Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis
Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factor...
Saved in:
| Published in | Clinical radiology Vol. 79; no. 8; pp. 579 - 588 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
Elsevier Ltd
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0009-9260 1365-229X 1365-229X |
| DOI | 10.1016/j.crad.2024.04.009 |
Cover
| Abstract | Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it.
We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression.
Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction.
Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.
•Studies assessing AI in fracture detection have high degrees of bias.•AI showed a pooled sensitivity and specificity of >90% in detecting fractures.•Various factors, including fracture site and architecture affect AI's performance.•Radiologists remain superior to algorithms in fracture detection on X-rays. |
|---|---|
| AbstractList | PurposeFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. MethodsWe systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. ResultsOur analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. ConclusionsCurrently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. •Studies assessing AI in fracture detection have high degrees of bias.•AI showed a pooled sensitivity and specificity of >90% in detecting fractures.•Various factors, including fracture site and architecture affect AI's performance.•Radiologists remain superior to algorithms in fracture detection on X-rays. Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it.PURPOSEFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it.We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression.METHODSWe systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression.Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction.RESULTSOur analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction.Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products.CONCLUSIONSCurrently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and meta-analysis, we aimed to summarize available literature and data regarding AI performance in fracture detection on plain radiographs and various factors affecting it. We systematically reviewed studies evaluating AI algorithms in detecting bone fractures in plain radiographs, combined their performance using meta-analysis (a bivariate regression approach), and compared it with that of clinicians. We also analyzed the factors potentially affecting algorithm performance using meta-regression. Our analysis included 100 studies. In 83 studies with confusion matrices, AI algorithms showed a sensitivity of 91.43% and a specificity of 92.12% (Area under the summary receiver operator curve = 0.968). After adjustment and false discovery rate correction, tibia/fibula (excluding ankle) fractures were associated with higher (7.0%, p=0.004) AI sensitivity, while more recent publications (5.5%, p=0.003) and Xception architecture (6.6%, p<0.001) were associated with higher specificity. Clinicians and AI showed similar specificity in fracture identification, although AI leaned to higher sensitivity (7.6%, p=0.07). Radiologists, on the other hand, were more specific than AI overall and in several subgroups, and more sensitive to hip fractures before FDR correction. Currently available AI aids could result in a significant improvement in care where radiologists are not readily available. Moreover, identifying factors affecting algorithm performance could guide AI development teams in their process of optimizing their products. |
| Author | Shobeiri, P. Agahi, S. Momtazmanesh, S. Nowroozi, A. Salehi, M.A. Kalra, M.K. Kaviani, P. |
| Author_xml | – sequence: 1 givenname: A. orcidid: 0000-0001-7250-891X surname: Nowroozi fullname: Nowroozi, A. organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran – sequence: 2 givenname: M.A. orcidid: 0000-0002-5078-4224 surname: Salehi fullname: Salehi, M.A. organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran – sequence: 3 givenname: P. orcidid: 0000-0002-5282-3282 surname: Shobeiri fullname: Shobeiri, P. organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran – sequence: 4 givenname: S. surname: Agahi fullname: Agahi, S. organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran – sequence: 5 givenname: S. orcidid: 0000-0002-3946-1854 surname: Momtazmanesh fullname: Momtazmanesh, S. organization: School of Medicine, Tehran University of Medical Sciences, Tehran, Iran – sequence: 6 givenname: P. orcidid: 0000-0003-0911-7507 surname: Kaviani fullname: Kaviani, P. organization: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA – sequence: 7 givenname: M.K. surname: Kalra fullname: Kalra, M.K. email: mkalra@mgh.harvard.edu organization: Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38772766$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUt9rFDEQDlKx1-o_4IPk0Zc9k-yP2y0ilGJVKPiggm9hLju5zrmbPZNsy_03_qlNvPalYIWBJDPfNxO-b07YkZscMvZaiqUUsnm3XRoP_VIJVS1FCtE9YwtZNnWhVPfziC1EShWdasQxOwlhm5-Vql6w47JdrdSqaRbsz7mPZMkQDJxcxGGgDTqDvCfYuClEMhyMmT2YfQJwmy5x9qmOEU2kKaemke8GSNX0HZo2HnbXgYPruZnGHXhyG06R31K85mYgl6e5cMaBh32IOEIe4vGG8PYva8QIBTgY9oHCS_bcwhDw1f15yn5cfvx-8bm4-vrpy8X5VWGqRsXCrrC2dd1JAaKGDsp1axrTQ2dKi2g7u1am7ctKolTKyHWL0parrrJrW6u2rMpT9vbQd-en3zOGqEcKJukBDqc56FLUbVO2bVcn6Jt76Lwesdc7TyP4vX5QNQHaA8D4KQSPVhuKkMWKHmjQUuhsoN7qbKDOBmqRQnSJqh5RH7o_SXp_IGESKMnodTCUXezJJ5N0P9HT9A-P6AeXYPiFewzbafbJjKClDkoL_S3vUd4qVQmhDg3O_t3gf9PvAO0x4SI |
| CitedBy_id | crossref_primary_10_17816_vto633860 crossref_primary_10_2196_66666 crossref_primary_10_1016_j_crad_2024_106757 crossref_primary_10_1055_a_2369_8330 |
| Cites_doi | 10.1001/jamanetworkopen.2021.6096 10.1016/j.engappai.2023.106165 10.1007/s11548-023-02839-9 10.3390/math10162939 10.1016/j.crad.2017.11.015 10.1007/s00256-021-03739-2 10.1002/jbmr.4814 10.1038/s41598-020-76866-w 10.1148/ryai.2020190023 10.1016/j.ijom.2022.03.056 10.4103/1735-3327.369629 10.1136/tsaco-2021-000705 10.1007/s13246-023-01215-w 10.1038/s41598-022-26161-7 10.1007/s00330-019-06167-y 10.1177/17531934221127092 10.3390/jimaging6110127 10.1371/journal.pone.0248809 10.1148/radiol.211785 10.1007/s00256-018-3016-3 10.3389/fphys.2023.1146910 10.1097/CORR.0000000000001318 10.3390/s22155823 10.1109/JBHI.2022.3152267 10.1007/s00247-023-05588-8 10.1016/j.jclinepi.2005.01.016 10.1259/dmfr.20200611 10.1016/j.imu.2020.100452 10.1007/s10278-021-00519-1 10.1016/j.bspc.2021.103119 10.1080/17453674.2020.1803664 10.1038/s41746-020-00352-w 10.1016/S2589-7500(22)00004-8 10.1016/j.diii.2022.06.004 10.1007/s10278-011-9436-4 10.1007/s00330-021-07811-2 10.1007/s00330-022-09349-3 10.1007/s00330-022-09205-4 10.1007/s00247-022-05287-w 10.1016/j.injury.2006.04.130 10.1371/journal.pdig.0000022 10.1038/s41746-019-0105-1 10.1007/s10278-023-00793-1 10.1097/00005373-200210000-00007 10.1007/s00198-017-4153-6 10.1016/j.injury.2014.12.027 10.1148/radiol.210937 10.1073/pnas.1806905115 10.1016/j.acra.2021.09.002 10.1016/j.crad.2019.10.022 10.1016/j.ejrad.2020.109188 10.15441/ceem.20.091 10.1148/ryai.210299 10.1148/ryai.2019180015 10.1097/RLI.0000000000000615 10.1016/S2666-7568(21)00172-0 10.1007/s10278-021-00499-2 10.1038/s41598-022-06018-9 10.1038/s41598-021-85570-2 10.1259/bjr.20220778 10.1016/j.ejrad.2020.108925 10.1109/ACCESS.2021.3082952 10.1259/bjr.20220924 10.1016/j.jacr.2018.07.010 10.1016/j.ejrad.2020.109139 10.1016/j.cmpb.2021.106130 10.1016/j.injury.2022.04.013 10.1080/17453674.2018.1453714 10.1007/s00068-020-01468-0 10.1080/17453674.2020.1837420 10.3348/kjr.2021.0449 10.3390/jimaging7060100 10.1186/s12911-021-01488-9 10.1007/s00256-021-03740-9 10.1007/s10278-018-0167-7 10.1111/j.2517-6161.1995.tb02031.x 10.1080/17453674.2019.1600125 10.1016/j.ijleo.2021.168021 10.1259/bjr.20210979 10.1148/radiol.2019191293 10.3389/fped.2022.1005099 10.2196/19416 10.1007/s11548-020-02150-x 10.1016/j.otsr.2021.102837 10.1016/j.fas.2022.05.005 10.1016/j.diii.2021.10.007 10.32604/cmc.2022.024965 10.1111/1754-9485.12828 10.1007/s10278-020-00364-8 10.1148/ryai.2021200260 10.1186/s12891-021-04260-2 10.1016/j.artmed.2022.102281 10.1016/j.ejrad.2020.109373 10.1016/j.injury.2018.09.008 10.1016/j.diii.2019.03.015 |
| ContentType | Journal Article |
| Copyright | 2024 Copyright © 2024. Published by Elsevier Ltd. |
| Copyright_xml | – notice: 2024 – notice: Copyright © 2024. Published by Elsevier Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1016/j.crad.2024.04.009 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine |
| EISSN | 1365-229X |
| EndPage | 588 |
| ExternalDocumentID | 38772766 10_1016_j_crad_2024_04_009 S0009926024002009 1_s2_0_S0009926024002009 |
| Genre | Meta-Analysis Comparative Study Systematic Review Journal Article |
| GroupedDBID | --- --K --M .1- .55 .FO .GJ .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 29B 3O- 4.4 457 4G. 53G 5GY 5RE 5VS 6PF 7-5 71M 8P~ 9JM AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAWTL AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABXDB ACDAQ ACGFS ACIEU ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEVXI AFFNX AFJKZ AFPUW AFRHN AFTJW AFXIZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC BNPGV CAG COF CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HEI HMK HMO HVGLF HZ~ IHE J1W J5H K-O KOM M27 M41 MO0 N9A O-L O9- OAUVE OI~ OU0 OVD OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SAE SCC SDF SDG SDP SEL SES SEW SPCBC SSH SSZ T5K TEORI UHS UV1 WH7 WUQ X7M Z5R ZGI ZXP ~G- ~HD AACTN AFCTW RIG AAYXX CITATION AGCQF AGRNS CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c462t-f7e5f55910a05a9a3b8c6cda9c3feef9fb2c8d341e122c1b8e1f3794fbf528343 |
