Gene selection and classification of microarray data using random forest
Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice)...
        Saved in:
      
    
          | Published in | BMC bioinformatics Vol. 7; no. 1; p. 3 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        England
          BioMed Central
    
        06.01.2006
     BMC  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1471-2105 1471-2105  | 
| DOI | 10.1186/1471-2105-7-3 | 
Cover
| Abstract | Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection.
We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy.
Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data. | 
    
|---|---|
| AbstractList | Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data. Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection.BACKGROUNDSelection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection.We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy.RESULTSWe investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy.Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.CONCLUSIONBecause of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data. Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data. Abstract Background Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible set of genes that can still achieve good predictive performance (for instance, for future use with diagnostic purposes in clinical practice). Many gene selection approaches use univariate (gene-by-gene) rankings of gene relevance and arbitrary thresholds to select the number of genes, can only be applied to two-class problems, and use gene selection ranking criteria unrelated to the classification algorithm. In contrast, random forest is a classification algorithm well suited for microarray data: it shows excellent performance even when most predictive variables are noise, can be used when the number of variables is much larger than the number of observations and in problems involving more than two classes, and returns measures of variable importance. Thus, it is important to understand the performance of random forest with microarray data and its possible use for gene selection. Results We investigate the use of random forest for classification of microarray data (including multi-class problems) and propose a new method of gene selection in classification problems based on random forest. Using simulated and nine microarray data sets we show that random forest has comparable performance to other classification methods, including DLDA, KNN, and SVM, and that the new gene selection procedure yields very small sets of genes (often smaller than alternative methods) while preserving predictive accuracy. Conclusion Because of its performance and features, random forest and gene selection using random forest should probably become part of the "standard tool-box" of methods for class prediction and gene selection with microarray data.  | 
    
| ArticleNumber | 3 | 
    
| Author | Díaz-Uriarte, Ramón Alvarez de Andrés, Sara  | 
    
| AuthorAffiliation | 2 Cytogenetics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain 1 Bioinformatics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain  | 
    
| AuthorAffiliation_xml | – name: 2 Cytogenetics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernández Almagro 3, Madrid, 28029, Spain – name: 1 Bioinformatics Unit, Biotechnology Programme, Spanish National Cancer Centre (CNIO), Melchor Fernandez Almagro 3, Madrid, 28029, Spain  | 
    
| Author_xml | – sequence: 1 givenname: Ramon surname: Diaz-Uriarte fullname: Diaz-Uriarte, Ramon – sequence: 2 givenname: Sara surname: Alvarez de Andres fullname: Alvarez de Andres, Sara  | 
    
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/16398926$$D View this record in MEDLINE/PubMed | 
    
| BookMark | eNqFUU1vFSEUJabGfujSrZmVu6kwzMCwMTGNtk2auNE1uQOXJw0DT5inef9e3kdqa6KugMs5J-eec05OYopIyGtGLxkbxTvWS9Z2jA6tbPkzcvbwPnl0PyXnpdxTyuRIhxfklAmuRtWJM3JzjRGbggHN4lNsINrGBCjFO29gP0qumb3JCXKGbWNhgWZTfFw1uYLT3LiUsSwvyXMHoeCr43lBvn76-OXqpr37fH179eGuNb3gvJUKp8lK7N004OSolXQcB8EpGCUn6B0qSyVHLvoBzTRaSq3oUfKOOxRc8Atye9C1Ce71OvsZ8lYn8Ho_SHmlIS_eBNRm7EF13UCtc71VFsQIyjlwjDmrAKvW5UFrE9ew_QkhPAgyqnfx6l2EehehlppXwvsDYb2ZZrQG45IhPHHx9Cf6b3qVfmhWnfNBVoG3R4Gcvm9qbHr2xWAIEDFtihZS9KNU7L9ApnrORTdU4JvHln4vcKy4AvgBUCssJaPTxi_7ZqtDH_66afsH69_J_AKW3sjX | 
    
