Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis

Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factor...

Full description

Saved in:
Bibliographic Details
Published inClinical radiology Vol. 79; no. 8; pp. 579 - 588
Main Authors Nowroozi, A., Salehi, M.A., Shobeiri, P., Agahi, S., Momtazmanesh, S., Kaviani, P., Kalra, M.K.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.08.2024
Subjects
Online AccessGet full text
ISSN0009-9260
1365-229X
1365-229X
DOI10.1016/j.crad.2024.04.009

Cover

Abstract Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. •Studies assessing AI in fracture detection have high degrees of bias.•AI showed a pooled sensitivity and specificity of >90% in detecting fractures.•Various factors, including fracture site and architecture affect AI's performance.•Radiologists remain superior to algorithms in fracture detection on X-rays.
AbstractList PurposeFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. MethodsWe systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. ResultsOur analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. ConclusionsCurrently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.
Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. •Studies assessing AI in fracture detection have high degrees of bias.•AI showed a pooled sensitivity and specificity of >90% in detecting fractures.•Various factors, including fracture site and architecture affect AI's performance.•Radiologists remain superior to algorithms in fracture detection on X-rays.
Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it.PURPOSEFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it.We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression.METHODSWe systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression.Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction.RESULTSOur analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction.Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.CONCLUSIONSCurrently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.
Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.
Author Shobeiri, P.
Agahi, S.
Momtazmanesh, S.
Nowroozi, A.
Salehi, M.A.
Kalra, M.K.
Kaviani, P.
Author_xml – sequence: 1
  givenname: A.
  orcidid: 0000-0001-7250-891X
  surname: Nowroozi
  fullname: Nowroozi, A.
  organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 2
  givenname: M.A.
  orcidid: 0000-0002-5078-4224
  surname: Salehi
  fullname: Salehi, M.A.
  organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 3
  givenname: P.
  orcidid: 0000-0002-5282-3282
  surname: Shobeiri
  fullname: Shobeiri, P.
  organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 4
  givenname: S.
  surname: Agahi
  fullname: Agahi, S.
  organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 5
  givenname: S.
  orcidid: 0000-0002-3946-1854
  surname: Momtazmanesh
  fullname: Momtazmanesh, S.
  organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
– sequence: 6
  givenname: P.
  orcidid: 0000-0003-0911-7507
  surname: Kaviani
  fullname: Kaviani, P.
  organization: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
– sequence: 7
  givenname: M.K.
  surname: Kalra
  fullname: Kalra, M.K.
  email: mkalra@mgh.harvard.edu
  organization: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38772766$$D View this record in MEDLINE/PubMed
BookMark eNqFUt9rFDEQDlKx1-o_4IPk0Zc9k-yP2y0ilGJVKPiggm9hLju5zrmbPZNsy_03_qlNvPalYIWBJDPfNxO-b07YkZscMvZaiqUUsnm3XRoP_VIJVS1FCtE9YwtZNnWhVPfziC1EShWdasQxOwlhm5-Vql6w47JdrdSqaRbsz7mPZMkQDJxcxGGgDTqDvCfYuClEMhyMmT2YfQJwmy5x9qmOEU2kKaemke8GSNX0HZo2HnbXgYPruZnGHXhyG06R31K85mYgl6e5cMaBh32IOEIe4vGG8PYva8QIBTgY9oHCS_bcwhDw1f15yn5cfvx-8bm4-vrpy8X5VWGqRsXCrrC2dd1JAaKGDsp1axrTQ2dKi2g7u1am7ctKolTKyHWL0parrrJrW6u2rMpT9vbQd-en3zOGqEcKJukBDqc56FLUbVO2bVcn6Jt76Lwesdc7TyP4vX5QNQHaA8D4KQSPVhuKkMWKHmjQUuhsoN7qbKDOBmqRQnSJqh5RH7o_SXp_IGESKMnodTCUXezJJ5N0P9HT9A-P6AeXYPiFewzbafbJjKClDkoL_S3vUd4qVQmhDg3O_t3gf9PvAO0x4SI
CitedBy_id crossref_primary_10_17816_vto633860
crossref_primary_10_2196_66666
crossref_primary_10_1016_j_crad_2024_106757
crossref_primary_10_1055_a_2369_8330
Cites_doi 10.1001/jamanetworkopen.2021.6096
10.1016/j.engappai.2023.106165
10.1007/s11548-023-02839-9
10.3390/math10162939
10.1016/j.crad.2017.11.015
10.1007/s00256-021-03739-2
10.1002/jbmr.4814
10.1038/s41598-020-76866-w
10.1148/ryai.2020190023
10.1016/j.ijom.2022.03.056
10.4103/1735-3327.369629
10.1136/tsaco-2021-000705
10.1007/s13246-023-01215-w
10.1038/s41598-022-26161-7
10.1007/s00330-019-06167-y
10.1177/17531934221127092
10.3390/jimaging6110127
10.1371/journal.pone.0248809
10.1148/radiol.211785
10.1007/s00256-018-3016-3
10.3389/fphys.2023.1146910
10.1097/CORR.0000000000001318
10.3390/s22155823
10.1109/JBHI.2022.3152267
10.1007/s00247-023-05588-8
10.1016/j.jclinepi.2005.01.016
10.1259/dmfr.20200611
10.1016/j.imu.2020.100452
10.1007/s10278-021-00519-1
10.1016/j.bspc.2021.103119
10.1080/17453674.2020.1803664
10.1038/s41746-020-00352-w
10.1016/S2589-7500(22)00004-8
10.1016/j.diii.2022.06.004
10.1007/s10278-011-9436-4
10.1007/s00330-021-07811-2
10.1007/s00330-022-09349-3
10.1007/s00330-022-09205-4
10.1007/s00247-022-05287-w
10.1016/j.injury.2006.04.130
10.1371/journal.pdig.0000022
10.1038/s41746-019-0105-1
10.1007/s10278-023-00793-1
10.1097/00005373-200210000-00007
10.1007/s00198-017-4153-6
10.1016/j.injury.2014.12.027
10.1148/radiol.210937
10.1073/pnas.1806905115
10.1016/j.acra.2021.09.002
10.1016/j.crad.2019.10.022
10.1016/j.ejrad.2020.109188
10.15441/ceem.20.091
10.1148/ryai.210299
10.1148/ryai.2019180015
10.1097/RLI.0000000000000615
10.1016/S2666-7568(21)00172-0
10.1007/s10278-021-00499-2
10.1038/s41598-022-06018-9
10.1038/s41598-021-85570-2
10.1259/bjr.20220778
10.1016/j.ejrad.2020.108925
10.1109/ACCESS.2021.3082952
10.1259/bjr.20220924
10.1016/j.jacr.2018.07.010
10.1016/j.ejrad.2020.109139
10.1016/j.cmpb.2021.106130
10.1016/j.injury.2022.04.013
10.1080/17453674.2018.1453714
10.1007/s00068-020-01468-0
10.1080/17453674.2020.1837420
10.3348/kjr.2021.0449
10.3390/jimaging7060100
10.1186/s12911-021-01488-9
10.1007/s00256-021-03740-9
10.1007/s10278-018-0167-7
10.1111/j.2517-6161.1995.tb02031.x
10.1080/17453674.2019.1600125
10.1016/j.ijleo.2021.168021
10.1259/bjr.20210979
10.1148/radiol.2019191293
10.3389/fped.2022.1005099
10.2196/19416
10.1007/s11548-020-02150-x
10.1016/j.otsr.2021.102837
10.1016/j.fas.2022.05.005
10.1016/j.diii.2021.10.007
10.32604/cmc.2022.024965
10.1111/1754-9485.12828
10.1007/s10278-020-00364-8
10.1148/ryai.2021200260
10.1186/s12891-021-04260-2
10.1016/j.artmed.2022.102281
10.1016/j.ejrad.2020.109373
10.1016/j.injury.2018.09.008
10.1016/j.diii.2019.03.015
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier Ltd.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.crad.2024.04.009
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1365-229X
EndPage 588
ExternalDocumentID 38772766
10_1016_j_crad_2024_04_009
S0009926024002009
1_s2_0_S0009926024002009
Genre Meta-Analysis
Comparative Study
Systematic Review
Journal Article
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29B
3O-
4.4
457
4G.