| IEDL.DBID | .~1 |
| ISSN | 0009-9260 1365-229X |
| IngestDate | Sun Sep 28 01:49:13 EDT 2025 Mon Jul 21 06:01:00 EDT 2025 Wed Oct 01 06:43:31 EDT 2025 Thu Apr 24 22:53:36 EDT 2025 Sat Mar 15 15:41:30 EDT 2025 Thu Apr 03 20:56:40 EDT 2025 Tue Oct 14 19:38:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | Copyright © 2024. Published by Elsevier Ltd. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-f7e5f55910a05a9a3b8c6cda9c3feef9fb2c8d341e122c1b8e1f3794fbf528343 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
| ORCID | 0000-0002-3946-1854 0000-0003-0911-7507 0000-0002-5078-4224 0000-0001-7250-891X 0000-0002-5282-3282 |
| PMID | 38772766 |
| PQID | 3058638895 |
| PQPubID | 23479 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_3058638895 pubmed_primary_38772766 crossref_citationtrail_10_1016_j_crad_2024_04_009 crossref_primary_10_1016_j_crad_2024_04_009 elsevier_sciencedirect_doi_10_1016_j_crad_2024_04_009 elsevier_clinicalkeyesjournals_1_s2_0_S0009926024002009 elsevier_clinicalkey_doi_10_1016_j_crad_2024_04_009 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Clinical radiology |
| PublicationTitleAlternate | Clin Radiol |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Raji, Smart, White (bib120) 2020 Karanam, Srinivas, Chakravarty (bib50) 2023 Paalvast, Nauta, Koelle (bib86) 2022; 128 Ren, Yi (bib89) 2021; 51 Chung, Han, Lee (bib24) 2018; 89 Secinaro, Calandra, Secinaro (bib117) 2021; 21 Grauhan, Niehues, Gaudin (bib33) 2021; 51 Urakawa, Tanaka, Goto (bib99) 2019; 48 Kandel, Castelli, Popovič (bib47) 2020; 6 V, Anami, Latte (bib102) 2022; 71 Zha, Patlas, Duszak (bib5) 2019; 16 Nam, Choi, Kang (bib80) 2022; 12 Oppenheimer, Lüken, Hamm (bib84) 2023; 13 Suzuki, Maki, Yamazaki (bib94) 2022; 35 Hrzic, Tschauner, Sorantin (bib41) 2022; 10 Kim, Goh, Lee (bib56) 2023; 46 (bib51) 2020 (bib72) 2019 Gipson, Tang, Seah (bib32) 2022; 95 Deeks, Macaskill, Irwig (bib8) 2005; 58 Hendrix, Scholten, Vernhout (bib39) 2021; 3 Karanam, Srinivas, Chakravarty (bib49) 2022 Kim, MacKinnon (bib52) 2018; 73 Gan, Xu, Lin (bib29) 2019; 90 Majkowska, Mittal, Steiner (bib71) 2020; 294 (bib27) 2017 Dupuis, Delbos, Veil (bib26) 2022; 103 Lee, Jang, Lee (bib61) 2020; 10 Tsai, Kleinman (bib98) 2022; 52 Jones, Sharma, Hotchkiss (bib46) 2020; 3 Üreten, Sevinç, İğdeli (bib100) 2022; 28 Ozkaya, Topal, Bulut (bib85) 2020; 48 Waymel, Badr, Demondion (bib118) 2019; 100 Ye, Li, Wang (bib106) 2023; 14 Lee, Choi, Kang (bib62) 2023; 13 Grozman, Dumlao, Gonzales (bib34) 2021; 55 Badgeley, Zech, Oakden-Rayner (bib12) 2019; 2 Adams, Chen, Holcdorf (bib10) 2019; 63 Mu, Qu, Dong (bib76) 2021; 9 Collaborators (bib2) 2021; 2 Rayan, Reddy, Kan (bib88) 2019; 1 (bib36) 2020 Yu, Yu, Erdal (bib108) 2020; 75 Kitamura (bib57) 2020; 130 Liao, Liao, Shen (bib64) 2022; 26 (bib65) 2019 Uysal, Hardalac, Peker (bib101) 2021; 11 Yadav, Sharma, Athithan (bib104) 2022; 22 Shahnavazi, Mohamadrahimi (bib91) 2023; 20 Kim, Jung, Park (bib54) 2021; 8 Kim, Mo, Choi (bib53) 2021; 11 Mutasa, Varada, Goel (bib79) 2020; 33 Müller (bib110) 1990 (bib6) 2020 Jimenez-Sanchez, Kazi, Albarqouni (bib45) 2020; 15 Mawatari, Hayashida, Katsuragawa (bib73) 2020; 130 Olczak, Emilson, Razavian (bib83) 2021; 92 (bib93) 2020 Sato, Takegami, Asamoto (bib90) 2021; 22 Jabbar, Hussain, Malik (bib43) 2022; 73 Krogue, Cheng, Hwang (bib59) 2020; 2 Benjamini, Hochberg (bib9) 1995; 57 Liu, Lu, Chen (bib68) 2022; 10 Cohen, Puntonet, Sanchez (bib25) 2023; 33 Murphy, Ehrhardt, Gregson (bib78) 2022; 12 Williamson, Landeiro, McConnell (bib3) 2017; 28 Ghosh, Patton, Bose (bib31) 2023; 36 Langerhuizen, Bulstra, Janssen (bib60) 2020; 478 Singh, Ardakani, Loh (bib92) 2023; 122 Zech, Carotenuto, Igbinoba (bib109) 2023; 53 Ebrahimian, Kalra, Agarwal (bib116) 2022; 29 Luo, Chen, Xiao (bib69) 2022; 4 Tanzi, Audisio, Cirrincione (bib95) 2022; 53 Guermazi, Tannoury, Kompel (bib35) 2022; 302 Tobler, Cyriac, Kovacs (bib97) 2021; 31 Nishiyama, Ishibashi, Ariji (bib81) 2021; 50 Celi, Cellini, Charpignon (bib115) 2022; 1 Hong, Cho, Shin (bib40) 2023; 38 C Pereira S, Rocha, Campilho (bib16) 2023 Raisuddin, Vaattovaara, Nevalainen (bib87) 2021; 11 Mosquera, Diaz, Binder (bib75) 2021; 206 Ashkani-Esfahani, Mojahed Yazdi, Bhimani (bib11) 2022; 28 Bae, Yu, Oh (bib13) 2021; 34 Ma, Luo (bib70) 2021; 22 Lindsey, Daluiski, Chopra (bib67) 2018; 115 Li, Yin, Yi (bib63) 2023; 48 Cheng, Chen, Cheng (bib18) 2020; 8 Choi, Hui, Spain (bib21) 2021; 6 Court-Brown, Caesar (bib1) 2006; 37 Cheng, Hsu, Ooyang (bib20) 2023; 96 Kuo, Kim (bib113) 2023 Yamada, Maki, Kishida (bib105) 2020; 91 Tanzi, Vezzetti, Moreno (bib96) 2020; 133 Rhee, Bridgeman, Acosta (bib4) 2002; 53 Warin, Limprasert, Suebnukarn (bib103) 2022; 51 Kandel, Castelli, Popovic (bib48) 2021; 7 Janisch, Apfaltrer, Hržić (bib44) 2022; 10 Kuo, Harrison, Curran (bib7) 2022; 304 Ghosh, Bose, Patton (bib30) 2023; 96 Larsen, Elsoe, Hansen (bib112) 2015; 46 Wennergren, Bergdahl, Ekelund (bib111) 2018; 49 (bib28) 2018 Inagaki, Nakata, Ichimori (bib42) 2022; 7 Canoni-Meynet, Verdot, Danner (bib17) 2022; 103 Kitamura, Chung, Moore (bib58) 2019; 32 Blüthgen, Becker, Vittoria de Martini (bib15) 2020; 126 Kim, Rebmann, Tran (bib55) 2023; 18 Tang, Li, Ma (bib114) 2022 Oakden-Rayner, Gale, Bonham (bib82) 2022; 4 Hendrix, Hendrix, van Dijke (bib38) 2023; 33 Murata, Endo, Aihara (bib77) 2020; 10 Cheng, Ho, Lee (bib19) 2019; 29 Bagaria, Wadhwani, Wadhwani (bib14) 2021; 247 Lind, Akbarian, Olsson (bib66) 2021; 16 Guy, Jacquet, Tsenkoff (bib37) 2021; 107 (bib74) 2019 Reiner, Krupinski (bib119) 2012; 25 Choi, Cho, Lee (bib23) 2020; 55 Choi, Cho, Ha (bib22) 2022; 23 Yoon, Lee, Kane (bib107) 2021; 4 Zech (10.1016/j.crad.2024.04.009_bib109) 2023; 53 Murphy (10.1016/j.crad.2024.04.009_bib78) 2022; 12 Tang (10.1016/j.crad.2024.04.009_bib114) 2022 Ashkani-Esfahani (10.1016/j.crad.2024.04.009_bib11) 2022; 28 Hong (10.1016/j.crad.2024.04.009_bib40) 2023; 38 Celi (10.1016/j.crad.2024.04.009_bib115) 2022; 1 Janisch (10.1016/j.crad.2024.04.009_bib44) 2022; 10 Kim (10.1016/j.crad.2024.04.009_bib52) 2018; 73 Luo (10.1016/j.crad.2024.04.009_bib69) 2022; 4 Müller (10.1016/j.crad.2024.04.009_bib110) 1990 Liu (10.1016/j.crad.2024.04.009_bib68) 2022; 10 Jones (10.1016/j.crad.2024.04.009_bib46) 2020; 3 Badgeley (10.1016/j.crad.2024.04.009_bib12) 2019; 2 Kim (10.1016/j.crad.2024.04.009_bib54) 2021; 8 Shahnavazi (10.1016/j.crad.2024.04.009_bib91) 2023; 20 Hendrix (10.1016/j.crad.2024.04.009_bib39) 2021; 3 Mu (10.1016/j.crad.2024.04.009_bib76) 2021; 9 Nishiyama (10.1016/j.crad.2024.04.009_bib81) 2021; 50 Warin (10.1016/j.crad.2024.04.009_bib103) 2022; 51 Olczak (10.1016/j.crad.2024.04.009_bib83) 2021; 92 Yamada (10.1016/j.crad.2024.04.009_bib105) 2020; 91 Kitamura (10.1016/j.crad.2024.04.009_bib57) 2020; 130 V (10.1016/j.crad.2024.04.009_bib102) 2022; 71 Zha (10.1016/j.crad.2024.04.009_bib5) 2019; 16 Canoni-Meynet (10.1016/j.crad.2024.04.009_bib17) 2022; 103 Grauhan (10.1016/j.crad.2024.04.009_bib33) 2021; 51 Kim (10.1016/j.crad.2024.04.009_bib53) 2021; 11 Larsen (10.1016/j.crad.2024.04.009_bib112) 2015; 46 Yu (10.1016/j.crad.2024.04.009_bib108) 2020; 75 Raji (10.1016/j.crad.2024.04.009_bib120) 2020 Benjamini (10.1016/j.crad.2024.04.009_bib9) 1995; 57 Ghosh (10.1016/j.crad.2024.04.009_bib30) 2023; 96 Ye (10.1016/j.crad.2024.04.009_bib106) 2023; 14 Mosquera (10.1016/j.crad.2024.04.009_bib75) 2021; 206 Lee (10.1016/j.crad.2024.04.009_bib62) 2023; 13 Oakden-Rayner (10.1016/j.crad.2024.04.009_bib82) 2022; 4 Singh (10.1016/j.crad.2024.04.009_bib92) 2023; 122 Court-Brown (10.1016/j.crad.2024.04.009_bib1) 2006; 37 Kitamura (10.1016/j.crad.2024.04.009_bib58) 2019; 32 Lindsey (10.1016/j.crad.2024.04.009_bib67) 2018; 115 Mutasa (10.1016/j.crad.2024.04.009_bib79) 2020; 33 (10.1016/j.crad.2024.04.009_bib28) 2018 Choi (10.1016/j.crad.2024.04.009_bib21) 2021; 6 Bae (10.1016/j.crad.2024.04.009_bib13) 2021; 34 Karanam (10.1016/j.crad.2024.04.009_bib49) 2022 Cheng (10.1016/j.crad.2024.04.009_bib20) 2023; 96 Grozman (10.1016/j.crad.2024.04.009_bib34) 2021; 55 Hendrix (10.1016/j.crad.2024.04.009_bib38) 2023; 33 (10.1016/j.crad.2024.04.009_bib74) 2019 Waymel (10.1016/j.crad.2024.04.009_bib118) 2019; 100 Collaborators (10.1016/j.crad.2024.04.009_bib2) 2021; 2 Hrzic (10.1016/j.crad.2024.04.009_bib41) 2022; 10 Kandel (10.1016/j.crad.2024.04.009_bib47) 2020; 6 Kuo (10.1016/j.crad.2024.04.009_bib7) 2022; 304 Cheng (10.1016/j.crad.2024.04.009_bib19) 2019; 29 Sato (10.1016/j.crad.2024.04.009_bib90) 2021; 22 Kandel (10.1016/j.crad.2024.04.009_bib48) 2021; 7 Lee (10.1016/j.crad.2024.04.009_bib61) 2020; 10 Kuo (10.1016/j.crad.2024.04.009_bib113) 2023 Kim (10.1016/j.crad.2024.04.009_bib55) 2023; 18 (10.1016/j.crad.2024.04.009_bib51) 2020 Ghosh (10.1016/j.crad.2024.04.009_bib31) 2023; 36 Deeks (10.1016/j.crad.2024.04.009_bib8) 2005; 58 Li (10.1016/j.crad.2024.04.009_bib63) 2023; 48 Oppenheimer (10.1016/j.crad.2024.04.009_bib84) 2023; 13 Murata (10.1016/j.crad.2024.04.009_bib77) 2020; 10 Wennergren (10.1016/j.crad.2024.04.009_bib111) 2018; 49 Tanzi (10.1016/j.crad.2024.04.009_bib95) 2022; 53 Lind (10.1016/j.crad.2024.04.009_bib66) 2021; 16 Urakawa (10.1016/j.crad.2024.04.009_bib99) 2019; 48 C Pereira S (10.1016/j.crad.2024.04.009_bib16) 2023 Ma (10.1016/j.crad.2024.04.009_bib70) 2021; 22 Chung (10.1016/j.crad.2024.04.009_bib24) 2018; 89 Dupuis (10.1016/j.crad.2024.04.009_bib26) 2022; 103 Jabbar (10.1016/j.crad.2024.04.009_bib43) 2022; 73 Tanzi (10.1016/j.crad.2024.04.009_bib96) 2020; 133 (10.1016/j.crad.2024.04.009_bib27) 2017 Yadav (10.1016/j.crad.2024.04.009_bib104) 2022; 22 (10.1016/j.crad.2024.04.009_bib72) 2019 Guermazi (10.1016/j.crad.2024.04.009_bib35) 