| CitedBy_id | crossref_primary_10_1017_eds_2022_34 crossref_primary_10_1177_1471082X17705992 crossref_primary_10_1016_j_apenergy_2018_12_034 crossref_primary_10_1016_j_eswa_2020_114333 crossref_primary_10_1198_tast_2009_08199 crossref_primary_10_1186_s12859_018_2318_8 crossref_primary_10_1109_JSTARS_2013_2295513 crossref_primary_10_1016_j_biopsych_2011_06_009 crossref_primary_10_3389_fbinf_2023_1131021 crossref_primary_10_1007_s11306_011_0274_7 crossref_primary_10_1016_j_compbiomed_2010_03_006 crossref_primary_10_1016_j_agrformet_2021_108450 crossref_primary_10_1016_j_rechem_2022_100508 crossref_primary_10_1007_s10142_023_01040_0 crossref_primary_10_1016_j_compbiomed_2009_07_006 crossref_primary_10_1109_TBIOM_2020_2997004 crossref_primary_10_3390_math12223618 crossref_primary_10_3390_w11081540 crossref_primary_10_3389_fmars_2022_863693 crossref_primary_10_1080_10543406_2017_1397006 crossref_primary_10_1155_2016_8748156 crossref_primary_10_1080_19475705_2016_1255667 crossref_primary_10_1186_s12864_017_3498_8 crossref_primary_10_3389_fendo_2022_957010 crossref_primary_10_1007_s13369_015_1945_x crossref_primary_10_1038_s41467_025_57078_0 crossref_primary_10_1038_s41598_020_77183_y crossref_primary_10_1088_1742_6596_2845_1_012006 crossref_primary_10_1038_s41598_024_59501_w crossref_primary_10_1088_1478_3975_abc09a crossref_primary_10_1093_jee_toaa147 crossref_primary_10_1016_j_quascirev_2017_04_001 crossref_primary_10_1016_j_jmva_2015_06_009 crossref_primary_10_1016_j_neucom_2015_05_022 crossref_primary_10_1016_j_scs_2021_103158 crossref_primary_10_1016_j_jag_2019_101978 crossref_primary_10_1016_j_geoderma_2014_04_036 crossref_primary_10_1371_journal_pone_0236874 crossref_primary_10_1371_journal_pone_0182507 crossref_primary_10_3390_rs13152988 crossref_primary_10_1109_TBCAS_2018_2848477 crossref_primary_10_1016_j_jbi_2013_03_009 crossref_primary_10_1109_ACCESS_2018_2883537 crossref_primary_10_1186_s12911_021_01688_3 crossref_primary_10_3390_rs13122273 crossref_primary_10_1016_j_postharvbio_2020_111318 crossref_primary_10_3390_en11040949 crossref_primary_10_5194_hess_27_4551_2023 crossref_primary_10_1016_j_molmet_2018_11_003 crossref_primary_10_1016_j_ab_2015_02_021 crossref_primary_10_1016_j_ress_2020_106858 crossref_primary_10_3390_en16176360 crossref_primary_10_1177_1550147719894532 crossref_primary_10_1371_journal_pone_0258658 crossref_primary_10_1109_JBHI_2013_2256920 crossref_primary_10_1002_prca_200800149 crossref_primary_10_1093_bioinformatics_btx784 crossref_primary_10_1371_journal_pone_0177552 crossref_primary_10_1186_s12859_020_03692_2 crossref_primary_10_5194_essd_15_395_2023 crossref_primary_10_1016_j_envint_2020_105601 crossref_primary_10_1002_nbm_1777 crossref_primary_10_1038_nbt_1524 crossref_primary_10_1155_2015_471371 crossref_primary_10_1007_s10651_016_0349_8 crossref_primary_10_3390_rs8020144 crossref_primary_10_1007_s00438_020_01664_y crossref_primary_10_1164_rccm_201106_1143OC crossref_primary_10_1016_j_neucom_2013_11_023 crossref_primary_10_1080_00949655_2020_1814776 crossref_primary_10_1109_TR_2014_2372432 crossref_primary_10_1038_srep39943 crossref_primary_10_1093_bioinformatics_btm344 crossref_primary_10_3390_land9110420 crossref_primary_10_1016_j_ctarc_2021_100396 crossref_primary_10_1080_03610926_2020_1764042 crossref_primary_10_3897_neobiota_65_67192 crossref_primary_10_1016_j_petrol_2020_107879 crossref_primary_10_1016_j_ygeno_2021_04_028 crossref_primary_10_1186_1471_2105_10_S11_S19 crossref_primary_10_1289_EHP6076 crossref_primary_10_1038_s41598_021_00932_0 crossref_primary_10_2174_1389202923666220511162038 crossref_primary_10_1016_j_procs_2018_05_127 crossref_primary_10_1038_nsmb_2675 crossref_primary_10_1007_s10796_017_9789_4 crossref_primary_10_2196_48892 crossref_primary_10_1021_jasms_4c00324 crossref_primary_10_1080_10962247_2017_1416314 crossref_primary_10_1002_qj_4134 crossref_primary_10_1016_j_jtbi_2006_08_011 crossref_primary_10_3390_f15010218 crossref_primary_10_4018_IJITSA_290003 crossref_primary_10_1177_15330338211027900 crossref_primary_10_3390_rs16111962 crossref_primary_10_1016_j_csda_2007_08_015 crossref_primary_10_1016_j_engappai_2020_104073 crossref_primary_10_1093_rheumatology_kez615 crossref_primary_10_1016_j_cosrev_2021_100370 crossref_primary_10_1111_sjos_12777 crossref_primary_10_1007_s00500_016_2468_4 crossref_primary_10_3390_ijms131013587 crossref_primary_10_1007_s00248_018_1176_2 crossref_primary_10_1186_s12893_024_02687_7 crossref_primary_10_3389_fgene_2020_00328 crossref_primary_10_1007_s00477_025_02957_7 crossref_primary_10_1016_j_still_2019_03_006 crossref_primary_10_1186_s40246_025_00733_w crossref_primary_10_1371_journal_pone_0014579 crossref_primary_10_1016_j_agwat_2023_108416 crossref_primary_10_1016_j_scitotenv_2020_137249 crossref_primary_10_1007_s10637_010_9571_7 crossref_primary_10_1016_j_media_2018_05_004 crossref_primary_10_1109_TGRS_2021_3105482 crossref_primary_10_1016_j_apsusc_2023_157225 crossref_primary_10_1186_1471_2105_14_261 crossref_primary_10_1016_j_jbi_2024_104736 crossref_primary_10_1007_s11042_024_18802_y crossref_primary_10_1016_j_mehy_2020_109577 crossref_primary_10_1038_ejhg_2013_109 crossref_primary_10_1017_S0021859613000543 crossref_primary_10_1111_j_1365_2389_2011_01375_x crossref_primary_10_1089_cmb_2015_0206 crossref_primary_10_1186_1471_2105_10_S1_S22 crossref_primary_10_7717_peerj_1804 crossref_primary_10_1186_1471_2105_10_213 crossref_primary_10_1007_s00779_019_01318_w crossref_primary_10_1162_posc_a_00638 crossref_primary_10_1016_j_patter_2021_100333 crossref_primary_10_4137_CIN_S14054 crossref_primary_10_1007_s42081_022_00176_w crossref_primary_10_1080_1354750X_2025_2461698 crossref_primary_10_1093_comjnl_bxz161 crossref_primary_10_3389_fpls_2021_639253 crossref_primary_10_1002_gepi_20280 crossref_primary_10_1111_avsc_12552 crossref_primary_10_1016_j_jss_2021_110939 crossref_primary_10_1371_journal_pcbi_1002957 crossref_primary_10_3389_fonc_2023_1207175 crossref_primary_10_1371_journal_pcbi_1002956 crossref_primary_10_1371_journal_pone_0164649 crossref_primary_10_1016_j_apsoil_2024_105687 crossref_primary_10_1007_s10346_016_0761_z crossref_primary_10_1016_j_procs_2018_05_195 crossref_primary_10_1016_j_bbagen_2024_130597 crossref_primary_10_1016_j_compbiomed_2018_06_030 crossref_primary_10_1080_19371918_2024_2318372 crossref_primary_10_1111_exsy_12486 crossref_primary_10_1515_CCLM_2010_248 crossref_primary_10_1111_nph_13982 crossref_primary_10_1093_bioinformatics_bty239 crossref_primary_10_1080_21678421_2017_1418003 crossref_primary_10_3390_earth4030037 crossref_primary_10_1186_2049_2618_1_11 crossref_primary_10_1161_CIRCOUTCOMES_116_003039 crossref_primary_10_1007_s00500_019_04330_7 crossref_primary_10_1080_10485252_2023_2219783 crossref_primary_10_1080_10618600_2022_2069777 crossref_primary_10_1093_bioinformatics_btn245 crossref_primary_10_1016_j_scitotenv_2023_167534 crossref_primary_10_1109_TCBB_2018_2868341 crossref_primary_10_2751_jcac_17_1 crossref_primary_10_1109_TNB_2012_2214232 crossref_primary_10_1186_s12859_020_03622_2 crossref_primary_10_1038_srep02620 crossref_primary_10_1111_jcpe_12892 crossref_primary_10_1016_j_cities_2021_103474 crossref_primary_10_3389_fgene_2019_00226 crossref_primary_10_1007_s11356_017_0899_9 crossref_primary_10_1089_cmb_2016_0089 crossref_primary_10_3390_su15031858 crossref_primary_10_1016_j_compbiomed_2017_05_010 crossref_primary_10_1016_j_tra_2018_08_030 crossref_primary_10_3389_fgene_2020_587378 crossref_primary_10_1111_pbi_12840 crossref_primary_10_1186_s10194_023_01542_z crossref_primary_10_1161_CIRCOUTCOMES_110_959023 crossref_primary_10_1093_bioinformatics_bty251 crossref_primary_10_1007_s11306_017_1166_2 crossref_primary_10_1093_bioinformatics_btn262 crossref_primary_10_1002_pmic_200600335 crossref_primary_10_1155_2022_3682194 crossref_primary_10_1016_j_asoc_2018_02_009 crossref_primary_10_3390_su15097656 crossref_primary_10_1161_CIRCOUTCOMES_116_003055 crossref_primary_10_1126_sciadv_abh2932 crossref_primary_10_1186_s13040_021_00235_0 crossref_primary_10_1016_j_compag_2020_105332 crossref_primary_10_1371_journal_pone_0048877 crossref_primary_10_1038_bjc_2011_505 crossref_primary_10_1088_1742_6596_1994_1_012016 crossref_primary_10_1186_s12920_016_0204_7 crossref_primary_10_1186_s12935_023_02966_y crossref_primary_10_1007_s00477_019_01732_9 crossref_primary_10_1007_s10980_020_01119_0 crossref_primary_10_1186_1471_2164_15_248 crossref_primary_10_1371_journal_pone_0220881 crossref_primary_10_3390_biology1010005 crossref_primary_10_4236_ijg_2016_75056 crossref_primary_10_1214_22_AOS2234 crossref_primary_10_1002_prot_22424 crossref_primary_10_1016_j_agrformet_2018_12_017 crossref_primary_10_1214_10_AOAS381 crossref_primary_10_1021_acs_analchem_0c04155 crossref_primary_10_1186_1471_2105_10_37 crossref_primary_10_1109_ACCESS_2019_2944295 crossref_primary_10_1007_s10916_019_1402_6 crossref_primary_10_1002_widm_1114 crossref_primary_10_1164_rccm_201510_2091OC crossref_primary_10_1007_s11222_012_9349_1 crossref_primary_10_1007_s10706_023_02535_0 crossref_primary_10_3389_fmicb_2023_1277121 crossref_primary_10_1016_S1002_0160_17_60481_8 crossref_primary_10_1016_j_csda_2015_04_002 crossref_primary_10_1371_journal_pone_0039932 crossref_primary_10_1007_s10044_014_0369_7 crossref_primary_10_1002_bimj_201300077 crossref_primary_10_2174_0115734099258183230929173855 crossref_primary_10_1016_j_foreco_2024_122159 crossref_primary_10_1016_j_ygyno_2019_08_021 crossref_primary_10_1016_j_geoderma_2014_08_009 crossref_primary_10_1109_TCBB_2016_2631164 crossref_primary_10_1139_cjfas_2017_0554 crossref_primary_10_1017_S0007114507803400 crossref_primary_10_3389_fneur_2025_1512297 crossref_primary_10_1109_TCBB_2010_90 crossref_primary_10_1007_s42452_021_04148_9 crossref_primary_10_1371_journal_pone_0208737 crossref_primary_10_1038_s41598_019_55609_6 crossref_primary_10_1155_2022_9033342 crossref_primary_10_1016_j_jhydrol_2021_127047 crossref_primary_10_1182_blood_2007_11_126003 crossref_primary_10_1016_j_bspc_2019_101758 crossref_primary_10_1016_j_bios_2025_117408 crossref_primary_10_1155_2019_9864213 crossref_primary_10_1002_eqe_3183 crossref_primary_10_1097_ALN_0000000000003140 crossref_primary_10_1016_j_csda_2011_04_022 crossref_primary_10_1007_s10260_018_0423_5 crossref_primary_10_1142_S0219720008003345 crossref_primary_10_4137_CIN_S7111 crossref_primary_10_1371_journal_pone_0058695 crossref_primary_10_1186_s12859_021_04460_6 crossref_primary_10_11301_jsfe_19560 crossref_primary_10_1016_j_cbpa_2015_10_013 crossref_primary_10_1515_sagmb_2018_0028 crossref_primary_10_1186_1471_2105_10_147 crossref_primary_10_1093_bioinformatics_btab089 crossref_primary_10_3389_fmicb_2019_02904 crossref_primary_10_1021_acs_est_3c07576 crossref_primary_10_1093_bioinformatics_btu603 crossref_primary_10_1186_1471_2105_10_78 crossref_primary_10_1007_s13762_017_1283_5 crossref_primary_10_1002_ijc_32152 crossref_primary_10_1016_j_agwat_2020_106145 crossref_primary_10_1186_s12872_021_02147_7 crossref_primary_10_1002_ecs2_1321 crossref_primary_10_1016_j_jag_2019_02_004 crossref_primary_10_1109_TCBB_2020_3041527 crossref_primary_10_1007_s11135_023_01824_3 crossref_primary_10_1038_s41598_020_78155_y crossref_primary_10_1111_liv_13427 crossref_primary_10_1071_WR21018 crossref_primary_10_1088_0004_6256_147_2_33 crossref_primary_10_1002_hbm_26393 crossref_primary_10_1016_j_csbj_2023_05_005 crossref_primary_10_1021_acs_jproteome_5b01061 crossref_primary_10_1107_S1399004713032070 crossref_primary_10_1186_s12859_017_1553_8 crossref_primary_10_1186_s12859_016_0900_5 crossref_primary_10_3390_sym9110282 crossref_primary_10_1088_2057_1976_ab39a8 crossref_primary_10_1155_2023_2400194 crossref_primary_10_1016_j_jprocont_2024_103175 crossref_primary_10_1042_CS20200032 crossref_primary_10_1016_j_jag_2016_06_004 crossref_primary_10_1021_acs_est_7b01210 crossref_primary_10_1016_j_cie_2022_108936 crossref_primary_10_3390_e22111205 crossref_primary_10_1016_j_geomorph_2014_04_006 crossref_primary_10_1016_j_csr_2011_05_015 crossref_primary_10_1002_bimj_201300068 crossref_primary_10_1186_s12859_021_04527_4 crossref_primary_10_1186_s12864_015_2129_5 crossref_primary_10_1029_2021WR030612 crossref_primary_10_1016_j_ymeth_2012_10_003 crossref_primary_10_1002_ijfe_2346 crossref_primary_10_1007_s00521_018_3523_0 crossref_primary_10_1093_bioinformatics_btq257 crossref_primary_10_1186_s13636_023_00291_w crossref_primary_10_1109_ACCESS_2020_2992595 crossref_primary_10_1109_TCBB_2008_105 crossref_primary_10_1007_s00500_019_04623_x crossref_primary_10_1177_09622802211046385 crossref_primary_10_1016_j_icarus_2021_114778 crossref_primary_10_1007_s11042_022_13550_3 crossref_primary_10_1007_s10695_015_0165_3 crossref_primary_10_1186_s12859_017_1993_1 crossref_primary_10_3390_ani10050771 crossref_primary_10_1097_SCS_0000000000006943 crossref_primary_10_1007_s12035_025_04857_x crossref_primary_10_1016_j_jad_2024_10_053 crossref_primary_10_1186_s12940_017_0277_6 crossref_primary_10_1080_01616412_2017_1348690 crossref_primary_10_1371_journal_pone_0199314 crossref_primary_10_3390_math9050570 crossref_primary_10_1175_WAF_D_15_0113_1 crossref_primary_10_3390_electronics14050950 crossref_primary_10_1007_s00180_011_0302_0 crossref_primary_10_3233_IDA_160863 crossref_primary_10_1007_s11222_016_9646_1 crossref_primary_10_2174_1389202924666230601122334 crossref_primary_10_1139_cjfr_2018_0033 crossref_primary_10_1096_fj_202300245R crossref_primary_10_1007_s42835_019_00205_x crossref_primary_10_1021_acs_jcim_7b00274 crossref_primary_10_1158_1535_7163_MCT_15_1008 crossref_primary_10_1186_s12711_016_0219_8 crossref_primary_10_3390_app10196652 crossref_primary_10_3390_bioengineering11101012 crossref_primary_10_1186_s12885_018_4104_4 crossref_primary_10_1371_journal_pone_0189533 crossref_primary_10_1103_PhysRevPhysEducRes_19_010134 crossref_primary_10_1109_ACCESS_2019_2922432 crossref_primary_10_3164_jcbn_21_114 crossref_primary_10_1016_j_conbuildmat_2023_131519 crossref_primary_10_1016_j_jmb_2021_167071 crossref_primary_10_3390_w12113015 crossref_primary_10_3390_w12030687 crossref_primary_10_3390_f14061193 crossref_primary_10_1016_j_geoderma_2022_115696 crossref_primary_10_1139_f2011_170 crossref_primary_10_1109_JSTARS_2014_2362920 crossref_primary_10_3390_jimaging2040029 crossref_primary_10_3390_sym11020228 crossref_primary_10_4236_abb_2024_157025 crossref_primary_10_26782_jmcms_2022_11_00002 crossref_primary_10_1002_mrc_4074 crossref_primary_10_3390_rs10091457 crossref_primary_10_1109_ACCESS_2019_2947701 crossref_primary_10_1371_journal_pone_0133583 crossref_primary_10_1007_s10706_018_0558_z crossref_primary_10_1093_bib_bbs034 crossref_primary_10_1158_1078_0432_CCR_06_0290 crossref_primary_10_1142_S021972001100546X crossref_primary_10_1016_j_mri_2010_12_001 crossref_primary_10_1093_ije_dyw145 crossref_primary_10_1016_j_rse_2021_112294 crossref_primary_10_1016_j_agee_2018_02_012 crossref_primary_10_1051_ps_2018008 crossref_primary_10_1186_2043_9113_2_13 crossref_primary_10_1016_j_atmosenv_2016_11_066 crossref_primary_10_1145_3372023 crossref_primary_10_3390_rs70809705 crossref_primary_10_1186_s12859_017_1984_2 crossref_primary_10_1007_s42979_024_02952_9 crossref_primary_10_1080_07391102_2016_1234413 crossref_primary_10_1680_jener_24_00027 crossref_primary_10_1109_TBME_2007_890733 crossref_primary_10_1016_j_compbiomed_2023_107252 crossref_primary_10_1016_j_jclepro_2023_138544 crossref_primary_10_1016_j_ecoinf_2020_101181 crossref_primary_10_1186_1471_2105_8_25 crossref_primary_10_1016_j_gene_2019_04_062 crossref_primary_10_1109_ACCESS_2024_3371887 crossref_primary_10_1371_journal_pcbi_1009926 crossref_primary_10_1016_j_brat_2024_104637 crossref_primary_10_1039_C7LC00955K crossref_primary_10_1007_s00500_021_05726_0 crossref_primary_10_1155_2015_604910 crossref_primary_10_1007_s42979_020_00210_2 crossref_primary_10_1016_j_ajodo_2006_06_022 crossref_primary_10_1016_j_envpol_2015_06_040 crossref_primary_10_1016_j_insmatheco_2021_07_003 crossref_primary_10_1186_1471_2164_9_144 crossref_primary_10_1080_09540121_2020_1751045 crossref_primary_10_1109_TCBB_2010_42 crossref_primary_10_3390_s18041027 crossref_primary_10_1016_j_micpath_2016_09_005 crossref_primary_10_1111_j_1745_459X_2012_00370_x crossref_primary_10_1007_s11192_016_2144_6 crossref_primary_10_1016_j_memsci_2017_12_025 crossref_primary_10_1186_s13040_021_00273_8 crossref_primary_10_3390_diagnostics12071771 crossref_primary_10_1007_s11042_019_7181_8 crossref_primary_10_1111_j_1365_2753_2009_01240_x crossref_primary_10_1186_1753_6561_1_S1_S56 crossref_primary_10_3390_atmos13010075 crossref_primary_10_1038_s41467_024_47752_0 crossref_primary_10_1016_j_cmpb_2017_09_013 crossref_primary_10_1186_1471_2105_13_162 crossref_primary_10_1186_1753_6561_1_S1_S59 crossref_primary_10_1186_1471_2105_13_164 