53G
5GY
5RE
5VS
6PF
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAWTL
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFS
ACIEU
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFFNX
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CAG
COF
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEI
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
M27
M41
MO0
N9A
O-L
O9-
OAUVE
OI~
OU0
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSZ
T5K
TEORI
UHS
UV1
WH7
WUQ
X7M
Z5R
ZGI
ZXP
~G-
~HD
AACTN
AFCTW
RIG
AAYXX
CITATION
AGCQF
AGRNS
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c462t-f7e5f55910a05a9a3b8c6cda9c3feef9fb2c8d341e122c1b8e1f3794fbf528343
IEDL.DBID .~1
ISSN 0009-9260
1365-229X
IngestDate Sun Sep 28 01:49:13 EDT 2025
Mon Jul 21 06:01:00 EDT 2025
Wed Oct 01 06:43:31 EDT 2025
Thu Apr 24 22:53:36 EDT 2025
Sat Mar 15 15:41:30 EDT 2025
Thu Apr 03 20:56:40 EDT 2025
Tue Oct 14 19:38:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License Copyright © 2024. Published by Elsevier Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-f7e5f55910a05a9a3b8c6cda9c3feef9fb2c8d341e122c1b8e1f3794fbf528343
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
ORCID 0000-0002-3946-1854
0000-0003-0911-7507
0000-0002-5078-4224
0000-0001-7250-891X
0000-0002-5282-3282
PMID 38772766
PQID 3058638895
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_3058638895
pubmed_primary_38772766
crossref_citationtrail_10_1016_j_crad_2024_04_009
crossref_primary_10_1016_j_crad_2024_04_009
elsevier_sciencedirect_doi_10_1016_j_crad_2024_04_009
elsevier_clinicalkeyesjournals_1_s2_0_S0009926024002009
elsevier_clinicalkey_doi_10_1016_j_crad_2024_04_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Clinical radiology
PublicationTitleAlternate Clin Radiol
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Raji, Smart, White (bib120) 2020
Karanam, Srinivas, Chakravarty (bib50) 2023
Paalvast, Nauta, Koelle (bib86) 2022; 128
Ren, Yi (bib89) 2021; 51
Chung, Han, Lee (bib24) 2018; 89
Secinaro, Calandra, Secinaro (bib117) 2021; 21
Grauhan, Niehues, Gaudin (bib33) 2021; 51
Urakawa, Tanaka, Goto (bib99) 2019; 48
Kandel, Castelli, Popovič (bib47) 2020; 6
V, Anami, Latte (bib102) 2022; 71
Zha, Patlas, Duszak (bib5) 2019; 16
Nam, Choi, Kang (bib80) 2022; 12
Oppenheimer, Lüken, Hamm (bib84) 2023; 13
Suzuki, Maki, Yamazaki (bib94) 2022; 35
Hrzic, Tschauner, Sorantin (bib41) 2022; 10
Kim, Goh, Lee (bib56) 2023; 46
(bib51) 2020
(bib72) 2019
Gipson, Tang, Seah (bib32) 2022; 95
Deeks, Macaskill, Irwig (bib8) 2005; 58
Hendrix, Scholten, Vernhout (bib39) 2021; 3
Karanam, Srinivas, Chakravarty (bib49) 2022
Kim, MacKinnon (bib52) 2018; 73
Gan, Xu, Lin (bib29) 2019; 90
Majkowska, Mittal, Steiner (bib71) 2020; 294
(bib27) 2017
Dupuis, Delbos, Veil (bib26) 2022; 103
Lee, Jang, Lee (bib61) 2020; 10
Tsai, Kleinman (bib98) 2022; 52
Jones, Sharma, Hotchkiss (bib46) 2020; 3
Üreten, Sevinç, İğdeli (bib100) 2022; 28
Ozkaya, Topal, Bulut (bib85) 2020; 48
Waymel, Badr, Demondion (bib118) 2019; 100
Ye, Li, Wang (bib106) 2023; 14
Lee, Choi, Kang (bib62) 2023; 13
Grozman, Dumlao, Gonzales (bib34) 2021; 55
Badgeley, Zech, Oakden-Rayner (bib12) 2019; 2
Adams, Chen, Holcdorf (bib10) 2019; 63
Mu, Qu, Dong (bib76) 2021; 9
Collaborators (bib2) 2021; 2
Rayan, Reddy, Kan (bib88) 2019; 1
(bib36) 2020
Yu, Yu, Erdal (bib108) 2020; 75
Kitamura (bib57) 2020; 130
Liao, Liao, Shen (bib64) 2022; 26
(bib65) 2019
Uysal, Hardalac, Peker (bib101) 2021; 11
Yadav, Sharma, Athithan (bib104) 2022; 22
Shahnavazi, Mohamadrahimi (bib91) 2023; 20
Kim, Jung, Park (bib54) 2021; 8
Kim, Mo, Choi (bib53) 2021; 11
Mutasa, Varada, Goel (bib79) 2020; 33
Müller (bib110) 1990
(bib6) 2020
Jimenez-Sanchez, Kazi, Albarqouni (bib45) 2020; 15
Mawatari, Hayashida, Katsuragawa (bib73) 2020; 130
Olczak, Emilson, Razavian (bib83) 2021; 92
(bib93) 2020
Sato, Takegami, Asamoto (bib90) 2021; 22
Jabbar, Hussain, Malik (bib43) 2022; 73
Krogue, Cheng, Hwang (bib59) 2020; 2
Benjamini, Hochberg (bib9) 1995; 57
Liu, Lu, Chen (bib68) 2022; 10
Cohen, Puntonet, Sanchez (bib25) 2023; 33
Murphy, Ehrhardt, Gregson (bib78) 2022; 12
Williamson, Landeiro, McConnell (bib3) 2017; 28
Ghosh, Patton, Bose (bib31) 2023; 36
Langerhuizen, Bulstra, Janssen (bib60) 2020; 478
Singh, Ardakani, Loh (bib92) 2023; 122
Zech, Carotenuto, Igbinoba (bib109) 2023; 53
Ebrahimian, Kalra, Agarwal (bib116) 2022; 29
Luo, Chen, Xiao (bib69) 2022; 4
Tanzi, Audisio, Cirrincione (bib95) 2022; 53
Guermazi, Tannoury, Kompel (bib35) 2022; 302
Tobler, Cyriac, Kovacs (bib97) 2021; 31
Nishiyama, Ishibashi, Ariji (bib81) 2021; 50
Celi, Cellini, Charpignon (bib115) 2022; 1
Hong, Cho, Shin (bib40) 2023; 38
C Pereira S, Rocha, Campilho (bib16) 2023
Raisuddin, Vaattovaara, Nevalainen (bib87) 2021; 11
Mosquera, Diaz, Binder (bib75) 2021; 206
Ashkani-Esfahani, Mojahed Yazdi, Bhimani (bib11) 2022; 28
Bae, Yu, Oh (bib13) 2021; 34
Ma, Luo (bib70) 2021; 22
Lindsey, Daluiski, Chopra (bib67) 2018; 115
Li, Yin, Yi (bib63) 2023; 48
Cheng, Chen, Cheng (bib18) 2020; 8
Choi, Hui, Spain (bib21) 2021; 6
Court-Brown, Caesar (bib1) 2006; 37
Cheng, Hsu, Ooyang (bib20) 2023; 96
Kuo, Kim (bib113) 2023
Yamada, Maki, Kishida (bib105) 2020; 91
Tanzi, Vezzetti, Moreno (bib96) 2020; 133
Rhee, Bridgeman, Acosta (bib4) 2002; 53
Warin, Limprasert, Suebnukarn (bib103) 2022; 51
Kandel, Castelli, Popovic (bib48) 2021; 7
Janisch, Apfaltrer, Hržić (bib44) 2022; 10
Kuo, Harrison, Curran (bib7) 2022; 304
Ghosh, Bose, Patton (bib30) 2023; 96
Larsen, Elsoe, Hansen (bib112) 2015; 46
Wennergren, Bergdahl, Ekelund (bib111) 2018; 49
(bib28) 2018
Inagaki, Nakata, Ichimori (bib42) 2022; 7
Canoni-Meynet, Verdot, Danner (bib17) 2022; 103
Kitamura, Chung, Moore (bib58) 2019; 32
Blüthgen, Becker, Vittoria de Martini (bib15) 2020; 126
Kim, Rebmann, Tran (bib55) 2023; 18
Tang, Li, Ma (bib114) 2022
Oakden-Rayner, Gale, Bonham (bib82) 2022; 4
Hendrix, Hendrix, van Dijke (bib38) 2023; 33
Murata, Endo, Aihara (bib77) 2020; 10
Cheng, Ho, Lee (bib19) 2019; 29
Bagaria, Wadhwani, Wadhwani (bib14) 2021; 247
Lind, Akbarian, Olsson (bib66) 2021; 16
Guy, Jacquet, Tsenkoff (bib37) 2021; 107
(bib74) 2019
Reiner, Krupinski (bib119) 2012; 25
Choi, Cho, Lee (bib23) 2020; 55
Choi, Cho, Ha (bib22) 2022; 23
Yoon, Lee, Kane (bib107) 2021; 4
Zech (10.1016/j.crad.2024.04.009_bib109) 2023; 53
Murphy (10.1016/j.crad.2024.04.009_bib78) 2022; 12
Tang (10.1016/j.crad.2024.04.009_bib114) 2022
Ashkani-Esfahani (10.1016/j.crad.2024.04.009_bib11) 2022; 28
Hong (10.1016/j.crad.2024.04.009_bib40) 2023; 38
Celi (10.1016/j.crad.2024.04.009_bib115) 2022; 1
Janisch (10.1016/j.crad.2024.04.009_bib44) 2022; 10
Kim (10.1016/j.crad.2024.04.009_bib52) 2018; 73
Luo (10.1016/j.crad.2024.04.009_bib69) 2022; 4
Müller (10.1016/j.crad.2024.04.009_bib110) 1990
Liu (10.1016/j.crad.2024.04.009_bib68) 2022; 10
Jones (10.1016/j.crad.2024.04.009_bib46) 2020; 3