2022; 302 Guy (10.1016/j.crad.2024.04.009_bib37) 2021; 107 Rhee (10.1016/j.crad.2024.04.009_bib4) 2002; 53 Krogue (10.1016/j.crad.2024.04.009_bib59) 2020; 2 Paalvast (10.1016/j.crad.2024.04.009_bib86) 2022; 128 Williamson (10.1016/j.crad.2024.04.009_bib3) 2017; 28 Bagaria (10.1016/j.crad.2024.04.009_bib14) 2021; 247 Ebrahimian (10.1016/j.crad.2024.04.009_bib116) 2022; 29 (10.1016/j.crad.2024.04.009_bib36) 2020 Mawatari (10.1016/j.crad.2024.04.009_bib73) 2020; 130 Ren (10.1016/j.crad.2024.04.009_bib89) 2021; 51 Secinaro (10.1016/j.crad.2024.04.009_bib117) 2021; 21 Yoon (10.1016/j.crad.2024.04.009_bib107) 2021; 4 Choi (10.1016/j.crad.2024.04.009_bib22) 2022; 23 Kim (10.1016/j.crad.2024.04.009_bib56) 2023; 46 Cheng (10.1016/j.crad.2024.04.009_bib18) 2020; 8 Ozkaya (10.1016/j.crad.2024.04.009_bib85) 2020; 48 Üreten (10.1016/j.crad.2024.04.009_bib100) 2022; 28 Tobler (10.1016/j.crad.2024.04.009_bib97) 2021; 31 Karanam (10.1016/j.crad.2024.04.009_bib50) 2023 Inagaki (10.1016/j.crad.2024.04.009_bib42) 2022; 7 Gipson (10.1016/j.crad.2024.04.009_bib32) 2022; 95 Majkowska (10.1016/j.crad.2024.04.009_bib71) 2020; 294 Rayan (10.1016/j.crad.2024.04.009_bib88) 2019; 1 Choi (10.1016/j.crad.2024.04.009_bib23) 2020; 55 Raisuddin (10.1016/j.crad.2024.04.009_bib87) 2021; 11 Nam (10.1016/j.crad.2024.04.009_bib80) 2022; 12 Gan (10.1016/j.crad.2024.04.009_bib29) 2019; 90 Langerhuizen (10.1016/j.crad.2024.04.009_bib60) 2020; 478 Suzuki (10.1016/j.crad.2024.04.009_bib94) 2022; 35 Blüthgen (10.1016/j.crad.2024.04.009_bib15) 2020; 126 Adams (10.1016/j.crad.2024.04.009_bib10) 2019; 63 (10.1016/j.crad.2024.04.009_bib65) 2019 Cohen (10.1016/j.crad.2024.04.009_bib25) 2023; 33 Uysal (10.1016/j.crad.2024.04.009_bib101) 2021; 11 Tsai (10.1016/j.crad.2024.04.009_bib98) 2022; 52 Reiner (10.1016/j.crad.2024.04.009_bib119) 2012; 25 Jimenez-Sanchez (10.1016/j.crad.2024.04.009_bib45) 2020; 15 Liao (10.1016/j.crad.2024.04.009_bib64) 2022; 26 (10.1016/j.crad.2024.04.009_bib93) 2020 |
| References_xml | – volume: 96 year: 2023 ident: bib30 article-title: Deep learning-based prediction of rib fracture presence in frontal radiographs of children under two years of age: a proof-of-concept study publication-title: Br J Radiol – volume: 10 year: 2020 ident: bib61 article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network publication-title: Sci Rep – volume: 7 year: 2021 ident: bib48 article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification publication-title: J Imaging – volume: 92 start-page: 102 year: 2021 end-page: 108 ident: bib83 article-title: Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification publication-title: Acta Orthop – volume: 52 start-page: 1095 year: 2022 end-page: 1103 ident: bib98 article-title: Machine learning to identify distal tibial classic metaphyseal lesions of infant abuse: a pilot study publication-title: Pediatr Radiol – volume: 53 start-page: 2625 year: 2022 end-page: 2634 ident: bib95 article-title: Vision Transformer for femur fracture classification publication-title: Injury – volume: 206 year: 2021 ident: bib75 article-title: Chest x-ray automated triage: a semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures publication-title: Comput Methods Programs Biomed – volume: 91 start-page: 699 year: 2020 end-page: 704 ident: bib105 article-title: Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs publication-title: Acta Orthop – year: 2017 ident: bib27 article-title: Fully automatic detection of distal radius fractures from posteroanterior and lateral radiographs publication-title: 4th international workshop on computer-assisted and robotic endoscopy (CARE)/6th international workshop on clinical image-based procedures (CLIP) - from planning to intervention – volume: 103 start-page: 594 year: 2022 end-page: 600 ident: bib17 article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow publication-title: Diagn Interv Imaging – start-page: 1 year: 2023 end-page: 12 ident: bib50 article-title: A statistical model approach based on the Gaussian Mixture Model for the diagnosis and classification of bone fractures publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT – volume: 14 year: 2023 ident: bib106 article-title: Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs publication-title: Front Physiol – volume: 6 year: 2020 ident: bib47 article-title: Musculoskeletal images classification for detection of fractures using transfer learning publication-title: J Imaging – volume: 2 start-page: e580 year: 2021 end-page: e592 ident: bib2 article-title: Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019 publication-title: Lancet Healthy Longev – volume: 21 start-page: 125 year: 2021 ident: bib117 article-title: The role of artificial intelligence in healthcare: a structured literature review publication-title: BMC Med Inform Decis Mak – volume: 46 start-page: 746 year: 2015 end-page: 750 ident: bib112 article-title: Incidence and epidemiology of tibial shaft fractures publication-title: Injury – volume: 11 year: 2021 ident: bib53 article-title: Detecting ankle fractures in plain radiographs using deep learning with accurately labeled datasets aided by computed tomography: a retrospective observational study publication-title: Appl Sciences-Basel – start-page: 1 year: 2022 end-page: 12 ident: bib49 article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT – volume: 12 start-page: 2058 year: 2022 ident: bib78 article-title: Machine learning outperforms clinical experts in classification of hip fractures publication-title: Sci Rep – volume: 34 start-page: 1099 year: 2021 end-page: 1109 ident: bib13 article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray publication-title: J Digit Imaging – volume: 71 year: 2022 ident: bib102 article-title: A combined feature set for automatic diaphyseal Tibial fracture classification from X-Ray images publication-title: Biomed Signal Process Control – volume: 46 start-page: 265 year: 2023 end-page: 277 ident: bib56 article-title: Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures publication-title: Phys Eng Sci Med – volume: 35 start-page: 39 year: 2022 end-page: 46 ident: bib94 article-title: Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons publication-title: J Digit Imaging – volume: 15 start-page: 847 year: 2020 end-page: 857 ident: bib45 article-title: Precise proximal femur fracture classification for interactive training and surgical planning publication-title: Int J Comput Assist Radiol Surg – volume: 26 start-page: 3139 year: 2022 end-page: 3150 ident: bib64 article-title: CNN attention guidance for improved orthopedics radiographic fracture classification publication-title: IEEE J Biomed Health Inform – year: 2023 ident: bib113 article-title: Rib fracture. StatPearls. Treasure island (FL) ineligible companies – volume: 3 start-page: 144 year: 2020 ident: bib46 article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs publication-title: NPJ Digit Med – start-page: 33 year: 2020 end-page: 44 ident: bib120 article-title: Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing publication-title: Proceedings of the 2020 conference on fairness, accountability, and transparency – volume: 53 start-page: 663 year: 2002 end-page: 667 ident: bib4 article-title: Lumbar fractures in adult blunt trauma: axial and single-slice helical abdominal and pelvic computed tomographic scans versus portable plain films publication-title: J Trauma – volume: 29 start-page: 5469 year: 2019 end-page: 5477 ident: bib19 article-title: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs publication-title: Eur Radiol – volume: 55 start-page: 360 year: 2021 end-page: 365 ident: bib34 article-title: Hip fracture detection using artificial intelligence: a pilot study publication-title: Acta Med Philippina – volume: 13 year: 2023 ident: bib62 article-title: Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and scaphoid fractures on conventional wrist radiographs publication-title: Diagnostics (Basel) – volume: 16 year: 2021 ident: bib66 article-title: Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system publication-title: PLoS One – volume: 51 start-page: 355 year: 2021 end-page: 362 ident: bib33 article-title: Deep learning for accurately recognizing common causes of shoulder pain on radiographs publication-title: Skeletal Radiol – year: 2020 ident: bib51 article-title: Detection of bone fractures automatically with enhanced performance with better combination of filtering and neural networks publication-title: 2020 second international conference on inventive research in computing applications (ICIRCA) – volume: 11 year: 2021 ident: bib101 article-title: Classification of shoulder X-ray images with deep learning ensemble models publication-title: Appl Sciences-Basel – volume: 128 year: 2022 ident: bib86 article-title: Radiology report generation for proximal femur fractures using deep classification and language generation models publication-title: Artif Intelligence Med – volume: 115 start-page: 11591 year: 2018 end-page: 11596 ident: bib67 article-title: Deep neural network improves fracture detection by clinicians publication-title: Proc Natl Acad Sci U S A – volume: 51 start-page: 345 year: 2021 end-page: 353 ident: bib89 article-title: Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern publication-title: Skeletal Radiol – volume: 130 year: 2020 ident: bib73 article-title: The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs publication-title: Eur J Radiol – volume: 55 start-page: 101 year: 2020 end-page: 110 ident: bib23 article-title: Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography publication-title: Invest Radiol – volume: 100 start-page: 327 year: 2019 end-page: 336 ident: bib118 article-title: Impact of the rise of artificial intelligence in radiology: what do radiologists think? publication-title: Diagn Interv Imaging – volume: 12 year: 2022 ident: bib80 article-title: Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks publication-title: Sci Rep – year: 2019 ident: bib72 article-title: GLCM based feature extraction and medical X-RAY image classification using machine learning techniques publication-title: 2019 IEEE conference on information and communication technology – volume: 8 start-page: 120 year: 2021 end-page: 127 ident: bib54 article-title: Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room publication-title: Clin Exp Emerg Med – year: 2018 ident: bib28 article-title: Automatic detection of wrist fractures from posteroanterior and lateral radiographs: a deep learning-based approach publication-title: 6th international workshop on computational methods and clinical applications in musculoskeletal imaging (MICCAI-MSKI) – volume: 7 year: 2022 ident: bib42 article-title: Detection of sacral fractures on radiographs using artificial intelligence publication-title: JB JS Open Access – volume: 51 start-page: 1488 year: 2022 end-page: 1494 ident: bib103 article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs publication-title: INTERNATIONAL JOURNAL ORAL MAXILLOFACIAL SURGERY – volume: 13 year: 2023 ident: bib84 article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow publication-title: Life (Basel) – volume: 4 year: 2021 ident: bib107 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Netw Open – volume: 53 start-page: 1125 year: 2023 end-page: 1134 ident: bib109 article-title: Detecting pediatric wrist fractures using deep-learning-based object detection publication-title: Pediatr Radiol – year: 2019 ident: bib65 article-title: Medical data augmentation using generative adversarial networks : X-ray image generation for transfer learning of hip fracture detection publication-title: 2019 international conference on technologies and applications of artificial intelligence (TAAI) – volume: 18 start-page: 819 year: 2023 end-page: 826 ident: bib55 article-title: Multiclass datasets expand neural network utility: an example on ankle radiographs publication-title: Int J Comput Assist Radiol Surg – volume: 33 start-page: 1209 year: 2020 end-page: 1217 ident: bib79 article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification publication-title: J Digit Imaging – volume: 28 start-page: 2791 year: 2017 end-page: 2800 ident: bib3 article-title: Costs of fragility hip fractures globally: a systematic review and meta-regression analysis publication-title: Osteoporos Int – volume: 304 start-page: 50 year: 2022 end-page: 62 ident: bib7 article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis publication-title: Radiology – start-page: 1 year: 2022 end-page: 25 ident: bib114 article-title: Internationalizing AI: evolution and impact of distance factors publication-title: Scientometrics – volume: 73 start-page: 1827 year: 2022 end-page: 1844 ident: bib43 article-title: Deep learning based classification of wrist cracks from X-ray imaging publication-title: CMC-COMPUTERS MATERIALS CONTINUA – volume: 49 start-page: 2068 year: 2018 end-page: 2074 ident: bib111 article-title: Epidemiology and incidence of tibia fractures in the Swedish Fracture Register publication-title: Injury – volume: 1 year: 2022 ident: bib115 article-title: Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review publication-title: PLOS Digital Health – volume: 57 start-page: 289 year: 1995 end-page: 300 ident: bib9 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J Royal Stat Soc Ser B (Methodological) – volume: 23 start-page: 343 year: 2022 end-page: 354 ident: bib22 article-title: Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs publication-title: Korean J Radiol – volume: 10 year: 2020 ident: bib77 article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography publication-title: Sci Rep – volume: 36 start-page: 1302 year: 2023 end-page: 1313 ident: bib31 article-title: A patch-based deep learning approach for detecting rib fractures on frontal radiographs in young children publication-title: J Digit Imaging – volume: 10 year: 2022 ident: bib41 article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach publication-title: MATHEMATICS – volume: 8 year: 2020 ident: bib18 article-title: A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study publication-title: JMIR Med Inform – volume: 48 start-page: 585 year: 2020 end-page: 592 ident: bib85 article-title: Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography publication-title: Eur J Trauma Emerg Surg – volume: 38 start-page: 887 year: 2023 end-page: 895 ident: bib40 article-title: Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography publication-title: J Bone Miner Res – volume: 10 year: 2022 ident: bib44 article-title: Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete publication-title: Front Pediatr – volume: 247 year: 2021 ident: bib14 article-title: Bone fractures detection using support vector machine and error backpropagation neural network publication-title: Optik. – volume: 22 year: 2022 ident: bib104 article-title: Hybrid SFNet model for bone fracture detection and classification using ML/DL publication-title: Sensors (Basel) – volume: 2 start-page: 31 year: 2019 ident: bib12 article-title: Deep learning predicts hip fracture using confounding patient and healthcare variables publication-title: NPJ Digit Med – volume: 478 start-page: 2653 year: 2020 end-page: 2659 ident: bib60 article-title: Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? publication-title: Clin Orthop Relat Res – volume: 48 start-page: 445 year: 2023 end-page: 450 ident: bib63 article-title: Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs publication-title: J Hand Surg Eur – volume: 4 year: 2022 ident: bib69 article-title: Rethinking annotation granularity for overcoming shortcuts in deep learning-based radiograph diagnosis: a multicenter study publication-title: Radiol Artif Intell – volume: 20 start-page: 27 year: 2023 ident: bib91 article-title: The application of artificial neural networks in the detection of mandibular fractures using panoramic radiography publication-title: Dent Res J (Isfahan) – volume: 28 start-page: 1259 year: 2022 end-page: 1265 ident: bib11 article-title: Detection of ankle fractures using deep learning algorithms publication-title: Foot Ankle Surg – volume: 9 start-page: 78495 year: 2021 end-page: 78503 ident: bib76 article-title: Fine-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: a multicenter dataset validation publication-title: IEEE Access – start-page: 201 year: 1990 ident: bib110 article-title: The comprehensive classification of fractures of long bones – volume: 31 start-page: 6816 year: 2021 end-page: 6824 ident: bib97 article-title: AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size publication-title: Eur Radiol – volume: 28 start-page: 196 year: 2022 end-page: 201 ident: bib100 article-title: Use of deep learning methods for hand fracture detection from plain hand radiographs publication-title: Ulus Travma Acil Cerrahi Derg – year: 2019 ident: bib74 article-title: A method for detecting femur fracture based on SK-Densenet publication-title: PervasiveHealth: pervasive computing technologies for healthcare – volume: 58 start-page: 882 year: 2005 end-page: 893 ident: bib8 article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed publication-title: J Clin Epidemiol – volume: 294 start-page: 421 year: 2020 end-page: 431 ident: bib71 article-title: Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation publication-title: Radiology – volume: 32 start-page: 672 year: 2019 end-page: 677 ident: bib58 article-title: Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation publication-title: J Digit Imaging – volume: 89 start-page: 468 year: 2018 end-page: 473 ident: bib24 article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm publication-title: Acta Orthop – volume: 16 start-page: 121 year: 2019 end-page: 123 ident: bib5 article-title: Radiologist Burnout is not just isolated to the United States: perspectives from Canada publication-title: J Am Coll Radiol – start-page: 236 year: 2023 ident: bib16 article-title: Lightweight multi-scale classification of chest radiographs via size-specific batch normalization publication-title: Comput Methods Programs Biomed – volume: 50 year: 2021 ident: bib81 article-title: Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle publication-title: Dentomaxillofac Radiol – volume: 1 year: 2019 ident: bib88 article-title: Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making publication-title: Radiol Artif Intell – volume: 22 start-page: 407 year: 2021 ident: bib90 article-title: Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study publication-title: BMC Musculoskelet Disord – year: 2020 ident: bib36 article-title: Using transfer learning and class activation maps supporting detection and localization of femoral fractures on anteroposterior radiographs publication-title: 2020 IEEE 17th international symposium on biomedical imaging (ISBI) – volume: 10 year: 2022 ident: bib68 article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: the arrival of the intelligent-medicine era publication-title: Front Bioeng Biotechnol – volume: 2 year: 2020 ident: bib59 article-title: Automatic hip fracture identification and functional subclassification with