crossref_primary_10_4018_IJSSCI_2017040102 crossref_primary_10_1007_s42979_023_02352_5 crossref_primary_10_1016_j_bandl_2020_104770 crossref_primary_10_3389_fonc_2021_631056 crossref_primary_10_6000_1927_520X_2020_09_07 crossref_primary_10_1016_j_compbiomed_2024_108434 crossref_primary_10_1186_s13040_015_0060_6 crossref_primary_10_2174_1381612826666201112142826 crossref_primary_10_1016_j_soildyn_2023_107966 crossref_primary_10_1016_j_rse_2019_111496 crossref_primary_10_1089_cmb_2018_0238 crossref_primary_10_3934_bioeng_2016_4_552 crossref_primary_10_7717_peerj_cs_365 crossref_primary_10_1007_s00180_023_01450_5 crossref_primary_10_1177_0021998316679720 crossref_primary_10_1002_hep_31312 crossref_primary_10_1007_s11869_013_0200_4 crossref_primary_10_1007_s10115_017_1140_3 crossref_primary_10_1186_s12859_016_1228_x crossref_primary_10_1155_2022_6532763 crossref_primary_10_1016_j_rse_2014_11_007 crossref_primary_10_1186_1687_4153_2012_1 crossref_primary_10_1021_acs_jpcc_1c07133 crossref_primary_10_1007_s11135_025_02056_3 crossref_primary_10_1016_j_jad_2020_02_001 crossref_primary_10_1016_j_ast_2021_106822 crossref_primary_10_3102_10769986231193327 crossref_primary_10_1080_24751839_2019_1660845 crossref_primary_10_1016_j_procs_2015_07_463 crossref_primary_10_3233_JAD_160948 crossref_primary_10_1002_2016JD024768 crossref_primary_10_1016_j_foreco_2019_05_016 crossref_primary_10_1016_j_aca_2013_11_032 crossref_primary_10_1038_npp_2013_328 crossref_primary_10_1158_1078_0432_CCR_13_2127 crossref_primary_10_1111_j_1469_1809_2011_00692_x crossref_primary_10_3389_fmolb_2016_00026 crossref_primary_10_1016_j_catena_2020_104703 crossref_primary_10_3389_fnhum_2016_00468 crossref_primary_10_1016_j_compbiomed_2017_10_021 crossref_primary_10_1016_j_scitotenv_2022_155168 crossref_primary_10_3390_ijms252212342 crossref_primary_10_1016_j_biosystemseng_2019_11_023 crossref_primary_10_1007_s11119_023_10099_5 crossref_primary_10_1016_j_gaitpost_2012_08_016 crossref_primary_10_1016_j_scitotenv_2021_148170 crossref_primary_10_3389_fmolb_2016_00030 crossref_primary_10_1186_1753_6561_5_S9_S46 crossref_primary_10_1002_mrc_3915 crossref_primary_10_1155_2013_393020 crossref_primary_10_1016_j_artmed_2014_01_005 crossref_primary_10_4018_jdwm_2012040103 crossref_primary_10_1371_journal_pone_0006646 crossref_primary_10_1002_bimj_200810475 crossref_primary_10_1080_10106049_2019_1624988 crossref_primary_10_1038_leu_2010_95 crossref_primary_10_1093_mollus_eyy010 crossref_primary_10_3390_rs70505660 crossref_primary_10_1016_j_drudis_2014_10_012 crossref_primary_10_3390_rs13112184 crossref_primary_10_1017_S1751731108003479 crossref_primary_10_1007_s00500_020_05045_w crossref_primary_10_4018_IJSSMET_2018040102 crossref_primary_10_1109_TMI_2017_2700213 crossref_primary_10_1016_j_mimet_2011_10_013 crossref_primary_10_1371_journal_pone_0183742 crossref_primary_10_1007_s10437_020_09372_z crossref_primary_10_5487_TR_2016_32_4_289 crossref_primary_10_3389_fpsyg_2018_01545 crossref_primary_10_1061_JTEPBS_0000410 crossref_primary_10_1109_TCBB_2016_2617337 crossref_primary_10_3233_JIFS_181665 crossref_primary_10_3390_info15080485 crossref_primary_10_1515_jpem_2019_0311 crossref_primary_10_2514_1_I010837 crossref_primary_10_1016_j_rse_2022_113017 crossref_primary_10_1097_IGC_0000000000000566 crossref_primary_10_1177_10944281241244760 crossref_primary_10_1155_2017_6817627 crossref_primary_10_3390_molecules27093021 crossref_primary_10_1371_journal_pone_0197915 crossref_primary_10_1007_s10742_021_00255_7 crossref_primary_10_1021_acs_jctc_4c00702 crossref_primary_10_1534_g3_119_400094 crossref_primary_10_1007_s10489_017_0992_2 crossref_primary_10_1007_s11103_024_01500_6 crossref_primary_10_1097_CMR_0b013e328352dbc8 crossref_primary_10_1038_s41598_023_43414_1 crossref_primary_10_1073_pnas_0605152103 crossref_primary_10_1186_1752_0509_4_159 crossref_primary_10_1002_jae_2525 crossref_primary_10_1016_j_patrec_2015_03_018 crossref_primary_10_1038_s41598_020_62338_8 crossref_primary_10_1016_j_geodrs_2023_e00690 crossref_primary_10_3389_fpls_2018_00685 crossref_primary_10_3390_app112311080 crossref_primary_10_1109_TCBB_2017_2723388 crossref_primary_10_3390_min13101261 crossref_primary_10_3390_rs9040333 crossref_primary_10_1109_TNSRE_2019_2945634 crossref_primary_10_4161_psb_6_1_14191 crossref_primary_10_1007_s00170_019_04530_3 crossref_primary_10_3390_rs11161892 crossref_primary_10_1016_j_compchemeng_2017_09_002 crossref_primary_10_1371_journal_pcbi_1004801 crossref_primary_10_1016_j_gene_2012_11_034 crossref_primary_10_1016_j_heliyon_2024_e36914 crossref_primary_10_1038_srep16955 crossref_primary_10_1145_3429445 crossref_primary_10_1016_j_corsci_2020_109084 crossref_primary_10_3389_fpsyt_2024_1349576 crossref_primary_10_1002_mas_20338 crossref_primary_10_1016_j_psep_2022_06_051 crossref_primary_10_3390_biomedinformatics3030040 crossref_primary_10_1111_ecog_02925 crossref_primary_10_1038_s41598_021_87171_5 crossref_primary_10_1371_journal_pone_0104049 crossref_primary_10_1016_j_cie_2018_06_024 crossref_primary_10_1007_s00439_010_0943_z crossref_primary_10_1093_bioinformatics_btn356 crossref_primary_10_1097_CIN_0000000000000463 crossref_primary_10_18632_oncotarget_21817 crossref_primary_10_1371_journal_pone_0287063 crossref_primary_10_3390_bioengineering11040314 crossref_primary_10_3389_fmicb_2015_00171 crossref_primary_10_1111_ajt_15953 crossref_primary_10_1007_s10729_014_9272_4 crossref_primary_10_1016_j_foodcont_2019_106807 crossref_primary_10_1016_j_still_2025_106457 crossref_primary_10_1093_jssam_smab004 crossref_primary_10_1016_j_jenvman_2019_06_064 crossref_primary_10_26833_ijeg_455595 crossref_primary_10_1186_1471_2164_16_S11_S3 crossref_primary_10_1161_HYPERTENSIONAHA_116_07292 crossref_primary_10_1186_s12916_023_03168_z crossref_primary_10_1100_2012_278352 crossref_primary_10_1214_21_AOAS1532 crossref_primary_10_1016_j_eswa_2014_10_044 crossref_primary_10_1007_s11634_020_00409_4 crossref_primary_10_3390_rs11030253 crossref_primary_10_1371_journal_pone_0001344 crossref_primary_10_1136_bmjopen_2019_033109 crossref_primary_10_3390_insects11030186 crossref_primary_10_1371_journal_pcbi_1000414 crossref_primary_10_1016_j_eswa_2015_05_013 crossref_primary_10_1097_PRS_0000000000005257 crossref_primary_10_1007_s10228_020_00783_1 crossref_primary_10_1155_2021_2474473 crossref_primary_10_7717_peerj_cs_2445 crossref_primary_10_1186_1471_2105_11_110 crossref_primary_10_2754_avb201584040327 crossref_primary_10_4137_CIN_S408 crossref_primary_10_1016_j_neucom_2018_09_084 crossref_primary_10_1016_j_catena_2021_105437 crossref_primary_10_1097_PTS_0000000000000871 crossref_primary_10_1002_pro_5015 crossref_primary_10_1016_j_esr_2024_101350 crossref_primary_10_1016_j_cageo_2024_105667 crossref_primary_10_1200_CCI_20_00065 crossref_primary_10_1093_bioinformatics_btl189 crossref_primary_10_1089_omi_2009_0007 crossref_primary_10_1080_23744731_2022_2043068 crossref_primary_10_1111_insr_12060 crossref_primary_10_1016_S1002_0160_17_60377_1 crossref_primary_10_1016_j_heliyon_2024_e24974 crossref_primary_10_1371_journal_pone_0023112 crossref_primary_10_1080_14697688_2014_983539 crossref_primary_10_1016_j_compbiomed_2023_106854 crossref_primary_10_1016_j_ecoinf_2023_102027 crossref_primary_10_1093_bioinformatics_bts602 crossref_primary_10_1186_1756_0381_7_22 crossref_primary_10_1186_s12859_019_2969_0 crossref_primary_10_3389_fpsyg_2019_02461 crossref_primary_10_1021_acs_analchem_8b05592 crossref_primary_10_1016_j_jvolgeores_2017_04_015 crossref_primary_10_1093_bioinformatics_bty373 crossref_primary_10_2136_sssaj2014_05_0202 crossref_primary_10_3390_ai2040044 crossref_primary_10_1021_pr100573s crossref_primary_10_3389_fgene_2021_798748 crossref_primary_10_1186_1472_6947_13_S1_S3 crossref_primary_10_1371_journal_pone_0057680 crossref_primary_10_1016_j_geoderma_2018_05_035 crossref_primary_10_1007_s11425_018_9561_0 crossref_primary_10_1016_j_measurement_2016_07_070 crossref_primary_10_1007_s11053_021_09872_y crossref_primary_10_1016_j_apgeog_2018_05_003 crossref_primary_10_1186_1471_2105_14_5 crossref_primary_10_1155_2015_178572 crossref_primary_10_1155_2009_532989 crossref_primary_10_1155_2022_6928833 crossref_primary_10_1371_journal_pone_0024899 crossref_primary_10_1126_sciadv_aaz0108 crossref_primary_10_1186_s12859_016_1090_x crossref_primary_10_1039_C5MB00399G crossref_primary_10_1016_j_jhydrol_2021_126056 crossref_primary_10_18632_oncotarget_6786 crossref_primary_10_1038_sc_2016_183 crossref_primary_10_1016_j_jhydrol_2019_05_079 crossref_primary_10_2174_1574893617666220328125029 crossref_primary_10_1007_s11119_024_10165_6 crossref_primary_10_1111_1755_0998_12686 crossref_primary_10_1016_j_eswa_2021_116253 crossref_primary_10_1007_s11222_021_10057_z crossref_primary_10_1016_j_procs_2018_10_334 crossref_primary_10_1007_s10668_024_05340_8 crossref_primary_10_1016_j_envpol_2022_120697 crossref_primary_10_1007_s12665_017_6731_5 crossref_primary_10_1016_j_envpol_2020_114226 crossref_primary_10_1096_fj_202301710RR crossref_primary_10_1002_esp_3476 crossref_primary_10_1177_117693510600200024 crossref_primary_10_1186_s40537_018_0113_z crossref_primary_10_1002_ldr_2503 crossref_primary_10_1371_journal_pone_0013748 crossref_primary_10_1007_s42452_019_0297_7 crossref_primary_10_1016_j_jag_2025_104390 crossref_primary_10_3390_fishes8060332 crossref_primary_10_3390_w13172387 crossref_primary_10_1177_1460458212446096 crossref_primary_10_1177_13872877241283692 crossref_primary_10_1093_biomet_asac017 crossref_primary_10_1515_popets_2018_0039 crossref_primary_10_1142_S0218001412600038 crossref_primary_10_1109_TNB_2015_2406992 crossref_primary_10_1016_j_geoderma_2015_11_014 crossref_primary_10_3390_f13060820 crossref_primary_10_1016_j_engappai_2018_01_007 crossref_primary_10_1016_j_wroa_2024_100244 crossref_primary_10_1029_2018WR022681 crossref_primary_10_3390_rs16030565 crossref_primary_10_1186_1471_2156_11_49 crossref_primary_10_1186_1753_6561_1_S1_S9 crossref_primary_10_3390_cancers13050991 crossref_primary_10_1016_j_isprsjprs_2023_07_020 crossref_primary_10_1287_opre_2019_1928 crossref_primary_10_1080_01431161_2015_1066524 crossref_primary_10_5194_gmd_16_2167_2023 crossref_primary_10_5802_crmeca_3 crossref_primary_10_1016_j_compag_2021_106614 crossref_primary_10_1186_s12859_017_1650_8 crossref_primary_10_1002_minf_201600099 crossref_primary_10_1371_journal_pone_0219322 crossref_primary_10_1109_JSTARS_2015_2396577 crossref_primary_10_1016_j_is_2018_05_006 crossref_primary_10_1038_s41586_025_08692_x crossref_primary_10_1016_j_gexplo_2022_107126 crossref_primary_10_1109_ACCESS_2021_3096241 crossref_primary_10_1016_j_jbi_2016_05_007 crossref_primary_10_1007_s13721_015_0104_3 crossref_primary_10_1186_1471_2164_15_S9_S17 crossref_primary_10_3390_electronics13122291 crossref_primary_10_1016_j_compbiomed_2021_104947 crossref_primary_10_1021_acs_analchem_3c01872 crossref_primary_10_1186_1471_2105_8_328 crossref_primary_10_2478_s11756_009_0125_4 crossref_primary_10_1016_j_eswa_2019_05_028 crossref_primary_10_4236_cmb_2012_22005 crossref_primary_10_1007_s00521_022_06891_5 crossref_primary_10_1016_j_dsr_2017_01_010 crossref_primary_10_1016_j_envpol_2019_01_010 crossref_primary_10_3390_w13192717 crossref_primary_10_3390_biomedicines12102404 crossref_primary_10_1016_j_omtn_2019_07_021 crossref_primary_10_1002_cyto_a_23920 crossref_primary_10_1371_journal_pone_0199648 crossref_primary_10_1515_jem_2020_0020 crossref_primary_10_1016_j_asoc_2018_10_005 crossref_primary_10_1214_13_AIHP539 crossref_primary_10_1097_SHK_0000000000000061 crossref_primary_10_1016_j_wasman_2017_03_044 crossref_primary_10_3892_mmr_2016_5260 crossref_primary_10_1016_j_chemolab_2014_09_003 crossref_primary_10_1093_carcin_bgs395 crossref_primary_10_1002_widm_1072 crossref_primary_10_1016_j_engappai_2023_107083 crossref_primary_10_1371_journal_pone_0264307 crossref_primary_10_1093_bfgp_elad039 crossref_primary_10_1007_s10661_024_13564_4 crossref_primary_10_3390_molecules25204696 crossref_primary_10_3390_educsci13030313 crossref_primary_10_1038_s41598_023_50600_8 crossref_primary_10_3390_pr11071940 crossref_primary_10_1186_s12859_017_1578_z crossref_primary_10_1016_j_isprsjprs_2016_01_011 crossref_primary_10_1371_journal_pone_0239381 crossref_primary_10_1080_26895293_2022_2064923 crossref_primary_10_7717_peerj_13575 crossref_primary_10_1111_acps_13250 crossref_primary_10_1002_pst_357 crossref_primary_10_1177_00220345231152802 crossref_primary_10_1016_j_infrared_2021_103731 crossref_primary_10_1016_j_ecoinf_2023_102406 crossref_primary_10_1080_09613218_2020_1809983 crossref_primary_10_1016_j_geoderma_2021_115263 crossref_primary_10_1021_ci500715e crossref_primary_10_3390_sym13020194 crossref_primary_10_1016_j_eswa_2018_12_022 crossref_primary_10_1371_journal_pone_0189875 crossref_primary_10_1186_1471_2105_8_370 crossref_primary_10_1177_03611981211027161 crossref_primary_10_1172_JCI137265 crossref_primary_10_1039_C9TA13404B crossref_primary_10_1016_j_trac_2012_07_012 crossref_primary_10_3390_jmse12061015 crossref_primary_10_1007_s00704_015_1461_7 crossref_primary_10_1016_j_petrol_2019_01_013 crossref_primary_10_1109_JSTARS_2014_2305441 crossref_primary_10_1142_S0219720010004495 crossref_primary_10_3390_life11080866 crossref_primary_10_1097_COH_0b013e32834dc37b crossref_primary_10_1016_j_geoderma_2024_117025 crossref_primary_10_3390_joitmc8040177 crossref_primary_10_1155_2019_5849183 crossref_primary_10_1007_s10462_020_09814_9 crossref_primary_10_1111_acer_13327 crossref_primary_10_1016_j_ecss_2018_02_028 crossref_primary_10_1093_bib_bbt020 crossref_primary_10_1016_j_genrep_2016_04_001 crossref_primary_10_1111_rssb_12425 crossref_primary_10_1371_journal_pone_0246039 crossref_primary_10_1371_journal_pone_0070294 crossref_primary_10_1111_j_1548_1352_2009_01040_x crossref_primary_10_1109_TCBB_2017_2712607 crossref_primary_10_1016_j_patcog_2019_106980 crossref_primary_10_1016_j_geoderma_2017_12_002 crossref_primary_10_1007_s10479_020_03684_8 crossref_primary_10_1038_s41598_022_19281_7 crossref_primary_10_3390_rs16020367 crossref_primary_10_1016_j_catena_2018_05_021 crossref_primary_10_1016_j_psj_2020_08_059 crossref_primary_10_1002_minf_201100107 crossref_primary_10_1038_s41598_021_94839_5 crossref_primary_10_1002_ijc_24017 crossref_primary_10_1186_1471_2105_13_60 crossref_primary_10_3390_land12101937 crossref_primary_10_1093_bfgp_elr005 crossref_primary_10_1016_j_rse_2016_07_018 crossref_primary_10_3390_en13102440 crossref_primary_10_3390_rs8010062 crossref_primary_10_1021_acs_est_7b00294 crossref_primary_10_1016_j_scitotenv_2020_138096 crossref_primary_10_1186_1471_2164_9_288 crossref_primary_10_1111_epi_13915 crossref_primary_10_1016_j_geodrs_2017_02_001 crossref_primary_10_1038_bmt_2011_56 crossref_primary_10_1155_2014_753428 crossref_primary_10_1016_j_pnpbp_2025_111302 crossref_primary_10_1007_s13369_021_06102_8 crossref_primary_10_3389_fimmu_2023_1146411 crossref_primary_10_1175_JAMC_D_14_0129_1 crossref_primary_10_1016_S1672_0229_10_60022_8 crossref_primary_10_3389_fimmu_2022_964622 crossref_primary_10_1155_2014_809495 crossref_primary_10_3389_fpls_2022_883280 crossref_primary_10_3390_bs15030345 crossref_primary_10_1371_journal_pone_0094268 crossref_primary_10_1371_journal_pone_0156571 crossref_primary_10_1109_TPAMI_2013_93 crossref_primary_10_1186_s12887_020_02392_3 crossref_primary_10_1038_s41597_021_00808_y crossref_primary_10_2174_1574893614666190204150918 crossref_primary_10_1089_sysm_2019_0008 crossref_primary_10_1016_j_apmr_2021_02_013 crossref_primary_10_1214_14_AOAS755 crossref_primary_10_1111_coin_12341 crossref_primary_10_1016_j_scitotenv_2019_06_529 crossref_primary_10_1007_s10661_022_09957_y crossref_primary_10_3109_17477166_2010_545410 crossref_primary_10_3390_rs8030166 crossref_primary_10_1109_TGRS_2014_2301443 crossref_primary_10_1016_j_artmed_2020_101811 crossref_primary_10_1016_j_acags_2024_100203 crossref_primary_10_1016_j_artmed_2020_101814 crossref_primary_10_1016_j_catena_2021_105196 crossref_primary_10_1093_bioinformatics_btx519 crossref_primary_10_1186_1471_2105_9_S9_S9 crossref_primary_10_1039_C4MB00440J crossref_primary_10_1002_bimj_201400010 crossref_primary_10_1007_s10661_015_4489_3 crossref_primary_10_1002_prca_200900175 crossref_primary_10_1016_j_landurbplan_2012_06_009 crossref_primary_10_1155_2022_5871408 crossref_primary_10_1145_3625237 crossref_primary_10_1158_1055_9965_EPI_16_0732 crossref_primary_10_1002_wsbm_163 crossref_primary_10_1364_BOE_517213 crossref_primary_10_2166_hydro_2023_063 crossref_primary_10_1016_j_asoc_2017_06_030 crossref_primary_10_35940_ijrte_E5208_019521 crossref_primary_10_1007_s00592_012_0376_3 crossref_primary_10_7717_peerj_4703 crossref_primary_10_1007_s10661_012_2716_8 crossref_primary_10_1186_1471_2156_9_71 