Badgeley (10.1016/j.crad.2024.04.009_bib12) 2019; 2
Kim (10.1016/j.crad.2024.04.009_bib54) 2021; 8
Shahnavazi (10.1016/j.crad.2024.04.009_bib91) 2023; 20
Hendrix (10.1016/j.crad.2024.04.009_bib39) 2021; 3
Mu (10.1016/j.crad.2024.04.009_bib76) 2021; 9
Nishiyama (10.1016/j.crad.2024.04.009_bib81) 2021; 50
Warin (10.1016/j.crad.2024.04.009_bib103) 2022; 51
Olczak (10.1016/j.crad.2024.04.009_bib83) 2021; 92
Yamada (10.1016/j.crad.2024.04.009_bib105) 2020; 91
Kitamura (10.1016/j.crad.2024.04.009_bib57) 2020; 130
V (10.1016/j.crad.2024.04.009_bib102) 2022; 71
Zha (10.1016/j.crad.2024.04.009_bib5) 2019; 16
Canoni-Meynet (10.1016/j.crad.2024.04.009_bib17) 2022; 103
Grauhan (10.1016/j.crad.2024.04.009_bib33) 2021; 51
Kim (10.1016/j.crad.2024.04.009_bib53) 2021; 11
Larsen (10.1016/j.crad.2024.04.009_bib112) 2015; 46
Yu (10.1016/j.crad.2024.04.009_bib108) 2020; 75
Raji (10.1016/j.crad.2024.04.009_bib120) 2020
Benjamini (10.1016/j.crad.2024.04.009_bib9) 1995; 57
Ghosh (10.1016/j.crad.2024.04.009_bib30) 2023; 96
Ye (10.1016/j.crad.2024.04.009_bib106) 2023; 14
Mosquera (10.1016/j.crad.2024.04.009_bib75) 2021; 206
Lee (10.1016/j.crad.2024.04.009_bib62) 2023; 13
Oakden-Rayner (10.1016/j.crad.2024.04.009_bib82) 2022; 4
Singh (10.1016/j.crad.2024.04.009_bib92) 2023; 122
Court-Brown (10.1016/j.crad.2024.04.009_bib1) 2006; 37
Kitamura (10.1016/j.crad.2024.04.009_bib58) 2019; 32
Lindsey (10.1016/j.crad.2024.04.009_bib67) 2018; 115
Mutasa (10.1016/j.crad.2024.04.009_bib79) 2020; 33
(10.1016/j.crad.2024.04.009_bib28) 2018
Choi (10.1016/j.crad.2024.04.009_bib21) 2021; 6
Bae (10.1016/j.crad.2024.04.009_bib13) 2021; 34
Karanam (10.1016/j.crad.2024.04.009_bib49) 2022
Cheng (10.1016/j.crad.2024.04.009_bib20) 2023; 96
Grozman (10.1016/j.crad.2024.04.009_bib34) 2021; 55
Hendrix (10.1016/j.crad.2024.04.009_bib38) 2023; 33
(10.1016/j.crad.2024.04.009_bib74) 2019
Waymel (10.1016/j.crad.2024.04.009_bib118) 2019; 100
Collaborators (10.1016/j.crad.2024.04.009_bib2) 2021; 2
Hrzic (10.1016/j.crad.2024.04.009_bib41) 2022; 10
Kandel (10.1016/j.crad.2024.04.009_bib47) 2020; 6
Kuo (10.1016/j.crad.2024.04.009_bib7) 2022; 304
Cheng (10.1016/j.crad.2024.04.009_bib19) 2019; 29
Sato (10.1016/j.crad.2024.04.009_bib90) 2021; 22
Kandel (10.1016/j.crad.2024.04.009_bib48) 2021; 7
Lee (10.1016/j.crad.2024.04.009_bib61) 2020; 10
Kuo (10.1016/j.crad.2024.04.009_bib113) 2023
Kim (10.1016/j.crad.2024.04.009_bib55) 2023; 18
(10.1016/j.crad.2024.04.009_bib51) 2020
Ghosh (10.1016/j.crad.2024.04.009_bib31) 2023; 36
Deeks (10.1016/j.crad.2024.04.009_bib8) 2005; 58
Li (10.1016/j.crad.2024.04.009_bib63) 2023; 48
Oppenheimer (10.1016/j.crad.2024.04.009_bib84) 2023; 13
Murata (10.1016/j.crad.2024.04.009_bib77) 2020; 10
Wennergren (10.1016/j.crad.2024.04.009_bib111) 2018; 49
Tanzi (10.1016/j.crad.2024.04.009_bib95) 2022; 53
Lind (10.1016/j.crad.2024.04.009_bib66) 2021; 16
Urakawa (10.1016/j.crad.2024.04.009_bib99) 2019; 48
C Pereira S (10.1016/j.crad.2024.04.009_bib16) 2023
Ma (10.1016/j.crad.2024.04.009_bib70) 2021; 22
Chung (10.1016/j.crad.2024.04.009_bib24) 2018; 89
Dupuis (10.1016/j.crad.2024.04.009_bib26) 2022; 103
Jabbar (10.1016/j.crad.2024.04.009_bib43) 2022; 73
Tanzi (10.1016/j.crad.2024.04.009_bib96) 2020; 133
(10.1016/j.crad.2024.04.009_bib27) 2017
Yadav (10.1016/j.crad.2024.04.009_bib104) 2022; 22
(10.1016/j.crad.2024.04.009_bib72) 2019
Guermazi (10.1016/j.crad.2024.04.009_bib35) 2022; 302
Guy (10.1016/j.crad.2024.04.009_bib37) 2021; 107
Rhee (10.1016/j.crad.2024.04.009_bib4) 2002; 53
Krogue (10.1016/j.crad.2024.04.009_bib59) 2020; 2
Paalvast (10.1016/j.crad.2024.04.009_bib86) 2022; 128
Williamson (10.1016/j.crad.2024.04.009_bib3) 2017; 28
Bagaria (10.1016/j.crad.2024.04.009_bib14) 2021; 247
Ebrahimian (10.1016/j.crad.2024.04.009_bib116) 2022; 29
(10.1016/j.crad.2024.04.009_bib36) 2020
Mawatari (10.1016/j.crad.2024.04.009_bib73) 2020; 130
Ren (10.1016/j.crad.2024.04.009_bib89) 2021; 51
Secinaro (10.1016/j.crad.2024.04.009_bib117) 2021; 21
Yoon (10.1016/j.crad.2024.04.009_bib107) 2021; 4
Choi (10.1016/j.crad.2024.04.009_bib22) 2022; 23
Kim (10.1016/j.crad.2024.04.009_bib56) 2023; 46
Cheng (10.1016/j.crad.2024.04.009_bib18) 2020; 8
Ozkaya (10.1016/j.crad.2024.04.009_bib85) 2020; 48
Üreten (10.1016/j.crad.2024.04.009_bib100) 2022; 28
Tobler (10.1016/j.crad.2024.04.009_bib97) 2021; 31
Karanam (10.1016/j.crad.2024.04.009_bib50) 2023
Inagaki (10.1016/j.crad.2024.04.009_bib42) 2022; 7
Gipson (10.1016/j.crad.2024.04.009_bib32) 2022; 95
Majkowska (10.1016/j.crad.2024.04.009_bib71) 2020; 294
Rayan (10.1016/j.crad.2024.04.009_bib88) 2019; 1
Choi (10.1016/j.crad.2024.04.009_bib23) 2020; 55
Raisuddin (10.1016/j.crad.2024.04.009_bib87) 2021; 11
Nam (10.1016/j.crad.2024.04.009_bib80) 2022; 12
Gan (10.1016/j.crad.2024.04.009_bib29) 2019; 90
Langerhuizen (10.1016/j.crad.2024.04.009_bib60) 2020; 478
Suzuki (10.1016/j.crad.2024.04.009_bib94) 2022; 35
Blüthgen (10.1016/j.crad.2024.04.009_bib15) 2020; 126
Adams (10.1016/j.crad.2024.04.009_bib10) 2019; 63
(10.1016/j.crad.2024.04.009_bib65) 2019
Cohen (10.1016/j.crad.2024.04.009_bib25) 2023; 33
Uysal (10.1016/j.crad.2024.04.009_bib101) 2021; 11
Tsai (10.1016/j.crad.2024.04.009_bib98) 2022; 52
Reiner (10.1016/j.crad.2024.04.009_bib119) 2012; 25
Jimenez-Sanchez (10.1016/j.crad.2024.04.009_bib45) 2020; 15
Liao (10.1016/j.crad.2024.04.009_bib64) 2022; 26
(10.1016/j.crad.2024.04.009_bib93) 2020
References_xml – volume: 96
  year: 2023
  ident: bib30
  article-title: Deep learning-based prediction of rib fracture presence in frontal radiographs of children under two years of age: a proof-of-concept study
  publication-title: Br J Radiol
– volume: 10
  year: 2020
  ident: bib61
  article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network
  publication-title: Sci Rep
– volume: 7
  year: 2021
  ident: bib48
  article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification
  publication-title: J Imaging
– volume: 92
  start-page: 102
  year: 2021
  end-page: 108
  ident: bib83
  article-title: Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification
  publication-title: Acta Orthop
– volume: 52
  start-page: 1095
  year: 2022
  end-page: 1103
  ident: bib98
  article-title: Machine learning to identify distal tibial classic metaphyseal lesions of infant abuse: a pilot study
  publication-title: Pediatr Radiol
– volume: 53
  start-page: 2625
  year: 2022
  end-page: 2634
  ident: bib95
  article-title: Vision Transformer for femur fracture classification
  publication-title: Injury
– volume: 206
  year: 2021
  ident: bib75
  article-title: Chest x-ray automated triage: a semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures
  publication-title: Comput Methods Programs Biomed
– volume: 91
  start-page: 699
  year: 2020
  end-page: 704
  ident: bib105
  article-title: Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs
  publication-title: Acta Orthop