deep learning publication-title: Radiol Artif Intell – volume: 33 start-page: 3974 year: 2023 end-page: 3983 ident: bib25 article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs publication-title: Eur Radiol – volume: 6 year: 2021 ident: bib21 article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study publication-title: Trauma Surg Acute Care Open – volume: 126 year: 2020 ident: bib15 article-title: Detection and localization of distal radius fractures: deep learning system versus radiologists publication-title: Eur J Radiol – volume: 37 start-page: 691 year: 2006 end-page: 697 ident: bib1 article-title: Epidemiology of adult fractures: a review publication-title: Injury – volume: 122 year: 2023 ident: bib92 article-title: Automated detection of scaphoid fractures using deep neural networks in radiographs publication-title: ENGINEERING APPLICATIONS ARTIFICIAL INTELLIGENCE – volume: 107 year: 2021 ident: bib37 article-title: Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues publication-title: Orthop Traumatol Surg Res – volume: 22 year: 2021 ident: bib70 article-title: Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network publication-title: Inform Med Unlocked – year: 2020 ident: bib93 article-title: CNN-based detection of distal tibial fractures in radiographic images in the setting of open growth plates publication-title: Conference on medical imaging - computer-aided diagnosis – volume: 63 start-page: 27 year: 2019 end-page: 32 ident: bib10 article-title: Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures publication-title: J Med Imaging Radiat Oncol – volume: 11 start-page: 6006 year: 2021 ident: bib87 article-title: Critical evaluation of deep neural networks for wrist fracture detection publication-title: Sci Rep – volume: 133 year: 2020 ident: bib96 article-title: Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach publication-title: Eur J Radiol – volume: 29 start-page: 559 year: 2022 end-page: 566 ident: bib116 article-title: FDA-Regulated AI algorithms: trends, strengths, and gaps of validation studies publication-title: Acad Radiol – volume: 25 start-page: 3 year: 2012 end-page: 6 ident: bib119 article-title: The insidious problem of fatigue in medical imaging practice publication-title: J Digit Imaging – volume: 90 start-page: 394 year: 2019 end-page: 400 ident: bib29 article-title: Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments publication-title: Acta Orthop – volume: 96 year: 2023 ident: bib20 article-title: Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm publication-title: Br J Radiol – volume: 73 start-page: 439 year: 2018 end-page: 445 ident: bib52 article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks publication-title: Clin Radiol – volume: 75 start-page: 237.e1 year: 2020 ident: bib108 article-title: Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept publication-title: Clin Radiol – volume: 3 year: 2021 ident: bib39 article-title: Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs publication-title: Radiol Artif Intell – volume: 95 year: 2022 ident: bib32 article-title: Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma publication-title: BRITISH JOURNAL RADIOLOGY – volume: 48 start-page: 239 year: 2019 end-page: 244 ident: bib99 article-title: Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network publication-title: Skeletal Radiol – volume: 103 start-page: 151 year: 2022 end-page: 159 ident: bib26 article-title: External validation of a commercially available deep learning algorithm for fracture detection in children publication-title: Diagn Interv Imaging – volume: 130 year: 2020 ident: bib57 article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection publication-title: Eur J Radiol – volume: 4 start-page: e351 year: 2022 end-page: e358 ident: bib82 article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study publication-title: Lancet Digit Health – year: 2020 ident: bib6 article-title: Machine learning – volume: 302 start-page: 627 year: 2022 end-page: 636 ident: bib35 article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence publication-title: Radiology – volume: 33 start-page: 1575 year: 2023 end-page: 1588 ident: bib38 article-title: Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist publication-title: Eur Radiol – volume: 4 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib107 article-title: Development and validation of a deep learning model using convolutional neural networks to identify scaphoid fractures in radiographs publication-title: JAMA Netw Open doi: 10.1001/jamanetworkopen.2021.6096 – volume: 122 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib92 article-title: Automated detection of scaphoid fractures using deep neural networks in radiographs publication-title: ENGINEERING APPLICATIONS ARTIFICIAL INTELLIGENCE doi: 10.1016/j.engappai.2023.106165 – volume: 18 start-page: 819 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib55 article-title: Multiclass datasets expand neural network utility: an example on ankle radiographs publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-023-02839-9 – volume: 10 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib41 article-title: Fracture recognition in paediatric wrist radiographs: an object detection approach publication-title: MATHEMATICS doi: 10.3390/math10162939 – volume: 73 start-page: 439 year: 2018 ident: 10.1016/j.crad.2024.04.009_bib52 article-title: Artificial intelligence in fracture detection: transfer learning from deep convolutional neural networks publication-title: Clin Radiol doi: 10.1016/j.crad.2017.11.015 – volume: 51 start-page: 345 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib89 article-title: Deep learning detection of subtle fractures using staged algorithms to mimic radiologist search pattern publication-title: Skeletal Radiol doi: 10.1007/s00256-021-03739-2 – volume: 38 start-page: 887 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib40 article-title: Deep-learning-based detection of vertebral fracture and osteoporosis using lateral spine X-ray radiography publication-title: J Bone Miner Res doi: 10.1002/jbmr.4814 – volume: 10 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib77 article-title: Artificial intelligence for the detection of vertebral fractures on plain spinal radiography publication-title: Sci Rep doi: 10.1038/s41598-020-76866-w – volume: 2 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib59 article-title: Automatic hip fracture identification and functional subclassification with deep learning publication-title: Radiol Artif Intell doi: 10.1148/ryai.2020190023 – volume: 51 start-page: 1488 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib103 article-title: Assessment of deep convolutional neural network models for mandibular fracture detection in panoramic radiographs publication-title: INTERNATIONAL JOURNAL ORAL MAXILLOFACIAL SURGERY doi: 10.1016/j.ijom.2022.03.056 – start-page: 33 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib120 article-title: Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing – start-page: 1 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib50 article-title: A statistical model approach based on the Gaussian Mixture Model for the diagnosis and classification of bone fractures publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT – year: 2019 ident: 10.1016/j.crad.2024.04.009_bib72 article-title: GLCM based feature extraction and medical X-RAY image classification using machine learning techniques – volume: 20 start-page: 27 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib91 article-title: The application of artificial neural networks in the detection of mandibular fractures using panoramic radiography publication-title: Dent Res J (Isfahan) doi: 10.4103/1735-3327.369629 – volume: 6 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib21 article-title: Practical computer vision application to detect hip fractures on pelvic X-rays: a bi-institutional study publication-title: Trauma Surg Acute Care Open doi: 10.1136/tsaco-2021-000705 – volume: 46 start-page: 265 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib56 article-title: Transfer learning-based ensemble convolutional neural network for accelerated diagnosis of foot fractures publication-title: Phys Eng Sci Med doi: 10.1007/s13246-023-01215-w – volume: 12 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib80 article-title: Diagnosis of nasal bone fractures on plain radiographs via convolutional neural networks publication-title: Sci Rep doi: 10.1038/s41598-022-26161-7 – volume: 10 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib61 article-title: Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network publication-title: Sci Rep – volume: 29 start-page: 5469 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib19 article-title: Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs publication-title: Eur Radiol doi: 10.1007/s00330-019-06167-y – volume: 55 start-page: 360 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib34 article-title: Hip fracture detection using artificial intelligence: a pilot study publication-title: Acta Med Philippina – volume: 48 start-page: 445 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib63 article-title: Evaluation of a convolutional neural network to identify scaphoid fractures on radiographs publication-title: J Hand Surg Eur doi: 10.1177/17531934221127092 – volume: 6 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib47 article-title: Musculoskeletal images classification for detection of fractures using transfer