1109_TNB_2012_2214232
crossref_primary_10_1186_s12859_020_03622_2
crossref_primary_10_1038_srep02620
crossref_primary_10_1111_jcpe_12892
crossref_primary_10_1016_j_cities_2021_103474
crossref_primary_10_3389_fgene_2019_00226
crossref_primary_10_1007_s11356_017_0899_9
crossref_primary_10_1089_cmb_2016_0089
crossref_primary_10_3390_su15031858
crossref_primary_10_1016_j_compbiomed_2017_05_010
crossref_primary_10_1016_j_tra_2018_08_030
crossref_primary_10_3389_fgene_2020_587378
crossref_primary_10_1111_pbi_12840
crossref_primary_10_1186_s10194_023_01542_z
crossref_primary_10_1161_CIRCOUTCOMES_110_959023
crossref_primary_10_1093_bioinformatics_bty251
crossref_primary_10_1007_s11306_017_1166_2
crossref_primary_10_1093_bioinformatics_btn262
crossref_primary_10_1002_pmic_200600335
crossref_primary_10_1155_2022_3682194
crossref_primary_10_1016_j_asoc_2018_02_009
crossref_primary_10_3390_su15097656
crossref_primary_10_1161_CIRCOUTCOMES_116_003055
crossref_primary_10_1126_sciadv_abh2932
crossref_primary_10_1186_s13040_021_00235_0
crossref_primary_10_1016_j_compag_2020_105332
crossref_primary_10_1371_journal_pone_0048877
crossref_primary_10_1038_bjc_2011_505
crossref_primary_10_1088_1742_6596_1994_1_012016
crossref_primary_10_1186_s12920_016_0204_7
crossref_primary_10_1186_s12935_023_02966_y
crossref_primary_10_1007_s00477_019_01732_9
crossref_primary_10_1007_s10980_020_01119_0
crossref_primary_10_1186_1471_2164_15_248
crossref_primary_10_1371_journal_pone_0220881
crossref_primary_10_3390_biology1010005
crossref_primary_10_4236_ijg_2016_75056
crossref_primary_10_1214_22_AOS2234
crossref_primary_10_1002_prot_22424
crossref_primary_10_1016_j_agrformet_2018_12_017
crossref_primary_10_1214_10_AOAS381
crossref_primary_10_1021_acs_analchem_0c04155
crossref_primary_10_1186_1471_2105_10_37
crossref_primary_10_1109_ACCESS_2019_2944295
crossref_primary_10_1007_s10916_019_1402_6
crossref_primary_10_1002_widm_1114
crossref_primary_10_1164_rccm_201510_2091OC
crossref_primary_10_1007_s11222_012_9349_1
crossref_primary_10_1007_s10706_023_02535_0
crossref_primary_10_3389_fmicb_2023_1277121
crossref_primary_10_1016_S1002_0160_17_60481_8
crossref_primary_10_1016_j_csda_2015_04_002
crossref_primary_10_1371_journal_pone_0039932
crossref_primary_10_1007_s10044_014_0369_7
crossref_primary_10_1002_bimj_201300077
crossref_primary_10_2174_0115734099258183230929173855
crossref_primary_10_1016_j_foreco_2024_122159
crossref_primary_10_1016_j_ygyno_2019_08_021
crossref_primary_10_1016_j_geoderma_2014_08_009
crossref_primary_10_1109_TCBB_2016_2631164
crossref_primary_10_1139_cjfas_2017_0554
crossref_primary_10_1017_S0007114507803400
crossref_primary_10_3389_fneur_2025_1512297
crossref_primary_10_1109_TCBB_2010_90
crossref_primary_10_1007_s42452_021_04148_9
crossref_primary_10_1371_journal_pone_0208737
crossref_primary_10_1038_s41598_019_55609_6
crossref_primary_10_1155_2022_9033342
crossref_primary_10_1016_j_jhydrol_2021_127047
crossref_primary_10_1182_blood_2007_11_126003
crossref_primary_10_1016_j_bspc_2019_101758
crossref_primary_10_1016_j_bios_2025_117408
crossref_primary_10_1155_2019_9864213
crossref_primary_10_1002_eqe_3183
crossref_primary_10_1097_ALN_0000000000003140
crossref_primary_10_1016_j_csda_2011_04_022
crossref_primary_10_1007_s10260_018_0423_5
crossref_primary_10_1142_S0219720008003345
crossref_primary_10_4137_CIN_S7111
crossref_primary_10_1371_journal_pone_0058695
crossref_primary_10_1186_s12859_021_04460_6
crossref_primary_10_11301_jsfe_19560
crossref_primary_10_1016_j_cbpa_2015_10_013
crossref_primary_10_1515_sagmb_2018_0028
crossref_primary_10_1186_1471_2105_10_147
crossref_primary_10_1093_bioinformatics_btab089
crossref_primary_10_3389_fmicb_2019_02904
crossref_primary_10_1021_acs_est_3c07576
crossref_primary_10_1093_bioinformatics_btu603
crossref_primary_10_1186_1471_2105_10_78
crossref_primary_10_1007_s13762_017_1283_5
crossref_primary_10_1002_ijc_32152
crossref_primary_10_1016_j_agwat_2020_106145
crossref_primary_10_1186_s12872_021_02147_7
crossref_primary_10_1002_ecs2_1321
crossref_primary_10_1016_j_jag_2019_02_004
crossref_primary_10_1109_TCBB_2020_3041527
crossref_primary_10_1007_s11135_023_01824_3
crossref_primary_10_1038_s41598_020_78155_y
crossref_primary_10_1111_liv_13427
crossref_primary_10_1071_WR21018
crossref_primary_10_1088_0004_6256_147_2_33
crossref_primary_10_1002_hbm_26393
crossref_primary_10_1016_j_csbj_2023_05_005
crossref_primary_10_1021_acs_jproteome_5b01061
crossref_primary_10_1107_S1399004713032070
crossref_primary_10_1186_s12859_017_1553_8
crossref_primary_10_1186_s12859_016_0900_5
crossref_primary_10_3390_sym9110282
crossref_primary_10_1088_2057_1976_ab39a8
crossref_primary_10_1155_2023_2400194
crossref_primary_10_1016_j_jprocont_2024_103175
crossref_primary_10_1042_CS20200032
crossref_primary_10_1016_j_jag_2016_06_004
crossref_primary_10_1021_acs_est_7b01210
crossref_primary_10_1016_j_cie_2022_108936
crossref_primary_10_3390_e22111205
crossref_primary_10_1016_j_geomorph_2014_04_006
crossref_primary_10_1016_j_csr_2011_05_015
crossref_primary_10_1002_bimj_201300068
crossref_primary_10_1186_s12859_021_04527_4
crossref_primary_10_1186_s12864_015_2129_5
crossref_primary_10_1029_2021WR030612
crossref_primary_10_1016_j_ymeth_2012_10_003
crossref_primary_10_1002_ijfe_2346
crossref_primary_10_1007_s00521_018_3523_0
crossref_primary_10_1093_bioinformatics_btq257
crossref_primary_10_1186_s13636_023_00291_w
crossref_primary_10_1109_ACCESS_2020_2992595
crossref_primary_10_1109_TCBB_2008_105
crossref_primary_10_1007_s00500_019_04623_x
crossref_primary_10_1177_09622802211046385
crossref_primary_10_1016_j_icarus_2021_114778
crossref_primary_10_1007_s11042_022_13550_3
crossref_primary_10_1007_s10695_015_0165_3
crossref_primary_10_1186_s12859_017_1993_1
crossref_primary_10_3390_ani10050771
crossref_primary_10_1097_SCS_0000000000006943
crossref_primary_10_1007_s12035_025_04857_x
crossref_primary_10_1016_j_jad_2024_10_053
crossref_primary_10_1186_s12940_017_0277_6
crossref_primary_10_1080_01616412_2017_1348690
crossref_primary_10_1371_journal_pone_0199314
crossref_primary_10_3390_math9050570
crossref_primary_10_1175_WAF_D_15_0113_1
crossref_primary_10_3390_electronics14050950
crossref_primary_10_1007_s00180_011_0302_0
crossref_primary_10_3233_IDA_160863
crossref_primary_10_1007_s11222_016_9646_1
crossref_primary_10_2174_1389202924666230601122334
crossref_primary_10_1139_cjfr_2018_0033
crossref_primary_10_1096_fj_202300245R
crossref_primary_10_1007_s42835_019_00205_x
crossref_primary_10_1021_acs_jcim_7b00274
crossref_primary_10_1158_1535_7163_MCT_15_1008
crossref_primary_10_1186_s12711_016_0219_8
crossref_primary_10_3390_app10196652
crossref_primary_10_3390_bioengineering11101012
crossref_primary_10_1186_s12885_018_4104_4
crossref_primary_10_1371_journal_pone_0189533
crossref_primary_10_1103_PhysRevPhysEducRes_19_010134
crossref_primary_10_1109_ACCESS_2019_2922432
crossref_primary_10_3164_jcbn_21_114
crossref_primary_10_1016_j_conbuildmat_2023_131519
crossref_primary_10_1016_j_jmb_2021_167071
crossref_primary_10_3390_w12113015
crossref_primary_10_3390_w12030687
crossref_primary_10_3390_f14061193
crossref_primary_10_1016_j_geoderma_2022_115696
crossref_primary_10_1139_f2011_170
crossref_primary_10_1109_JSTARS_2014_2362920
crossref_primary_10_3390_jimaging2040029
crossref_primary_10_3390_sym11020228
crossref_primary_10_4236_abb_2024_157025
crossref_primary_10_26782_jmcms_2022_11_00002
crossref_primary_10_1002_mrc_4074
crossref_primary_10_3390_rs10091457
crossref_primary_10_1109_ACCESS_2019_2947701
crossref_primary_10_1371_journal_pone_0133583
crossref_primary_10_1007_s10706_018_0558_z
crossref_primary_10_1093_bib_bbs034
crossref_primary_10_1158_1078_0432_CCR_06_0290
crossref_primary_10_1142_S021972001100546X
crossref_primary_10_1016_j_mri_2010_12_001
crossref_primary_10_1093_ije_dyw145
crossref_primary_10_1016_j_rse_2021_112294
crossref_primary_10_1016_j_agee_2018_02_012
crossref_primary_10_1051_ps_2018008
crossref_primary_10_1186_2043_9113_2_13
crossref_primary_10_1016_j_atmosenv_2016_11_066
crossref_primary_10_1145_3372023
crossref_primary_10_3390_rs70809705
crossref_primary_10_1186_s12859_017_1984_2
crossref_primary_10_1007_s42979_024_02952_9
crossref_primary_10_1080_07391102_2016_1234413
crossref_primary_10_1680_jener_24_00027
crossref_primary_10_1109_TBME_2007_890733
crossref_primary_10_1016_j_compbiomed_2023_107252
crossref_primary_10_1016_j_jclepro_2023_138544
crossref_primary_10_1016_j_ecoinf_2020_101181
crossref_primary_10_1186_1471_2105_8_25
crossref_primary_10_1016_j_gene_2019_04_062
crossref_primary_10_1109_ACCESS_2024_3371887
crossref_primary_10_1371_journal_pcbi_1009926
crossref_primary_10_1016_j_brat_2024_104637
crossref_primary_10_1039_C7LC00955K
crossref_primary_10_1007_s00500_021_05726_0
crossref_primary_10_1155_2015_604910
crossref_primary_10_1007_s42979_020_00210_2
crossref_primary_10_1016_j_ajodo_2006_06_022
crossref_primary_10_1016_j_envpol_2015_06_040
crossref_primary_10_1016_j_insmatheco_2021_07_003
crossref_primary_10_1186_1471_2164_9_144
crossref_primary_10_1080_09540121_2020_1751045
crossref_primary_10_1109_TCBB_2010_42
crossref_primary_10_3390_s18041027
crossref_primary_10_1016_j_micpath_2016_09_005
crossref_primary_10_1111_j_1745_459X_2012_00370_x
crossref_primary_10_1007_s11192_016_2144_6
crossref_primary_10_1016_j_memsci_2017_12_025
crossref_primary_10_1186_s13040_021_00273_8
crossref_primary_10_3390_diagnostics12071771
crossref_primary_10_1007_s11042_019_7181_8
crossref_primary_10_1111_j_1365_2753_2009_01240_x
crossref_primary_10_1186_1753_6561_1_S1_S56
crossref_primary_10_3390_atmos13010075
crossref_primary_10_1038_s41467_024_47752_0
crossref_primary_10_1016_j_cmpb_2017_09_013
crossref_primary_10_1186_1471_2105_13_162
crossref_primary_10_1186_1753_6561_1_S1_S59
crossref_primary_10_1186_1471_2105_13_164
crossref_primary_10_4018_IJSSCI_2017040102
crossref_primary_10_1007_s42979_023_02352_5
crossref_primary_10_1016_j_bandl_2020_104770
crossref_primary_10_3389_fonc_2021_631056
crossref_primary_10_6000_1927_520X_2020_09_07
crossref_primary_10_1016_j_compbiomed_2024_108434
crossref_primary_10_1186_s13040_015_0060_6
crossref_primary_10_2174_1381612826666201112142826
crossref_primary_10_1016_j_soildyn_2023_107966
crossref_primary_10_1016_j_rse_2019_111496