crossref_primary_10_1016_j_jbi_2009_08_010 crossref_primary_10_1016_j_talanta_2020_121156 crossref_primary_10_1002_qre_3398 crossref_primary_10_1016_j_scitotenv_2019_05_233 crossref_primary_10_1139_cjfas_2016_0181 crossref_primary_10_1016_j_cageo_2014_10_016 crossref_primary_10_1016_j_patcog_2012_09_005 crossref_primary_10_1177_117693510700300007 crossref_primary_10_3389_fmolb_2022_907150 crossref_primary_10_1002_sam_10103 crossref_primary_10_1073_pnas_1514285112 crossref_primary_10_1145_3397491 crossref_primary_10_1155_2018_8316918 crossref_primary_10_1093_nar_gkr969 crossref_primary_10_1007_s11095_007_9266_8 crossref_primary_10_1097_QAD_0000000000001049 crossref_primary_10_3390_ijerph192316080 crossref_primary_10_7717_peerj_8286 crossref_primary_10_1016_j_fishres_2017_05_008 crossref_primary_10_1093_bioinformatics_btm539 crossref_primary_10_1111_ejn_13919 crossref_primary_10_1016_j_envsoft_2014_03_003 crossref_primary_10_1016_j_ecolind_2024_112452 crossref_primary_10_1016_j_pnsc_2008_04_012 crossref_primary_10_1021_acsnano_9b04220 crossref_primary_10_1186_1478_7954_9_29 crossref_primary_10_1002_jmor_21397 crossref_primary_10_1080_10618600_2020_1831930 crossref_primary_10_1155_2013_613529 crossref_primary_10_1016_j_eswa_2017_04_057 crossref_primary_10_1016_j_smim_2013_05_003 crossref_primary_10_1186_s12859_024_05977_2 crossref_primary_10_1073_pnas_1706359114 crossref_primary_10_1109_ACCESS_2020_2973188 crossref_primary_10_1016_j_iswcr_2020_09_004 crossref_primary_10_1371_journal_pcbi_1005812 crossref_primary_10_1016_j_compbiomed_2017_08_031 crossref_primary_10_1111_j_1468_1331_2010_02955_x crossref_primary_10_1016_j_rse_2015_04_015 crossref_primary_10_3390_ijgi11040226 crossref_primary_10_3390_rs13244990 crossref_primary_10_1099_jmm_0_001903 crossref_primary_10_1186_s13040_024_00361_5 crossref_primary_10_1016_j_quascirev_2024_108812 crossref_primary_10_1080_23808993_2021_1882847 crossref_primary_10_1007_s12652_018_1066_y crossref_primary_10_1038_srep20200 crossref_primary_10_1080_10485252_2012_677843 crossref_primary_10_1109_JSTARS_2019_2899033 crossref_primary_10_1093_jn_nxaa285 crossref_primary_10_1038_s41598_020_68167_z crossref_primary_10_1016_j_engappai_2022_105287 crossref_primary_10_1016_j_isprsjprs_2012_03_006 crossref_primary_10_1097_ALN_0000000000000757 crossref_primary_10_1186_s13717_020_00265_2 crossref_primary_10_1371_journal_pone_0175591 crossref_primary_10_1016_j_csda_2012_09_020 crossref_primary_10_1186_s40537_020_00327_4 crossref_primary_10_1016_j_rse_2009_07_002 crossref_primary_10_1155_2021_7231126 crossref_primary_10_1186_1471_2105_9_500 crossref_primary_10_1016_j_mrfmmm_2016_08_002 crossref_primary_10_1515_jib_2018_0064 crossref_primary_10_2217_pgs_11_157 crossref_primary_10_1016_j_scitotenv_2023_167749 crossref_primary_10_2196_18387 crossref_primary_10_1007_s11104_024_07197_2 crossref_primary_10_1103_PhysRevPhysEducRes_15_010114 crossref_primary_10_1108_VJIKMS_11_2018_0102 crossref_primary_10_1186_s12859_024_05674_0 crossref_primary_10_1186_1471_2164_12_S5_S1 crossref_primary_10_1186_s13321_017_0226_y crossref_primary_10_1371_journal_pone_0089596 crossref_primary_10_3390_w13091237 crossref_primary_10_1109_TCBB_2021_3089417 crossref_primary_10_2166_wcc_2023_386 crossref_primary_10_1016_j_tra_2017_08_020 crossref_primary_10_1016_j_ins_2020_01_014 crossref_primary_10_26599_TST_2023_9010092 crossref_primary_10_3390_rs12030487 crossref_primary_10_3390_s24051527 crossref_primary_10_1007_s10994_013_5346_7 crossref_primary_10_1021_acs_est_7b06386 crossref_primary_10_1007_s10729_017_9423_5 crossref_primary_10_1093_gerona_glae218 crossref_primary_10_1007_s10346_015_0614_1 crossref_primary_10_1007_s12665_020_08927_2 crossref_primary_10_3390_nano10040708 crossref_primary_10_3390_nano11071774 crossref_primary_10_1016_j_patcog_2013_02_010 crossref_primary_10_1186_s12864_016_3320_z crossref_primary_10_1016_j_jaridenv_2012_08_004 crossref_primary_10_1002_nafm_10927 crossref_primary_10_1186_s12887_018_1082_2 crossref_primary_10_1016_j_jocs_2022_101879 crossref_primary_10_1109_ACCESS_2020_2984657 crossref_primary_10_1007_s40003_024_00771_1 crossref_primary_10_1371_journal_pone_0106117 crossref_primary_10_1155_2021_3597051 crossref_primary_10_1016_j_isci_2021_103523 crossref_primary_10_1007_s42835_023_01455_6 crossref_primary_10_1371_journal_pone_0153776 crossref_primary_10_3389_fphys_2021_657304 crossref_primary_10_1002_hbm_23412 crossref_primary_10_1016_j_apgeog_2018_12_008 crossref_primary_10_1093_bioinformatics_btab369 crossref_primary_10_1016_j_ecolind_2019_105744 crossref_primary_10_1007_s13748_017_0118_4 crossref_primary_10_1007_s12539_017_0219_6 crossref_primary_10_1016_j_rse_2015_02_021 crossref_primary_10_1038_s41598_018_26506_1 crossref_primary_10_54097_fcis_v5i1_12005 crossref_primary_10_1016_j_ejpsy_2024_100285 crossref_primary_10_1016_j_rpor_2017_10_003 crossref_primary_10_1155_2022_4282953 crossref_primary_10_1016_j_minpro_2016_08_015 crossref_primary_10_4015_S1016237208000969 crossref_primary_10_1111_nph_12419 crossref_primary_10_1021_pr1011069 crossref_primary_10_1186_s13040_018_0168_6 crossref_primary_10_1007_s13402_021_00640_x crossref_primary_10_1159_000529062 crossref_primary_10_1186_s12938_022_01049_9 crossref_primary_10_3892_or_2012_1891 crossref_primary_10_3390_jcm8010050 crossref_primary_10_1186_s12911_024_02712_y crossref_primary_10_1186_s12859_017_1848_9 crossref_primary_10_1183_23120541_00484_2022 crossref_primary_10_1080_02564602_2014_906859 crossref_primary_10_1186_s12859_017_1617_9 crossref_primary_10_1186_s12859_023_05540_5 crossref_primary_10_18632_aging_204547 crossref_primary_10_18632_aging_204548 crossref_primary_10_1186_s12918_017_0389_1 crossref_primary_10_1631_FITEE_1601491 crossref_primary_10_3934_mbe_2022228 crossref_primary_10_1038_srep41176 crossref_primary_10_13078_jsm_18012 crossref_primary_10_1016_j_aap_2019_05_017 crossref_primary_10_2136_sssaj2013_08_0354 crossref_primary_10_1007_s11629_019_5789_9 crossref_primary_10_1186_1752_0509_6_40 crossref_primary_10_1177_1460458221989402 crossref_primary_10_1371_journal_pcbi_1010357 crossref_primary_10_1177_0962280213502437 crossref_primary_10_1016_j_scitotenv_2023_162075 crossref_primary_10_3390_rs11080920 crossref_primary_10_1098_rspb_2019_0211 crossref_primary_10_1016_j_agwat_2025_109294 crossref_primary_10_5194_bg_15_7347_2018 crossref_primary_10_1212_CPJ_0000000000000726 crossref_primary_10_1016_j_envpol_2017_06_086 crossref_primary_10_1017_asb_2023_12 crossref_primary_10_1186_1471_2105_12_484 crossref_primary_10_1089_cmb_2008_0034 crossref_primary_10_1016_j_geomorph_2014_07_020 crossref_primary_10_1089_cmb_2008_0037 crossref_primary_10_1038_s41598_019_50677_0 crossref_primary_10_1016_j_genrep_2021_101419 crossref_primary_10_1016_j_socnet_2016_02_003 crossref_primary_10_1016_j_robot_2016_10_005 crossref_primary_10_1155_2022_5821938 crossref_primary_10_1002_gepi_20473 crossref_primary_10_1016_j_apm_2023_06_025 crossref_primary_10_1016_j_wse_2021_10_004 crossref_primary_10_1111_mec_14143 crossref_primary_10_1186_s12859_017_1729_2 crossref_primary_10_1093_molbev_msaa302 crossref_primary_10_1109_TGRS_2009_2039484 crossref_primary_10_2196_mental_4227 crossref_primary_10_1212_CPJ_0000000000200448 crossref_primary_10_1371_journal_pone_0254894 crossref_primary_10_1093_bib_bbx124 crossref_primary_10_1016_j_knosys_2019_04_011 crossref_primary_10_1002_2016WR020197 crossref_primary_10_1093_gerona_63_9_895 crossref_primary_10_1016_j_aeaoa_2023_100207 crossref_primary_10_1016_j_forc_2019_100175 crossref_primary_10_1785_0220180306 crossref_primary_10_3390_app9204338 crossref_primary_10_1186_s12859_017_1925_0 crossref_primary_10_1093_nar_gks1288 crossref_primary_10_1016_j_virol_2018_10_001 crossref_primary_10_1080_01431161_2018_1483090 crossref_primary_10_1093_nar_gkr064 crossref_primary_10_1016_j_csbj_2020_08_005 crossref_primary_10_1109_ACCESS_2021_3133700 crossref_primary_10_1186_1752_0509_8_S2_S1 crossref_primary_10_1007_s40572_018_0180_5 crossref_primary_10_1016_j_chemolab_2020_104056 crossref_primary_10_5194_hess_25_5805_2021 crossref_primary_10_18632_oncotarget_6679 crossref_primary_10_1155_2019_2807470 crossref_primary_10_1093_bioinformatics_bts643 crossref_primary_10_1007_s10995_025_04038_1 crossref_primary_10_1016_j_bspc_2018_12_016 crossref_primary_10_1016_j_psj_2021_101122 crossref_primary_10_1111_1755_0998_12773 crossref_primary_10_3390_app132212266 crossref_primary_10_1371_journal_pone_0104449 crossref_primary_10_3390_rs9020105 crossref_primary_10_1007_s11042_020_09187_9 crossref_primary_10_1158_1940_6207_CAPR_14_0140 crossref_primary_10_1093_bioinformatics_btr300 crossref_primary_10_18632_aging_205380 crossref_primary_10_1371_journal_pone_0081683 crossref_primary_10_1109_TCBB_2012_23 crossref_primary_10_1186_1471_2105_15_8 crossref_primary_10_1109_TCBB_2012_21 crossref_primary_10_1016_j_atmosres_2021_105819 crossref_primary_10_1080_01431161_2013_788261 crossref_primary_10_1007_s11600_018_0190_6 crossref_primary_10_1109_LGRS_2017_2745049 crossref_primary_10_1155_2023_6447655 crossref_primary_10_3389_fgene_2016_00097 crossref_primary_10_1155_2020_8924095 crossref_primary_10_1007_s10661_024_12294_x crossref_primary_10_1016_j_bspc_2020_102053 crossref_primary_10_3389_fimmu_2021_643529 crossref_primary_10_1016_j_kint_2017_01_017 crossref_primary_10_3233_JIFS_169470 crossref_primary_10_1109_JSTARS_2019_2921817 crossref_primary_10_3389_fonc_2018_00228 crossref_primary_10_1145_3232230 crossref_primary_10_1145_3345314 crossref_primary_10_3390_diagnostics11081449 crossref_primary_10_3390_s17112655 crossref_primary_10_1177_2514183X18786602 crossref_primary_10_1371_journal_pone_0024973 crossref_primary_10_1517_17530059_2012_718329 crossref_primary_10_3389_fimmu_2023_1197493 crossref_primary_10_1186_1471_2105_8_206 crossref_primary_10_1002_for_2856 crossref_primary_10_1080_03610910701792554 crossref_primary_10_3390_w14091427 crossref_primary_10_1136_bmjopen_2013_003114 crossref_primary_10_1186_s12920_017_0303_0 crossref_primary_10_1016_j_solener_2021_02_039 crossref_primary_10_1002_cam4_4941 crossref_primary_10_1186_s13073_015_0213_8 crossref_primary_10_1016_j_jbi_2016_11_006 crossref_primary_10_1186_1471_2105_15_274 crossref_primary_10_1097_00029330_200812020_00005 crossref_primary_10_1016_j_isprsjprs_2013_11_013 crossref_primary_10_1142_S0218213017500245 crossref_primary_10_1038_srep26083 crossref_primary_10_1371_journal_pone_0201904 crossref_primary_10_3389_fevo_2021_738537 crossref_primary_10_1016_j_scitotenv_2024_172684 crossref_primary_10_1089_cmb_2007_0211 crossref_primary_10_1016_j_prevetmed_2021_105565 crossref_primary_10_1155_2014_781807 crossref_primary_10_3390_rs14133073 crossref_primary_10_1371_journal_pone_0204186 crossref_primary_10_1016_j_cub_2016_07_065 crossref_primary_10_1016_j_patcog_2010_02_008 crossref_primary_10_1109_TCBB_2012_63 crossref_primary_10_1016_j_jsr_2021_09_013 crossref_primary_10_1016_j_cmpb_2024_108481 crossref_primary_10_1016_j_compbiomed_2021_104614 crossref_primary_10_1007_s11252_017_0675_0 crossref_primary_10_1096_fj_202301270RR crossref_primary_10_3390_rs11121500 crossref_primary_10_1158_1055_9965_EPI_07_2830 crossref_primary_10_1007_s10278_017_9999_9 crossref_primary_10_2478_cait_2021_0016 crossref_primary_10_1007_s11146_022_09929_6 crossref_primary_10_1007_s11749_016_0481_7 crossref_primary_10_1016_j_vibspec_2020_103065 crossref_primary_10_1016_j_apgeog_2023_102928 crossref_primary_10_1016_j_rse_2018_02_073 crossref_primary_10_1093_bib_bbu012 crossref_primary_10_1002_minf_201700050 crossref_primary_10_1080_17583004_2018_1553434 crossref_primary_10_3390_f13030457 crossref_primary_10_1016_j_engappai_2016_06_003 crossref_primary_10_1007_s12035_019_1480_y crossref_primary_10_1109_TCAD_2020_3031865 crossref_primary_10_1007_s00500_023_08126_8 crossref_primary_10_1016_j_qeh_2024_100048 crossref_primary_10_1016_j_jag_2016_03_004 crossref_primary_10_1136_rmdopen_2024_004702 crossref_primary_10_1177_0003702815620545 crossref_primary_10_20965_jaciii_2008_p0218 crossref_primary_10_3390_w13243629 crossref_primary_10_1093_bioinformatics_btq038 crossref_primary_10_1111_coin_12287 crossref_primary_10_1371_journal_pone_0157330 crossref_primary_10_1002_bimj_201300259 crossref_primary_10_3390_ijms23052481 crossref_primary_10_1002_widm_1301 crossref_primary_10_1016_j_biocontrol_2022_104866 crossref_primary_10_1016_j_bbapap_2014_02_023 crossref_primary_10_1038_s41598_020_80839_4 crossref_primary_10_1038_s41598_018_35487_0 crossref_primary_10_2331_suisan_81_2 crossref_primary_10_1038_s41598_023_37184_z crossref_primary_10_1186_1471_2164_13_472 crossref_primary_10_1177_1460458220984205 crossref_primary_10_1109_TCBB_2021_3098709 crossref_primary_10_1002_widm_29 crossref_primary_10_3390_app13127253 crossref_primary_10_1111_j_2041_210x_2012_00253_x crossref_primary_10_1007_s11069_021_04678_w crossref_primary_10_1016_j_chemolab_2010_12_004 crossref_primary_10_4137_CIN_S10375 crossref_primary_10_1007_s00374_020_01528_y crossref_primary_10_5194_nhess_21_2993_2021 crossref_primary_10_1111_maec_12362 crossref_primary_10_1016_j_proenv_2011_02_022 crossref_primary_10_3390_w12113223 crossref_primary_10_1089_cmb_2010_0064 crossref_primary_10_18632_aging_101264 crossref_primary_10_1016_j_catena_2018_11_010 crossref_primary_10_1631_jzus_B2101009 crossref_primary_10_1515_corrrev_2022_0089 crossref_primary_10_1088_1757_899X_537_6_062002 crossref_primary_10_3389_fnmol_2018_00073 crossref_primary_10_1186_s12859_020_03718_9 crossref_primary_10_1007_s00018_011_0628_3 crossref_primary_10_1186_s12874_021_01369_9 crossref_primary_10_1039_b907946g crossref_primary_10_1158_1078_0432_CCR_06_2222 crossref_primary_10_1109_TBME_2011_2161306 crossref_primary_10_7717_peerj_cs_287 crossref_primary_10_5589_m13_038 crossref_primary_10_7717_peerj_3890 crossref_primary_10_1002_stc_2170 crossref_primary_10_1016_j_phrs_2020_105276 crossref_primary_10_1016_j_geoderma_2019_113939 crossref_primary_10_1016_j_cbd_2017_10_005 crossref_primary_10_1155_2021_5573650 crossref_primary_10_1007_s11042_019_7327_8 crossref_primary_10_1016_j_compag_2020_105526 crossref_primary_10_1016_j_biocon_2018_08_010 crossref_primary_10_1016_j_bbe_2018_08_004 crossref_primary_10_1016_j_csbj_2023_08_033 crossref_primary_10_1016_j_energy_2020_119437 crossref_primary_10_1038_s41586_018_0590_4 crossref_primary_10_1089_cmb_2010_0085 crossref_primary_10_1186_s12967_021_03083_y crossref_primary_10_1016_j_jgg_2022_12_005 crossref_primary_10_1007_s00180_014_0540_z crossref_primary_10_1111_ddi_12818 crossref_primary_10_4018_IJHISI_2019010101 crossref_primary_10_1038_s41397_021_00246_4 crossref_primary_10_3390_rs12152445 crossref_primary_10_1016_j_heliyon_2024_e36368 crossref_primary_10_1038_s41409_020_0848_y crossref_primary_10_3389_fdata_2023_921355 crossref_primary_10_1016_j_knosys_2022_108745 crossref_primary_10_1042_BSR20201087 crossref_primary_10_1080_07038992_2024_2338357 crossref_primary_10_1186_1471_2105_15_S16_S8 crossref_primary_10_1007_s11222_017_9767_1 crossref_primary_10_1109_ACCESS_2021_3060114 crossref_primary_10_1016_j_jclepro_2017_06_156 crossref_primary_10_1371_journal_pcbi_1006651 crossref_primary_10_3390_rs12152435 crossref_primary_10_1016_S2095_3119_20_63329_9 crossref_primary_10_3390_en11123283 crossref_primary_10_1186_s12859_014_0368_0 crossref_primary_10_1186_s12859_016_1390_1 crossref_primary_10_1093_nar_gkn251 crossref_primary_10_1016_j_csda_2014_06_017 crossref_primary_10_1016_j_foreco_2020_118353 crossref_primary_10_3390_a10040114 crossref_primary_10_1016_j_eswa_2013_12_009 crossref_primary_10_1016_j_foreco_2021_119951 crossref_primary_10_1016_j_eswa_2013_05_051 crossref_primary_10_1016_j_patcog_2017_04_005 crossref_primary_10_1039_c3an00337j crossref_primary_10_3389_fonc_2022_854927 crossref_primary_10_1155_2022_2833537 crossref_primary_10_1371_journal_pone_0169605 crossref_primary_10_1039_C5FD00157A crossref_primary_10_1021_acscatal_9b02778 crossref_primary_10_3389_fpls_2016_01864 crossref_primary_10_32604_phyton_2025_060152 crossref_primary_10_1021_acs_analchem_3c01157 crossref_primary_10_3390_w11050910 crossref_primary_10_1038_srep23889 crossref_primary_10_1080_00031305_2015_1005128 crossref_primary_10_1093_bioinformatics_btz809 crossref_primary_10_1093_bioinformatics_bty959 crossref_primary_10_1515_ijb_2013_0038 crossref_primary_10_1038_srep13606 crossref_primary_10_3390_e18080285 crossref_primary_10_1016_j_jbi_2021_103763 crossref_primary_10_1016_j_rse_2011_05_013 crossref_primary_10_13048_jkm_20015 crossref_primary_10_1016_j_patrec_2017_05_004 crossref_primary_10_1002_adfm_202400107 crossref_primary_10_1016_j_pce_2020_102931 crossref_primary_10_7465_jkdi_2015_26_2_475 crossref_primary_10_1016_j_ab_2018_06_011 crossref_primary_10_1007_s12145_024_01347_x crossref_primary_10_1016_j_engappai_2023_107681 