– year: 2017
  ident: bib27
  article-title: Fully automatic detection of distal radius fractures from posteroanterior and lateral radiographs
  publication-title: 4th international workshop on computer-assisted and robotic endoscopy (CARE)/6th international workshop on clinical image-based procedures (CLIP) - from planning to intervention
– volume: 103
  start-page: 594
  year: 2022
  end-page: 600
  ident: bib17
  article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow
  publication-title: Diagn Interv Imaging
– start-page: 1
  year: 2023
  end-page: 12
  ident: bib50
  article-title: A statistical model approach based on the Gaussian Mixture Model for the diagnosis and classification of bone fractures
  publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT
– volume: 14
  year: 2023
  ident: bib106
  article-title: Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs
  publication-title: Front Physiol
– volume: 6
  year: 2020
  ident: bib47
  article-title: Musculoskeletal images classification for detection of fractures using transfer learning
  publication-title: J Imaging
– volume: 2
  start-page: e580
  year: 2021
  end-page: e592
  ident: bib2
  article-title: Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019
  publication-title: Lancet Healthy Longev
– volume: 21
  start-page: 125
  year: 2021
  ident: bib117
  article-title: The role of artificial intelligence in healthcare: a structured literature review
  publication-title: BMC Med Inform Decis Mak
– volume: 46
  start-page: 746
  year: 2015
  end-page: 750
  ident: bib112
  article-title: Incidence and epidemiology of tibial shaft fractures
  publication-title: Injury
– volume: 11
  year: 2021
  ident: bib53
  article-title: Detecting ankle fractures in plain radiographs using deep learning with accurately labeled datasets aided by computed tomography: a retrospective observational study
  publication-title: Appl Sciences-Basel
– start-page: 1
  year: 2022
  end-page: 12
  ident: bib49
  article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery
  publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT
– volume: 12
  start-page: 2058
  year: 2022
  ident: bib78
  article-title: Machine learning outperforms clinical experts in classification of hip fractures
  publication-title: Sci Rep
– volume: 34
  start-page: 1099
  year: 2021
  end-page: 1109
  ident: bib13
  article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray
  publication-title: J Digit Imaging
– volume: 71
  year: 2022
  ident: bib102
  article-title: A combined feature set for automatic diaphyseal Tibial fracture classification from X-Ray images
  publication-title: Biomed Signal Process Control
– volume: 46
  start-page: 265
  year: 2023
  end-page: 277
  ident: bib56
  article-title: Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures
  publication-title: Phys Eng Sci Med
– volume: 35
  start-page: 39
  year: 2022
  end-page: 46
  ident: bib94
  article-title: Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons
  publication-title: J Digit Imaging
– volume: 15
  start-page: 847
  year: 2020
  end-page: 857
  ident: bib45
  article-title: Precise proximal femur fracture classification for interactive training and surgical planning
  publication-title: Int J Comput Assist Radiol Surg
– volume: 26
  start-page: 3139
  year: 2022
  end-page: 3150
  ident: bib64
  article-title: CNN attention guidance for improved orthopedics radiographic fracture classification
  publication-title: IEEE J Biomed Health Inform
– year: 2023
  ident: bib113
  article-title: Rib fracture. StatPearls. Treasure island (FL) ineligible companies
– volume: 3
  start-page: 144
  year: 2020
  ident: bib46
  article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
  publication-title: NPJ Digit Med
– start-page: 33
  year: 2020
  end-page: 44
  ident: bib120
  article-title: Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing
  publication-title: Proceedings of the 2020 conference on fairness, accountability, and transparency
– volume: 53
  start-page: 663
  year: 2002
  end-page: 667
  ident: bib4
  article-title: Lumbar fractures in adult blunt trauma: axial and single-slice helical abdominal and pelvic computed tomographic scans versus portable plain films
  publication-title: J Trauma
– volume: 29
  start-page: 5469
  year: 2019
  end-page: 5477
  ident: bib19
  article-title: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
  publication-title: Eur Radiol
– volume: 55
  start-page: 360
  year: 2021
  end-page: 365
  ident: bib34
  article-title: Hip fracture detection using artificial intelligence: a pilot study
  publication-title: Acta Med Philippina
– volume: 13
  year: 2023
  ident: bib62
  article-title: Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and scaphoid fractures on conventional wrist radiographs
  publication-title: Diagnostics (Basel)
– volume: 16
  year: 2021
  ident: bib66
  article-title: Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system
  publication-title: PLoS One
– volume: 51
  start-page: 355
  year: 2021
  end-page: 362
  ident: bib33
  article-title: Deep learning for accurately recognizing common causes of shoulder pain on radiographs
  publication-title: Skeletal Radiol
– year: 2020
  ident: bib51
  article-title: Detection of bone fractures automatically with enhanced performance with better combination of filtering and neural networks
  publication-title: 2020 second international conference on inventive research in computing applications (ICIRCA)
– volume: 11
  year: 2021
  ident: bib101
  article-title: Classification of shoulder X-ray images with deep learning ensemble models
  publication-title: Appl Sciences-Basel
– volume: 128
  year: 2022
  ident: bib86
  article-title: Radiology report generation for proximal femur fractures using deep classification and language generation models
  publication-title: Artif Intelligence Med
– volume: 115
  start-page: 11591
  year: 2018
  end-page: 11596
  ident: bib67
  article-title: Deep neural network improves fracture detection by clinicians
  publication-title: Proc Natl Acad Sci U S A
– volume: 51
  start-page: 345
  year: 2021
  end-page: 353
  ident: bib89
  article-title: Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern
  publication-title: Skeletal Radiol
– volume: 130
  year: 2020
  ident: bib73
  article-title: The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs
  publication-title: Eur J Radiol
– volume: 55
  start-page: 101
  year: 2020
  end-page: 110
  ident: bib23
  article-title: Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography
  publication-title: Invest Radiol
– volume: 100
  start-page: 327
  year: 2019
  end-page: 336
  ident: bib118
  article-title: Impact of the rise of artificial intelligence in radiology: what do radiologists think?