crossref_primary_10_1089_cmb_2018_0238
crossref_primary_10_3934_bioeng_2016_4_552
crossref_primary_10_7717_peerj_cs_365
crossref_primary_10_1007_s00180_023_01450_5
crossref_primary_10_1177_0021998316679720
crossref_primary_10_1002_hep_31312
crossref_primary_10_1007_s11869_013_0200_4
crossref_primary_10_1007_s10115_017_1140_3
crossref_primary_10_1186_s12859_016_1228_x
crossref_primary_10_1155_2022_6532763
crossref_primary_10_1016_j_rse_2014_11_007
crossref_primary_10_1186_1687_4153_2012_1
crossref_primary_10_1021_acs_jpcc_1c07133
crossref_primary_10_1007_s11135_025_02056_3
crossref_primary_10_1016_j_jad_2020_02_001
crossref_primary_10_1016_j_ast_2021_106822
crossref_primary_10_3102_10769986231193327
crossref_primary_10_1080_24751839_2019_1660845
crossref_primary_10_1016_j_procs_2015_07_463
crossref_primary_10_3233_JAD_160948
crossref_primary_10_1002_2016JD024768
crossref_primary_10_1016_j_foreco_2019_05_016
crossref_primary_10_1016_j_aca_2013_11_032
crossref_primary_10_1038_npp_2013_328
crossref_primary_10_1158_1078_0432_CCR_13_2127
crossref_primary_10_1111_j_1469_1809_2011_00692_x
crossref_primary_10_3389_fmolb_2016_00026
crossref_primary_10_1016_j_catena_2020_104703
crossref_primary_10_3389_fnhum_2016_00468
crossref_primary_10_1016_j_compbiomed_2017_10_021
crossref_primary_10_1016_j_scitotenv_2022_155168
crossref_primary_10_3390_ijms252212342
crossref_primary_10_1016_j_biosystemseng_2019_11_023
crossref_primary_10_1007_s11119_023_10099_5
crossref_primary_10_1016_j_gaitpost_2012_08_016
crossref_primary_10_1016_j_scitotenv_2021_148170
crossref_primary_10_3389_fmolb_2016_00030
crossref_primary_10_1186_1753_6561_5_S9_S46
crossref_primary_10_1002_mrc_3915
crossref_primary_10_1155_2013_393020
crossref_primary_10_1016_j_artmed_2014_01_005
crossref_primary_10_4018_jdwm_2012040103
crossref_primary_10_1371_journal_pone_0006646
crossref_primary_10_1002_bimj_200810475
crossref_primary_10_1080_10106049_2019_1624988
crossref_primary_10_1038_leu_2010_95
crossref_primary_10_1093_mollus_eyy010
crossref_primary_10_3390_rs70505660
crossref_primary_10_1016_j_drudis_2014_10_012
crossref_primary_10_3390_rs13112184
crossref_primary_10_1017_S1751731108003479
crossref_primary_10_1007_s00500_020_05045_w
crossref_primary_10_4018_IJSSMET_2018040102
crossref_primary_10_1109_TMI_2017_2700213
crossref_primary_10_1016_j_mimet_2011_10_013
crossref_primary_10_1371_journal_pone_0183742
crossref_primary_10_1007_s10437_020_09372_z
crossref_primary_10_5487_TR_2016_32_4_289
crossref_primary_10_3389_fpsyg_2018_01545
crossref_primary_10_1061_JTEPBS_0000410
crossref_primary_10_1109_TCBB_2016_2617337
crossref_primary_10_3233_JIFS_181665
crossref_primary_10_3390_info15080485
crossref_primary_10_1515_jpem_2019_0311
crossref_primary_10_2514_1_I010837
crossref_primary_10_1016_j_rse_2022_113017
crossref_primary_10_1097_IGC_0000000000000566
crossref_primary_10_1177_10944281241244760
crossref_primary_10_1155_2017_6817627
crossref_primary_10_3390_molecules27093021
crossref_primary_10_1371_journal_pone_0197915
crossref_primary_10_1007_s10742_021_00255_7
crossref_primary_10_1021_acs_jctc_4c00702
crossref_primary_10_1534_g3_119_400094
crossref_primary_10_1007_s10489_017_0992_2
crossref_primary_10_1007_s11103_024_01500_6
crossref_primary_10_1097_CMR_0b013e328352dbc8
crossref_primary_10_1038_s41598_023_43414_1
crossref_primary_10_1073_pnas_0605152103
crossref_primary_10_1186_1752_0509_4_159
crossref_primary_10_1002_jae_2525
crossref_primary_10_1016_j_patrec_2015_03_018
crossref_primary_10_1038_s41598_020_62338_8
crossref_primary_10_1016_j_geodrs_2023_e00690
crossref_primary_10_3389_fpls_2018_00685
crossref_primary_10_3390_app112311080
crossref_primary_10_1109_TCBB_2017_2723388
crossref_primary_10_3390_min13101261
crossref_primary_10_3390_rs9040333
crossref_primary_10_1109_TNSRE_2019_2945634
crossref_primary_10_4161_psb_6_1_14191
crossref_primary_10_1007_s00170_019_04530_3
crossref_primary_10_3390_rs11161892
crossref_primary_10_1016_j_compchemeng_2017_09_002
crossref_primary_10_1371_journal_pcbi_1004801
crossref_primary_10_1016_j_gene_2012_11_034
crossref_primary_10_1016_j_heliyon_2024_e36914
crossref_primary_10_1038_srep16955
crossref_primary_10_1145_3429445
crossref_primary_10_1016_j_corsci_2020_109084
crossref_primary_10_3389_fpsyt_2024_1349576
crossref_primary_10_1002_mas_20338
crossref_primary_10_1016_j_psep_2022_06_051
crossref_primary_10_3390_biomedinformatics3030040
crossref_primary_10_1111_ecog_02925
crossref_primary_10_1038_s41598_021_87171_5
crossref_primary_10_1371_journal_pone_0104049
crossref_primary_10_1016_j_cie_2018_06_024
crossref_primary_10_1007_s00439_010_0943_z
crossref_primary_10_1093_bioinformatics_btn356
crossref_primary_10_1097_CIN_0000000000000463
crossref_primary_10_18632_oncotarget_21817
crossref_primary_10_1371_journal_pone_0287063
crossref_primary_10_3390_bioengineering11040314
crossref_primary_10_3389_fmicb_2015_00171
crossref_primary_10_1111_ajt_15953
crossref_primary_10_1007_s10729_014_9272_4
crossref_primary_10_1016_j_foodcont_2019_106807
crossref_primary_10_1016_j_still_2025_106457
crossref_primary_10_1093_jssam_smab004
crossref_primary_10_1016_j_jenvman_2019_06_064
crossref_primary_10_26833_ijeg_455595
crossref_primary_10_1186_1471_2164_16_S11_S3
crossref_primary_10_1161_HYPERTENSIONAHA_116_07292
crossref_primary_10_1186_s12916_023_03168_z
crossref_primary_10_1100_2012_278352
crossref_primary_10_1214_21_AOAS1532
crossref_primary_10_1016_j_eswa_2014_10_044
crossref_primary_10_1007_s11634_020_00409_4
crossref_primary_10_3390_rs11030253
crossref_primary_10_1371_journal_pone_0001344
crossref_primary_10_1136_bmjopen_2019_033109
crossref_primary_10_3390_insects11030186
crossref_primary_10_1371_journal_pcbi_1000414
crossref_primary_10_1016_j_eswa_2015_05_013
crossref_primary_10_1097_PRS_0000000000005257
crossref_primary_10_1007_s10228_020_00783_1
crossref_primary_10_1155_2021_2474473
crossref_primary_10_7717_peerj_cs_2445
crossref_primary_10_1186_1471_2105_11_110
crossref_primary_10_2754_avb201584040327
crossref_primary_10_4137_CIN_S408
crossref_primary_10_1016_j_neucom_2018_09_084
crossref_primary_10_1016_j_catena_2021_105437
crossref_primary_10_1097_PTS_0000000000000871
crossref_primary_10_1002_pro_5015
crossref_primary_10_1016_j_esr_2024_101350
crossref_primary_10_1016_j_cageo_2024_105667
crossref_primary_10_1200_CCI_20_00065
crossref_primary_10_1093_bioinformatics_btl189
crossref_primary_10_1089_omi_2009_0007
crossref_primary_10_1080_23744731_2022_2043068
crossref_primary_10_1111_insr_12060
crossref_primary_10_1016_S1002_0160_17_60377_1
crossref_primary_10_1016_j_heliyon_2024_e24974
crossref_primary_10_1371_journal_pone_0023112
crossref_primary_10_1080_14697688_2014_983539
crossref_primary_10_1016_j_compbiomed_2023_106854
crossref_primary_10_1016_j_ecoinf_2023_102027
crossref_primary_10_1093_bioinformatics_bts602
crossref_primary_10_1186_1756_0381_7_22
crossref_primary_10_1186_s12859_019_2969_0
crossref_primary_10_3389_fpsyg_2019_02461
crossref_primary_10_1021_acs_analchem_8b05592
crossref_primary_10_1016_j_jvolgeores_2017_04_015
crossref_primary_10_1093_bioinformatics_bty373
crossref_primary_10_2136_sssaj2014_05_0202
crossref_primary_10_3390_ai2040044
crossref_primary_10_1021_pr100573s
crossref_primary_10_3389_fgene_2021_798748
crossref_primary_10_1186_1472_6947_13_S1_S3
crossref_primary_10_1371_journal_pone_0057680
crossref_primary_10_1016_j_geoderma_2018_05_035
crossref_primary_10_1007_s11425_018_9561_0
crossref_primary_10_1016_j_measurement_2016_07_070
crossref_primary_10_1007_s11053_021_09872_y
crossref_primary_10_1016_j_apgeog_2018_05_003
crossref_primary_10_1186_1471_2105_14_5
crossref_primary_10_1155_2015_178572
crossref_primary_10_1155_2009_532989
crossref_primary_10_1155_2022_6928833
crossref_primary_10_1371_journal_pone_0024899
crossref_primary_10_1126_sciadv_aaz0108
crossref_primary_10_1186_s12859_016_1090_x
crossref_primary_10_1039_C5MB00399G
crossref_primary_10_1016_j_jhydrol_2021_126056
crossref_primary_10_18632_oncotarget_6786
crossref_primary_10_1038_sc_2016_183
crossref_primary_10_1016_j_jhydrol_2019_05_079
crossref_primary_10_2174_1574893617666220328125029
crossref_primary_10_1007_s11119_024_10165_6
crossref_primary_10_1111_1755_0998_12686
crossref_primary_10_1016_j_eswa_2021_116253
crossref_primary_10_1007_s11222_021_10057_z
crossref_primary_10_1016_j_procs_2018_10_334
crossref_primary_10_1007_s10668_024_05340_8
crossref_primary_10_1016_j_envpol_2022_120697
crossref_primary_10_1007_s12665_017_6731_5
crossref_primary_10_1016_j_envpol_2020_114226
crossref_primary_10_1096_fj_202301710RR
crossref_primary_10_1002_esp_3476
crossref_primary_10_1177_117693510600200024
crossref_primary_10_1186_s40537_018_0113_z
crossref_primary_10_1002_ldr_2503
crossref_primary_10_1371_journal_pone_0013748
crossref_primary_10_1007_s42452_019_0297_7
crossref_primary_10_1016_j_jag_2025_104390
crossref_primary_10_3390_fishes8060332
crossref_primary_10_3390_w13172387
crossref_primary_10_1177_1460458212446096
crossref_primary_10_1177_13872877241283692
crossref_primary_10_1093_biomet_asac017
crossref_primary_10_1515_popets_2018_0039
crossref_primary_10_1142_S0218001412600038
crossref_primary_10_1109_TNB_2015_2406992
crossref_primary_10_1016_j_geoderma_2015_11_014
crossref_primary_10_3390_f13060820
crossref_primary_10_1016_j_engappai_2018_01_007
crossref_primary_10_1016_j_wroa_2024_100244
crossref_primary_10_1029_2018WR022681
crossref_primary_10_3390_rs16030565
crossref_primary_10_1186_1471_2156_11_49
crossref_primary_10_1186_1753_6561_1_S1_S9
crossref_primary_10_3390_cancers13050991
crossref_primary_10_1016_j_isprsjprs_2023_07_020
crossref_primary_10_1287_opre_2019_1928
crossref_primary_10_1080_01431161_2015_1066524
crossref_primary_10_5194_gmd_16_2167_2023
crossref_primary_10_5802_crmeca_3
crossref_primary_10_1016_j_compag_2021_106614
crossref_primary_10_1186_s12859_017_1650_8
crossref_primary_10_1002_minf_201600099
crossref_primary_10_1371_journal_pone_0219322
crossref_primary_10_1109_JSTARS_2015_2396577
crossref_primary_10_1016_j_is_2018_05_006
crossref_primary_10_1038_s41586_025_08692_x
crossref_primary_10_1016_j_gexplo_2022_107126
crossref_primary_10_1109_ACCESS_2021_3096241
crossref_primary_10_1016_j_jbi_2016_05_007
crossref_primary_10_1007_s13721_015_0104_3
crossref_primary_10_1186_1471_2164_15_S9_S17