crossref_primary_10_1186_s12864_017_4340_z crossref_primary_10_1016_j_jhydrol_2019_123957 crossref_primary_10_1080_01621459_2021_1987250 crossref_primary_10_1186_s12944_023_01918_9 crossref_primary_10_1016_j_meomic_2020_100001 crossref_primary_10_1371_journal_pone_0305857 crossref_primary_10_1203_PDR_0b013e318155a0e1 crossref_primary_10_1016_j_compbiolchem_2024_108205 crossref_primary_10_1093_bioinformatics_btw318 crossref_primary_10_1038_s41396_022_01201_2 crossref_primary_10_1016_j_ijrobp_2018_01_054 crossref_primary_10_1186_s12859_016_1292_2 crossref_primary_10_3389_fimmu_2024_1360629 crossref_primary_10_1007_s00330_018_5872_6 crossref_primary_10_3390_biom12111592 crossref_primary_10_1097_TP_0000000000002587 crossref_primary_10_1016_j_jbi_2020_103466 crossref_primary_10_1142_S0219720016500153 crossref_primary_10_1186_s13075_019_2010_z crossref_primary_10_1002_pros_24704 crossref_primary_10_1016_j_foreco_2016_08_047 crossref_primary_10_1016_j_scitotenv_2024_177344 crossref_primary_10_1016_j_compag_2018_09_026 crossref_primary_10_1007_s00723_013_0439_9 crossref_primary_10_1016_j_compbiolchem_2007_09_005 crossref_primary_10_1007_s11571_020_09601_w crossref_primary_10_2174_2666255813999201109201259 crossref_primary_10_1016_j_cmpb_2024_108561 crossref_primary_10_1002_sim_6351 crossref_primary_10_1080_10106049_2019_1594394 crossref_primary_10_1017_S095026881500014X crossref_primary_10_1021_acs_jcim_1c00670 crossref_primary_10_1371_journal_pone_0256592 crossref_primary_10_1152_physiolgenomics_00167_2007 crossref_primary_10_1109_TNB_2009_2035284 crossref_primary_10_1109_ACCESS_2025_3540769 crossref_primary_10_1155_2016_3572705 crossref_primary_10_1186_1471_2164_16_S2_S5 crossref_primary_10_5721_EuJRS20164943 crossref_primary_10_1016_j_fuel_2016_06_034 crossref_primary_10_1016_j_agwat_2022_107504 crossref_primary_10_1214_15_AOS1321 crossref_primary_10_1016_j_jaci_2014_06_032 crossref_primary_10_1007_s11030_011_9321_6 crossref_primary_10_1016_j_engstruct_2022_114190 crossref_primary_10_1371_journal_pone_0202344 crossref_primary_10_1111_gcb_13898 crossref_primary_10_1089_cmb_2006_0116 crossref_primary_10_1155_2014_769159 crossref_primary_10_1186_s40168_020_00943_5 crossref_primary_10_1080_01621459_2015_1036994 crossref_primary_10_19113_sdufenbed_453462 crossref_primary_10_1093_biostatistics_kxp016 crossref_primary_10_1038_s41598_021_98879_9 crossref_primary_10_1007_s13755_019_0085_1 crossref_primary_10_1002_1878_0261_12850 crossref_primary_10_1186_s12874_022_01625_6 crossref_primary_10_1021_acs_analchem_0c01660 crossref_primary_10_1109_TPAMI_2017_2648792 crossref_primary_10_1371_journal_pone_0212127 crossref_primary_10_3233_JIFS_179115 crossref_primary_10_15406_bbij_2016_04_00106 crossref_primary_10_3390_w11112424 crossref_primary_10_1002_bies_201300147 crossref_primary_10_1007_s11704_022_1172_z crossref_primary_10_1016_j_geoderma_2020_114246 crossref_primary_10_1016_j_microc_2013_08_007 crossref_primary_10_1038_srep39832 crossref_primary_10_1002_qj_3823 crossref_primary_10_1016_j_jhydrol_2018_04_038 crossref_primary_10_1029_2020WR027472 crossref_primary_10_3389_fmicb_2021_673632 crossref_primary_10_1038_s41598_017_14682_5 crossref_primary_10_1016_j_neuroimage_2010_07_074 crossref_primary_10_1145_2932707 crossref_primary_10_1016_j_geoderma_2020_114214 crossref_primary_10_1109_ACCESS_2018_2874063 crossref_primary_10_2147_IJGM_S354741 crossref_primary_10_1109_TIV_2016_2617625 crossref_primary_10_1016_j_catena_2024_108344 crossref_primary_10_3390_rs14143373 crossref_primary_10_1186_1755_8794_6_S1_S3 crossref_primary_10_3233_CBM_220147 crossref_primary_10_3389_fmed_2022_882348 crossref_primary_10_1007_s10115_023_01971_x crossref_primary_10_32604_cmc_2023_036710 crossref_primary_10_1100_2012_380495 crossref_primary_10_1111_j_1600_6143_2011_03928_x crossref_primary_10_1016_j_atmosenv_2019_03_029 crossref_primary_10_1007_s00216_006_1070_5 crossref_primary_10_1016_j_bbadis_2013_09_006 crossref_primary_10_1007_s11548_013_0913_8 crossref_primary_10_1016_j_patter_2020_100176 crossref_primary_10_1371_journal_pmed_1001916 crossref_primary_10_1016_j_compbiomed_2021_105154 crossref_primary_10_3233_JSA_190294 crossref_primary_10_1109_JBHI_2019_2944865 crossref_primary_10_1198_jasa_2009_tm08622 crossref_primary_10_1007_s10528_024_10987_z crossref_primary_10_1007_s40003_013_0086_2 crossref_primary_10_1186_s12859_016_0971_3 crossref_primary_10_1016_j_jmva_2023_105211 crossref_primary_10_1038_s41598_019_53451_4 crossref_primary_10_1109_ACCESS_2023_3257875 crossref_primary_10_1016_j_still_2021_105017 crossref_primary_10_1080_1062936X_2024_2446352 crossref_primary_10_7717_peerj_cs_1775 crossref_primary_10_1080_26895293_2024_2422109 crossref_primary_10_1093_bioinformatics_btq628 crossref_primary_10_1007_s10980_008_9261_4 crossref_primary_10_1007_s12021_019_9415_3 crossref_primary_10_3389_fpsyt_2021_637022 crossref_primary_10_1016_j_envsoft_2022_105326 crossref_primary_10_1093_bioinformatics_btaa144 crossref_primary_10_3390_diagnostics9040178 crossref_primary_10_1016_j_jechem_2024_08_007 crossref_primary_10_1016_j_eswa_2013_03_019 crossref_primary_10_1080_01650521_2021_2024055 crossref_primary_10_1109_TCBB_2013_70 crossref_primary_10_1158_1055_9965_EPI_08_0231 crossref_primary_10_1016_j_csbj_2020_07_009 crossref_primary_10_1016_j_jag_2014_12_010 crossref_primary_10_1186_1758_2946_5_9 crossref_primary_10_1016_j_geomorph_2017_02_015 crossref_primary_10_1093_bib_bbaf096 crossref_primary_10_1371_journal_pone_0194212 crossref_primary_10_1016_j_fecs_2024_100211 crossref_primary_10_1080_15567036_2023_2231898 crossref_primary_10_1080_15481603_2018_1426091 crossref_primary_10_1186_s40537_024_00902_z crossref_primary_10_1021_acs_analchem_3c04618 crossref_primary_10_7717_peerj_5285 crossref_primary_10_1016_j_gecco_2024_e02935 crossref_primary_10_1016_j_partic_2014_12_001 crossref_primary_10_1016_j_buildenv_2015_04_021 crossref_primary_10_1016_j_ecolmodel_2007_05_011 crossref_primary_10_1016_j_jhydrol_2021_126770 crossref_primary_10_1016_j_jclimf_2024_100032 crossref_primary_10_1007_s00262_024_03752_z crossref_primary_10_1007_s11634_016_0276_4 crossref_primary_10_1038_s41598_021_92864_y crossref_primary_10_1109_ACCESS_2020_3008416 crossref_primary_10_1007_s12026_023_09398_w crossref_primary_10_3390_rs70810017 crossref_primary_10_1088_1742_6596_1402_6_066055 crossref_primary_10_1007_s10044_019_00856_6 crossref_primary_10_1016_j_chemolab_2017_10_024 crossref_primary_10_1177_0894439320928242 crossref_primary_10_1093_bioinformatics_btp331 crossref_primary_10_1109_TBME_2020_3042574 crossref_primary_10_1038_s41598_024_52956_x crossref_primary_10_1007_s11269_015_1034_7 crossref_primary_10_1186_s13062_018_0222_9 crossref_primary_10_1080_10286608_2019_1568418 crossref_primary_10_1080_03736245_2021_2000481 crossref_primary_10_1016_j_cmpb_2013_04_016 crossref_primary_10_1007_s12274_022_4582_1 crossref_primary_10_1002_jqs_3004 crossref_primary_10_1016_j_aca_2013_10_050 crossref_primary_10_1093_nar_gkt426 crossref_primary_10_1080_1062936X_2016_1201142 crossref_primary_10_1007_s10044_008_0107_0 crossref_primary_10_3389_fevo_2017_00074 crossref_primary_10_3389_fevo_2018_00171 crossref_primary_10_4161_sysb_25981 crossref_primary_10_1111_j_1438_8677_2009_00278_x crossref_primary_10_1016_j_jhydrol_2020_125168 crossref_primary_10_1109_ACCESS_2019_2935096 crossref_primary_10_3390_genes9020065 crossref_primary_10_1016_j_rse_2024_114302 crossref_primary_10_1177_23814683231218716 crossref_primary_10_1109_TCBB_2017_2705686 crossref_primary_10_1007_s11219_017_9361_y crossref_primary_10_1002_gepi_22383 crossref_primary_10_1016_j_inffus_2016_10_001 crossref_primary_10_1016_j_quascirev_2024_108596 crossref_primary_10_1214_20_EJS1758 crossref_primary_10_1002_widm_1248 crossref_primary_10_2478_v10143_010_0052_4 crossref_primary_10_1038_ctg_2016_11 crossref_primary_10_3389_fgene_2021_768747 crossref_primary_10_1016_j_asoc_2017_09_020 crossref_primary_10_1002_mp_12594 crossref_primary_10_1016_j_physa_2013_12_046 crossref_primary_10_1007_s00521_010_0371_y crossref_primary_10_1007_s13762_022_04367_6 crossref_primary_10_1016_j_ins_2013_07_011 crossref_primary_10_1016_j_jcmds_2023_100081 crossref_primary_10_1007_s41976_022_00070_9 crossref_primary_10_3354_meps14109 crossref_primary_10_1016_j_artmed_2008_08_004 crossref_primary_10_3390_rs11171961 crossref_primary_10_1007_s10666_016_9538_y crossref_primary_10_1371_journal_pone_0124383 crossref_primary_10_1016_j_livsci_2022_105045 crossref_primary_10_3389_fgene_2022_855420 crossref_primary_10_3233_IDA_150795 crossref_primary_10_1093_intbio_zyz001 crossref_primary_10_1371_journal_pone_0185686 crossref_primary_10_1016_j_rse_2019_111606 crossref_primary_10_1038_s41598_019_52093_w crossref_primary_10_1021_es402819c crossref_primary_10_1186_1471_2288_9_85 crossref_primary_10_1371_journal_pone_0175957 crossref_primary_10_3390_w15112020 crossref_primary_10_1139_cjfas_2022_0212 crossref_primary_10_37394_23208_2022_19_19 crossref_primary_10_1016_j_chemosphere_2021_132498 crossref_primary_10_3390_app10176088 crossref_primary_10_1177_1420326X221121519 crossref_primary_10_1029_2018WR024620 crossref_primary_10_1016_j_patrec_2010_03_014 crossref_primary_10_1016_j_compbiolchem_2022_107681 crossref_primary_10_1371_journal_pgen_1008576 crossref_primary_10_1117_1_JRS_10_046030 crossref_primary_10_1016_j_jag_2014_08_001 crossref_primary_10_1371_journal_pone_0184370 crossref_primary_10_3390_ijgi10050352 crossref_primary_10_1002_sec_508 crossref_primary_10_1186_s12885_017_3821_4 crossref_primary_10_1007_s00521_018_3864_8 crossref_primary_10_1016_j_rse_2014_07_004 crossref_primary_10_1186_2047_2501_2_7 crossref_primary_10_1093_bioinformatics_bty087 crossref_primary_10_3390_app8091608 crossref_primary_10_3390_w11030544 crossref_primary_10_3945_ajcn_114_092288 crossref_primary_10_1039_C8FO01376D crossref_primary_10_1137_20M1343300 crossref_primary_10_1016_j_humpath_2018_02_019 crossref_primary_10_1016_j_aca_2011_03_050 crossref_primary_10_1093_gbe_evv218 crossref_primary_10_1093_braincomms_fcad215 crossref_primary_10_1007_s11704_024_40117_2 crossref_primary_10_1186_1471_2105_9_307 crossref_primary_10_3389_fmars_2022_857645 crossref_primary_10_3233_IDT_160280 crossref_primary_10_3390_rs9030288 crossref_primary_10_1093_aje_kwab010 crossref_primary_10_3389_fmmed_2022_933383 crossref_primary_10_1038_s41598_017_16521_z crossref_primary_10_1186_1471_2105_11_50 crossref_primary_10_1016_j_patcog_2018_03_014 crossref_primary_10_1136_jitc_2020_000705 crossref_primary_10_3390_agronomy15030692 crossref_primary_10_3892_ol_2019_10504 crossref_primary_10_1016_j_envsoft_2021_105094 crossref_primary_10_1111_aji_13928 crossref_primary_10_1007_s13042_024_02426_7 crossref_primary_10_1007_s11069_014_1192_6 crossref_primary_10_1007_s12539_017_0276_x crossref_primary_10_1186_1471_2105_9_319 crossref_primary_10_3390_a9040077 crossref_primary_10_3109_0284186X_2011_648338 crossref_primary_10_3390_cancers14051291 crossref_primary_10_1007_s00500_015_1925_9 crossref_primary_10_1016_j_swevo_2016_02_002 crossref_primary_10_3390_ijms25073684 crossref_primary_10_1177_0962280220946080 crossref_primary_10_1002_cam4_2642 crossref_primary_10_1371_journal_pone_0084623 crossref_primary_10_3390_rs15061541 crossref_primary_10_1016_j_bcp_2013_08_026 crossref_primary_10_1890_ES11_00271_1 crossref_primary_10_3389_fgene_2021_733654 crossref_primary_10_3390_molecules23010052 crossref_primary_10_1007_s00371_018_01619_w crossref_primary_10_1016_j_compag_2018_05_025 crossref_primary_10_1016_j_geoderma_2019_114061 crossref_primary_10_1093_gerona_glab269 crossref_primary_10_1186_1471_2105_10_S1_S65 crossref_primary_10_1080_02770903_2023_2260881 crossref_primary_10_1186_1753_6561_3_S7_S69 crossref_primary_10_1299_transjsme_20_00308 crossref_primary_10_1063_1_5129306 crossref_primary_10_1097_SHK_0000000000000296 crossref_primary_10_1093_bioinformatics_btq134 crossref_primary_10_1093_bioinformatics_bty1025 crossref_primary_10_1016_j_pnpbp_2012_04_014 crossref_primary_10_1016_j_cmpb_2011_03_002 crossref_primary_10_1186_1753_6561_3_S7_S64 crossref_primary_10_1371_journal_pone_0107801 crossref_primary_10_1007_s00330_020_07158_0 crossref_primary_10_3390_rs12193224 crossref_primary_10_1007_s40808_020_00871_1 crossref_primary_10_1007_s40808_021_01329_8 crossref_primary_10_1016_j_geoderma_2009_12_025 crossref_primary_10_1111_jedm_12208 crossref_primary_10_3389_fmed_2023_1081087 crossref_primary_10_1016_j_ejrh_2021_100884 crossref_primary_10_1016_j_lungcan_2011_09_016 crossref_primary_10_4137_CIN_S2892 crossref_primary_10_1007_s00521_015_2065_y crossref_primary_10_1186_1753_6561_3_S7_S70 crossref_primary_10_3390_proteomes6020020 crossref_primary_10_1002_jbio_201200132 crossref_primary_10_1016_j_ejrh_2021_100880 crossref_primary_10_1038_srep38993 crossref_primary_10_1186_s13073_017_0493_2 crossref_primary_10_1016_j_scitotenv_2025_178520 crossref_primary_10_1016_j_talanta_2019_120471 crossref_primary_10_1079_PAVSNNR202015049 crossref_primary_10_1186_1471_2164_9_S1_S13 crossref_primary_10_1108_K_12_2014_0285 crossref_primary_10_1214_10_AOAS427 crossref_primary_10_1016_j_ecolind_2021_107975 crossref_primary_10_1021_acs_jpcc_0c09073 crossref_primary_10_1109_MCI_2014_2326099 crossref_primary_10_1109_TCBB_2017_2779512 crossref_primary_10_1016_j_pbiomolbio_2022_08_004 crossref_primary_10_1016_j_asoc_2017_03_002 crossref_primary_10_1109_JTEHM_2021_3134160 crossref_primary_10_1007_s10916_016_0467_8 crossref_primary_10_1080_03610918_2016_1248566 crossref_primary_10_1126_scitranslmed_aaa4877 crossref_primary_10_1121_1_4955066 crossref_primary_10_1080_2150704X_2014_999382 crossref_primary_10_1371_journal_pone_0114522 crossref_primary_10_1371_journal_pone_0102541 crossref_primary_10_1016_j_rse_2014_05_018 crossref_primary_10_1109_TCBB_2021_3132339 crossref_primary_10_1007_s00122_010_1516_1 crossref_primary_10_5194_nhess_15_75_2015 crossref_primary_10_3390_rs8060514 crossref_primary_10_5194_hess_16_3699_2012 crossref_primary_10_3390_genes11020162 crossref_primary_10_1109_TCBB_2008_46 crossref_primary_10_1016_j_tourman_2024_105119 crossref_primary_10_1016_j_bspc_2021_102420 crossref_primary_10_1016_j_patrec_2010_05_007 crossref_primary_10_1007_s41060_024_00509_w crossref_primary_10_1016_j_compag_2019_105023 crossref_primary_10_1139_cjfas_2018_0364 crossref_primary_10_1002_for_3008 crossref_primary_10_1016_j_aej_2022_12_027 crossref_primary_10_1186_s12859_018_2095_4 crossref_primary_10_1016_j_fishres_2020_105534 crossref_primary_10_1017_S1351324915000431 crossref_primary_10_1089_omi_2008_0074 crossref_primary_10_3390_rs13020199 crossref_primary_10_1007_s11069_020_03900_5 crossref_primary_10_2208_jscejhe_77_2_I_997 crossref_primary_10_1007_s11517_014_1200_8 crossref_primary_10_1007_s13369_023_08474_5 crossref_primary_10_1016_j_watres_2020_116144 crossref_primary_10_3390_min15030197 crossref_primary_10_1186_s40537_021_00477_z crossref_primary_10_1016_j_foreco_2016_06_037 crossref_primary_10_1111_ijfs_16440 crossref_primary_10_1039_C9TA11909D crossref_primary_10_1186_1471_2164_15_S10_S1 crossref_primary_10_1371_journal_pcbi_1003254 crossref_primary_10_1016_j_energy_2019_01_037 crossref_primary_10_1038_s41598_023_42338_0 crossref_primary_10_7717_peerj_cs_150 crossref_primary_10_7737_JKORMS_2014_39_4_075 crossref_primary_10_2134_agronj2015_0222 crossref_primary_10_1016_j_ygeno_2012_04_003 crossref_primary_10_1146_annurev_anchem_091520_091450 crossref_primary_10_1186_1471_2288_12_107 crossref_primary_10_1016_j_jimonfin_2022_102654 crossref_primary_10_3390_rs14122917 crossref_primary_10_1016_j_cities_2022_104040 crossref_primary_10_1016_j_jbi_2019_103173 crossref_primary_10_3390_genes10020112 crossref_primary_10_3390_su9050819 crossref_primary_10_1177_0165551518789872 crossref_primary_10_1016_j_geoderma_2013_09_016 crossref_primary_10_1111_eva_12524 crossref_primary_10_1109_TVCG_2018_2864475 crossref_primary_10_1038_s41598_020_67024_3 crossref_primary_10_1016_j_scs_2021_103189 crossref_primary_10_1590_s1678_86212020000200410 crossref_primary_10_1016_j_catena_2024_107993 crossref_primary_10_1080_13632469_2020_1826371 crossref_primary_10_1016_j_jbi_2015_11_003 crossref_primary_10_1155_2015_198363 crossref_primary_10_1016_j_deveng_2016_12_003 crossref_primary_10_1007_s11042_023_17234_4 crossref_primary_10_1155_2012_712542 crossref_primary_10_1080_14767058_2023_2177529 crossref_primary_10_1109_ACCESS_2022_3192514 crossref_primary_10_1142_S0219720019500197 crossref_primary_10_1111_j_1600_6143_2008_02249_x crossref_primary_10_1016_j_gene_2018_02_044 crossref_primary_10_1158_0008_5472_CAN_06_1736 crossref_primary_10_1016_j_knosys_2018_07_031 crossref_primary_10_1186_1471_2105_7_345 crossref_primary_10_1007_s10661_017_6025_0 crossref_primary_10_1371_journal_pone_0208823 crossref_primary_10_1364_BOE_9_005837  | 
    