learning publication-title: J Imaging doi: 10.3390/jimaging6110127 – volume: 16 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib66 article-title: Artificial intelligence for the classification of fractures around the knee in adults according to the 2018 AO/OTA classification system publication-title: PLoS One doi: 10.1371/journal.pone.0248809 – year: 2018 ident: 10.1016/j.crad.2024.04.009_bib28 article-title: Automatic detection of wrist fractures from posteroanterior and lateral radiographs: a deep learning-based approach – volume: 11 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib53 article-title: Detecting ankle fractures in plain radiographs using deep learning with accurately labeled datasets aided by computed tomography: a retrospective observational study publication-title: Appl Sciences-Basel – volume: 304 start-page: 50 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib7 article-title: Artificial intelligence in fracture detection: a systematic review and meta-analysis publication-title: Radiology doi: 10.1148/radiol.211785 – volume: 13 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib62 article-title: Clinical validation of an artificial intelligence model for detecting distal radius, ulnar styloid, and scaphoid fractures on conventional wrist radiographs publication-title: Diagnostics (Basel) – volume: 48 start-page: 239 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib99 article-title: Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network publication-title: Skeletal Radiol doi: 10.1007/s00256-018-3016-3 – volume: 14 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib106 article-title: Development and validation of a deep learning-based model to distinguish acetabular fractures on pelvic anteroposterior radiographs publication-title: Front Physiol doi: 10.3389/fphys.2023.1146910 – volume: 478 start-page: 2653 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib60 article-title: Is deep learning on par with human observers for detection of radiographically visible and occult fractures of the scaphoid? publication-title: Clin Orthop Relat Res doi: 10.1097/CORR.0000000000001318 – volume: 22 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib104 article-title: Hybrid SFNet model for bone fracture detection and classification using ML/DL publication-title: Sensors (Basel) doi: 10.3390/s22155823 – volume: 26 start-page: 3139 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib64 article-title: CNN attention guidance for improved orthopedics radiographic fracture classification publication-title: IEEE J Biomed Health Inform doi: 10.1109/JBHI.2022.3152267 – volume: 53 start-page: 1125 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib109 article-title: Detecting pediatric wrist fractures using deep-learning-based object detection publication-title: Pediatr Radiol doi: 10.1007/s00247-023-05588-8 – volume: 58 start-page: 882 year: 2005 ident: 10.1016/j.crad.2024.04.009_bib8 article-title: The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed publication-title: J Clin Epidemiol doi: 10.1016/j.jclinepi.2005.01.016 – start-page: 1 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib49 article-title: A systematic approach to diagnosis and categorization of bone fractures in X-Ray imagery publication-title: INTERNATIONAL JOURNAL HEALTHCARE MANAGEMENT – volume: 50 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib81 article-title: Performance of deep learning models constructed using panoramic radiographs from two hospitals to diagnose fractures of the mandibular condyle publication-title: Dentomaxillofac Radiol doi: 10.1259/dmfr.20200611 – volume: 22 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib70 article-title: Bone fracture detection through the two-stage system of crack-sensitive convolutional neural network publication-title: Inform Med Unlocked doi: 10.1016/j.imu.2020.100452 – volume: 35 start-page: 39 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib94 article-title: Detecting distal radial fractures from wrist radiographs using a deep convolutional neural network with an accuracy comparable to hand orthopedic surgeons publication-title: J Digit Imaging doi: 10.1007/s10278-021-00519-1 – volume: 71 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib102 article-title: A combined feature set for automatic diaphyseal Tibial fracture classification from X-Ray images publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.103119 – volume: 91 start-page: 699 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib105 article-title: Automated classification of hip fractures using deep convolutional neural networks with orthopedic surgeon-level accuracy: ensemble decision-making with antero-posterior and lateral radiographs publication-title: Acta Orthop doi: 10.1080/17453674.2020.1803664 – volume: 3 start-page: 144 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib46 article-title: Assessment of a deep-learning system for fracture detection in musculoskeletal radiographs publication-title: NPJ Digit Med doi: 10.1038/s41746-020-00352-w – volume: 4 start-page: e351 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib82 article-title: Validation and algorithmic audit of a deep learning system for the detection of proximal femoral fractures in patients in the emergency department: a diagnostic accuracy study publication-title: Lancet Digit Health doi: 10.1016/S2589-7500(22)00004-8 – volume: 10 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib68 article-title: Artificial intelligence to detect the femoral intertrochanteric fracture: the arrival of the intelligent-medicine era publication-title: Front Bioeng Biotechnol – volume: 103 start-page: 594 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib17 article-title: Added value of an artificial intelligence solution for fracture detection in the radiologist's daily trauma emergencies workflow publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2022.06.004 – volume: 25 start-page: 3 year: 2012 ident: 10.1016/j.crad.2024.04.009_bib119 article-title: The insidious problem of fatigue in medical imaging practice publication-title: J Digit Imaging doi: 10.1007/s10278-011-9436-4 – volume: 31 start-page: 6816 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib97 article-title: AI-based detection and classification of distal radius fractures using low-effort data labeling: evaluation of applicability and effect of training set size publication-title: Eur Radiol doi: 10.1007/s00330-021-07811-2 – year: 2019 ident: 10.1016/j.crad.2024.04.009_bib65 article-title: Medical data augmentation using generative adversarial networks : X-ray image generation for transfer learning of hip fracture detection – volume: 33 start-page: 3974 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib25 article-title: Artificial intelligence vs. radiologist: accuracy of wrist fracture detection on radiographs publication-title: Eur Radiol doi: 10.1007/s00330-022-09349-3 – volume: 33 start-page: 1575 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib38 article-title: Musculoskeletal radiologist-level performance by using deep learning for detection of scaphoid fractures on conventional multi-view radiographs of hand and wrist publication-title: Eur Radiol doi: 10.1007/s00330-022-09205-4 – volume: 52 start-page: 1095 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib98 article-title: Machine learning to identify distal tibial classic metaphyseal lesions of infant abuse: a pilot study publication-title: Pediatr Radiol doi: 10.1007/s00247-022-05287-w – volume: 37 start-page: 691 year: 2006 ident: 10.1016/j.crad.2024.04.009_bib1 article-title: Epidemiology of adult fractures: a review publication-title: Injury doi: 10.1016/j.injury.2006.04.130 – volume: 7 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib42 article-title: Detection of sacral fractures on radiographs using artificial intelligence publication-title: JB JS Open Access – volume: 1 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib115 article-title: Sources of bias in artificial intelligence that perpetuate healthcare disparities—a global review publication-title: PLOS Digital Health doi: 10.1371/journal.pdig.0000022 – volume: 2 start-page: 31 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib12 article-title: Deep learning predicts hip fracture using confounding patient and healthcare variables publication-title: NPJ Digit Med doi: 10.1038/s41746-019-0105-1 – start-page: 201 year: 1990 ident: 10.1016/j.crad.2024.04.009_bib110 – volume: 36 start-page: 1302 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib31 article-title: A patch-based deep learning approach for detecting rib fractures on frontal radiographs in young children publication-title: J Digit Imaging doi: 10.1007/s10278-023-00793-1 – volume: 11 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib101 article-title: Classification of shoulder X-ray images with deep learning ensemble models publication-title: Appl Sciences-Basel – volume: 53 start-page: 663 year: 2002 ident: 10.1016/j.crad.2024.04.009_bib4 article-title: Lumbar fractures in adult blunt trauma: axial and single-slice helical abdominal and pelvic computed tomographic scans versus portable plain films publication-title: J Trauma doi: 10.1097/00005373-200210000-00007 – volume: 28 start-page: 2791 year: 2017 ident: 10.1016/j.crad.2024.04.009_bib3 article-title: Costs of fragility hip fractures globally: a systematic review and meta-regression analysis publication-title: Osteoporos Int doi: 10.1007/s00198-017-4153-6 – year: 