crossref_primary_10_3390_electronics13122291
crossref_primary_10_1016_j_compbiomed_2021_104947
crossref_primary_10_1021_acs_analchem_3c01872
crossref_primary_10_1186_1471_2105_8_328
crossref_primary_10_2478_s11756_009_0125_4
crossref_primary_10_1016_j_eswa_2019_05_028
crossref_primary_10_4236_cmb_2012_22005
crossref_primary_10_1007_s00521_022_06891_5
crossref_primary_10_1016_j_dsr_2017_01_010
crossref_primary_10_1016_j_envpol_2019_01_010
crossref_primary_10_3390_w13192717
crossref_primary_10_3390_biomedicines12102404
crossref_primary_10_1016_j_omtn_2019_07_021
crossref_primary_10_1002_cyto_a_23920
crossref_primary_10_1371_journal_pone_0199648
crossref_primary_10_1515_jem_2020_0020
crossref_primary_10_1016_j_asoc_2018_10_005
crossref_primary_10_1214_13_AIHP539
crossref_primary_10_1097_SHK_0000000000000061
crossref_primary_10_1016_j_wasman_2017_03_044
crossref_primary_10_3892_mmr_2016_5260
crossref_primary_10_1016_j_chemolab_2014_09_003
crossref_primary_10_1093_carcin_bgs395
crossref_primary_10_1002_widm_1072
crossref_primary_10_1016_j_engappai_2023_107083
crossref_primary_10_1371_journal_pone_0264307
crossref_primary_10_1093_bfgp_elad039
crossref_primary_10_1007_s10661_024_13564_4
crossref_primary_10_3390_molecules25204696
crossref_primary_10_3390_educsci13030313
crossref_primary_10_1038_s41598_023_50600_8
crossref_primary_10_3390_pr11071940
crossref_primary_10_1186_s12859_017_1578_z
crossref_primary_10_1016_j_isprsjprs_2016_01_011
crossref_primary_10_1371_journal_pone_0239381
crossref_primary_10_1080_26895293_2022_2064923
crossref_primary_10_7717_peerj_13575
crossref_primary_10_1111_acps_13250
crossref_primary_10_1002_pst_357
crossref_primary_10_1177_00220345231152802
crossref_primary_10_1016_j_infrared_2021_103731
crossref_primary_10_1016_j_ecoinf_2023_102406
crossref_primary_10_1080_09613218_2020_1809983
crossref_primary_10_1016_j_geoderma_2021_115263
crossref_primary_10_1021_ci500715e
crossref_primary_10_3390_sym13020194
crossref_primary_10_1016_j_eswa_2018_12_022
crossref_primary_10_1371_journal_pone_0189875
crossref_primary_10_1186_1471_2105_8_370
crossref_primary_10_1177_03611981211027161
crossref_primary_10_1172_JCI137265
crossref_primary_10_1039_C9TA13404B
crossref_primary_10_1016_j_trac_2012_07_012
crossref_primary_10_3390_jmse12061015
crossref_primary_10_1007_s00704_015_1461_7
crossref_primary_10_1016_j_petrol_2019_01_013
crossref_primary_10_1109_JSTARS_2014_2305441
crossref_primary_10_1142_S0219720010004495
crossref_primary_10_3390_life11080866
crossref_primary_10_1097_COH_0b013e32834dc37b
crossref_primary_10_1016_j_geoderma_2024_117025
crossref_primary_10_3390_joitmc8040177
crossref_primary_10_1155_2019_5849183
crossref_primary_10_1007_s10462_020_09814_9
crossref_primary_10_1111_acer_13327
crossref_primary_10_1016_j_ecss_2018_02_028
crossref_primary_10_1093_bib_bbt020
crossref_primary_10_1016_j_genrep_2016_04_001
crossref_primary_10_1111_rssb_12425
crossref_primary_10_1371_journal_pone_0246039
crossref_primary_10_1371_journal_pone_0070294
crossref_primary_10_1111_j_1548_1352_2009_01040_x
crossref_primary_10_1109_TCBB_2017_2712607
crossref_primary_10_1016_j_patcog_2019_106980
crossref_primary_10_1016_j_geoderma_2017_12_002
crossref_primary_10_1007_s10479_020_03684_8
crossref_primary_10_1038_s41598_022_19281_7
crossref_primary_10_3390_rs16020367
crossref_primary_10_1016_j_catena_2018_05_021
crossref_primary_10_1016_j_psj_2020_08_059
crossref_primary_10_1002_minf_201100107
crossref_primary_10_1038_s41598_021_94839_5
crossref_primary_10_1002_ijc_24017
crossref_primary_10_1186_1471_2105_13_60
crossref_primary_10_3390_land12101937
crossref_primary_10_1093_bfgp_elr005
crossref_primary_10_1016_j_rse_2016_07_018
crossref_primary_10_3390_en13102440
crossref_primary_10_3390_rs8010062
crossref_primary_10_1021_acs_est_7b00294
crossref_primary_10_1016_j_scitotenv_2020_138096
crossref_primary_10_1186_1471_2164_9_288
crossref_primary_10_1111_epi_13915
crossref_primary_10_1016_j_geodrs_2017_02_001
crossref_primary_10_1038_bmt_2011_56
crossref_primary_10_1155_2014_753428
crossref_primary_10_1016_j_pnpbp_2025_111302
crossref_primary_10_1007_s13369_021_06102_8
crossref_primary_10_3389_fimmu_2023_1146411
crossref_primary_10_1175_JAMC_D_14_0129_1
crossref_primary_10_1016_S1672_0229_10_60022_8
crossref_primary_10_3389_fimmu_2022_964622
crossref_primary_10_1155_2014_809495
crossref_primary_10_3389_fpls_2022_883280
crossref_primary_10_3390_bs15030345
crossref_primary_10_1371_journal_pone_0094268
crossref_primary_10_1371_journal_pone_0156571
crossref_primary_10_1109_TPAMI_2013_93
crossref_primary_10_1186_s12887_020_02392_3
crossref_primary_10_1038_s41597_021_00808_y
crossref_primary_10_2174_1574893614666190204150918
crossref_primary_10_1089_sysm_2019_0008
crossref_primary_10_1016_j_apmr_2021_02_013
crossref_primary_10_1214_14_AOAS755
crossref_primary_10_1111_coin_12341
crossref_primary_10_1016_j_scitotenv_2019_06_529
crossref_primary_10_1007_s10661_022_09957_y
crossref_primary_10_3109_17477166_2010_545410
crossref_primary_10_3390_rs8030166
crossref_primary_10_1109_TGRS_2014_2301443
crossref_primary_10_1016_j_artmed_2020_101811
crossref_primary_10_1016_j_acags_2024_100203
crossref_primary_10_1016_j_artmed_2020_101814
crossref_primary_10_1016_j_catena_2021_105196
crossref_primary_10_1093_bioinformatics_btx519
crossref_primary_10_1186_1471_2105_9_S9_S9
crossref_primary_10_1039_C4MB00440J
crossref_primary_10_1002_bimj_201400010
crossref_primary_10_1007_s10661_015_4489_3
crossref_primary_10_1002_prca_200900175
crossref_primary_10_1016_j_landurbplan_2012_06_009
crossref_primary_10_1155_2022_5871408
crossref_primary_10_1145_3625237
crossref_primary_10_1158_1055_9965_EPI_16_0732
crossref_primary_10_1002_wsbm_163
crossref_primary_10_1364_BOE_517213
crossref_primary_10_2166_hydro_2023_063
crossref_primary_10_1016_j_asoc_2017_06_030
crossref_primary_10_35940_ijrte_E5208_019521
crossref_primary_10_1007_s00592_012_0376_3
crossref_primary_10_7717_peerj_4703
crossref_primary_10_1007_s10661_012_2716_8
crossref_primary_10_1186_1471_2156_9_71
crossref_primary_10_1016_j_jbi_2009_08_010
crossref_primary_10_1016_j_talanta_2020_121156
crossref_primary_10_1002_qre_3398
crossref_primary_10_1016_j_scitotenv_2019_05_233
crossref_primary_10_1139_cjfas_2016_0181
crossref_primary_10_1016_j_cageo_2014_10_016
crossref_primary_10_1016_j_patcog_2012_09_005
crossref_primary_10_1177_117693510700300007
crossref_primary_10_3389_fmolb_2022_907150
crossref_primary_10_1002_sam_10103
crossref_primary_10_1073_pnas_1514285112
crossref_primary_10_1145_3397491
crossref_primary_10_1155_2018_8316918
crossref_primary_10_1093_nar_gkr969
crossref_primary_10_1007_s11095_007_9266_8
crossref_primary_10_1097_QAD_0000000000001049
crossref_primary_10_3390_ijerph192316080
crossref_primary_10_7717_peerj_8286
crossref_primary_10_1016_j_fishres_2017_05_008
crossref_primary_10_1093_bioinformatics_btm539
crossref_primary_10_1111_ejn_13919
crossref_primary_10_1016_j_envsoft_2014_03_003
crossref_primary_10_1016_j_ecolind_2024_112452
crossref_primary_10_1016_j_pnsc_2008_04_012
crossref_primary_10_1021_acsnano_9b04220
crossref_primary_10_1186_1478_7954_9_29
crossref_primary_10_1002_jmor_21397
crossref_primary_10_1080_10618600_2020_1831930
crossref_primary_10_1155_2013_613529
crossref_primary_10_1016_j_eswa_2017_04_057
crossref_primary_10_1016_j_smim_2013_05_003
crossref_primary_10_1186_s12859_024_05977_2
crossref_primary_10_1073_pnas_1706359114
crossref_primary_10_1109_ACCESS_2020_2973188
crossref_primary_10_1016_j_iswcr_2020_09_004
crossref_primary_10_1371_journal_pcbi_1005812
crossref_primary_10_1016_j_compbiomed_2017_08_031
crossref_primary_10_1111_j_1468_1331_2010_02955_x
crossref_primary_10_1016_j_rse_2015_04_015
crossref_primary_10_3390_ijgi11040226
crossref_primary_10_3390_rs13244990
crossref_primary_10_1099_jmm_0_001903
crossref_primary_10_1186_s13040_024_00361_5
crossref_primary_10_1016_j_quascirev_2024_108812
crossref_primary_10_1080_23808993_2021_1882847
crossref_primary_10_1007_s12652_018_1066_y
crossref_primary_10_1038_srep20200
crossref_primary_10_1080_10485252_2012_677843
crossref_primary_10_1109_JSTARS_2019_2899033
crossref_primary_10_1093_jn_nxaa285
crossref_primary_10_1038_s41598_020_68167_z
crossref_primary_10_1016_j_engappai_2022_105287
crossref_primary_10_1016_j_isprsjprs_2012_03_006
crossref_primary_10_1097_ALN_0000000000000757
crossref_primary_10_1186_s13717_020_00265_2
crossref_primary_10_1371_journal_pone_0175591
crossref_primary_10_1016_j_csda_2012_09_020
crossref_primary_10_1186_s40537_020_00327_4
crossref_primary_10_1016_j_rse_2009_07_002
crossref_primary_10_1155_2021_7231126
crossref_primary_10_1186_1471_2105_9_500
crossref_primary_10_1016_j_mrfmmm_2016_08_002
crossref_primary_10_1515_jib_2018_0064
crossref_primary_10_2217_pgs_11_157
crossref_primary_10_1016_j_scitotenv_2023_167749
crossref_primary_10_2196_18387
crossref_primary_10_1007_s11104_024_07197_2
crossref_primary_10_1103_PhysRevPhysEducRes_15_010114
crossref_primary_10_1108_VJIKMS_11_2018_0102
crossref_primary_10_1186_s12859_024_05674_0
crossref_primary_10_1186_1471_2164_12_S5_S1
crossref_primary_10_1186_s13321_017_0226_y
crossref_primary_10_1371_journal_pone_0089596
crossref_primary_10_3390_w13091237
crossref_primary_10_1109_TCBB_2021_3089417
crossref_primary_10_2166_wcc_2023_386
crossref_primary_10_1016_j_tra_2017_08_020
crossref_primary_10_1016_j_ins_2020_01_014
crossref_primary_10_26599_TST_2023_9010092
crossref_primary_10_3390_rs12030487
crossref_primary_10_3390_s24051527
crossref_primary_10_1007_s10994_013_5346_7
crossref_primary_10_1021_acs_est_7b06386
crossref_primary_10_1007_s10729_017_9423_5
crossref_primary_10_1093_gerona_glae218
crossref_primary_10_1007_s10346_015_0614_1
crossref_primary_10_1007_s12665_020_08927_2
crossref_primary_10_3390_nano10040708
crossref_primary_10_3390_nano11071774
crossref_primary_10_1016_j_patcog_2013_02_010
crossref_primary_10_1186_s12864_016_3320_z
crossref_primary_10_1016_j_jaridenv_2012_08_004
crossref_primary_10_1002_nafm_10927
crossref_primary_10_1186_s12887_018_1082_2
crossref_primary_10_1016_j_jocs_2022_101879
crossref_primary_10_1109_ACCESS_2020_2984657
crossref_primary_10_1007_s40003_024_00771_1
crossref_primary_10_1371_journal_pone_0106117
crossref_primary_10_1155_2021_3597051
crossref_primary_10_1016_j_isci_2021_103523