| Cites_doi | 10.1093/hmg/ddg093 10.1093/bioinformatics/btg102 10.1093/bioinformatics/bti171 10.1093/jnci/95.1.14 10.1093/bioinformatics/bti216 10.1093/bioinformatics/16.10.906 10.1038/35000501 10.1093/bioinformatics/bth267 10.1017/CBO9780511812651 10.1016/S0140-6736(05)17866-0 10.1080/10618600.1992.10474582 10.1126/science.286.5439.531 10.1093/bioinformatics/bti319 10.1073/pnas.211566398 10.1038/73432 10.1186/gb-2003-4-12-r83 10.1007/978-0-387-21606-5 10.1186/gb-2002-3-4-research0017 10.1038/415436a 10.1073/pnas.102102699 10.1093/bioinformatics/18.10.1332 10.1093/bioinformatics/btg182 10.1081/BIP-200035491 10.1038/89044 10.1016/j.toxlet.2004.02.021 10.1016/S0893-6080(03)00103-5 10.1186/1471-2156-4-S1-S64 10.1038/415530a 10.1186/1471-2105-5-81 10.1023/A:1009715923555 10.1214/ss/1009213726 10.1016/S1535-6108(02)00030-2 10.1196/annals.1310.015 10.1093/bioinformatics/btg210 10.1093/bioinformatics/bth447 10.1073/pnas.082099299 10.1002/0470094419.ch12 10.1073/pnas.0502674102 10.1073/pnas.1632587100 10.1002/0471725293 10.1073/pnas.96.12.6745 10.1158/1078-0432.1146.11.3 10.1016/j.csda.2004.03.017 10.1023/A:1010933404324 10.1093/nar/gki500 10.1093/bioinformatics/bth469 10.1093/bioinformatics/19.1.45 10.1007/978-1-4757-3462-1 10.1038/ng1502 10.1093/bioinformatics/btg399 10.1080/00031305.1983.10483087 10.1186/1471-2105-6-148 10.1038/ng1060 10.1198/016214502753479248 10.1016/j.jmva.2004.02.012  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2006 Díaz-Uriarte and Alvarez de Andrés; licensee BioMed Central Ltd. | 
    
| Copyright_xml | – notice: Copyright © 2006 Díaz-Uriarte and Alvarez de Andrés; licensee BioMed Central Ltd. | 
    
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 7X8 5PM ADTOC UNPAY DOA  | 
    
| DOI | 10.1186/1471-2105-7-3 | 
    
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Genetics Abstracts Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Genetics Abstracts MEDLINE - Academic MEDLINE  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 4 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Biology | 
    
| EISSN | 1471-2105 | 
    
| EndPage | 3 | 
    
| ExternalDocumentID | oai_doaj_org_article_c84a92250dff4d9da68a9ffaf11fd9ae 10.1186/1471-2105-7-3 PMC1363357 16398926 10_1186_1471_2105_7_3  | 
    
| Genre | Research Support, Non-U.S. Gov't Evaluation Study Journal Article  | 
    
| GroupedDBID | --- 0R~ 123 23N 2VQ 2WC 4.4 53G 5VS 6J9 AAFWJ AAJSJ AAKPC AASML AAYXX ABDBF ACGFO ACGFS ACIHN ACIWK ACPRK ACUHS ADBBV ADMLS ADRAZ ADUKV AEAQA AENEX AFPKN AFRAH AHBYD AHMBA AHSBF AHYZX ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH AOIJS BAPOH BAWUL BCNDV BENPR BFQNJ BMC C1A C6C CITATION CS3 DIK DU5 E3Z EAD EAP EAS EBD EBLON EBS EJD EMB EMK EMOBN ESX F5P GROUPED_DOAJ GX1 H13 HYE IAO ICD IHR INH INR IPNFZ ISR ITC KQ8 M48 MK~ ML0 M~E O5R O5S OK1 OVT P2P PGMZT PIMPY PQQKQ RBZ RIG RNS ROL RPM RSV SBL SOJ SV3 TR2 TUS W2D WOQ WOW XH6 XSB ALIPV CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 P64 RC3 7X8 5PM 7X7 88E 8AO 8FE 8FG 8FH 8FI 8FJ ABUWG ADTOC AEUYN AFFHD AFKRA ARAPS AZQEC BBNVY BGLVJ BHPHI BPHCQ BVXVI CCPQU DWQXO FYUFA GNUQQ HCIFZ HMCUK K6V K7- LK8 M1P M7P P62 PHGZM PHGZT PJZUB PPXIY PQGLB PROAC PSQYO UKHRP UNPAY  | 
    
| ID | FETCH-LOGICAL-c4633-79ebbd7e4fb5ebf0d70885630ac97ba4fe9d073e3645ecb8d00d64e7323fe6363 | 
    
| IEDL.DBID | M48 | 
    
| ISSN | 1471-2105 | 
    
| IngestDate | Fri Oct 03 12:43:29 EDT 2025 Wed Oct 29 11:23:17 EDT 2025 Thu Aug 21 14:13:29 EDT 2025 Thu Oct 02 11:43:04 EDT 2025 Tue Oct 07 09:37:22 EDT 2025 Thu Apr 03 07:06:49 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Wed Oct 01 01:46:24 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c4633-79ebbd7e4fb5ebf0d70885630ac97ba4fe9d073e3645ecb8d00d64e7323fe6363 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Undefined-1 ObjectType-Feature-3  | 
    
| OpenAccessLink | https://doaj.org/article/c84a92250dff4d9da68a9ffaf11fd9ae | 
    
| PMID | 16398926 | 
    
| PQID | 19433625 | 
    
| PQPubID | 23462 | 
    
| PageCount | 1 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c84a92250dff4d9da68a9ffaf11fd9ae unpaywall_primary_10_1186_1471_2105_7_3 pubmedcentral_primary_oai_pubmedcentral_nih_gov_1363357 proquest_miscellaneous_67648791 proquest_miscellaneous_19433625 pubmed_primary_16398926 crossref_citationtrail_10_1186_1471_2105_7_3 crossref_primary_10_1186_1471_2105_7_3  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2006-01-06 | 
    
| PublicationDateYYYYMMDD | 2006-01-06 | 
    
| PublicationDate_xml | – month: 01 year: 2006 text: 2006-01-06 day: 06  | 
    
| PublicationDecade | 2000 | 
    
| PublicationPlace | England | 
    
| PublicationPlace_xml | – name: England – name: London  | 
    
| PublicationTitle | BMC bioinformatics | 
    
| PublicationTitleAlternate | BMC Bioinformatics | 
    
| PublicationYear | 2006 | 
    
| Publisher | BioMed Central BMC  | 
    
| Publisher_xml | – name: BioMed Central – name: BMC  | 
    
| References | S Michiels (742_CR30) 2005; 365 B Efron (742_CR35) 1997; 92 L Breiman (742_CR14) 1984 G Izmirlian (742_CR19) 2004; 1020 H Yu (742_CR50) 2004 EC Gunther (742_CR21) 2003; 100 S Dudoit (742_CR25) 2003 DT Ross (742_CR61) 2000; 24 L Ein-Dor (742_CR29) 2005; 21 B Wu (742_CR20) 2003; 19 JM Vaquerizas (742_CR58) 2005; 33 SL Pomeroy (742_CR63) 2002; 415 KY Yeung (742_CR2) 2005; 21 P Roepman (742_CR10) 2005; 37 TH Bø (742_CR12) 2002; 3 J Hua (742_CR4) 2005; 21 H Jiang (742_CR45) 2004; 5 H Schwender (742_CR23) 2004; 151 L Tierney (742_CR51) 2004 T Li (742_CR8) 2004; 20 BD Ripley (742_CR15) 1996 CJC Burgues (742_CR57) 1998; 2 A Bureau (742_CR36) 2003; 4 742_CR60 S Ramaswamy (742_CR55) 2001; 98 M Dettling (742_CR48) 2004; 90 S Ramaswamy (742_CR62) 2003; 33 LJ van't Veer (742_CR9) 2002; 415 742_CR68 JFE Harrell (742_CR40) 2001 C Furlanello (742_CR11) 2003; 16 JW Lee (742_CR1) 2005; 48 R Development Core Team (742_CR59) 2004 T Jirapech-Umpai (742_CR3) 2005; 6 U Braga-Neto (742_CR38) 2004; 20 RL Somorjai (742_CR27) 2003; 19 L Breiman (742_CR17) 1996; 24 S Alvarez (742_CR18) 2005; 11 MZ Man (742_CR22) 2004; 14 C Romualdi (742_CR31) 2003; 12 TS Furey (742_CR53) 2000; 16 V Svetnik (742_CR26) 2004; 3077 R Tibshirani (742_CR33) 2002; 99 C Ambroise (742_CR34) 2002; 99 AA Alizadeh (742_CR65) 2000; 403 KH Pan (742_CR28) 2005; 102 B Efron (742_CR41) 1983; 37 JM Deutsch (742_CR42) 2003; 19 M Dettling (742_CR32) 2004; 20 R Simon (742_CR37) 2003; 95 X Zhou (742_CR43) 2005; 21 CC Chang (742_CR56) 2003 T Hastie (742_CR16) 2001 KY Yeung (742_CR46) 2003; 4 U Alon (742_CR64) 1999; 96 GJ McLachlan (742_CR52) 1992 S Dudoit (742_CR7) 2002; 97 L Breiman (742_CR13) 2001; 45 J Khan (742_CR67) 2001; 7 R Díaz-Uriarte (742_CR6) 2005 TR Golub (742_CR44) 1999; 286 Y Li (742_CR5) 2002; 18 A Liaw (742_CR24) 2002; 2 D Singh (742_CR66) 2002; 1 J Faraway (742_CR39) 1992; 1 L Breiman (742_CR47) 2001; 16 RM Simon (742_CR49) 2003 Y Lee (742_CR54) 2003; 19  | 
    
| References_xml | – volume: 12 start-page: 823 issue: 8 year: 2003 ident: 742_CR31 publication-title: Hum Mol Genet doi: 10.1093/hmg/ddg093 – volume: 19 start-page: 1132 issue: 9 year: 2003 ident: 742_CR54 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg102 – volume: 21 start-page: 1509 year: 2005 ident: 742_CR4 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti171 – volume: 95 start-page: 14 year: 2003 ident: 742_CR37 publication-title: Journal of the National Cancer Institute doi: 10.1093/jnci/95.1.14 – volume: 21 start-page: 1559 year: 2005 ident: 742_CR43 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti216 – volume: 16 start-page: 906 issue: 10 year: 2000 ident: 742_CR53 publication-title: Bioinformatics doi: 10.1093/bioinformatics/16.10.906 – volume: 403 start-page: 503 year: 2000 ident: 742_CR65 publication-title: Nature doi: 10.1038/35000501 – volume: 20 start-page: 2429 year: 2004 ident: 742_CR8 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth267 – volume-title: Pattern recognition and neural networks year: 1996 ident: 742_CR15 doi: 10.1017/CBO9780511812651 – volume: 365 start-page: 488 year: 2005 ident: 742_CR30 publication-title: Lancet doi: 10.1016/S0140-6736(05)17866-0 – volume: 1 start-page: 251 year: 1992 ident: 742_CR39 publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.1992.10474582 – volume: 286 start-page: 531 year: 1999 ident: 742_CR44 publication-title: Science doi: 10.1126/science.286.5439.531 – volume: 2 start-page: 18 year: 2002 ident: 742_CR24 publication-title: Rnews – volume: 21 start-page: 2394 year: 2005 ident: 742_CR2 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bti319 – volume: 98 start-page: 15149 issue: 26 year: 2001 ident: 742_CR55 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.211566398 – volume: 24 start-page: 227 issue: 3 year: 2000 ident: 742_CR61 publication-title: Nature Genetics doi: 10.1038/73432 – volume: 4 start-page: R83 year: 2003 ident: 742_CR46 publication-title: Genome Biol doi: 10.1186/gb-2003-4-12-r83 – volume-title: The elements of statistical learning year: 2001 ident: 742_CR16 doi: 10.1007/978-0-387-21606-5 – volume: 3 start-page: 0017.1 issue: 4 year: 2002 ident: 742_CR12 publication-title: Genome Biology doi: 10.1186/gb-2002-3-4-research0017 – volume: 415 start-page: 436 year: 2002 ident: 742_CR63 publication-title: Nature doi: 10.1038/415436a – volume: 99 start-page: 6562 issue: 10 year: 2002 ident: 742_CR34 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.102102699 – volume: 18 start-page: 1332 year: 2002 ident: 742_CR5 publication-title: Bioinformatics doi: 10.1093/bioinformatics/18.10.1332 – volume: 3077 start-page: 334 year: 2004 ident: 742_CR26 publication-title: Multiple Classier Systems, Fifth International Workshop, MCS 2004, Proceedings, 9–11 June 2004, Cagliari, Italy. Lecture Notes in Computer Science, Springer – volume: 19 start-page: 1484 year: 2003 ident: 742_CR27 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg182 – volume: 14 start-page: 1065 year: 2004 ident: 742_CR22 publication-title: J Biopharm Statist doi: 10.1081/BIP-200035491 – volume: 7 start-page: 673 year: 2001 ident: 742_CR67 publication-title: Nat Med doi: 10.1038/89044 – volume: 151 start-page: 291 year: 2004 ident: 742_CR23 publication-title: Toxicol Lett doi: 10.1016/j.toxlet.2004.02.021 – start-page: 93 volume-title: Statistical analysis of gene expression microarray data year: 2003 ident: 742_CR25 – volume: 16 start-page: 641 year: 2003 ident: 742_CR11 publication-title: Neural Netw doi: 10.1016/S0893-6080(03)00103-5 – volume: 4 start-page: S64 issue: Suppl 1 year: 2003 ident: 742_CR36 publication-title: BMC Genet doi: 10.1186/1471-2156-4-S1-S64 – volume: 415 start-page: 530 year: 2002 ident: 742_CR9 publication-title: Nature doi: 10.1038/415530a – volume: 5 start-page: 81 year: 2004 ident: 742_CR45 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-5-81 – volume: 2 start-page: 121 year: 1998 ident: 742_CR57 publication-title: Knowledge Discovery and Data Mining doi: 10.1023/A:1009715923555 – volume: 16 start-page: 199 year: 2001 ident: 742_CR47 publication-title: Statistical Science doi: 10.1214/ss/1009213726 – volume: 1 start-page: 203 year: 2002 ident: 742_CR66 publication-title: Cancer Cell doi: 10.1016/S1535-6108(02)00030-2 – volume: 1020 start-page: 154 year: 2004 ident: 742_CR19 publication-title: Ann NY Acad Sci doi: 10.1196/annals.1310.015 – volume: 19 start-page: 1636 year: 2003 ident: 742_CR20 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg210 – volume: 20 start-page: 3583 year: 2004 ident: 742_CR32 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth447 – volume: 99 start-page: 6567 issue: 10 year: 2002 ident: 742_CR33 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.082099299 – ident: 742_CR68 – start-page: 193 volume-title: Data analysis and visualization in genomics and proteomics year: 2005 ident: 742_CR6 doi: 10.1002/0470094419.ch12 – volume: 102 start-page: 8961 year: 2005 ident: 742_CR28 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.0502674102 – ident: 742_CR60 – volume: 100 start-page: 9608 year: 2003 ident: 742_CR21 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.1632587100 – volume-title: Discriminant analysis and statistical pattern recognition year: 1992 ident: 742_CR52 doi: 10.1002/0471725293 – volume: 96 start-page: 6745 year: 1999 ident: 742_CR64 publication-title: Proc Natl Acad Sci USA doi: 10.1073/pnas.96.12.6745 – volume: 11 start-page: 1146 year: 2005 ident: 742_CR18 publication-title: Clin Cancer Res doi: 10.1158/1078-0432.1146.11.3 – volume: 48 start-page: 869 year: 2005 ident: 742_CR1 publication-title: Computation Statistics and Data Analysis doi: 10.1016/j.csda.2004.03.017 – volume: 24 start-page: 123 year: 1996 ident: 742_CR17 publication-title: Machine Learning – volume: 45 start-page: 5 year: 2001 ident: 742_CR13 publication-title: Machine Learning doi: 10.1023/A:1010933404324 – volume: 92 start-page: 548 year: 1997 ident: 742_CR35 publication-title: J American Statistical Association – volume: 33 start-page: W616 year: 2005 ident: 742_CR58 publication-title: Nucleic Acids Res doi: 10.1093/nar/gki500 – volume: 21 start-page: 171 year: 2005 ident: 742_CR29 publication-title: Bioinformatics doi: 10.1093/bioinformatics/bth469 – volume: 19 start-page: 45 year: 2003 ident: 742_CR42 publication-title: Bioinformatics doi: 10.1093/bioinformatics/19.1.45 – volume-title: Regression modeling strategies year: 2001 ident: 742_CR40 doi: 10.1007/978-1-4757-3462-1 – volume: 37 start-page: 182 year: 2005 ident: 742_CR10 publication-title: Nat Genet doi: 10.1038/ng1502 – volume: 20 start-page: 253 year: 2004 ident: 742_CR38 publication-title: Bioinformatics doi: 10.1093/bioinformatics/btg399 – volume-title: LIBSVM: a library for Support Vector Machines year: 2003 ident: 742_CR56 – volume: 37 start-page: 36 year: 1983 ident: 742_CR41 publication-title: Am Stat doi: 10.1080/00031305.1983.10483087 – volume-title: R: A language and environment for statistical computing year: 2004 ident: 742_CR59 – volume-title: Rmpi: Interface (Wrapper) to MPI (Message-Passing Interface) year: 2004 ident: 742_CR50 – volume: 6 start-page: 148 year: 2005 ident: 742_CR3 publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-6-148 – volume-title: Tech. rep year: 2004 ident: 742_CR51 – volume: 33 start-page: 49 year: 2003 ident: 742_CR62 publication-title: Nature Genetics doi: 10.1038/ng1060 – volume: 97 start-page: 77 issue: 457 year: 2002 ident: 742_CR7 publication-title: J Am Stat Assoc doi: 10.1198/016214502753479248 – volume-title: Classification and regression trees year: 1984 ident: 742_CR14 – volume: 90 start-page: 106 year: 2004 ident: 742_CR48 publication-title: J Multivariate Anal doi: 10.1016/j.jmva.2004.02.012 – volume-title: Design and analysis of DNA microarray investigations year: 2003 ident: 742_CR49  | 
    
| SSID | ssj0017805 | 
    
| Score | 2.4767718 | 
    
| Snippet | Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify the smallest possible... Abstract Background Selection of relevant genes for sample classification is a common task in most gene expression studies, where researchers try to identify...  | 
    
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source  | 
    
| StartPage | 3 | 
    
| SubjectTerms | Algorithms Cluster Analysis Computer Simulation Gene Expression Profiling - methods Methodology Models, Genetic Models, Statistical Oligonucleotide Array Sequence Analysis - methods Pattern Recognition, Automated - methods  | 
    
| SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELaqSqhcEJRXgLY-IHqp1WTt2PERqlarSnCiUm_W-AVI22y17Qrtv2cmyYauoHDp1bGsyTw8M_b4G8beh6QsGO8FYHIi6IxB2IkBkejVZs4YYBh6O_z5i55eqPPL-vJOqy-qCevhgXvGHYdGgUWlK2POKtoIugGbM-SqytFCot23bOw6mRruDwipv3tXZCqBSU29Rtds9PE4JtC6NrxRB9r_t0jzz4LJnWV7DaufMJvd8UZnT9mTIYzkH3vyn7Gt1O6yR31jydVzNiU0aX7T9bhBxnNoIw8UJ1NhUCcLPs_8iorxYLGAFadCUU418N84Oq84v-IYzCJxL9jF2enXk6kYeiaIoLSUwtjkfTRJZV8nn8tocBshDDAI1nhQOdmIVp3o9jEF38SyjFolIycyJy21fMm223mbXjMeJC5hfbC-AqWbEuSkxNVD8oA7pKwKdrTmnQsDoDj1tZi5LrFotCNWO2K1M04W7MM4_bpH0rhv4icSxDiJALC7AVQLN6iF-59aFOxgLUaHBkO3INCm-fLGVVZJ9Nr1_TO00ZjGWfzBV73Yf9OL8VxjJ7pgZkMhNmjd_NL--N6BdlfIW1mbgh2OqvNvNrx5CDa8ZY_HMyP9jm3fLpZpD6OoW7_fGcwvRDAbDw priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVIheeEPD0wcEFzbdjb32-lgQVYTUigORysnys1Qku9E2EQq_nvE-QlMo4sB1PWvZ45nx2J75BuCV9UxqYUyi8XCSxDuGRI6FTnzM2gwBHQwRc4ePT_hkyj6e5qc7cNznwpi5NedVBxoagYpHl9PQZ22WQ6yi4OuDhQut0hf8IEMjm-DxJU9QZ27ALs_RNR_A7vTk0-GXJsOoa-9xNq_-s7UvNfD9f_I5fw-dvLUqF3r9Xc9ml_aloztQ9jNqw1G-jVZLM7I_roA9_rcp34XbnQdLDluRuwc7vrwPN9ualusHMIlA1uSiKa-Da0506YiNLnqMSWrEgFSBzGMcoK5rvSYxRpXE8Pszgvumq-YEh4jceAjTow-f30-SrlxDYhmnNBHSG-OEZ8Hk3oTUCbRgEX5MWymMZsFLhwbFx4dPb03h0tRx5gUd0-A55fQRDMqq9PtALMUupLHSZJrxItV0nGLv1huNxplmQ3jbL5ayHZZ5LKkxU82ZpuAqMkdF5iih6BBeb8gXLYjHdYTv4spviCL2dvOhqs9Up8rKFkxLNIOpC4E56TQvtAxBhywLTmo_hJe93CjU1fgAo0tfrS5UJhlFhyG_noILjidIiRN83MrZr_GiK1nIMR-C2JLArbFut5TnXxu88Ax5S3MxhDcbWf07G578M-VT2NvcSfFnMFjWK_8cvbSledHp3k-4PTwp priority: 102 providerName: Unpaywall  | 
    
| Title | Gene selection and classification of microarray data using random forest | 
    
| URI | https://www.ncbi.nlm.nih.gov/pubmed/16398926 https://www.proquest.com/docview/19433625 https://www.proquest.com/docview/67648791 https://pubmed.ncbi.nlm.nih.gov/PMC1363357 https://bmcbioinformatics.biomedcentral.com/counter/pdf/10.1186/1471-2105-7-3 https://doaj.org/article/c84a92250dff4d9da68a9ffaf11fd9ae  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 7 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVADU databaseName: BioMed Central_OA刊 customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RBZ dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.biomedcentral.com/search/ providerName: BioMedCentral – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: KQ8 dateStart: 20000701 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DOA dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ABDBF dateStart: 20000101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: ADMLS dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: DIK dateStart: 20000101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M~E dateStart: 20000101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: RPM dateStart: 20000101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1471-2105 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: M48 dateStart: 20000701 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: AAJSJ dateStart: 20001201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 1471-2105 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017805 issn: 1471-2105 databaseCode: C6C dateStart: 20000112 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV3db9MwELfGJgQviG_CR_EDGi8Yktq14weECmKqKm1CgkrjybJjeyB1SZeugv733LlpR2GD18SxnDvfl-_8O0JeVEFoq5xjFoIThmcMTPeVZQFvbcYIDobCu8OHR3I0EePjwfEOWdfpdgScXxraYT-pSTt9_fNs-Q4E_m0S-FK-KUDBMghdBgzkZX92xrCnFOZeuwYb18ge2C2NjR0OxUWOAdH8092j7us1AuefM25ZrATsf5k3-ndR5Y1FPbPLH3Y6_c1iHdwmtzpXkw5Xe-MO2Qn1XXJ91XxyeY-MEHGazlMfHGAOtbWnFfrSWDyU-EWbSE-xYM-2rV1SLCalWCd_QsHA-eaUgsMLi7tPJgcfv3wYsa6vAquE5JwpHZzzKojoBsHF3CtQNYgTZiutnBUxaA-SHzBDGSpX-jz3UgTF-zwGySV_QHbrpg6PCK04TKFdpV1hhSxzy_s5zF4FZ0GL8iIjr9a0M1UHOo69L6YmBR-lNEhqg6Q2yvCM7G-Gz1ZoG1cNfI-M2AxCkOz0oGlPTCdzpiqF1aCvch-j8NpbWVodo41FEb22ISPP12w0IFSYKbF1aBZzU2jBwbIPrh4hlYRQT8MPPlyx_WK94POVui8zorY2xNZat9_U378lYO8CaMsHKiMvN1vn32R4_N_1PSE3N4dG8inZPW8X4Rm4UeeuR_aGw_HncS8dQ_SSbMCzydGn4ddfLc4fxQ | 
    
| linkProvider | Scholars Portal | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxMxEB6VVIheeEPD0wcEFzbdjb32-lgQVYTUigORysnys1Qku9E2EQq_nvE-QlMo4sB1PWvZ45nx2J75BuCV9UxqYUyi8XCSxDuGRI6FTnzM2gwBHQwRc4ePT_hkyj6e5qc7cNznwpi5NedVBxoagYpHl9PQZ22WQ6yi4OuDhQut0hf8IEMjm-DxJU9QZ27ALs_RNR_A7vTk0-GXJsOoa-9xNq_-s7UvNfD9f_I5fw-dvLUqF3r9Xc9ml_aloztQ9jNqw1G-jVZLM7I_roA9_rcp34XbnQdLDluRuwc7vrwPN9ualusHMIlA1uSiKa-Da0506YiNLnqMSWrEgFSBzGMcoK5rvSYxRpXE8Pszgvumq-YEh4jceAjTow-f30-SrlxDYhmnNBHSG-OEZ8Hk3oTUCbRgEX5MWymMZsFLhwbFx4dPb03h0tRx5gUd0-A55fQRDMqq9PtALMUupLHSZJrxItV0nGLv1huNxplmQ3jbL5ayHZZ5LKkxU82ZpuAqMkdF5iih6BBeb8gXLYjHdYTv4spviCL2dvOhqs9Up8rKFkxLNIOpC4E56TQvtAxBhywLTmo_hJe93CjU1fgAo0tfrS5UJhlFhyG_noILjidIiRN83MrZr_GiK1nIMR-C2JLArbFut5TnXxu88Ax5S3MxhDcbWf07G578M-VT2NvcSfFnMFjWK_8cvbSledHp3k-4PTwp | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gene+selection+and+classification+of+microarray+data+using+random+forest&rft.jtitle=BMC+bioinformatics&rft.au=D%C3%ADaz-Uriarte%2C+Ram%C3%B3n&rft.au=Alvarez+de+Andr%C3%A9s%2C+Sara&rft.date=2006-01-06&rft.issn=1471-2105&rft.eissn=1471-2105&rft.volume=7&rft.spage=3&rft_id=info:doi/10.1186%2F1471-2105-7-3&rft.externalDBID=NO_FULL_TEXT | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1471-2105&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1471-2105&client=summon |