2020 ident: 10.1016/j.crad.2024.04.009_bib51 article-title: Detection of bone fractures automatically with enhanced performance with better combination of filtering and neural networks – volume: 46 start-page: 746 year: 2015 ident: 10.1016/j.crad.2024.04.009_bib112 article-title: Incidence and epidemiology of tibial shaft fractures publication-title: Injury doi: 10.1016/j.injury.2014.12.027 – volume: 28 start-page: 196 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib100 article-title: Use of deep learning methods for hand fracture detection from plain hand radiographs publication-title: Ulus Travma Acil Cerrahi Derg – volume: 302 start-page: 627 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib35 article-title: Improving radiographic fracture recognition performance and efficiency using artificial intelligence publication-title: Radiology doi: 10.1148/radiol.210937 – year: 2020 ident: 10.1016/j.crad.2024.04.009_bib93 article-title: CNN-based detection of distal tibial fractures in radiographic images in the setting of open growth plates – volume: 115 start-page: 11591 year: 2018 ident: 10.1016/j.crad.2024.04.009_bib67 article-title: Deep neural network improves fracture detection by clinicians publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1806905115 – volume: 29 start-page: 559 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib116 article-title: FDA-Regulated AI algorithms: trends, strengths, and gaps of validation studies publication-title: Acad Radiol doi: 10.1016/j.acra.2021.09.002 – year: 2023 ident: 10.1016/j.crad.2024.04.009_bib113 – volume: 75 start-page: 237.e1 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib108 article-title: Detection and localisation of hip fractures on anteroposterior radiographs with artificial intelligence: proof of concept publication-title: Clin Radiol doi: 10.1016/j.crad.2019.10.022 – volume: 130 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib73 article-title: The effect of deep convolutional neural networks on radiologists' performance in the detection of hip fractures on digital pelvic radiographs publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109188 – volume: 8 start-page: 120 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib54 article-title: Application of convolutional neural networks for distal radio-ulnar fracture detection on plain radiographs in the emergency room publication-title: Clin Exp Emerg Med doi: 10.15441/ceem.20.091 – volume: 4 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib69 article-title: Rethinking annotation granularity for overcoming shortcuts in deep learning-based radiograph diagnosis: a multicenter study publication-title: Radiol Artif Intell doi: 10.1148/ryai.210299 – volume: 1 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib88 article-title: Binomial classification of pediatric elbow fractures using a deep learning multiview approach emulating radiologist decision making publication-title: Radiol Artif Intell doi: 10.1148/ryai.2019180015 – volume: 55 start-page: 101 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib23 article-title: Using a dual-input convolutional neural network for automated detection of pediatric supracondylar fracture on conventional radiography publication-title: Invest Radiol doi: 10.1097/RLI.0000000000000615 – volume: 2 start-page: e580 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib2 article-title: Global, regional, and national burden of bone fractures in 204 countries and territories, 1990-2019: a systematic analysis from the Global Burden of Disease Study 2019 publication-title: Lancet Healthy Longev doi: 10.1016/S2666-7568(21)00172-0 – volume: 34 start-page: 1099 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib13 article-title: External validation of deep learning algorithm for detecting and visualizing femoral neck fracture including displaced and non-displaced fracture on plain X-ray publication-title: J Digit Imaging doi: 10.1007/s10278-021-00499-2 – volume: 12 start-page: 2058 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib78 article-title: Machine learning outperforms clinical experts in classification of hip fractures publication-title: Sci Rep doi: 10.1038/s41598-022-06018-9 – volume: 11 start-page: 6006 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib87 article-title: Critical evaluation of deep neural networks for wrist fracture detection publication-title: Sci Rep doi: 10.1038/s41598-021-85570-2 – volume: 96 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib30 article-title: Deep learning-based prediction of rib fracture presence in frontal radiographs of children under two years of age: a proof-of-concept study publication-title: Br J Radiol doi: 10.1259/bjr.20220778 – start-page: 236 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib16 article-title: Lightweight multi-scale classification of chest radiographs via size-specific batch normalization publication-title: Comput Methods Programs Biomed – volume: 126 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib15 article-title: Detection and localization of distal radius fractures: deep learning system versus radiologists publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.108925 – volume: 9 start-page: 78495 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib76 article-title: Fine-tuned deep convolutional networks for the detection of femoral neck fractures on pelvic radiographs: a multicenter dataset validation publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3082952 – volume: 96 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib20 article-title: Evaluation of ensemble strategy on the development of multiple view ankle fracture detection algorithm publication-title: Br J Radiol doi: 10.1259/bjr.20220924 – volume: 16 start-page: 121 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib5 article-title: Radiologist Burnout is not just isolated to the United States: perspectives from Canada publication-title: J Am Coll Radiol doi: 10.1016/j.jacr.2018.07.010 – volume: 130 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib57 article-title: Deep learning evaluation of pelvic radiographs for position, hardware presence, and fracture detection publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109139 – volume: 206 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib75 article-title: Chest x-ray automated triage: a semiologic approach designed for clinical implementation, exploiting different types of labels through a combination of four Deep Learning architectures publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2021.106130 – volume: 53 start-page: 2625 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib95 article-title: Vision Transformer for femur fracture classification publication-title: Injury doi: 10.1016/j.injury.2022.04.013 – volume: 89 start-page: 468 year: 2018 ident: 10.1016/j.crad.2024.04.009_bib24 article-title: Automated detection and classification of the proximal humerus fracture by using deep learning algorithm publication-title: Acta Orthop doi: 10.1080/17453674.2018.1453714 – volume: 48 start-page: 585 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib85 article-title: Evaluation of an artificial intelligence system for diagnosing scaphoid fracture on direct radiography publication-title: Eur J Trauma Emerg Surg doi: 10.1007/s00068-020-01468-0 – volume: 92 start-page: 102 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib83 article-title: Ankle fracture classification using deep learning: automating detailed AO Foundation/Orthopedic Trauma Association (AO/OTA) 2018 malleolar fracture identification reaches a high degree of correct classification publication-title: Acta Orthop doi: 10.1080/17453674.2020.1837420 – volume: 23 start-page: 343 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib22 article-title: Deep learning-assisted diagnosis of pediatric skull fractures on plain radiographs publication-title: Korean J Radiol doi: 10.3348/kjr.2021.0449 – volume: 7 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib48 article-title: Comparing stacking ensemble techniques to improve musculoskeletal fracture image classification publication-title: J Imaging doi: 10.3390/jimaging7060100 – volume: 21 start-page: 125 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib117 article-title: The role of artificial intelligence in healthcare: a structured literature review publication-title: BMC Med Inform Decis Mak doi: 10.1186/s12911-021-01488-9 – volume: 51 start-page: 355 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib33 article-title: Deep learning for accurately recognizing common causes of shoulder pain on radiographs publication-title: Skeletal Radiol doi: 10.1007/s00256-021-03740-9 – volume: 32 start-page: 672 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib58 article-title: Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation publication-title: J Digit Imaging doi: 10.1007/s10278-018-0167-7 – volume: 57 start-page: 289 year: 1995 ident: 10.1016/j.crad.2024.04.009_bib9 article-title: Controlling the false discovery rate: a practical and powerful approach to multiple testing publication-title: J Royal Stat Soc Ser B (Methodological) doi: 10.1111/j.2517-6161.1995.tb02031.x – volume: 90 start-page: 394 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib29 article-title: Artificial intelligence detection of distal radius fractures: a comparison between the convolutional neural network and professional assessments publication-title: Acta Orthop doi: 10.1080/17453674.2019.1600125 – volume: 247 