crossref_primary_10_1007_s42835_023_01455_6
crossref_primary_10_1371_journal_pone_0153776
crossref_primary_10_3389_fphys_2021_657304
crossref_primary_10_1002_hbm_23412
crossref_primary_10_1016_j_apgeog_2018_12_008
crossref_primary_10_1093_bioinformatics_btab369
crossref_primary_10_1016_j_ecolind_2019_105744
crossref_primary_10_1007_s13748_017_0118_4
crossref_primary_10_1007_s12539_017_0219_6
crossref_primary_10_1016_j_rse_2015_02_021
crossref_primary_10_1038_s41598_018_26506_1
crossref_primary_10_54097_fcis_v5i1_12005
crossref_primary_10_1016_j_ejpsy_2024_100285
crossref_primary_10_1016_j_rpor_2017_10_003
crossref_primary_10_1155_2022_4282953
crossref_primary_10_1016_j_minpro_2016_08_015
crossref_primary_10_4015_S1016237208000969
crossref_primary_10_1111_nph_12419
crossref_primary_10_1021_pr1011069
crossref_primary_10_1186_s13040_018_0168_6
crossref_primary_10_1007_s13402_021_00640_x
crossref_primary_10_1159_000529062
crossref_primary_10_1186_s12938_022_01049_9
crossref_primary_10_3892_or_2012_1891
crossref_primary_10_3390_jcm8010050
crossref_primary_10_1186_s12911_024_02712_y
crossref_primary_10_1186_s12859_017_1848_9
crossref_primary_10_1183_23120541_00484_2022
crossref_primary_10_1080_02564602_2014_906859
crossref_primary_10_1186_s12859_017_1617_9
crossref_primary_10_1186_s12859_023_05540_5
crossref_primary_10_18632_aging_204547
crossref_primary_10_18632_aging_204548
crossref_primary_10_1186_s12918_017_0389_1
crossref_primary_10_1631_FITEE_1601491
crossref_primary_10_3934_mbe_2022228
crossref_primary_10_1038_srep41176
crossref_primary_10_13078_jsm_18012
crossref_primary_10_1016_j_aap_2019_05_017
crossref_primary_10_2136_sssaj2013_08_0354
crossref_primary_10_1007_s11629_019_5789_9
crossref_primary_10_1186_1752_0509_6_40
crossref_primary_10_1177_1460458221989402
crossref_primary_10_1371_journal_pcbi_1010357
crossref_primary_10_1177_0962280213502437
crossref_primary_10_1016_j_scitotenv_2023_162075
crossref_primary_10_3390_rs11080920
crossref_primary_10_1098_rspb_2019_0211
crossref_primary_10_1016_j_agwat_2025_109294
crossref_primary_10_5194_bg_15_7347_2018
crossref_primary_10_1212_CPJ_0000000000000726
crossref_primary_10_1016_j_envpol_2017_06_086
crossref_primary_10_1017_asb_2023_12
crossref_primary_10_1186_1471_2105_12_484
crossref_primary_10_1089_cmb_2008_0034
crossref_primary_10_1016_j_geomorph_2014_07_020
crossref_primary_10_1089_cmb_2008_0037
crossref_primary_10_1038_s41598_019_50677_0
crossref_primary_10_1016_j_genrep_2021_101419
crossref_primary_10_1016_j_socnet_2016_02_003
crossref_primary_10_1016_j_robot_2016_10_005
crossref_primary_10_1155_2022_5821938
crossref_primary_10_1002_gepi_20473
crossref_primary_10_1016_j_apm_2023_06_025
crossref_primary_10_1016_j_wse_2021_10_004
crossref_primary_10_1111_mec_14143
crossref_primary_10_1186_s12859_017_1729_2
crossref_primary_10_1093_molbev_msaa302
crossref_primary_10_1109_TGRS_2009_2039484
crossref_primary_10_2196_mental_4227
crossref_primary_10_1212_CPJ_0000000000200448
crossref_primary_10_1371_journal_pone_0254894
crossref_primary_10_1093_bib_bbx124
crossref_primary_10_1016_j_knosys_2019_04_011
crossref_primary_10_1002_2016WR020197
crossref_primary_10_1093_gerona_63_9_895
crossref_primary_10_1016_j_aeaoa_2023_100207
crossref_primary_10_1016_j_forc_2019_100175
crossref_primary_10_1785_0220180306
crossref_primary_10_3390_app9204338
crossref_primary_10_1186_s12859_017_1925_0
crossref_primary_10_1093_nar_gks1288
crossref_primary_10_1016_j_virol_2018_10_001
crossref_primary_10_1080_01431161_2018_1483090
crossref_primary_10_1093_nar_gkr064
crossref_primary_10_1016_j_csbj_2020_08_005
crossref_primary_10_1109_ACCESS_2021_3133700
crossref_primary_10_1186_1752_0509_8_S2_S1
crossref_primary_10_1007_s40572_018_0180_5
crossref_primary_10_1016_j_chemolab_2020_104056
crossref_primary_10_5194_hess_25_5805_2021
crossref_primary_10_18632_oncotarget_6679
crossref_primary_10_1155_2019_2807470
crossref_primary_10_1093_bioinformatics_bts643
crossref_primary_10_1007_s10995_025_04038_1
crossref_primary_10_1016_j_bspc_2018_12_016
crossref_primary_10_1016_j_psj_2021_101122
crossref_primary_10_1111_1755_0998_12773
crossref_primary_10_3390_app132212266
crossref_primary_10_1371_journal_pone_0104449
crossref_primary_10_3390_rs9020105
crossref_primary_10_1007_s11042_020_09187_9
crossref_primary_10_1158_1940_6207_CAPR_14_0140
crossref_primary_10_1093_bioinformatics_btr300
crossref_primary_10_18632_aging_205380
crossref_primary_10_1371_journal_pone_0081683
crossref_primary_10_1109_TCBB_2012_23
crossref_primary_10_1186_1471_2105_15_8
crossref_primary_10_1109_TCBB_2012_21
crossref_primary_10_1016_j_atmosres_2021_105819
crossref_primary_10_1080_01431161_2013_788261
crossref_primary_10_1007_s11600_018_0190_6
crossref_primary_10_1109_LGRS_2017_2745049
crossref_primary_10_1155_2023_6447655
crossref_primary_10_3389_fgene_2016_00097
crossref_primary_10_1155_2020_8924095
crossref_primary_10_1007_s10661_024_12294_x
crossref_primary_10_1016_j_bspc_2020_102053
crossref_primary_10_3389_fimmu_2021_643529
crossref_primary_10_1016_j_kint_2017_01_017
crossref_primary_10_3233_JIFS_169470
crossref_primary_10_1109_JSTARS_2019_2921817
crossref_primary_10_3389_fonc_2018_00228
crossref_primary_10_1145_3232230
crossref_primary_10_1145_3345314
crossref_primary_10_3390_diagnostics11081449
crossref_primary_10_3390_s17112655
crossref_primary_10_1177_2514183X18786602
crossref_primary_10_1371_journal_pone_0024973
crossref_primary_10_1517_17530059_2012_718329
crossref_primary_10_3389_fimmu_2023_1197493
crossref_primary_10_1186_1471_2105_8_206
crossref_primary_10_1002_for_2856
crossref_primary_10_1080_03610910701792554
crossref_primary_10_3390_w14091427
crossref_primary_10_1136_bmjopen_2013_003114
crossref_primary_10_1186_s12920_017_0303_0
crossref_primary_10_1016_j_solener_2021_02_039
crossref_primary_10_1002_cam4_4941
crossref_primary_10_1186_s13073_015_0213_8
crossref_primary_10_1016_j_jbi_2016_11_006
crossref_primary_10_1186_1471_2105_15_274
crossref_primary_10_1097_00029330_200812020_00005
crossref_primary_10_1016_j_isprsjprs_2013_11_013
crossref_primary_10_1142_S0218213017500245
crossref_primary_10_1038_srep26083
crossref_primary_10_1371_journal_pone_0201904
crossref_primary_10_3389_fevo_2021_738537
crossref_primary_10_1016_j_scitotenv_2024_172684
crossref_primary_10_1089_cmb_2007_0211
crossref_primary_10_1016_j_prevetmed_2021_105565
crossref_primary_10_1155_2014_781807
crossref_primary_10_3390_rs14133073
crossref_primary_10_1371_journal_pone_0204186
crossref_primary_10_1016_j_cub_2016_07_065
crossref_primary_10_1016_j_patcog_2010_02_008
crossref_primary_10_1109_TCBB_2012_63
crossref_primary_10_1016_j_jsr_2021_09_013
crossref_primary_10_1016_j_cmpb_2024_108481
crossref_primary_10_1016_j_compbiomed_2021_104614
crossref_primary_10_1007_s11252_017_0675_0
crossref_primary_10_1096_fj_202301270RR
crossref_primary_10_3390_rs11121500
crossref_primary_10_1158_1055_9965_EPI_07_2830
crossref_primary_10_1007_s10278_017_9999_9
crossref_primary_10_2478_cait_2021_0016
crossref_primary_10_1007_s11146_022_09929_6
crossref_primary_10_1007_s11749_016_0481_7
crossref_primary_10_1016_j_vibspec_2020_103065
crossref_primary_10_1016_j_apgeog_2023_102928
crossref_primary_10_1016_j_rse_2018_02_073
crossref_primary_10_1093_bib_bbu012
crossref_primary_10_1002_minf_201700050
crossref_primary_10_1080_17583004_2018_1553434
crossref_primary_10_3390_f13030457
crossref_primary_10_1016_j_engappai_2016_06_003
crossref_primary_10_1007_s12035_019_1480_y
crossref_primary_10_1109_TCAD_2020_3031865
crossref_primary_10_1007_s00500_023_08126_8
crossref_primary_10_1016_j_qeh_2024_100048
crossref_primary_10_1016_j_jag_2016_03_004
crossref_primary_10_1136_rmdopen_2024_004702
crossref_primary_10_1177_0003702815620545
crossref_primary_10_20965_jaciii_2008_p0218
crossref_primary_10_3390_w13243629
crossref_primary_10_1093_bioinformatics_btq038
crossref_primary_10_1111_coin_12287
crossref_primary_10_1371_journal_pone_0157330
crossref_primary_10_1002_bimj_201300259
crossref_primary_10_3390_ijms23052481
crossref_primary_10_1002_widm_1301
crossref_primary_10_1016_j_biocontrol_2022_104866
crossref_primary_10_1016_j_bbapap_2014_02_023
crossref_primary_10_1038_s41598_020_80839_4
crossref_primary_10_1038_s41598_018_35487_0
crossref_primary_10_2331_suisan_81_2
crossref_primary_10_1038_s41598_023_37184_z
crossref_primary_10_1186_1471_2164_13_472
crossref_primary_10_1177_1460458220984205
crossref_primary_10_1109_TCBB_2021_3098709
crossref_primary_10_1002_widm_29
crossref_primary_10_3390_app13127253
crossref_primary_10_1111_j_2041_210x_2012_00253_x
crossref_primary_10_1007_s11069_021_04678_w
crossref_primary_10_1016_j_chemolab_2010_12_004
crossref_primary_10_4137_CIN_S10375
crossref_primary_10_1007_s00374_020_01528_y
crossref_primary_10_5194_nhess_21_2993_2021
crossref_primary_10_1111_maec_12362
crossref_primary_10_1016_j_proenv_2011_02_022
crossref_primary_10_3390_w12113223
crossref_primary_10_1089_cmb_2010_0064
crossref_primary_10_18632_aging_101264
crossref_primary_10_1016_j_catena_2018_11_010
crossref_primary_10_1631_jzus_B2101009
crossref_primary_10_1515_corrrev_2022_0089
crossref_primary_10_1088_1757_899X_537_6_062002
crossref_primary_10_3389_fnmol_2018_00073
crossref_primary_10_1186_s12859_020_03718_9
crossref_primary_10_1007_s00018_011_0628_3
crossref_primary_10_1186_s12874_021_01369_9
crossref_primary_10_1039_b907946g
crossref_primary_10_1158_1078_0432_CCR_06_2222
crossref_primary_10_1109_TBME_2011_2161306
crossref_primary_10_7717_peerj_cs_287
crossref_primary_10_5589_m13_038
crossref_primary_10_7717_peerj_3890
crossref_primary_10_1002_stc_2170
crossref_primary_10_1016_j_phrs_2020_105276
crossref_primary_10_1016_j_geoderma_2019_113939
crossref_primary_10_1016_j_cbd_2017_10_005
crossref_primary_10_1155_2021_5573650
crossref_primary_10_1007_s11042_019_7327_8
crossref_primary_10_1016_j_compag_2020_105526
crossref_primary_10_1016_j_biocon_2018_08_010
crossref_primary_10_1016_j_bbe_2018_08_004
crossref_primary_10_1016_j_csbj_2023_08_033
crossref_primary_10_1016_j_energy_2020_119437
crossref_primary_10_1038_s41586_018_0590_4
crossref_primary_10_1089_cmb_2010_0085
crossref_primary_10_1186_s12967_021_03083_y
crossref_primary_10_1016_j_jgg_2022_12_005
crossref_primary_10_1007_s00180_014_0540_z
crossref_primary_10_1111_ddi_12818
crossref_primary_10_4018_IJHISI_2019010101