  publication-title: Diagn Interv Imaging
– volume: 12
  year: 2022
  ident: bib80
  article-title: Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks
  publication-title: Sci Rep
– year: 2019
  ident: bib72
  article-title: GLCM based feature extraction and medical X-RAY image classification using machine learning techniques
  publication-title: 2019 IEEE conference on information and communication technology
– volume: 8
  start-page: 120
  year: 2021
  end-page: 127
  ident: bib54
  article-title: Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room
  publication-title: Clin Exp Emerg Med
– year: 2018
  ident: bib28
  article-title: Automatic detection of wrist fractures from posteroanterior and lateral radiographs: a deep learning-based approach
  publication-title: 6th international workshop on computational methods and clinical applications in musculoskeletal imaging (MICCAI-MSKI)
– volume: 7
  year: 2022
  ident: bib42
  article-title: Detection of sacral fractures on radiographs using artificial intelligence
  publication-title: JB JS Open Access
– volume: 51
  start-page: 1488
  year: 2022
  end-page: 1494
  ident: bib103
  article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs
  publication-title: INTERNATIONAL JOURNAL ORAL MAXILLOFACIAL SURGERY
– volume: 13
  year: 2023
  ident: bib84
  article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow
  publication-title: Life (Basel)
– volume: 4
  year: 2021
  ident: bib107
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Netw Open
– volume: 53
  start-page: 1125
  year: 2023
  end-page: 1134
  ident: bib109
  article-title: Detecting pediatric wrist fractures using deep-learning-based object detection
  publication-title: Pediatr Radiol
– year: 2019
  ident: bib65
  article-title: Medical data augmentation using generative adversarial networks : X-ray image generation for transfer learning of hip fracture detection
  publication-title: 2019 international conference on technologies and applications of artificial intelligence (TAAI)
– volume: 18
  start-page: 819
  year: 2023
  end-page: 826
  ident: bib55
  article-title: Multiclass datasets expand neural network utility: an example on ankle radiographs
  publication-title: Int J Comput Assist Radiol Surg
– volume: 33
  start-page: 1209
  year: 2020
  end-page: 1217
  ident: bib79
  article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification
  publication-title: J Digit Imaging
– volume: 28
  start-page: 2791
  year: 2017
  end-page: 2800
  ident: bib3
  article-title: Costs of fragility hip fractures globally: a systematic review and meta-regression analysis
  publication-title: Osteoporos Int
– volume: 304
  start-page: 50
  year: 2022
  end-page: 62
  ident: bib7
  article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis
  publication-title: Radiology
– start-page: 1
  year: 2022
  end-page: 25
  ident: bib114
  article-title: Internationalizing AI: evolution and impact of distance factors
  publication-title: Scientometrics
– volume: 73
  start-page: 1827
  year: 2022
  end-page: 1844
  ident: bib43
  article-title: Deep learning based classification of wrist cracks from X-ray imaging
  publication-title: CMC-COMPUTERS MATERIALS CONTINUA
– volume: 49
  start-page: 2068
  year: 2018
  end-page: 2074
  ident: bib111
  article-title: Epidemiology and incidence of tibia fractures in the Swedish Fracture Register
  publication-title: Injury
– volume: 1
  year: 2022
  ident: bib115
  article-title: Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review
  publication-title: PLOS Digital Health
– volume: 57
  start-page: 289
  year: 1995
  end-page: 300
  ident: bib9
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J Royal Stat Soc Ser B (Methodological)
– volume: 23
  start-page: 343
  year: 2022
  end-page: 354
  ident: bib22
  article-title: Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs
  publication-title: Korean J Radiol
– volume: 10
  year: 2020
  ident: bib77
  article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography
  publication-title: Sci Rep
– volume: 36
  start-page: 1302
  year: 2023
  end-page: 1313
  ident: bib31
  article-title: A patch-based deep learning approach for detecting rib fractures on frontal radiographs in young children
  publication-title: J Digit Imaging
– volume: 10
  year: 2022
  ident: bib41
  article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach
  publication-title: MATHEMATICS
– volume: 8
  year: 2020
  ident: bib18
  article-title: A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study
  publication-title: JMIR Med Inform
– volume: 48
  start-page: 585
  year: 2020
  end-page: 592
  ident: bib85
  article-title: Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography
  publication-title: Eur J Trauma Emerg Surg
– volume: 38
  start-page: 887
  year: 2023
  end-page: 895
  ident: bib40
  article-title: Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography
  publication-title: J Bone Miner Res
– volume: 10
  year: 2022
  ident: bib44
  article-title: Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete
  publication-title: Front Pediatr
– volume: 247
  year: 2021
  ident: bib14
  article-title: Bone fractures detection using support vector machine and error backpropagation neural network
  publication-title: Optik.
– volume: 22
  year: 2022
  ident: bib104
  article-title: Hybrid SFNet model for bone fracture detection and classification using ML/DL
  publication-title: Sensors (Basel)
– volume: 2
  start-page: 31
  year: 2019
  ident: bib12
  article-title: Deep learning predicts hip fracture using confounding patient and healthcare variables
  publication-title: NPJ Digit Med
– volume: 478
  start-page: 2653
  year: 2020
  end-page: 2659
  ident: bib60
  article-title: Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid?
  publication-title: Clin Orthop Relat Res
– volume: 48
  start-page: 445
  year: 2023
  end-page: 450
  ident: bib63
  article-title: Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs
  publication-title: J Hand Surg Eur
– volume: 4
  year: 2022
  ident: bib69
  article-title: Rethinking annotation granularity for overcoming shortcuts in deep learning-based radiograph diagnosis: a multicenter study
  publication-title: Radiol Artif Intell
– volume: 20
  start-page: 27
  year: 2023
  ident: bib91
  article-title: The application of artificial neural networks in the detection of mandibular fractures using panoramic radiography
  publication-title: Dent Res J (Isfahan)
– volume: 28
  start-page: 1259
  year: 2022
  end-page: 1265
  ident: bib11
  article-title: Detection of ankle fractures using deep learning algorithms
  publication-title: Foot Ankle Surg
– volume: 9
  start-page: 78495
  year: 2021
  end-page: 78503
  ident: bib76
  article-title: Fine-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: a multicenter dataset validation
  publication-title: IEEE Access
– start-page: 201
  year: 1990
  ident: bib110
  article-title: The comprehensive classification of fractures of long bones
– volume: 31
  start-page: 6816
  year: 2021
  end-page: 6824
  ident: bib97
  article-title: AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size
  publication-title: Eur Radiol
– volume: 28
  start-page: 196
  year: 2022
  end-page: 201
  ident: bib100
  article-title: Use of deep learning methods for hand fracture detection from plain hand radiographs
  publication-title: Ulus Travma Acil Cerrahi Derg
– year: 2019
  ident: bib74
  article-title: A method for detecting femur fracture based on SK-Densenet
  publication-title: PervasiveHealth: pervasive computing technologies for healthcare
– volume: 58
  start-page: 882
  year: 2005
  end-page: 893
  ident: bib8
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
– volume: 294
  start-page: 421
  year: 2020
  end-page: 431
  ident: bib71
  article-title: Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation
  publication-title: Radiology
– volume: 32
  start-page: 672
  year: 2019
  end-page: 677
  ident: bib58
  article-title: Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation
  publication-title: J Digit Imaging
– volume: 89
  start-page: 468
  year: 2018
  end-page: 473
  ident: bib24
  article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
  publication-title: Acta Orthop
– volume: 16
  start-page: 121
  year: 2019
  end-page: 123
  ident: bib5
  article-title: Radiologist Burnout is not just isolated to the United States: perspectives from Canada
  publication-title: J Am Coll Radiol
– start-page: 236
  year: 2023
  ident: bib16
  article-title: Lightweight multi-scale classification of chest radiographs via size-specific batch normalization
  publication-title: Comput Methods Programs Biomed
– volume: 50
  year: 2021
  ident: bib81
  article-title: Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle
  publication-title: Dentomaxillofac Radiol
– volume: 1
  year: 2019
  ident: bib88
  article-title: Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making
  publication-title: Radiol Artif Intell
– volume: 22
  start-page: 407
  year: 2021
  ident: bib90
  article-title: Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study
  publication-title: BMC Musculoskelet Disord
– year: 2020
  ident: bib36
  article-title: Using transfer learning and class activation maps supporting detection and localization of femoral fractures on anteroposterior radiographs
  publication-title: 2020 IEEE 17th international symposium on biomedical imaging (ISBI)
– volume: 10
  year: 2022
  ident: bib68
  article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: the arrival of the intelligent-medicine era
  publication-title: Front Bioeng Biotechnol
– volume: 2
  year: 2020
  ident: bib59
  article-title: Automatic hip fracture identification and functional subclassification with deep learning
  publication-title: Radiol Artif Intell
– volume: 33
  start-page: 3974
  year: 2023
  end-page: 3983
  ident: bib25
  article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs
  publication-title: Eur Radiol
– volume: 6
  year: 2021
  ident: bib21
  article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study
  publication-title: Trauma Surg Acute Care Open
– volume: 126
  year: 2020
  ident: bib15
  article-title: Detection and localization of distal radius fractures: deep learning system versus radiologists
  publication-title: Eur J Radiol