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib14 article-title: Bone fractures detection using support vector machine and error backpropagation neural network publication-title: Optik. doi: 10.1016/j.ijleo.2021.168021 – volume: 95 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib32 article-title: Diagnostic accuracy of a commercially available deep-learning algorithm in supine chest radiographs following trauma publication-title: BRITISH JOURNAL RADIOLOGY doi: 10.1259/bjr.20210979 – volume: 294 start-page: 421 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib71 article-title: Chest radiograph interpretation with deep learning models: assessment with radiologist-adjudicated reference standards and population-adjusted evaluation publication-title: Radiology doi: 10.1148/radiol.2019191293 – volume: 10 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib44 article-title: Pediatric radius torus fractures in x-rays-how computer vision could render lateral projections obsolete publication-title: Front Pediatr doi: 10.3389/fped.2022.1005099 – volume: 8 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib18 article-title: A human-algorithm integration system for hip fracture detection on plain radiography: system development and validation study publication-title: JMIR Med Inform doi: 10.2196/19416 – year: 2020 ident: 10.1016/j.crad.2024.04.009_bib36 article-title: Using transfer learning and class activation maps supporting detection and localization of femoral fractures on anteroposterior radiographs – volume: 15 start-page: 847 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib45 article-title: Precise proximal femur fracture classification for interactive training and surgical planning publication-title: Int J Comput Assist Radiol Surg doi: 10.1007/s11548-020-02150-x – year: 2019 ident: 10.1016/j.crad.2024.04.009_bib74 article-title: A method for detecting femur fracture based on SK-Densenet – volume: 107 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib37 article-title: Deep learning for the radiographic diagnosis of proximal femur fractures: limitations and programming issues publication-title: Orthop Traumatol Surg Res doi: 10.1016/j.otsr.2021.102837 – start-page: 1 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib114 article-title: Internationalizing AI: evolution and impact of distance factors publication-title: Scientometrics – volume: 28 start-page: 1259 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib11 article-title: Detection of ankle fractures using deep learning algorithms publication-title: Foot Ankle Surg doi: 10.1016/j.fas.2022.05.005 – volume: 13 year: 2023 ident: 10.1016/j.crad.2024.04.009_bib84 article-title: A prospective approach to integration of AI fracture detection software in radiographs into clinical workflow publication-title: Life (Basel) – volume: 103 start-page: 151 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib26 article-title: External validation of a commercially available deep learning algorithm for fracture detection in children publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2021.10.007 – volume: 73 start-page: 1827 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib43 article-title: Deep learning based classification of wrist cracks from X-ray imaging publication-title: CMC-COMPUTERS MATERIALS CONTINUA doi: 10.32604/cmc.2022.024965 – volume: 63 start-page: 27 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib10 article-title: Computer vs human: deep learning versus perceptual training for the detection of neck of femur fractures publication-title: J Med Imaging Radiat Oncol doi: 10.1111/1754-9485.12828 – volume: 33 start-page: 1209 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib79 article-title: Advanced deep learning techniques applied to automated femoral neck fracture detection and classification publication-title: J Digit Imaging doi: 10.1007/s10278-020-00364-8 – volume: 3 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib39 article-title: Development and validation of a convolutional neural network for automated detection of scaphoid fractures on conventional radiographs publication-title: Radiol Artif Intell doi: 10.1148/ryai.2021200260 – volume: 22 start-page: 407 year: 2021 ident: 10.1016/j.crad.2024.04.009_bib90 article-title: Artificial intelligence improves the accuracy of residents in the diagnosis of hip fractures: a multicenter study publication-title: BMC Musculoskelet Disord doi: 10.1186/s12891-021-04260-2 – year: 2017 ident: 10.1016/j.crad.2024.04.009_bib27 article-title: Fully automatic detection of distal radius fractures from posteroanterior and lateral radiographs – volume: 128 year: 2022 ident: 10.1016/j.crad.2024.04.009_bib86 article-title: Radiology report generation for proximal femur fractures using deep classification and language generation models publication-title: Artif Intelligence Med doi: 10.1016/j.artmed.2022.102281 – volume: 133 year: 2020 ident: 10.1016/j.crad.2024.04.009_bib96 article-title: Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach publication-title: Eur J Radiol doi: 10.1016/j.ejrad.2020.109373 – volume: 49 start-page: 2068 year: 2018 ident: 10.1016/j.crad.2024.04.009_bib111 article-title: Epidemiology and incidence of tibia fractures in the Swedish Fracture Register publication-title: Injury doi: 10.1016/j.injury.2018.09.008 – volume: 100 start-page: 327 year: 2019 ident: 10.1016/j.crad.2024.04.009_bib118 article-title: Impact of the rise of artificial intelligence in radiology: what do radiologists think? publication-title: Diagn Interv Imaging doi: 10.1016/j.diii.2019.03.015 |
| SSID | ssj0009424 |
| Score | 2.4674044 |
| SecondaryResourceType | review_article |
| Snippet | Fracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and... PurposeFracture detection is one of the most commonly used and studied aspects of artificial intelligence (AI) in medicine. In this systematic review and... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 579 |
| SubjectTerms | Algorithms Artificial Intelligence Fractures, Bone - diagnostic imaging Humans Radiographic Image Interpretation, Computer-Assisted - methods Radiology Reproducibility of Results Sensitivity and Specificity |
| Title | Artificial intelligence diagnostic accuracy in fracture detection from plain radiographs and comparing it with clinicians: a systematic review and meta-analysis |
| URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0009926024002009 https://www.clinicalkey.es/playcontent/1-s2.0-S0009926024002009 https://dx.doi.org/10.1016/j.crad.2024.04.009 https://www.ncbi.nlm.nih.gov/pubmed/38772766 https://www.proquest.com/docview/3058638895 |
| Volume | 79 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1365-229X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009424 issn: 0009-9260 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1365-229X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009424 issn: 0009-9260 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1365-229X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009424 issn: 0009-9260 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1365-229X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009424 issn: 0009-9260 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1365-229X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009424 issn: 0009-9260 databaseCode: AKRWK dateStart: 19600101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEBYhhdJL6bvbPFCht-LGevih3EJo2LYkpwZyE5IsgUviXdbeQy79Lf2pmbHkTUrTFAq-2NIgrzWaGa-_7xMhH5hxpRDMZXllXCZlFTIDdQMSfJoQHGuKkeF9elbOz-XXi-JiixxPXBiEVabYH2P6GK3TlYP0NA-WbYscX6huoBxHFGQi8cFYuIvBp5-3MA8luZx2U8PeiTgTMV5uZVAtlMtR7hRBifcnp78Vn2MSOnlGnqbqkR7FG3xOtnz3gjw-Td_HX5Jf2BI1IWh7R2yTNhFRB2bUOLdeGXcNHWhAjtR6Be1-GDFZeGlxRZeXBlrhttuoaN1T0zU04tUh19F2oPgHLo28SvCw_pAaeqsKTSMjZrS68oPJTNI-eUXOTz5_P55naQ-GzMmSD1mofBHgrYPlJi-MMsLWrnSNUU4E74MKlru6gVToGeeO2dqzIGCNBxtQNkaK12S7W3T-LaGVbTy3ClW_uCyUMTIo5cHWQSAR1s4Imx6-dkmgHPfJuNQTEu2HxgnTOGE6hyNXM_JxY7OM8hwP9hbTnOqJeAqhUkP2eNCqus_K92m195rpnutc_-GRM1JsLH9z6n-O-H5yOA2rHT_hmM4v1r2G6FxDxKxVMSNvoidufreo4U2pKst3_znqDnmCZxHduEu2h9Xa70HFNdj9cUntk0dHX77Nz24AniwtIA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELaqIgEXxJstLyNxQ6HxIw9zQxXVAt2eWqk3y3ZsKajNrjbZA5f-Fn4qM7GzBVGKhJRT7FEeHs-Mk-_7TMhbZlwpBHNZXhmXSVmFzEDdgASfJgTHmmJkeC-Oy_mp_HJWnO2Qg4kLg7DKFPtjTB-jdTqzn97m_qptkeML1Q2U44iCjCS-W7LgFa7A3l9e4TyU5HLaTg27J-ZMBHm5tUG5UC5HvVNEJV6fnf5WfY5Z6PA-uZfKR_ox3uEDsuO7h-T2Iv0gf0R-YEsUhaDtL2qbtImQOjCjxrnN2rjv0IEGJElt1tDuhxGUhaeWF3R1bqAVbruNktY9NV1DI2Adkh1tB4pfcGkkVoKL9R-ooVey0DRSYkarCz-YzCTxk8fk9PDTycE8S5swZE6WfMhC5YsAyw6Wm7wwyghbu9I1RjkRvA8qWO7qBnKhZ5w7ZmvPgoBJHmxA3RgpnpDdbtn5Z4RWtvHcKpT94rJQxsiglAdbB5FEWDsjbHr52iWFctwo41xPULRvGgdM44DpHI5czci7rc0q6nPc2FtMY6on5inESg3p40ar6jor36fp3mume65z_YdLzkixtfzNq_95xTeTw2mY7vgPx3R-uek1hOcaQmatihl5Gj1x-9yihqVSVZZ7_3nV1-TO_GRxpI8-H399Tu5iS4Q6viC7w3rjX0L5NdhX4_T6CU24LrU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+intelligence+diagnostic+accuracy+in+fracture+detection+from+plain+radiographs+and+comparing+it+with+clinicians%3A+a+systematic+review+and+meta-analysis&rft.jtitle=Clinical+radiology&rft.au=Nowroozi%2C+A&rft.au=Salehi%2C+M.A&rft.au=Shobeiri%2C+P&rft.au=Agahi%2C+S&rft.date=2024-08-01&rft.issn=0009-9260&rft.volume=79&rft.issue=8&rft.spage=579&rft.epage=588&rft_id=info:doi/10.1016%2Fj.crad.2024.04.009&rft.externalDBID=ECK1-s2.0-S0009926024002009&rft.externalDocID=1_s2_0_S0009926024002009 |
| thumbnail_m | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Fcdn.clinicalkey.com%2Fck-thumbnails%2F00099260%2FS0009926024X00070%2Fcov150h.gif |