crossref_primary_10_1038_s41397_021_00246_4
crossref_primary_10_3390_rs12152445
crossref_primary_10_1016_j_heliyon_2024_e36368
crossref_primary_10_1038_s41409_020_0848_y
crossref_primary_10_3389_fdata_2023_921355
crossref_primary_10_1016_j_knosys_2022_108745
crossref_primary_10_1042_BSR20201087
crossref_primary_10_1080_07038992_2024_2338357
crossref_primary_10_1186_1471_2105_15_S16_S8
crossref_primary_10_1007_s11222_017_9767_1
crossref_primary_10_1109_ACCESS_2021_3060114
crossref_primary_10_1016_j_jclepro_2017_06_156
crossref_primary_10_1371_journal_pcbi_1006651
crossref_primary_10_3390_rs12152435
crossref_primary_10_1016_S2095_3119_20_63329_9
crossref_primary_10_3390_en11123283
crossref_primary_10_1186_s12859_014_0368_0
crossref_primary_10_1186_s12859_016_1390_1
crossref_primary_10_1093_nar_gkn251
crossref_primary_10_1016_j_csda_2014_06_017
crossref_primary_10_1016_j_foreco_2020_118353
crossref_primary_10_3390_a10040114
crossref_primary_10_1016_j_eswa_2013_12_009
crossref_primary_10_1016_j_foreco_2021_119951
crossref_primary_10_1016_j_eswa_2013_05_051
crossref_primary_10_1016_j_patcog_2017_04_005
crossref_primary_10_1039_c3an00337j
crossref_primary_10_3389_fonc_2022_854927
crossref_primary_10_1155_2022_2833537
crossref_primary_10_1371_journal_pone_0169605
crossref_primary_10_1039_C5FD00157A
crossref_primary_10_1021_acscatal_9b02778
crossref_primary_10_3389_fpls_2016_01864
crossref_primary_10_32604_phyton_2025_060152
crossref_primary_10_1021_acs_analchem_3c01157
crossref_primary_10_3390_w11050910
crossref_primary_10_1038_srep23889
crossref_primary_10_1080_00031305_2015_1005128
crossref_primary_10_1093_bioinformatics_btz809
crossref_primary_10_1093_bioinformatics_bty959
crossref_primary_10_1515_ijb_2013_0038
crossref_primary_10_1038_srep13606
crossref_primary_10_3390_e18080285
crossref_primary_10_1016_j_jbi_2021_103763
crossref_primary_10_1016_j_rse_2011_05_013
crossref_primary_10_13048_jkm_20015
crossref_primary_10_1016_j_patrec_2017_05_004
crossref_primary_10_1002_adfm_202400107
crossref_primary_10_1016_j_pce_2020_102931
crossref_primary_10_7465_jkdi_2015_26_2_475
crossref_primary_10_1016_j_ab_2018_06_011
crossref_primary_10_1007_s12145_024_01347_x
crossref_primary_10_1016_j_engappai_2023_107681
crossref_primary_10_1186_s12864_017_4340_z
crossref_primary_10_1016_j_jhydrol_2019_123957
crossref_primary_10_1080_01621459_2021_1987250
crossref_primary_10_1186_s12944_023_01918_9
crossref_primary_10_1016_j_meomic_2020_100001
crossref_primary_10_1371_journal_pone_0305857
crossref_primary_10_1203_PDR_0b013e318155a0e1
crossref_primary_10_1016_j_compbiolchem_2024_108205
crossref_primary_10_1093_bioinformatics_btw318
crossref_primary_10_1038_s41396_022_01201_2
crossref_primary_10_1016_j_ijrobp_2018_01_054
crossref_primary_10_1186_s12859_016_1292_2
crossref_primary_10_3389_fimmu_2024_1360629
crossref_primary_10_1007_s00330_018_5872_6
crossref_primary_10_3390_biom12111592
crossref_primary_10_1097_TP_0000000000002587
crossref_primary_10_1016_j_jbi_2020_103466
crossref_primary_10_1142_S0219720016500153
crossref_primary_10_1186_s13075_019_2010_z
crossref_primary_10_1002_pros_24704
crossref_primary_10_1016_j_foreco_2016_08_047
crossref_primary_10_1016_j_scitotenv_2024_177344
crossref_primary_10_1016_j_compag_2018_09_026
crossref_primary_10_1007_s00723_013_0439_9
crossref_primary_10_1016_j_compbiolchem_2007_09_005
crossref_primary_10_1007_s11571_020_09601_w
crossref_primary_10_2174_2666255813999201109201259
crossref_primary_10_1016_j_cmpb_2024_108561
crossref_primary_10_1002_sim_6351
crossref_primary_10_1080_10106049_2019_1594394
crossref_primary_10_1017_S095026881500014X
crossref_primary_10_1021_acs_jcim_1c00670
crossref_primary_10_1371_journal_pone_0256592
crossref_primary_10_1152_physiolgenomics_00167_2007
crossref_primary_10_1109_TNB_2009_2035284
crossref_primary_10_1109_ACCESS_2025_3540769
crossref_primary_10_1155_2016_3572705
crossref_primary_10_1186_1471_2164_16_S2_S5
crossref_primary_10_5721_EuJRS20164943
crossref_primary_10_1016_j_fuel_2016_06_034
crossref_primary_10_1016_j_agwat_2022_107504
crossref_primary_10_1214_15_AOS1321
crossref_primary_10_1016_j_jaci_2014_06_032
crossref_primary_10_1007_s11030_011_9321_6
crossref_primary_10_1016_j_engstruct_2022_114190
crossref_primary_10_1371_journal_pone_0202344
crossref_primary_10_1111_gcb_13898
crossref_primary_10_1089_cmb_2006_0116
crossref_primary_10_1155_2014_769159
crossref_primary_10_1186_s40168_020_00943_5
crossref_primary_10_1080_01621459_2015_1036994
crossref_primary_10_19113_sdufenbed_453462
crossref_primary_10_1093_biostatistics_kxp016
crossref_primary_10_1038_s41598_021_98879_9
crossref_primary_10_1007_s13755_019_0085_1
crossref_primary_10_1002_1878_0261_12850
crossref_primary_10_1186_s12874_022_01625_6
crossref_primary_10_1021_acs_analchem_0c01660
crossref_primary_10_1109_TPAMI_2017_2648792
crossref_primary_10_1371_journal_pone_0212127
crossref_primary_10_3233_JIFS_179115
crossref_primary_10_15406_bbij_2016_04_00106
crossref_primary_10_3390_w11112424
crossref_primary_10_1002_bies_201300147
crossref_primary_10_1007_s11704_022_1172_z
crossref_primary_10_1016_j_geoderma_2020_114246
crossref_primary_10_1016_j_microc_2013_08_007
crossref_primary_10_1038_srep39832
crossref_primary_10_1002_qj_3823
crossref_primary_10_1016_j_jhydrol_2018_04_038
crossref_primary_10_1029_2020WR027472
crossref_primary_10_3389_fmicb_2021_673632
crossref_primary_10_1038_s41598_017_14682_5
crossref_primary_10_1016_j_neuroimage_2010_07_074
crossref_primary_10_1145_2932707
crossref_primary_10_1016_j_geoderma_2020_114214
crossref_primary_10_1109_ACCESS_2018_2874063
crossref_primary_10_2147_IJGM_S354741
crossref_primary_10_1109_TIV_2016_2617625
crossref_primary_10_1016_j_catena_2024_108344
crossref_primary_10_3390_rs14143373
crossref_primary_10_1186_1755_8794_6_S1_S3
crossref_primary_10_3233_CBM_220147
crossref_primary_10_3389_fmed_2022_882348
crossref_primary_10_1007_s10115_023_01971_x
crossref_primary_10_32604_cmc_2023_036710
crossref_primary_10_1100_2012_380495
crossref_primary_10_1111_j_1600_6143_2011_03928_x
crossref_primary_10_1016_j_atmosenv_2019_03_029
crossref_primary_10_1007_s00216_006_1070_5
crossref_primary_10_1016_j_bbadis_2013_09_006
crossref_primary_10_1007_s11548_013_0913_8
crossref_primary_10_1016_j_patter_2020_100176
crossref_primary_10_1371_journal_pmed_1001916
crossref_primary_10_1016_j_compbiomed_2021_105154
crossref_primary_10_3233_JSA_190294
crossref_primary_10_1109_JBHI_2019_2944865
crossref_primary_10_1198_jasa_2009_tm08622
crossref_primary_10_1007_s10528_024_10987_z
crossref_primary_10_1007_s40003_013_0086_2
crossref_primary_10_1186_s12859_016_0971_3
crossref_primary_10_1016_j_jmva_2023_105211
crossref_primary_10_1038_s41598_019_53451_4
crossref_primary_10_1109_ACCESS_2023_3257875
crossref_primary_10_1016_j_still_2021_105017
crossref_primary_10_1080_1062936X_2024_2446352
crossref_primary_10_7717_peerj_cs_1775
crossref_primary_10_1080_26895293_2024_2422109
crossref_primary_10_1093_bioinformatics_btq628
crossref_primary_10_1007_s10980_008_9261_4
crossref_primary_10_1007_s12021_019_9415_3
crossref_primary_10_3389_fpsyt_2021_637022
crossref_primary_10_1016_j_envsoft_2022_105326
crossref_primary_10_1093_bioinformatics_btaa144
crossref_primary_10_3390_diagnostics9040178
crossref_primary_10_1016_j_jechem_2024_08_007
crossref_primary_10_1016_j_eswa_2013_03_019
crossref_primary_10_1080_01650521_2021_2024055
crossref_primary_10_1109_TCBB_2013_70
crossref_primary_10_1158_1055_9965_EPI_08_0231
crossref_primary_10_1016_j_csbj_2020_07_009
crossref_primary_10_1016_j_jag_2014_12_010
crossref_primary_10_1186_1758_2946_5_9
crossref_primary_10_1016_j_geomorph_2017_02_015
crossref_primary_10_1093_bib_bbaf096
crossref_primary_10_1371_journal_pone_0194212
crossref_primary_10_1016_j_fecs_2024_100211
crossref_primary_10_1080_15567036_2023_2231898
crossref_primary_10_1080_15481603_2018_1426091
crossref_primary_10_1186_s40537_024_00902_z
crossref_primary_10_1021_acs_analchem_3c04618
crossref_primary_10_7717_peerj_5285
crossref_primary_10_1016_j_gecco_2024_e02935
crossref_primary_10_1016_j_partic_2014_12_001
crossref_primary_10_1016_j_buildenv_2015_04_021
crossref_primary_10_1016_j_ecolmodel_2007_05_011
crossref_primary_10_1016_j_jhydrol_2021_126770
crossref_primary_10_1016_j_jclimf_2024_100032
crossref_primary_10_1007_s00262_024_03752_z
crossref_primary_10_1007_s11634_016_0276_4
crossref_primary_10_1038_s41598_021_92864_y
crossref_primary_10_1109_ACCESS_2020_3008416
crossref_primary_10_1007_s12026_023_09398_w
crossref_primary_10_3390_rs70810017
crossref_primary_10_1088_1742_6596_1402_6_066055
crossref_primary_10_1007_s10044_019_00856_6
crossref_primary_10_1016_j_chemolab_2017_10_024
crossref_primary_10_1177_0894439320928242
crossref_primary_10_1093_bioinformatics_btp331
crossref_primary_10_1109_TBME_2020_3042574
crossref_primary_10_1038_s41598_024_52956_x
crossref_primary_10_1007_s11269_015_1034_7
crossref_primary_10_1186_s13062_018_0222_9
crossref_primary_10_1080_10286608_2019_1568418
crossref_primary_10_1080_03736245_2021_2000481
crossref_primary_10_1016_j_cmpb_2013_04_016
crossref_primary_10_1007_s12274_022_4582_1
crossref_primary_10_1002_jqs_3004
crossref_primary_10_1016_j_aca_2013_10_050
crossref_primary_10_1093_nar_gkt426
crossref_primary_10_1080_1062936X_2016_1201142
crossref_primary_10_1007_s10044_008_0107_0
crossref_primary_10_3389_fevo_2017_00074
crossref_primary_10_3389_fevo_2018_00171
crossref_primary_10_4161_sysb_25981
crossref_primary_10_1111_j_1438_8677_2009_00278_x
crossref_primary_10_1016_j_jhydrol_2020_125168
crossref_primary_10_1109_ACCESS_2019_2935096
crossref_primary_10_3390_genes9020065
crossref_primary_10_1016_j_rse_2024_114302
crossref_primary_10_1177_23814683231218716
crossref_primary_10_1109_TCBB_2017_2705686
crossref_primary_10_1007_s11219_017_9361_y
crossref_primary_10_1002_gepi_22383
crossref_primary_10_1016_j_inffus_2016_10_001
crossref_primary_10_1016_j_quascirev_2024_108596
crossref_primary_10_1214_20_EJS1758
crossref_primary_10_1002_widm_1248
crossref_primary_10_2478_v10143_010_0052_4
crossref_primary_10_1038_ctg_2016_11
crossref_primary_10_3389_fgene_2021_768747
crossref_primary_10_1016_j_asoc_2017_09_020
crossref_primary_10_1002_mp_12594
crossref_primary_10_1016_j_physa_2013_12_046
crossref_primary_10_1007_s00521_010_0371_y