– volume: 37
  start-page: 691
  year: 2006
  end-page: 697
  ident: bib1
  article-title: Epidemiology of adult fractures: a review
  publication-title: Injury
– volume: 122
  year: 2023
  ident: bib92
  article-title: Automated detection of scaphoid fractures using deep neural networks in radiographs
  publication-title: ENGINEERING APPLICATIONS ARTIFICIAL INTELLIGENCE
– volume: 107
  year: 2021
  ident: bib37
  article-title: Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues
  publication-title: Orthop Traumatol Surg Res
– volume: 22
  year: 2021
  ident: bib70
  article-title: Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network
  publication-title: Inform Med Unlocked
– year: 2020
  ident: bib93
  article-title: CNN-based detection of distal tibial fractures in radiographic images in the setting of open growth plates
  publication-title: Conference on medical imaging - computer-aided diagnosis
– volume: 63
  start-page: 27
  year: 2019
  end-page: 32
  ident: bib10
  article-title: Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures
  publication-title: J Med Imaging Radiat Oncol
– volume: 11
  start-page: 6006
  year: 2021
  ident: bib87
  article-title: Critical evaluation of deep neural networks for wrist fracture detection
  publication-title: Sci Rep
– volume: 133
  year: 2020
  ident: bib96
  article-title: Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach
  publication-title: Eur J Radiol
– volume: 29
  start-page: 559
  year: 2022
  end-page: 566
  ident: bib116
  article-title: FDA-Regulated AI algorithms: trends, strengths, and gaps of validation studies
  publication-title: Acad Radiol
– volume: 25
  start-page: 3
  year: 2012
  end-page: 6
  ident: bib119
  article-title: The insidious problem of fatigue in medical imaging practice
  publication-title: J Digit Imaging
– volume: 90
  start-page: 394
  year: 2019
  end-page: 400
  ident: bib29
  article-title: Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments
  publication-title: Acta Orthop
– volume: 96
  year: 2023
  ident: bib20
  article-title: Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm
  publication-title: Br J Radiol
– volume: 73
  start-page: 439
  year: 2018
  end-page: 445
  ident: bib52
  article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  publication-title: Clin Radiol
– volume: 75
  start-page: 237.e1
  year: 2020
  ident: bib108
  article-title: Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept
  publication-title: Clin Radiol
– volume: 3
  year: 2021
  ident: bib39
  article-title: Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs
  publication-title: Radiol Artif Intell
– volume: 95
  year: 2022
  ident: bib32
  article-title: Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma
  publication-title: BRITISH JOURNAL RADIOLOGY
– volume: 48
  start-page: 239
  year: 2019
  end-page: 244
  ident: bib99
  article-title: Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network
  publication-title: Skeletal Radiol
– volume: 103
  start-page: 151
  year: 2022
  end-page: 159
  ident: bib26
  article-title: External validation of a commercially available deep learning algorithm for fracture detection in children
  publication-title: Diagn Interv Imaging
– volume: 130
  year: 2020
  ident: bib57
  article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection
  publication-title: Eur J Radiol
– volume: 4
  start-page: e351
  year: 2022
  end-page: e358
  ident: bib82
  article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study
  publication-title: Lancet Digit Health
– year: 2020
  ident: bib6
  article-title: Machine learning
– volume: 302
  start-page: 627
  year: 2022
  end-page: 636
  ident: bib35
  article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence
  publication-title: Radiology
– volume: 33
  start-page: 1575
  year: 2023
  end-page: 1588
  ident: bib38
  article-title: Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist
  publication-title: Eur Radiol
– volume: 4
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib107
  article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs
  publication-title: JAMA Netw Open
  doi: 10.1001/jamanetworkopen.2021.6096
– volume: 122
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib92
  article-title: Automated detection of scaphoid fractures using deep neural networks in radiographs
  publication-title: ENGINEERING APPLICATIONS ARTIFICIAL INTELLIGENCE
  doi: 10.1016/j.engappai.2023.106165
– volume: 18
  start-page: 819
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib55
  article-title: Multiclass datasets expand neural network utility: an example on ankle radiographs
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-023-02839-9
– volume: 10
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib41
  article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach
  publication-title: MATHEMATICS
  doi: 10.3390/math10162939
– volume: 73
  start-page: 439
  year: 2018
  ident: 10.1016/j.crad.2024.04.009_bib52
  article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2017.11.015
– volume: 51
  start-page: 345
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib89
  article-title: Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-021-03739-2
– volume: 38
  start-page: 887
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib40
  article-title: Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography
  publication-title: J Bone Miner Res
  doi: 10.1002/jbmr.4814
– volume: 10
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib77
  article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography
  publication-title: Sci Rep
  doi: 10.1038/s41598-020-76866-w
– volume: 2
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib59
  article-title: Automatic hip fracture identification and functional subclassification with deep learning
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2020190023
– volume: 51
  start-page: 1488
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib103
  article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs
  publication-title: INTERNATIONAL JOURNAL ORAL MAXILLOFACIAL SURGERY
  doi: 10.1016/j.ijom.2022.03.056
– start-page: 33
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib120
  article-title: Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing
– start-page: 1
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib50
  article-title: A statistical model approach based on the Gaussian Mixture Model for the diagnosis and classification of bone fractures
  publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT
– year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib72
  article-title: GLCM based feature extraction and medical X-RAY image classification using machine learning techniques
– volume: 20
  start-page: 27
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib91
  article-title: The application of artificial neural networks in the detection of mandibular fractures using panoramic radiography
  publication-title: Dent Res J (Isfahan)
  doi: 10.4103/1735-3327.369629
– volume: 6
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib21
  article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study
  publication-title: Trauma Surg Acute Care Open
  doi: 10.1136/tsaco-2021-000705
– volume: 46
  start-page: 265
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib56
  article-title: Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures
  publication-title: Phys Eng Sci Med
  doi: 10.1007/s13246-023-01215-w
– volume: 12
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib80
  article-title: Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-26161-7
– volume: 10
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib61
  article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network
  publication-title: Sci Rep
– volume: 29
  start-page: 5469
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib19
  article-title: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs
  publication-title: Eur Radiol
  doi: 10.1007/s00330-019-06167-y
– volume: 55
  start-page: 360
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib34
  article-title: Hip fracture detection using artificial intelligence: a pilot study
  publication-title: Acta Med Philippina
– volume: 48
  start-page: 445
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib63
  article-title: Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs
  publication-title: J Hand Surg Eur
  doi: 10.1177/17531934221127092
– volume: 6
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib47
  article-title: Musculoskeletal images classification for detection of fractures using transfer learning
  publication-title: J Imaging
  doi: 10.3390/jimaging6110127
– volume: 16
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib66
  article-title: Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0248809
– year: 2018
  ident: 10.1016/j.crad.2024.04.009_bib28
  article-title: Automatic detection of wrist fractures from posteroanterior and lateral radiographs: a deep learning-based approach
– volume: 11
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib53
  article-title: Detecting ankle fractures in plain radiographs using deep learning with accurately labeled datasets aided by computed tomography: a retrospective observational study
  publication-title: Appl Sciences-Basel
– volume: 304
  start-page: 50
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib7
  article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis
  publication-title: Radiology
  doi: 10.1148/radiol.211785
– volume: 13
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib62
  article-title: Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and scaphoid fractures on conventional wrist radiographs
  publication-title: Diagnostics (Basel)
– volume: 48
  start-page: 239
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib99
  article-title: Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-018-3016-3
– volume: 14
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib106
  article-title: Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs
  publication-title: Front Physiol
  doi: 10.3389/fphys.2023.1146910
– volume: 478
  start-page: 2653
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib60
  article-title: Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid?
  publication-title: Clin Orthop Relat Res
  doi: 10.1097/CORR.0000000000001318
– volume: 22
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib104
  article-title: Hybrid SFNet model for bone fracture detection and classification using ML/DL
  publication-title: Sensors (Basel)
  doi: 10.3390/s22155823
– volume: 26
  start-page: 3139
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib64
  article-title: CNN attention guidance for improved orthopedics radiographic fracture classification
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2022.3152267
– volume: 53
  start-page: 1125
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib109
  article-title: Detecting pediatric wrist fractures using deep-learning-based object detection
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-023-05588-8
– volume: 58
  start-page: 882
  year: 2005
  ident: 10.1016/j.crad.2024.04.009_bib8
  article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed
  publication-title: J Clin Epidemiol
  doi: 10.1016/j.jclinepi.2005.01.016
– start-page: 1
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib49
  article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery
  publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT
– volume: 50
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib81
  article-title: Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle
  publication-title: Dentomaxillofac Radiol
  doi: 10.1259/dmfr.20200611
– volume: 22
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib70
  article-title: Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network
  publication-title: Inform Med Unlocked
  doi: 10.1016/j.imu.2020.100452
– volume: 35
  start-page: 39
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib94
  article-title: Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00519-1
– volume: 71
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib102
  article-title: A combined feature set for automatic diaphyseal Tibial fracture classification from X-Ray images
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.103119
– volume: 91
  start-page: 699
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib105
  article-title: Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2020.1803664
– volume: 3
  start-page: 144
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib46
  article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-020-00352-w
– volume: 4
  start-page: e351
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib82
  article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study
  publication-title: Lancet Digit Health
  doi: 10.1016/S2589-7500(22)00004-8
– volume: 10
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib68
  article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: the arrival of the intelligent-medicine era
  publication-title: Front Bioeng Biotechnol
– volume: 103
  start-page: 594
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib17
  article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2022.06.004
– volume: 25
  start-page: 3
  year: 2012
  ident: 10.1016/j.crad.2024.04.009_bib119
  article-title: The insidious problem of fatigue in medical imaging practice
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-011-9436-4
– volume: 31
  start-page: 6816
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib97
  article-title: AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size
  publication-title: Eur Radiol
  doi: 10.1007/s00330-021-07811-2
– year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib65
  article-title: Medical data augmentation using generative adversarial networks : X-ray image generation for transfer learning of hip fracture detection
– volume: 33
  start-page: 3974
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib25
  article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-09349-3
– volume: 33
  start-page: 1575
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib38
  article-title: Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist
  publication-title: Eur Radiol
  doi: 10.1007/s00330-022-09205-4
– volume: 52
  start-page: 1095
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib98
  article-title: Machine learning to identify distal tibial classic metaphyseal lesions of infant abuse: a pilot study
  publication-title: Pediatr Radiol
  doi: 10.1007/s00247-022-05287-w
– volume: 37
  start-page: 691
  year: 2006
  ident: 10.1016/j.crad.2024.04.009_bib1
  article-title: Epidemiology of adult fractures: a review
  publication-title: Injury
  doi: 10.1016/j.injury.2006.04.130
– volume: 7
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib42
  article-title: Detection of sacral fractures on radiographs using artificial intelligence
  publication-title: JB JS Open Access
– volume: 1
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib115
  article-title: Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review
  publication-title: PLOS Digital Health
  doi: 10.1371/journal.pdig.0000022
– volume: 2
  start-page: 31
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib12
  article-title: Deep learning predicts hip fracture using confounding patient and healthcare variables
  publication-title: NPJ Digit Med
  doi: 10.1038/s41746-019-0105-1
– start-page: 201
  year: 1990
  ident: 10.1016/j.crad.2024.04.009_bib110
– volume: 36
  start-page: 1302
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib31
  article-title: A patch-based deep learning approach for detecting rib fractures on frontal radiographs in young children
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-023-00793-1
– volume: 11
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib101
  article-title: Classification of shoulder X-ray images with deep learning ensemble models
  publication-title: Appl Sciences-Basel
– volume: 53
  start-page: 663
  year: 2002
  ident: 10.1016/j.crad.2024.04.009_bib4
  article-title: Lumbar fractures in adult blunt trauma: axial and single-slice helical abdominal and pelvic computed tomographic scans versus portable plain films
  publication-title: J Trauma
  doi: 10.1097/00005373-200210000-00007
– volume: 28
  start-page: 2791
  year: 2017
  ident: 10.1016/j.crad.2024.04.009_bib3
  article-title: Costs of fragility hip fractures globally: a systematic review and meta-regression analysis
  publication-title: Osteoporos Int
  doi: 10.1007/s00198-017-4153-6
– year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib51
  article-title: Detection of bone fractures automatically with enhanced performance with better combination of filtering and neural networks
– volume: 46
  start-page: 746
  year: 2015
  ident: 10.1016/j.crad.2024.04.009_bib112
  article-title: Incidence and epidemiology of tibial shaft fractures
  publication-title: Injury
  doi: 10.1016/j.injury.2014.12.027
– volume: 28
  start-page: 196
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib100
  article-title: Use of deep learning methods for hand fracture detection from plain hand radiographs
  publication-title: Ulus Travma Acil Cerrahi Derg
– volume: 302
  start-page: 627
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib35
  article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence
  publication-title: Radiology
  doi: 10.1148/radiol.210937
– year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib93
  article-title: CNN-based detection of distal tibial fractures in radiographic images in the setting of open growth plates
– volume: 115
  start-page: 11591
  year: 2018
  ident: 10.1016/j.crad.2024.04.009_bib67
  article-title: Deep neural network improves fracture detection by clinicians
  publication-title: Proc Natl Acad Sci U S A
  doi: 10.1073/pnas.1806905115
– volume: 29
  start-page: 559
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib116
  article-title: FDA-Regulated AI algorithms: trends, strengths, and gaps of validation studies
  publication-title: Acad Radiol
  doi: 10.1016/j.acra.2021.09.002
– year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib113
– volume: 75
  start-page: 237.e1
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib108
  article-title: Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept
  publication-title: Clin Radiol
  doi: 10.1016/j.crad.2019.10.022
– volume: 130
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib73
  article-title: The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109188
– volume: 8
  start-page: 120
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib54
  article-title: Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room
  publication-title: Clin Exp Emerg Med
  doi: 10.15441/ceem.20.091
– volume: 4
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib69
  article-title: Rethinking annotation granularity for overcoming shortcuts in deep learning-based radiograph diagnosis: a multicenter study
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.210299
– volume: 1
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib88
  article-title: Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2019180015
– volume: 55
  start-page: 101
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib23
  article-title: Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography
  publication-title: Invest Radiol
  doi: 10.1097/RLI.0000000000000615
– volume: 2
  start-page: e580
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib2
  article-title: Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019
  publication-title: Lancet Healthy Longev
  doi: 10.1016/S2666-7568(21)00172-0
– volume: 34
  start-page: 1099
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib13
  article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00499-2
– volume: 12
  start-page: 2058
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib78
  article-title: Machine learning outperforms clinical experts in classification of hip fractures
  publication-title: Sci Rep
  doi: 10.1038/s41598-022-06018-9
– volume: 11
  start-page: 6006
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib87
  article-title: Critical evaluation of deep neural networks for wrist fracture detection
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-85570-2
– volume: 96
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib30
  article-title: Deep learning-based prediction of rib fracture presence in frontal radiographs of children under two years of age: a proof-of-concept study
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20220778
– start-page: 236
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib16
  article-title: Lightweight multi-scale classification of chest radiographs via size-specific batch normalization
  publication-title: Comput Methods Programs Biomed
– volume: 126
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib15
  article-title: Detection and localization of distal radius fractures: deep learning system versus radiologists
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.108925
– volume: 9
  start-page: 78495
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib76
  article-title: Fine-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: a multicenter dataset validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3082952
– volume: 96
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib20
  article-title: Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm
  publication-title: Br J Radiol
  doi: 10.1259/bjr.20220924
– volume: 16
  start-page: 121
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib5
  article-title: Radiologist Burnout is not just isolated to the United States: perspectives from Canada
  publication-title: J Am Coll Radiol
  doi: 10.1016/j.jacr.2018.07.010
– volume: 130
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib57
  article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109139
– volume: 206
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib75
  article-title: Chest x-ray automated triage: a semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2021.106130
– volume: 53
  start-page: 2625
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib95
  article-title: Vision Transformer for femur fracture classification
  publication-title: Injury
  doi: 10.1016/j.injury.2022.04.013
– volume: 89
  start-page: 468
  year: 2018
  ident: 10.1016/j.crad.2024.04.009_bib24
  article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2018.1453714
– volume: 48
  start-page: 585
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib85
  article-title: Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography
  publication-title: Eur J Trauma Emerg Surg
  doi: 10.1007/s00068-020-01468-0
– volume: 92
  start-page: 102
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib83
  article-title: Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2020.1837420
– volume: 23
  start-page: 343
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib22
  article-title: Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs
  publication-title: Korean J Radiol
  doi: 10.3348/kjr.2021.0449
– volume: 7
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib48
  article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification
  publication-title: J Imaging
  doi: 10.3390/jimaging7060100
– volume: 21
  start-page: 125
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib117
  article-title: The role of artificial intelligence in healthcare: a structured literature review
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/s12911-021-01488-9
– volume: 51
  start-page: 355
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib33
  article-title: Deep learning for accurately recognizing common causes of shoulder pain on radiographs
  publication-title: Skeletal Radiol
  doi: 10.1007/s00256-021-03740-9
– volume: 32
  start-page: 672
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib58
  article-title: Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-018-0167-7
– volume: 57
  start-page: 289
  year: 1995
  ident: 10.1016/j.crad.2024.04.009_bib9
  article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing
  publication-title: J Royal Stat Soc Ser B (Methodological)
  doi: 10.1111/j.2517-6161.1995.tb02031.x
– volume: 90
  start-page: 394
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib29
  article-title: Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments
  publication-title: Acta Orthop
  doi: 10.1080/17453674.2019.1600125
– volume: 247
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib14
  article-title: Bone fractures detection using support vector machine and error backpropagation neural network
  publication-title: Optik.
  doi: 10.1016/j.ijleo.2021.168021
– volume: 95
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib32
  article-title: Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma
  publication-title: BRITISH JOURNAL RADIOLOGY
  doi: 10.1259/bjr.20210979
– volume: 294
  start-page: 421
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib71
  article-title: Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation
  publication-title: Radiology
  doi: 10.1148/radiol.2019191293
– volume: 10
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib44
  article-title: Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete
  publication-title: Front Pediatr
  doi: 10.3389/fped.2022.1005099
– volume: 8
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib18
  article-title: A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study
  publication-title: JMIR Med Inform
  doi: 10.2196/19416
– year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib36
  article-title: Using transfer learning and class activation maps supporting detection and localization of femoral fractures on anteroposterior radiographs
– volume: 15
  start-page: 847
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib45
  article-title: Precise proximal femur fracture classification for interactive training and surgical planning
  publication-title: Int J Comput Assist Radiol Surg
  doi: 10.1007/s11548-020-02150-x
– year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib74
  article-title: A method for detecting femur fracture based on SK-Densenet
– volume: 107
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib37
  article-title: Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues
  publication-title: Orthop Traumatol Surg Res
  doi: 10.1016/j.otsr.2021.102837
– start-page: 1
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib114
  article-title: Internationalizing AI: evolution and impact of distance factors
  publication-title: Scientometrics
– volume: 28
  start-page: 1259
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib11
  article-title: Detection of ankle fractures using deep learning algorithms
  publication-title: Foot Ankle Surg
  doi: 10.1016/j.fas.2022.05.005
– volume: 13
  year: 2023
  ident: 10.1016/j.crad.2024.04.009_bib84
  article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow
  publication-title: Life (Basel)
– volume: 103
  start-page: 151
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib26
  article-title: External validation of a commercially available deep learning algorithm for fracture detection in children
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2021.10.007
– volume: 73
  start-page: 1827
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib43
  article-title: Deep learning based classification of wrist cracks from X-ray imaging
  publication-title: CMC-COMPUTERS MATERIALS CONTINUA
  doi: 10.32604/cmc.2022.024965
– volume: 63
  start-page: 27
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib10
  article-title: Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures
  publication-title: J Med Imaging Radiat Oncol
  doi: 10.1111/1754-9485.12828
– volume: 33
  start-page: 1209
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib79
  article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-020-00364-8
– volume: 3
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib39
  article-title: Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs
  publication-title: Radiol Artif Intell
  doi: 10.1148/ryai.2021200260
– volume: 22
  start-page: 407
  year: 2021
  ident: 10.1016/j.crad.2024.04.009_bib90
  article-title: Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study
  publication-title: BMC Musculoskelet Disord
  doi: 10.1186/s12891-021-04260-2
– year: 2017
  ident: 10.1016/j.crad.2024.04.009_bib27
  article-title: Fully automatic detection of distal radius fractures from posteroanterior and lateral radiographs
– volume: 128
  year: 2022
  ident: 10.1016/j.crad.2024.04.009_bib86
  article-title: Radiology report generation for proximal femur fractures using deep classification and language generation models
  publication-title: Artif Intelligence Med
  doi: 10.1016/j.artmed.2022.102281
– volume: 133
  year: 2020
  ident: 10.1016/j.crad.2024.04.009_bib96
  article-title: Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach
  publication-title: Eur J Radiol
  doi: 10.1016/j.ejrad.2020.109373
– volume: 49
  start-page: 2068
  year: 2018
  ident: 10.1016/j.crad.2024.04.009_bib111
  article-title: Epidemiology and incidence of tibia fractures in the Swedish Fracture Register
  publication-title: Injury
  doi: 10.1016/j.injury.2018.09.008
– volume: 100
  start-page: 327
  year: 2019
  ident: 10.1016/j.crad.2024.04.009_bib118
  article-title: Impact of the rise of artificial intelligence in radiology: what do radiologists think?
  publication-title: Diagn Interv Imaging
  doi: 10.1016/j.diii.2019.03.015
SSID ssj0009424
Score 2.4674044
SecondaryResourceType review_article
Snippet Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and...
PurposeFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 579
SubjectTerms Algorithms
Artificial Intelligence
Fractures, Bone - diagnostic imaging
Humans
Radiographic Image Interpretation, Computer-Assisted - methods
Radiology
Reproducibility of Results
Sensitivity and Specificity
Title Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0009926024002009
https://www.clinicalkey.es/playcontent/1-s2.0-S0009926024002009
https://dx.doi.org/10.1016/j.crad.2024.04.009
https://www.ncbi.nlm.nih.gov/pubmed/38772766
https://www.proquest.com/docview/3058638895
Volume 79
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1365-229X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009424
  issn: 0009-9260
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1365-229X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009424
  issn: 0009-9260
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1365-229X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009424
  issn: 0009-9260
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1365-229X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009424
  issn: 0009-9260
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1365-229X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009424
  issn: 0009-9260
  databaseCode: AKRWK
  dateStart: 19600101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJL6bvbPFCht-LGevih3EJo2LYkpwZyE5IsgUviXdbeQy79Lf2pmbHkTUrTFAq-2NIgrzWaGa-_7xMhH5hxpRDMZXllXCZlFTIDdQMSfJoQHGuKkeF9elbOz-XXi-JiixxPXBiEVabYH2P6GK3TlYP0NA-WbYscX6huoBxHFGQi8cFYuIvBp5-3MA8luZx2U8PeiTgTMV5uZVAtlMtR7hRBifcnp78Vn2MSOnlGnqbqkR7FG3xOtnz3gjw-Td_HX5Jf2BI1IWh7R2yTNhFRB2bUOLdeGXcNHWhAjtR6Be1-GDFZeGlxRZeXBlrhttuoaN1T0zU04tUh19F2oPgHLo28SvCw_pAaeqsKTSMjZrS68oPJTNI-eUXOTz5_P55naQ-GzMmSD1mofBHgrYPlJi-MMsLWrnSNUU4E74MKlru6gVToGeeO2dqzIGCNBxtQNkaK12S7W3T-LaGVbTy3ClW_uCyUMTIo5cHWQSAR1s4Imx6-dkmgHPfJuNQTEu2HxgnTOGE6hyNXM_JxY7OM8hwP9hbTnOqJeAqhUkP2eNCqus_K92m195rpnutc_-GRM1JsLH9z6n-O-H5yOA2rHT_hmM4v1r2G6FxDxKxVMSNvoidufreo4U2pKst3_znqDnmCZxHduEu2h9Xa70HFNdj9cUntk0dHX77Nz24AniwtIA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgEXxJstLyNxQ6HxIw9zQxXVAt2eWqk3y3ZsKajNrjbZA5f-Fn4qM7GzBVGKhJRT7FEeHs-Mk-_7TMhbZlwpBHNZXhmXSVmFzEDdgASfJgTHmmJkeC-Oy_mp_HJWnO2Qg4kLg7DKFPtjTB-jdTqzn97m_qptkeML1Q2U44iCjCS-W7LgFa7A3l9e4TyU5HLaTg27J-ZMBHm5tUG5UC5HvVNEJV6fnf5WfY5Z6PA-uZfKR_ox3uEDsuO7h-T2Iv0gf0R-YEsUhaDtL2qbtImQOjCjxrnN2rjv0IEGJElt1tDuhxGUhaeWF3R1bqAVbruNktY9NV1DI2Adkh1tB4pfcGkkVoKL9R-ooVey0DRSYkarCz-YzCTxk8fk9PDTycE8S5swZE6WfMhC5YsAyw6Wm7wwyghbu9I1RjkRvA8qWO7qBnKhZ5w7ZmvPgoBJHmxA3RgpnpDdbtn5Z4RWtvHcKpT94rJQxsiglAdbB5FEWDsjbHr52iWFctwo41xPULRvGgdM44DpHI5czci7rc0q6nPc2FtMY6on5inESg3p40ar6jor36fp3mume65z_YdLzkixtfzNq_95xTeTw2mY7vgPx3R-uek1hOcaQmatihl5Gj1x-9yihqVSVZZ7_3nV1-TO_GRxpI8-H399Tu5iS4Q6viC7w3rjX0L5NdhX4_T6CU24LrU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+diagnostic+accuracy+in+fracture+detection+from+plain+radiographs+and+comparing+it+with+clinicians%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Clinical+radiology&rft.au=Nowroozi%2C+A&rft.au=Salehi%2C+M.A&rft.au=Shobeiri%2C+P&rft.au=Agahi%2C+S&rft.date=2024-08-01&rft.issn=0009-9260&rft.volume=79&rft.issue=8&rft.spage=579&rft.epage=588&rft_id=info:doi/10.1016%2Fj.crad.2024.04.009&rft.externalDBID=ECK1-s2.0-S0009926024002009&rft.externalDocID=1_s2_0_S0009926024002009
thumbnail_m http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00099260%2FS0009926024X00070%2Fcov150h.gif