crossref_primary_10_1007_s13762_022_04367_6
crossref_primary_10_1016_j_ins_2013_07_011
crossref_primary_10_1016_j_jcmds_2023_100081
crossref_primary_10_1007_s41976_022_00070_9
crossref_primary_10_3354_meps14109
crossref_primary_10_1016_j_artmed_2008_08_004
crossref_primary_10_3390_rs11171961
crossref_primary_10_1007_s10666_016_9538_y
crossref_primary_10_1371_journal_pone_0124383
crossref_primary_10_1016_j_livsci_2022_105045
crossref_primary_10_3389_fgene_2022_855420
crossref_primary_10_3233_IDA_150795
crossref_primary_10_1093_intbio_zyz001
crossref_primary_10_1371_journal_pone_0185686
crossref_primary_10_1016_j_rse_2019_111606
crossref_primary_10_1038_s41598_019_52093_w
crossref_primary_10_1021_es402819c
crossref_primary_10_1186_1471_2288_9_85
crossref_primary_10_1371_journal_pone_0175957
crossref_primary_10_3390_w15112020
crossref_primary_10_1139_cjfas_2022_0212
crossref_primary_10_37394_23208_2022_19_19
crossref_primary_10_1016_j_chemosphere_2021_132498
crossref_primary_10_3390_app10176088
crossref_primary_10_1177_1420326X221121519
crossref_primary_10_1029_2018WR024620
crossref_primary_10_1016_j_patrec_2010_03_014
crossref_primary_10_1016_j_compbiolchem_2022_107681
crossref_primary_10_1371_journal_pgen_1008576
crossref_primary_10_1117_1_JRS_10_046030
crossref_primary_10_1016_j_jag_2014_08_001
crossref_primary_10_1371_journal_pone_0184370
crossref_primary_10_3390_ijgi10050352
crossref_primary_10_1002_sec_508
crossref_primary_10_1186_s12885_017_3821_4
crossref_primary_10_1007_s00521_018_3864_8
crossref_primary_10_1016_j_rse_2014_07_004
crossref_primary_10_1186_2047_2501_2_7
crossref_primary_10_1093_bioinformatics_bty087
crossref_primary_10_3390_app8091608
crossref_primary_10_3390_w11030544
crossref_primary_10_3945_ajcn_114_092288
crossref_primary_10_1039_C8FO01376D
crossref_primary_10_1137_20M1343300
crossref_primary_10_1016_j_humpath_2018_02_019
crossref_primary_10_1016_j_aca_2011_03_050
crossref_primary_10_1093_gbe_evv218
crossref_primary_10_1093_braincomms_fcad215
crossref_primary_10_1007_s11704_024_40117_2
crossref_primary_10_1186_1471_2105_9_307
crossref_primary_10_3389_fmars_2022_857645
crossref_primary_10_3233_IDT_160280
crossref_primary_10_3390_rs9030288
crossref_primary_10_1093_aje_kwab010
crossref_primary_10_3389_fmmed_2022_933383
crossref_primary_10_1038_s41598_017_16521_z
crossref_primary_10_1186_1471_2105_11_50
crossref_primary_10_1016_j_patcog_2018_03_014
crossref_primary_10_1136_jitc_2020_000705
crossref_primary_10_3390_agronomy15030692
crossref_primary_10_3892_ol_2019_10504
crossref_primary_10_1016_j_envsoft_2021_105094
crossref_primary_10_1111_aji_13928
crossref_primary_10_1007_s13042_024_02426_7
crossref_primary_10_1007_s11069_014_1192_6
crossref_primary_10_1007_s12539_017_0276_x
crossref_primary_10_1186_1471_2105_9_319
crossref_primary_10_3390_a9040077
crossref_primary_10_3109_0284186X_2011_648338
crossref_primary_10_3390_cancers14051291
crossref_primary_10_1007_s00500_015_1925_9
crossref_primary_10_1016_j_swevo_2016_02_002
crossref_primary_10_3390_ijms25073684
crossref_primary_10_1177_0962280220946080
crossref_primary_10_1002_cam4_2642
crossref_primary_10_1371_journal_pone_0084623
crossref_primary_10_3390_rs15061541
crossref_primary_10_1016_j_bcp_2013_08_026
crossref_primary_10_1890_ES11_00271_1
crossref_primary_10_3389_fgene_2021_733654
crossref_primary_10_3390_molecules23010052
crossref_primary_10_1007_s00371_018_01619_w
crossref_primary_10_1016_j_compag_2018_05_025
crossref_primary_10_1016_j_geoderma_2019_114061
crossref_primary_10_1093_gerona_glab269
crossref_primary_10_1186_1471_2105_10_S1_S65
crossref_primary_10_1080_02770903_2023_2260881
crossref_primary_10_1186_1753_6561_3_S7_S69
crossref_primary_10_1299_transjsme_20_00308
crossref_primary_10_1063_1_5129306
crossref_primary_10_1097_SHK_0000000000000296
crossref_primary_10_1093_bioinformatics_btq134
crossref_primary_10_1093_bioinformatics_bty1025
crossref_primary_10_1016_j_pnpbp_2012_04_014
crossref_primary_10_1016_j_cmpb_2011_03_002
crossref_primary_10_1186_1753_6561_3_S7_S64
crossref_primary_10_1371_journal_pone_0107801
crossref_primary_10_1007_s00330_020_07158_0
crossref_primary_10_3390_rs12193224
crossref_primary_10_1007_s40808_020_00871_1
crossref_primary_10_1007_s40808_021_01329_8
crossref_primary_10_1016_j_geoderma_2009_12_025
crossref_primary_10_1111_jedm_12208
crossref_primary_10_3389_fmed_2023_1081087
crossref_primary_10_1016_j_ejrh_2021_100884
crossref_primary_10_1016_j_lungcan_2011_09_016
crossref_primary_10_4137_CIN_S2892
crossref_primary_10_1007_s00521_015_2065_y
crossref_primary_10_1186_1753_6561_3_S7_S70
crossref_primary_10_3390_proteomes6020020
crossref_primary_10_1002_jbio_201200132
crossref_primary_10_1016_j_ejrh_2021_100880
crossref_primary_10_1038_srep38993
crossref_primary_10_1186_s13073_017_0493_2
crossref_primary_10_1016_j_scitotenv_2025_178520
crossref_primary_10_1016_j_talanta_2019_120471
crossref_primary_10_1079_PAVSNNR202015049
crossref_primary_10_1186_1471_2164_9_S1_S13
crossref_primary_10_1108_K_12_2014_0285
crossref_primary_10_1214_10_AOAS427
crossref_primary_10_1016_j_ecolind_2021_107975
crossref_primary_10_1021_acs_jpcc_0c09073
crossref_primary_10_1109_MCI_2014_2326099
crossref_primary_10_1109_TCBB_2017_2779512
crossref_primary_10_1016_j_pbiomolbio_2022_08_004
crossref_primary_10_1016_j_asoc_2017_03_002
crossref_primary_10_1109_JTEHM_2021_3134160
crossref_primary_10_1007_s10916_016_0467_8
crossref_primary_10_1080_03610918_2016_1248566
crossref_primary_10_1126_scitranslmed_aaa4877
crossref_primary_10_1121_1_4955066
crossref_primary_10_1080_2150704X_2014_999382
crossref_primary_10_1371_journal_pone_0114522
crossref_primary_10_1371_journal_pone_0102541
crossref_primary_10_1016_j_rse_2014_05_018
crossref_primary_10_1109_TCBB_2021_3132339
crossref_primary_10_1007_s00122_010_1516_1
crossref_primary_10_5194_nhess_15_75_2015
crossref_primary_10_3390_rs8060514
crossref_primary_10_5194_hess_16_3699_2012
crossref_primary_10_3390_genes11020162
crossref_primary_10_1109_TCBB_2008_46
crossref_primary_10_1016_j_tourman_2024_105119
crossref_primary_10_1016_j_bspc_2021_102420
crossref_primary_10_1016_j_patrec_2010_05_007
crossref_primary_10_1007_s41060_024_00509_w
crossref_primary_10_1016_j_compag_2019_105023
crossref_primary_10_1139_cjfas_2018_0364
crossref_primary_10_1002_for_3008
crossref_primary_10_1016_j_aej_2022_12_027
crossref_primary_10_1186_s12859_018_2095_4
crossref_primary_10_1016_j_fishres_2020_105534
crossref_primary_10_1017_S1351324915000431
crossref_primary_10_1089_omi_2008_0074
crossref_primary_10_3390_rs13020199
crossref_primary_10_1007_s11069_020_03900_5
crossref_primary_10_2208_jscejhe_77_2_I_997
crossref_primary_10_1007_s11517_014_1200_8
crossref_primary_10_1007_s13369_023_08474_5
crossref_primary_10_1016_j_watres_2020_116144
crossref_primary_10_3390_min15030197
crossref_primary_10_1186_s40537_021_00477_z
crossref_primary_10_1016_j_foreco_2016_06_037
crossref_primary_10_1111_ijfs_16440
crossref_primary_10_1039_C9TA11909D
crossref_primary_10_1186_1471_2164_15_S10_S1
crossref_primary_10_1371_journal_pcbi_1003254
crossref_primary_10_1016_j_energy_2019_01_037
crossref_primary_10_1038_s41598_023_42338_0
crossref_primary_10_7717_peerj_cs_150
crossref_primary_10_7737_JKORMS_2014_39_4_075
crossref_primary_10_2134_agronj2015_0222
crossref_primary_10_1016_j_ygeno_2012_04_003
crossref_primary_10_1146_annurev_anchem_091520_091450
crossref_primary_10_1186_1471_2288_12_107
crossref_primary_10_1016_j_jimonfin_2022_102654
crossref_primary_10_3390_rs14122917
crossref_primary_10_1016_j_cities_2022_104040
crossref_primary_10_1016_j_jbi_2019_103173
crossref_primary_10_3390_genes10020112
crossref_primary_10_3390_su9050819
crossref_primary_10_1177_0165551518789872
crossref_primary_10_1016_j_geoderma_2013_09_016
crossref_primary_10_1111_eva_12524
crossref_primary_10_1109_TVCG_2018_2864475
crossref_primary_10_1038_s41598_020_67024_3
crossref_primary_10_1016_j_scs_2021_103189
crossref_primary_10_1590_s1678_86212020000200410
crossref_primary_10_1016_j_catena_2024_107993
crossref_primary_10_1080_13632469_2020_1826371
crossref_primary_10_1016_j_jbi_2015_11_003
crossref_primary_10_1155_2015_198363
crossref_primary_10_1016_j_deveng_2016_12_003
crossref_primary_10_1007_s11042_023_17234_4
crossref_primary_10_1155_2012_712542
crossref_primary_10_1080_14767058_2023_2177529
crossref_primary_10_1109_ACCESS_2022_3192514
crossref_primary_10_1142_S0219720019500197
crossref_primary_10_1111_j_1600_6143_2008_02249_x
crossref_primary_10_1016_j_gene_2018_02_044
crossref_primary_10_1158_0008_5472_CAN_06_1736
crossref_primary_10_1016_j_knosys_2018_07_031
crossref_primary_10_1186_1471_2105_7_345
crossref_primary_10_1007_s10661_017_6025_0
crossref_primary_10_1371_journal_pone_0208823
crossref_primary_10_1364_BOE_9_005837
Cites_doi 10.1093/hmg/ddg093
10.1093/bioinformatics/btg102
10.1093/bioinformatics/bti171
10.1093/jnci/95.1.14
10.1093/bioinformatics/bti216
10.1093/bioinformatics/16.10.906
10.1038/35000501
10.1093/bioinformatics/bth267
10.1017/CBO9780511812651
10.1016/S0140-6736(05)17866-0
10.1080/10618600.1992.10474582
10.1126/science.286.5439.531
10.1093/bioinformatics/bti319
10.1073/pnas.211566398
10.1038/73432
10.1186/gb-2003-4-12-r83
10.1007/978-0-387-21606-5
10.1186/gb-2002-3-4-research0017
10.1038/415436a
10.1073/pnas.102102699
10.1093/bioinformatics/18.10.1332
10.1093/bioinformatics/btg182
10.1081/BIP-200035491
10.1038/89044
10.1016/j.toxlet.2004.02.021
10.1016/S0893-6080(03)00103-5
10.1186/1471-2156-4-S1-S64
10.1038/415530a
10.1186/1471-2105-5-81
10.1023/A:1009715923555
10.1214/ss/1009213726
10.1016/S1535-6108(02)00030-2
10.1196/annals.1310.015
10.1093/bioinformatics/btg210
10.1093/bioinformatics/bth447
10.1073/pnas.082099299
10.1002/0470094419.ch12
10.1073/pnas.0502674102
10.1073/pnas.1632587100
10.1002/0471725293
10.1073/pnas.96.12.6745
10.1158/1078-0432.1146.11.3
10.1016/j.csda.2004.03.017
10.1023/A:1010933404324
10.1093/nar/gki500
10.1093/bioinformatics/bth469
10.1093/bioinformatics/19.1.45
10.1007/978-1-4757-3462-1
10.1038/ng1502
10.1093/bioinformatics/btg399
10.1080/00031305.1983.10483087
10.1186/1471-2105-6-148
10.1038/ng1060
10.1198/016214502753479248
10.1016/j.jmva.2004.02.012
ContentType Journal Article
Copyright Copyright © 2006 Díaz-Uriarte and Alvarez de Andrés; licensee BioMed Central Ltd.
Copyright_xml – notice: Copyright © 2006 Díaz-Uriarte and Alvarez de Andrés; licensee BioMed Central Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.1186/1471-2105-7-3
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Genetics Abstracts
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList Genetics Abstracts
MEDLINE - Academic
MEDLINE

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1471-2105
EndPage 3
ExternalDocumentID oai_doaj_org_article_c84a92250dff4d9da68a9ffaf11fd9ae
10.1186/1471-2105-7-3
PMC1363357
16398926
10_1186_1471_2105_7_3
Genre Research Support, Non-U.S. Gov't
Evaluation Study
Journal Article
GroupedDBID ---
0R~
123
23N
2VQ
2WC
4.4
53G
5VS
6J9
AAFWJ
AAJSJ
AAKPC
AASML
AAYXX
ABDBF
ACGFO
ACGFS
ACIHN
ACIWK
ACPRK
ACUHS
ADBBV
ADMLS
ADRAZ
ADUKV
AEAQA
AENEX
AFPKN
AFRAH
AHBYD
AHMBA
AHSBF
AHYZX
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
AOIJS
BAPOH
BAWUL
BCNDV
BENPR
BFQNJ
BMC
C1A
C6C
CITATION
CS3
DIK
DU5
E3Z
EAD
EAP
EAS
EBD
EBLON
EBS
EJD
EMB
EMK
EMOBN
ESX
F5P
GROUPED_DOAJ
GX1
H13
HYE
IAO
ICD
IHR
INH
INR
IPNFZ
ISR
ITC
KQ8
M48
MK~
ML0
M~E
O5R
O5S
OK1
OVT
P2P
PGMZT
PIMPY
PQQKQ
RBZ
RIG
RNS
ROL
RPM
RSV
SBL
SOJ
SV3
TR2
TUS
W2D
WOQ
WOW
XH6
XSB
ALIPV
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
P64
RC3
7X8
5PM
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
ABUWG
ADTOC
AEUYN
AFFHD
AFKRA
ARAPS
AZQEC
BBNVY
BGLVJ
BHPHI
BPHCQ
BVXVI
CCPQU
DWQXO
FYUFA
GNUQQ
HCIFZ
HMCUK
K6V
K7-
LK8
M1P
M7P
P62
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PROAC
PSQYO
UKHRP
UNPAY
ID FETCH-LOGICAL-c4633-79ebbd7e4fb5ebf0d70885630ac97ba4fe9d073e3645ecb8d00d64e7323fe6363
IEDL.DBID M48
ISSN 1471-2105
IngestDate Fri Oct 03 12:43:29 EDT 2025
Wed Oct 29 11:23:17 EDT 2025
Thu Aug 21 14:13:29 EDT 2025
Thu Oct 02 11:43:04 EDT 2025
Tue Oct 07 09:37:22 EDT 2025
Thu Apr 03 07:06:49 EDT 2025
Thu Apr 24 23:12:49 EDT 2025
Wed Oct 01 01:46:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4633-79ebbd7e4fb5ebf0d70885630ac97ba4fe9d073e3645ecb8d00d64e7323fe6363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Undefined-1
ObjectType-Feature-3
OpenAccessLink https://doaj.org/article/c84a92250dff4d9da68a9ffaf11fd9ae
PMID 16398926
PQID 19433625
PQPubID 23462
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_c84a92250dff4d9da68a9ffaf11fd9ae
unpaywall_primary_10_1186_1471_2105_7_3
pubmedcentral_primary_oai_pubmedcentral_nih_gov_1363357
proquest_miscellaneous_67648791
proquest_miscellaneous_19433625
pubmed_primary_16398926
crossref_citationtrail_10_1186_1471_2105_7_3
crossref_primary_10_1186_1471_2105_7_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2006-01-06
PublicationDateYYYYMMDD 2006-01-06
PublicationDate_xml – month: 01
  year: 2006
  text: 2006-01-06
  day: 06
PublicationDecade 2000
PublicationPlace England
PublicationPlace_xml – name: England
– name: London
PublicationTitle BMC bioinformatics
PublicationTitleAlternate BMC Bioinformatics
PublicationYear 2006
Publisher BioMed Central
BMC
Publisher_xml – name: BioMed Central
– name: BMC
References S Michiels (742_CR30) 2005; 365
B Efron (742_CR35) 1997; 92
L Breiman (742_CR14) 1984
G Izmirlian (742_CR19) 2004; 1020
H Yu (742_CR50) 2004
EC Gunther (742_CR21) 2003; 100
S Dudoit (742_CR25) 2003
DT Ross (742_CR61) 2000; 24
L Ein-Dor (742_CR29) 2005; 21
B Wu (742_CR20) 2003; 19
JM Vaquerizas (742_CR58) 2005; 33
SL Pomeroy (742_CR63) 2002; 415
KY Yeung (742_CR2) 2005; 21
P Roepman (742_CR10) 2005; 37
TH Bø (742_CR12) 2002; 3
J Hua (742_CR4) 2005; 21
H Jiang (742_CR45) 2004; 5
H Schwender (742_CR23) 2004; 151
L Tierney (742_CR51) 2004
T Li (742_CR8) 2004; 20
BD Ripley (742_CR15) 1996
CJC Burgues (742_CR57) 1998; 2
A Bureau (742_CR36) 2003; 4
742_CR60
S Ramaswamy (742_CR55) 2001; 98
M Dettling (742_CR48) 2004; 90
S Ramaswamy (742_CR62) 2003; 33
LJ van't Veer (742_CR9) 2002; 415
742_CR68
JFE Harrell (742_CR40) 2001
C Furlanello (742_CR11) 2003; 16
JW Lee (742_CR1) 2005; 48
R Development Core Team (742_CR59) 2004
T Jirapech-Umpai (742_CR3) 2005; 6
U Braga-Neto (742_CR38) 2004; 20
RL Somorjai (742_CR27) 2003; 19
L Breiman (742_CR17) 1996; 24
S Alvarez (742_CR18) 2005; 11
MZ Man (742_CR22) 2004; 14
C Romualdi (742_CR31) 2003; 12
TS Furey (742_CR53) 2000; 16
V Svetnik (742_CR26) 2004; 3077
R Tibshirani (742_CR33) 2002; 99
C Ambroise (742_CR34) 2002; 99
AA Alizadeh (742_CR65) 2000; 403
KH Pan (742_CR28) 2005; 102
B Efron (742_CR41) 1983; 37
JM Deutsch (742_CR42) 2003; 19
M Dettling (742_CR32) 2004; 20
R Simon (742_CR37) 2003; 95
X Zhou (742_CR43) 2005; 21
CC Chang (742_CR56) 2003
T Hastie (742_CR16) 2001
KY Yeung (742_CR46) 2003; 4
U Alon (742_CR64) 1999; 96
GJ McLachlan (742_CR52) 1992
S Dudoit (742_CR7) 2002; 97
L Breiman (742_CR13) 2001; 45
J Khan (742_CR67) 2001; 7
R Díaz-Uriarte (742_CR6) 2005
TR Golub (742_CR44) 1999; 286
Y Li (742_CR5) 2002; 18
A Liaw (742_CR24) 2002; 2
D Singh (742_CR66) 2002; 1
J Faraway (742_CR39) 1992; 1
L Breiman (742_CR47) 2001; 16
RM Simon (742_CR49) 2003
Y Lee (742_CR54) 2003; 19
References_xml – volume: 12
  start-page: 823
  issue: 8
  year: 2003
  ident: 742_CR31
  publication-title: Hum Mol Genet
  doi: 10.1093/hmg/ddg093
– volume: 19
  start-page: 1132
  issue: 9
  year: 2003
  ident: 742_CR54
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg102
– volume: 21
  start-page: 1509
  year: 2005
  ident: 742_CR4
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti171
– volume: 95
  start-page: 14
  year: 2003
  ident: 742_CR37
  publication-title: Journal of the National Cancer Institute
  doi: 10.1093/jnci/95.1.14
– volume: 21
  start-page: 1559
  year: 2005
  ident: 742_CR43
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti216
– volume: 16
  start-page: 906
  issue: 10
  year: 2000
  ident: 742_CR53
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.10.906
– volume: 403
  start-page: 503
  year: 2000
  ident: 742_CR65
  publication-title: Nature
  doi: 10.1038/35000501
– volume: 20
  start-page: 2429
  year: 2004
  ident: 742_CR8
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth267
– volume-title: Pattern recognition and neural networks
  year: 1996
  ident: 742_CR15
  doi: 10.1017/CBO9780511812651
– volume: 365
  start-page: 488
  year: 2005
  ident: 742_CR30
  publication-title: Lancet
  doi: 10.1016/S0140-6736(05)17866-0
– volume: 1
  start-page: 251
  year: 1992
  ident: 742_CR39
  publication-title: Journal of Computational and Graphical Statistics
  doi: 10.1080/10618600.1992.10474582
– volume: 286
  start-page: 531
  year: 1999
  ident: 742_CR44
  publication-title: Science
  doi: 10.1126/science.286.5439.531
– volume: 2
  start-page: 18
  year: 2002
  ident: 742_CR24
  publication-title: Rnews
– volume: 21
  start-page: 2394
  year: 2005
  ident: 742_CR2
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bti319
– volume: 98
  start-page: 15149
  issue: 26
  year: 2001
  ident: 742_CR55
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.211566398
– volume: 24
  start-page: 227
  issue: 3
  year: 2000
  ident: 742_CR61
  publication-title: Nature Genetics
  doi: 10.1038/73432
– volume: 4
  start-page: R83
  year: 2003
  ident: 742_CR46
  publication-title: Genome Biol
  doi: 10.1186/gb-2003-4-12-r83
– volume-title: The elements of statistical learning
  year: 2001
  ident: 742_CR16
  doi: 10.1007/978-0-387-21606-5
– volume: 3
  start-page: 0017.1
  issue: 4
  year: 2002
  ident: 742_CR12
  publication-title: Genome Biology
  doi: 10.1186/gb-2002-3-4-research0017
– volume: 415
  start-page: 436
  year: 2002
  ident: 742_CR63
  publication-title: Nature
  doi: 10.1038/415436a
– volume: 99
  start-page: 6562
  issue: 10
  year: 2002
  ident: 742_CR34
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.102102699
– volume: 18
  start-page: 1332
  year: 2002
  ident: 742_CR5
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/18.10.1332
– volume: 3077
  start-page: 334
  year: 2004
  ident: 742_CR26
  publication-title: Multiple Classier Systems, Fifth International Workshop, MCS 2004, Proceedings, 9–11 June 2004, Cagliari, Italy. Lecture Notes in Computer Science, Springer
– volume: 19
  start-page: 1484
  year: 2003
  ident: 742_CR27
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg182
– volume: 14
  start-page: 1065
  year: 2004
  ident: 742_CR22
  publication-title: J Biopharm Statist
  doi: 10.1081/BIP-200035491
– volume: 7
  start-page: 673
  year: 2001
  ident: 742_CR67
  publication-title: Nat Med
  doi: 10.1038/89044
– volume: 151
  start-page: 291
  year: 2004
  ident: 742_CR23
  publication-title: Toxicol Lett
  doi: 10.1016/j.toxlet.2004.02.021
– start-page: 93
  volume-title: Statistical analysis of gene expression microarray data
  year: 2003
  ident: 742_CR25
– volume: 16
  start-page: 641
  year: 2003
  ident: 742_CR11
  publication-title: Neural Netw
  doi: 10.1016/S0893-6080(03)00103-5
– volume: 4
  start-page: S64
  issue: Suppl 1
  year: 2003
  ident: 742_CR36
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-4-S1-S64
– volume: 415
  start-page: 530
  year: 2002
  ident: 742_CR9
  publication-title: Nature
  doi: 10.1038/415530a
– volume: 5
  start-page: 81
  year: 2004
  ident: 742_CR45
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-5-81
– volume: 2
  start-page: 121
  year: 1998
  ident: 742_CR57
  publication-title: Knowledge Discovery and Data Mining
  doi: 10.1023/A:1009715923555
– volume: 16
  start-page: 199
  year: 2001
  ident: 742_CR47
  publication-title: Statistical Science
  doi: 10.1214/ss/1009213726
– volume: 1
  start-page: 203
  year: 2002
  ident: 742_CR66
  publication-title: Cancer Cell
  doi: 10.1016/S1535-6108(02)00030-2
– volume: 1020
  start-page: 154
  year: 2004
  ident: 742_CR19
  publication-title: Ann NY Acad Sci
  doi: 10.1196/annals.1310.015
– volume: 19
  start-page: 1636
  year: 2003
  ident: 742_CR20
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg210
– volume: 20
  start-page: 3583
  year: 2004
  ident: 742_CR32
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth447
– volume: 99
  start-page: 6567
  issue: 10
  year: 2002
  ident: 742_CR33
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.082099299
– ident: 742_CR68
– start-page: 193
  volume-title: Data analysis and visualization in genomics and proteomics
  year: 2005
  ident: 742_CR6
  doi: 10.1002/0470094419.ch12
– volume: 102
  start-page: 8961
  year: 2005
  ident: 742_CR28
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0502674102
– ident: 742_CR60
– volume: 100
  start-page: 9608
  year: 2003
  ident: 742_CR21
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1632587100
– volume-title: Discriminant analysis and statistical pattern recognition
  year: 1992
  ident: 742_CR52
  doi: 10.1002/0471725293
– volume: 96
  start-page: 6745
  year: 1999
  ident: 742_CR64
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.96.12.6745
– volume: 11
  start-page: 1146
  year: 2005
  ident: 742_CR18
  publication-title: Clin Cancer Res
  doi: 10.1158/1078-0432.1146.11.3
– volume: 48
  start-page: 869
  year: 2005
  ident: 742_CR1
  publication-title: Computation Statistics and Data Analysis
  doi: 10.1016/j.csda.2004.03.017
– volume: 24
  start-page: 123
  year: 1996
  ident: 742_CR17
  publication-title: Machine Learning
– volume: 45
  start-page: 5
  year: 2001
  ident: 742_CR13
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 92
  start-page: 548
  year: 1997
  ident: 742_CR35
  publication-title: J American Statistical Association
– volume: 33
  start-page: W616
  year: 2005
  ident: 742_CR58
  publication-title: Nucleic Acids Res
  doi: 10.1093/nar/gki500
– volume: 21
  start-page: 171
  year: 2005
  ident: 742_CR29
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bth469
– volume: 19
  start-page: 45
  year: 2003
  ident: 742_CR42
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/19.1.45
– volume-title: Regression modeling strategies
  year: 2001
  ident: 742_CR40
  doi: 10.1007/978-1-4757-3462-1
– volume: 37
  start-page: 182
  year: 2005
  ident: 742_CR10
  publication-title: Nat Genet
  doi: 10.1038/ng1502
– volume: 20
  start-page: 253
  year: 2004
  ident: 742_CR38
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btg399
– volume-title: LIBSVM: a library for Support Vector Machines
  year: 2003
  ident: 742_CR56
– volume: 37
  start-page: 36
  year: 1983
  ident: 742_CR41
  publication-title: Am Stat
  doi: 10.1080/00031305.1983.10483087
– volume-title: R: A language and environment for statistical computing
  year: 2004
  ident: 742_CR59
– volume-title: Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface)
  year: 2004
  ident: 742_CR50
– volume: 6
  start-page: 148
  year: 2005
  ident: 742_CR3
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-6-148
– volume-title: Tech. rep
  year: 2004
  ident: 742_CR51
– volume: 33
  start-page: 49
  year: 2003
  ident: 742_CR62
  publication-title: Nature Genetics
  doi: 10.1038/ng1060
– volume: 97
  start-page: 77
  issue: 457
  year: 2002
  ident: 742_CR7
  publication-title: J Am Stat Assoc
  doi: 10.1198/016214502753479248
– volume-title: Classification and regression trees
  year: 1984
  ident: 742_CR14
– volume: 90
  start-page: 106
  year: 2004
  ident: 742_CR48
  publication-title: J Multivariate Anal
  doi: 10.1016/j.jmva.2004.02.012
– volume-title: Design and analysis of DNA microarray investigations
  year: 2003
  ident: 742_CR49
SSID ssj0017805
Score 2.4767718
Snippet Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible...
Abstract Background Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 3
SubjectTerms Algorithms
Cluster Analysis
Computer Simulation
Gene Expression Profiling - methods
Methodology
Models, Genetic
Models, Statistical
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated - methods
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqSqhcEJRXgLY-IHqp1WTt2PERqlarSnCiUm_W-AVI22y17Qrtv2cmyYauoHDp1bGsyTw8M_b4G8beh6QsGO8FYHIi6IxB2IkBkejVZs4YYBh6O_z5i55eqPPL-vJOqy-qCevhgXvGHYdGgUWlK2POKtoIugGbM-SqytFCot23bOw6mRruDwipv3tXZCqBSU29Rtds9PE4JtC6NrxRB9r_t0jzz4LJnWV7DaufMJvd8UZnT9mTIYzkH3vyn7Gt1O6yR31jydVzNiU0aX7T9bhBxnNoIw8UJ1NhUCcLPs_8iorxYLGAFadCUU418N84Oq84v-IYzCJxL9jF2enXk6kYeiaIoLSUwtjkfTRJZV8nn8tocBshDDAI1nhQOdmIVp3o9jEF38SyjFolIycyJy21fMm223mbXjMeJC5hfbC-AqWbEuSkxNVD8oA7pKwKdrTmnQsDoDj1tZi5LrFotCNWO2K1M04W7MM4_bpH0rhv4icSxDiJALC7AVQLN6iF-59aFOxgLUaHBkO3INCm-fLGVVZJ9Nr1_TO00ZjGWfzBV73Yf9OL8VxjJ7pgZkMhNmjd_NL--N6BdlfIW1mbgh2OqvNvNrx5CDa8ZY_HMyP9jm3fLpZpD6OoW7_fGcwvRDAbDw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVIheeEPD0wcEFzbdjb32-lgQVYTUigORysnys1Qku9E2EQq_nvE-QlMo4sB1PWvZ45nx2J75BuCV9UxqYUyi8XCSxDuGRI6FTnzM2gwBHQwRc4ePT_hkyj6e5qc7cNznwpi5NedVBxoagYpHl9PQZ22WQ6yi4OuDhQut0hf8IEMjm-DxJU9QZ27ALs_RNR_A7vTk0-GXJsOoa-9xNq_-s7UvNfD9f_I5fw-dvLUqF3r9Xc9ml_aloztQ9jNqw1G-jVZLM7I_roA9_rcp34XbnQdLDluRuwc7vrwPN9ualusHMIlA1uSiKa-Da0506YiNLnqMSWrEgFSBzGMcoK5rvSYxRpXE8Pszgvumq-YEh4jceAjTow-f30-SrlxDYhmnNBHSG-OEZ8Hk3oTUCbRgEX5MWymMZsFLhwbFx4dPb03h0tRx5gUd0-A55fQRDMqq9PtALMUupLHSZJrxItV0nGLv1huNxplmQ3jbL5ayHZZ5LKkxU82ZpuAqMkdF5iih6BBeb8gXLYjHdYTv4spviCL2dvOhqs9Up8rKFkxLNIOpC4E56TQvtAxBhywLTmo_hJe93CjU1fgAo0tfrS5UJhlFhyG_noILjidIiRN83MrZr_GiK1nIMR-C2JLArbFut5TnXxu88Ax5S3MxhDcbWf07G578M-VT2NvcSfFnMFjWK_8cvbSledHp3k-4PTwp
  priority: 102
  providerName: Unpaywall
Title Gene selection and classification of microarray data using random forest
URI https://www.ncbi.nlm.nih.gov/pubmed/16398926
https://www.proquest.com/docview/19433625
https://www.proquest.com/docview/67648791
https://pubmed.ncbi.nlm.nih.gov/PMC1363357
https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-3
https://doaj.org/article/c84a92250dff4d9da68a9ffaf11fd9ae
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVADU
  databaseName: BioMed Central_OA刊
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RBZ
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.biomedcentral.com/search/
  providerName: BioMedCentral
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: KQ8
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DOA
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ABDBF
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: ADMLS
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: DIK
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M~E
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: RPM
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: M48
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: AAJSJ
  dateStart: 20001201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 1471-2105
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017805
  issn: 1471-2105
  databaseCode: C6C
  dateStart: 20000112
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQviG_CR_EDGi8Yktq14weECmKqKm1CgkrjybJjeyB1SZeugv733LlpR2GD18SxnDvfl-_8O0JeVEFoq5xjFoIThmcMTPeVZQFvbcYIDobCu8OHR3I0EePjwfEOWdfpdgScXxraYT-pSTt9_fNs-Q4E_m0S-FK-KUDBMghdBgzkZX92xrCnFOZeuwYb18ge2C2NjR0OxUWOAdH8092j7us1AuefM25ZrATsf5k3-ndR5Y1FPbPLH3Y6_c1iHdwmtzpXkw5Xe-MO2Qn1XXJ91XxyeY-MEHGazlMfHGAOtbWnFfrSWDyU-EWbSE-xYM-2rV1SLCalWCd_QsHA-eaUgsMLi7tPJgcfv3wYsa6vAquE5JwpHZzzKojoBsHF3CtQNYgTZiutnBUxaA-SHzBDGSpX-jz3UgTF-zwGySV_QHbrpg6PCK04TKFdpV1hhSxzy_s5zF4FZ0GL8iIjr9a0M1UHOo69L6YmBR-lNEhqg6Q2yvCM7G-Gz1ZoG1cNfI-M2AxCkOz0oGlPTCdzpiqF1aCvch-j8NpbWVodo41FEb22ISPP12w0IFSYKbF1aBZzU2jBwbIPrh4hlYRQT8MPPlyx_WK94POVui8zorY2xNZat9_U378lYO8CaMsHKiMvN1vn32R4_N_1PSE3N4dG8inZPW8X4Rm4UeeuR_aGw_HncS8dQ_SSbMCzydGn4ddfLc4fxQ
linkProvider Scholars Portal
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVIheeEPD0wcEFzbdjb32-lgQVYTUigORysnys1Qku9E2EQq_nvE-QlMo4sB1PWvZ45nx2J75BuCV9UxqYUyi8XCSxDuGRI6FTnzM2gwBHQwRc4ePT_hkyj6e5qc7cNznwpi5NedVBxoagYpHl9PQZ22WQ6yi4OuDhQut0hf8IEMjm-DxJU9QZ27ALs_RNR_A7vTk0-GXJsOoa-9xNq_-s7UvNfD9f_I5fw-dvLUqF3r9Xc9ml_aloztQ9jNqw1G-jVZLM7I_roA9_rcp34XbnQdLDluRuwc7vrwPN9ualusHMIlA1uSiKa-Da0506YiNLnqMSWrEgFSBzGMcoK5rvSYxRpXE8Pszgvumq-YEh4jceAjTow-f30-SrlxDYhmnNBHSG-OEZ8Hk3oTUCbRgEX5MWymMZsFLhwbFx4dPb03h0tRx5gUd0-A55fQRDMqq9PtALMUupLHSZJrxItV0nGLv1huNxplmQ3jbL5ayHZZ5LKkxU82ZpuAqMkdF5iih6BBeb8gXLYjHdYTv4spviCL2dvOhqs9Up8rKFkxLNIOpC4E56TQvtAxBhywLTmo_hJe93CjU1fgAo0tfrS5UJhlFhyG_noILjidIiRN83MrZr_GiK1nIMR-C2JLArbFut5TnXxu88Ax5S3MxhDcbWf07G578M-VT2NvcSfFnMFjWK_8cvbSledHp3k-4PTwp
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+and+classification+of+microarray+data+using+random+forest&rft.jtitle=BMC+bioinformatics&rft.au=D%C3%ADaz-Uriarte%2C+Ram%C3%B3n&rft.au=Alvarez+de+Andr%C3%A9s%2C+Sara&rft.date=2006-01-06&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=3&rft_id=info:doi/10.1186%2F1471-2105-7-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon