Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces

•An automated method is proposed here to diagnose two common macular syndromes by reconstructing 3D retinal surfaces.•To the best of our knowledge, this paper proposes a first ever novel self-diagnosis system to incorporate 3D OCT scans.•The self-diagnosis in our proposed system is based on multilev...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 137; pp. 1 - 10
Main Authors Syed, Adeel M., Hassan, Taimur, Akram, M. Usman, Naz, Samra, Khalid, Shehzad
Format Journal Article
LanguageEnglish
Published Ireland Elsevier Ireland Ltd 01.12.2016
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2016.09.004

Cover

Abstract •An automated method is proposed here to diagnose two common macular syndromes by reconstructing 3D retinal surfaces.•To the best of our knowledge, this paper proposes a first ever novel self-diagnosis system to incorporate 3D OCT scans.•The self-diagnosis in our proposed system is based on multilevel support vector machines (SVM) classifier.•90 OCT volumes (30 healthy, 30 CSR and 30 ME) of 73 patients were considered in this research to test the proposed system. Macular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous retinopathy (CSR) are two of the most common macular diseases. Many researchers worked on automated detection of ME from optical coherence tomography (OCT) and fundus images, whereas few researchers have worked on diagnosing central serous retinopathy. But this paper proposes a fully automated method for the classification of ME and CSR through robust reconstruction of 3D OCT retinal surfaces. The proposed system uses structure tensors to extract retinal layers from OCT images. The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thickness profile from each coherent tensor. The proposed system extracts 8 distinct features (3 based on retinal thickness profile of right side, 3 based on thickness profile of left side and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes (10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector machines (SVM) classifier. In this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients to test the proposed system where our proposed system correctly classified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively. The proposed system is quite fast and robust in detecting all the three types of retinal pathologies from volumetric OCT scans. The proposed system is fully automated and provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness surfaces can further be used as decision support parameter in clinical studies to check the volume of cyst.
AbstractList •An automated method is proposed here to diagnose two common macular syndromes by reconstructing 3D retinal surfaces.•To the best of our knowledge, this paper proposes a first ever novel self-diagnosis system to incorporate 3D OCT scans.•The self-diagnosis in our proposed system is based on multilevel support vector machines (SVM) classifier.•90 OCT volumes (30 healthy, 30 CSR and 30 ME) of 73 patients were considered in this research to test the proposed system. Macular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous retinopathy (CSR) are two of the most common macular diseases. Many researchers worked on automated detection of ME from optical coherence tomography (OCT) and fundus images, whereas few researchers have worked on diagnosing central serous retinopathy. But this paper proposes a fully automated method for the classification of ME and CSR through robust reconstruction of 3D OCT retinal surfaces. The proposed system uses structure tensors to extract retinal layers from OCT images. The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thickness profile from each coherent tensor. The proposed system extracts 8 distinct features (3 based on retinal thickness profile of right side, 3 based on thickness profile of left side and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes (10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector machines (SVM) classifier. In this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients to test the proposed system where our proposed system correctly classified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively. The proposed system is quite fast and robust in detecting all the three types of retinal pathologies from volumetric OCT scans. The proposed system is fully automated and provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness surfaces can further be used as decision support parameter in clinical studies to check the volume of cyst.
Highlights • This paper proposes a novel approach to automatically diagnose Macular Edema (ME), Central Serous Retinopathy (CSR) and healthy pathologies from Optical Coherence Tomography (OCT) volumes through robust reconstruction of 3D OCT retinal surfaces. • To the best of our knowledge, this paper proposes a first ever novel approach to incorporate 3D OCT volumes to automatically diagnose and screen ME, CSR and healthy subjects. • The proposed method is fully automated and it uses a Support Vector Machine (SVM) based multilevel classification system to diagnose all the three types of macular pathologies from OCT volumes. Rather than relying on a single B-Scan selected subjectively, the proposed method incorporates all the B-Scan of the OCT volume to reconstruct 3D retinal surfaces which depicts the accurate visualization of retinal thickness within macular pathology. • 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients were considered in this research to test the proposed system where our proposed system correctly classified 89 out of 90 cases with accuracy, sensitivity and specificity of 98.88%, 100%, 96.66% respectively.
Macular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous retinopathy (CSR) are two of the most common macular diseases. Many researchers worked on automated detection of ME from optical coherence tomography (OCT) and fundus images, whereas few researchers have worked on diagnosing central serous retinopathy. But this paper proposes a fully automated method for the classification of ME and CSR through robust reconstruction of 3D OCT retinal surfaces.BACKGROUND AND OBJECTIVESMacular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous retinopathy (CSR) are two of the most common macular diseases. Many researchers worked on automated detection of ME from optical coherence tomography (OCT) and fundus images, whereas few researchers have worked on diagnosing central serous retinopathy. But this paper proposes a fully automated method for the classification of ME and CSR through robust reconstruction of 3D OCT retinal surfaces.The proposed system uses structure tensors to extract retinal layers from OCT images. The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thickness profile from each coherent tensor. The proposed system extracts 8 distinct features (3 based on retinal thickness profile of right side, 3 based on thickness profile of left side and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes (10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector machines (SVM) classifier.METHODSThe proposed system uses structure tensors to extract retinal layers from OCT images. The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thickness profile from each coherent tensor. The proposed system extracts 8 distinct features (3 based on retinal thickness profile of right side, 3 based on thickness profile of left side and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes (10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector machines (SVM) classifier.In this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients to test the proposed system where our proposed system correctly classified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively.RESULTSIn this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients to test the proposed system where our proposed system correctly classified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively.The proposed system is quite fast and robust in detecting all the three types of retinal pathologies from volumetric OCT scans. The proposed system is fully automated and provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness surfaces can further be used as decision support parameter in clinical studies to check the volume of cyst.CONCLUSIONThe proposed system is quite fast and robust in detecting all the three types of retinal pathologies from volumetric OCT scans. The proposed system is fully automated and provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness surfaces can further be used as decision support parameter in clinical studies to check the volume of cyst.
Macular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous retinopathy (CSR) are two of the most common macular diseases. Many researchers worked on automated detection of ME from optical coherence tomography (OCT) and fundus images, whereas few researchers have worked on diagnosing central serous retinopathy. But this paper proposes a fully automated method for the classification of ME and CSR through robust reconstruction of 3D OCT retinal surfaces. The proposed system uses structure tensors to extract retinal layers from OCT images. The 3D retinal surface is then reconstructed by extracting the brightness scan (B-scan) thickness profile from each coherent tensor. The proposed system extracts 8 distinct features (3 based on retinal thickness profile of right side, 3 based on thickness profile of left side and 2 based on top surface and cyst spaces within retinal layers) from 30 labeled volumes (10 healthy, 10 CSR and 10 ME) which are used to train the supervised support vector machines (SVM) classifier. In this research we have considered 90 OCT volumes (30 Healthy, 30 CSR and 30 ME) of 73 patients to test the proposed system where our proposed system correctly classified 89 out of 90 cases and has promising receiver operator characteristics (ROC) ratings with accuracy, sensitivity and specificity of 98.88%, 100%, and 96.66% respectively. The proposed system is quite fast and robust in detecting all the three types of retinal pathologies from volumetric OCT scans. The proposed system is fully automated and provides an early and on fly diagnosis of ME and CSR syndromes. 3D macular thickness surfaces can further be used as decision support parameter in clinical studies to check the volume of cyst.
Author Naz, Samra
Akram, M. Usman
Khalid, Shehzad
Syed, Adeel M.
Hassan, Taimur
Author_xml – sequence: 1
  givenname: Adeel M.
  surname: Syed
  fullname: Syed, Adeel M.
  organization: Department of Software Engineering, Bahria University, Islamabad, Pakistan
– sequence: 2
  givenname: Taimur
  surname: Hassan
  fullname: Hassan, Taimur
  email: engr.taimoor@bui.edu.pk
  organization: Department of Electrical Engineering, Bahria University, Islamabad, Pakistan
– sequence: 3
  givenname: M. Usman
  surname: Akram
  fullname: Akram, M. Usman
  organization: Department of Computer Engineering, National University of Sciences and Technology, Islamabad, Pakistan
– sequence: 4
  givenname: Samra
  surname: Naz
  fullname: Naz, Samra
  organization: Department of Computer Engineering, National University of Sciences and Technology, Islamabad, Pakistan
– sequence: 5
  givenname: Shehzad
  surname: Khalid
  fullname: Khalid, Shehzad
  organization: Department of Computer Engineering, Bahria University, Islamabad, Pakistan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28110716$$D View this record in MEDLINE/PubMed
BookMark eNqFUstuFDEQtFAQ2QR-gAPykctMbM8bIaQoPIIUiQNwtjztdtbLjL3Ynoj9ezza5BKJcHKru6qsruozcuK8Q0Jec1ZyxtuLXQnzfixFrks2lIzVz8iG950ouqZtTsgmD4ZCtKw7JWcx7hhjomnaF-RU9Jyzjrcb8udySX5WCTXVVt06H22k3tBZwTKpQFHjrKhymgK6FNREIwa_RBowWef3Km0PNG1z63ZLgx-XmPIIvIspLJCsd6ta9fGIX-lLMAowviTPjZoivrp_z8nPz59-XF0XN9--fL26vCmgbkUqsFaNAtaBqXGoFEIPUPWDNv049K0RTGnesVHVRo-5DWjGKhc4mErz3rTVOXl71N0H_3vBmORsI-A0KYd5D8n7ljeD6PoV-uYeuowzarkPdlbhIB_cyoD-CIDgYwxoJNik1iWzM3aSnMk1GLmTazByDUayQeZgMlU8oj6oP0l6fyRhNujOYpARLDpAbbPHSWpvn6Z_eESHyToLavqFB4w7v4ScSLZARiGZ_L6ey3otedPMbros8O7fAv_7_S_UbtMS
CitedBy_id crossref_primary_10_1016_j_jfo_2018_11_013
crossref_primary_10_1134_S1054661822030166
crossref_primary_10_2174_1386207322666191022123445
crossref_primary_10_1080_17469899_2024_2328620
crossref_primary_10_1016_j_bbe_2022_12_005
crossref_primary_10_1038_s41598_020_75816_w
crossref_primary_10_1097_IIO_0000000000000333
crossref_primary_10_1016_j_proeng_2017_09_623
crossref_primary_10_1155_2023_1839387
crossref_primary_10_1109_TIM_2021_3077988
crossref_primary_10_1002_jemt_24836
crossref_primary_10_1097_IAE_0000000000002621
crossref_primary_10_1109_ACCESS_2018_2862626
crossref_primary_10_1016_j_compbiomed_2020_104056
crossref_primary_10_3389_fnins_2022_1084118
crossref_primary_10_1007_s11831_018_9281_4
crossref_primary_10_1109_ACCESS_2018_2829078
crossref_primary_10_1007_s11517_021_02364_4
crossref_primary_10_1016_j_optlastec_2025_112519
crossref_primary_10_2174_2352096516666221124111107
crossref_primary_10_1016_j_ajo_2020_01_016
crossref_primary_10_1097_IIO_0000000000000246
crossref_primary_10_1016_j_compbiomed_2024_108610
crossref_primary_10_1007_s10916_018_1078_3
crossref_primary_10_1109_TIM_2021_3122172
crossref_primary_10_1364_BOE_8_003292
crossref_primary_10_1007_s10278_017_0038_7
crossref_primary_10_1016_j_compbiomed_2022_105730
crossref_primary_10_1016_j_inffus_2022_12_006
crossref_primary_10_1016_j_cmpb_2018_09_004
crossref_primary_10_1016_j_compbiomed_2018_12_015
crossref_primary_10_1016_j_bspc_2021_102858
crossref_primary_10_1016_j_cmpb_2019_06_016
crossref_primary_10_1111_aos_14055
crossref_primary_10_1038_s41598_024_63844_9
crossref_primary_10_1038_s41598_020_71010_0
crossref_primary_10_1109_ACCESS_2021_3108395
Cites_doi 10.1111/j.1755-3768.2008.01468.x
10.1109/TBME.2012.2184759
10.1364/BOE.5.003568
10.1016/j.ophtha.2013.10.014
10.1016/j.ajo.2007.11.019
10.1016/j.dsp.2015.02.010
10.14260/jemds/2015/1135
10.3126/nepjoph.v4i1.5864
10.1155/2013/385915
10.1364/JOSAA.33.000455
10.1590/S0004-27492008000500030
10.1007/s00417-006-0277-7
ContentType Journal Article
Copyright 2016 Elsevier Ireland Ltd
Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Copyright_xml – notice: 2016 Elsevier Ireland Ltd
– notice: Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.cmpb.2016.09.004
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
EndPage 10
ExternalDocumentID 28110716
10_1016_j_cmpb_2016_09_004
S0169260716304357
1_s2_0_S0169260716304357
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
~HD
AFCTW
AGCQF
AGRNS
RIG
AACTN
AAIAV
ABLVK
ABTAH
ABYKQ
AFKWA
AJBFU
AJOXV
AMFUW
LCYCR
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c462t-e4a5ac07cf4e93aec8cc389df8b986f20ad170ba4fdb89dcefb3b89e9f3d18f63
IEDL.DBID .~1
ISSN 0169-2607
1872-7565
IngestDate Sun Sep 28 16:09:25 EDT 2025
Thu Apr 03 07:00:35 EDT 2025
Wed Oct 01 03:21:06 EDT 2025
Thu Apr 24 23:08:35 EDT 2025
Fri Feb 23 02:26:00 EST 2024
Fri May 16 01:02:24 EDT 2025
Tue Oct 14 19:31:46 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Structure tensor
Central serous retinopathy (CSR)
Optical coherence tomography
Retinal surfaces
Macular edema (ME)
Medical image analysis
central serous retinopathy (CSR)
retinal surfaces
macular edema (ME)
medical image analysis
structure tensor
Language English
License Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-e4a5ac07cf4e93aec8cc389df8b986f20ad170ba4fdb89dcefb3b89e9f3d18f63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28110716
PQID 1861592786
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_1861592786
pubmed_primary_28110716
crossref_citationtrail_10_1016_j_cmpb_2016_09_004
crossref_primary_10_1016_j_cmpb_2016_09_004
elsevier_sciencedirect_doi_10_1016_j_cmpb_2016_09_004
elsevier_clinicalkeyesjournals_1_s2_0_S0169260716304357
elsevier_clinicalkey_doi_10_1016_j_cmpb_2016_09_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-12-01
PublicationDateYYYYMMDD 2016-12-01
PublicationDate_xml – month: 12
  year: 2016
  text: 2016-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Computer methods and programs in biomedicine
PublicationTitleAlternate Comput Methods Programs Biomed
PublicationYear 2016
Publisher Elsevier Ireland Ltd
Publisher_xml – name: Elsevier Ireland Ltd
References Zhang, Zhu, Shi, Chen, Chen (bib0085) 2015; 12
Wilkins, Houghton, Oldenburg (bib0090) 2012; 59
Sugruk, Kiattisin, Lasantitham (bib0100) 2014
Hannouche, Ávila (bib0040) 2008; 71
Srinivasan, Kim, Mettu, Cousins, Comer, Izatt (bib0095) 2014; 5
Hassan, Raja, Hassan, Akram (bib0105) 2016; 33
Fan, Chang, Hsieh, Wang, Lin (bib0115) 2008; 9
Ferrara, Mohler, Waheed, Adhi, Liu, Grulkowski (bib0055) 2014; 121
Shrestha, Maharjan, Shrestha, Thapa, Poudyal (bib0035) 2012; 4
Helmy, Allah (bib0060) 2013; 13
Awan, Mahar, Memon (bib0010) 2011; 27
Mokwa, Ristau, Keane, Kirchhoff, Sadda, Liakopoulos (bib0045) 2013; 4
Mitarai, Gomi, Tano (bib0075) 2006; 244
Ahlers, Geitzenauer, Stock, Golbaz, Erfurth, Prunte (bib0080) 2009; 87
Khan, Riaz, Soomro, Qidwai, Qazi (bib0015) 2011; 27
Conceicao, Pires, Vaz (bib0020) 2012
Kockanat, Karaboga (bib0110) 2015; 40
Hirai, Knudtson, Klein, Klein (bib0025) 2009; 145
Vukojevic, Sikic, Katusic, Saric (bib0030) 2001; 25
Teke, Elgin, Yuksekkaya, Sen, Ozdal, Ozturk (bib0065) 2014; 7
Wani, Bhat, Ahangar, Ismail (bib0070) 2015; 45
Zhang, Yamamoto, Hori (bib0050) 2008; 1
Fan (10.1016/j.cmpb.2016.09.004_bib0115) 2008; 9
Wani (10.1016/j.cmpb.2016.09.004_bib0070) 2015; 45
Hassan (10.1016/j.cmpb.2016.09.004_bib0105) 2016; 33
Wilkins (10.1016/j.cmpb.2016.09.004_bib0090) 2012; 59
Conceicao (10.1016/j.cmpb.2016.09.004_bib0020) 2012
Teke (10.1016/j.cmpb.2016.09.004_bib0065) 2014; 7
Awan (10.1016/j.cmpb.2016.09.004_bib0010) 2011; 27
Ahlers (10.1016/j.cmpb.2016.09.004_bib0080) 2009; 87
Hirai (10.1016/j.cmpb.2016.09.004_bib0025) 2009; 145
Khan (10.1016/j.cmpb.2016.09.004_bib0015) 2011; 27
Srinivasan (10.1016/j.cmpb.2016.09.004_bib0095) 2014; 5
Vukojevic (10.1016/j.cmpb.2016.09.004_bib0030) 2001; 25
Shrestha (10.1016/j.cmpb.2016.09.004_bib0035) 2012; 4
Helmy (10.1016/j.cmpb.2016.09.004_bib0060) 2013; 13
Kockanat (10.1016/j.cmpb.2016.09.004_bib0110) 2015; 40
Ferrara (10.1016/j.cmpb.2016.09.004_bib0055) 2014; 121
Mitarai (10.1016/j.cmpb.2016.09.004_bib0075) 2006; 244
Sugruk (10.1016/j.cmpb.2016.09.004_bib0100) 2014
Zhang (10.1016/j.cmpb.2016.09.004_bib0085) 2015; 12
Zhang (10.1016/j.cmpb.2016.09.004_bib0050) 2008; 1
Mokwa (10.1016/j.cmpb.2016.09.004_bib0045) 2013; 4
Hannouche (10.1016/j.cmpb.2016.09.004_bib0040) 2008; 71
References_xml – volume: 45
  start-page: 7801
  year: 2015
  end-page: 7809
  ident: bib0070
  article-title: Role of Optical Coherence Tomography in central serous chorioretinopathy
  publication-title: J. Evol. Med. Dent. Sci
– volume: 71
  start-page: 759
  year: 2008
  end-page: 763
  ident: bib0040
  article-title: Detection of diabetic foveal edema with bio microscopy, fluorescein angiography and Optical Coherence Tomography
  publication-title: Arq. Bras. Oftalmol
– volume: 121
  start-page: 719
  year: 2014
  end-page: 726
  ident: bib0055
  article-title: En face enhanced-depth swept-source Optical Coherence Tomography features of chronic central serous chorioretinopathy
  publication-title: Ophthalmology
– volume: 4
  start-page: 128
  year: 2012
  end-page: 133
  ident: bib0035
  article-title: Optical Coherence Tomographic assessment of macular thickness and morphological patterns in diabetic macular edema: prognosis after modified grid photocoagulation
  publication-title: Nepal J. Ophthalmol
– year: 2012
  ident: bib0020
  article-title: Diabetic macular edema
  publication-title: Optical Coherence Tomography
– volume: 12
  start-page: 1494
  year: 2015
  end-page: 1497
  ident: bib0085
  article-title: Automated segmentation of intraretinal cystoid macular edema for retinal 3D OCT images with macular hole
  publication-title: Proc. IEEE Int. Symp. Biomed. Imaging
– volume: 1
  start-page: 370
  year: 2008
  end-page: 373
  ident: bib0050
  article-title: Optical Coherence Tomography for assessment of diabetic macular edema
  publication-title: Int. J. Ophthalmol
– year: 2014
  ident: bib0100
  article-title: Automated classification between age-related macular degeneration and diabetic macular edema in OCT image using image segmentation
  publication-title: IEEE Biomedical Engineering International Conference
– volume: 9
  start-page: 1871
  year: 2008
  end-page: 1874
  ident: bib0115
  article-title: LIBLINEAR: a library for large linear classification
  publication-title: J. Mach. Learn. Res
– volume: 5
  start-page: 3568
  year: 2014
  end-page: 3577
  ident: bib0095
  article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
  publication-title: Biomed. Opt. Express
– volume: 40
  start-page: 140
  year: 2015
  end-page: 153
  ident: bib0110
  article-title: A novel 2D-ABC adaptive filter algorithm: a comparative study
  publication-title: Digit. Signal Process
– volume: 4
  start-page: 1
  year: 2013
  end-page: 6
  ident: bib0045
  article-title: Grading of age-related macular degeneration: comparison between color fundus photography, fluorescein angiography, and spectral domain Optical Coherence Tomography
  publication-title: J. Ophthalmol
– volume: 25
  start-page: 83
  year: 2001
  end-page: 87
  ident: bib0030
  article-title: Types of central serous retinopathy, analysis of shape, topographic distribution and number of leakage sites
  publication-title: Coll. Antropol
– volume: 244
  start-page: 1415
  year: 2006
  end-page: 1420
  ident: bib0075
  article-title: Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol
– volume: 27
  start-page: 165
  year: 2011
  end-page: 170
  ident: bib0010
  article-title: Blindness and poverty
  publication-title: Pak. J. Ophthalmol
– volume: 87
  start-page: 211
  year: 2009
  end-page: 216
  ident: bib0080
  article-title: Alterations of intraretinal layers in acute central serous chorioretinopathy
  publication-title: Acta Ophthalmol
– volume: 59
  start-page: 1109
  year: 2012
  end-page: 1114
  ident: bib0090
  article-title: Automated segmentation of intraretinal cystoid fluid in Optical Coherence Tomography
  publication-title: IEEE Trans. Biomed. Eng
– volume: 7
  start-page: 350
  year: 2014
  end-page: 354
  ident: bib0065
  article-title: Comparison of autofluorescence and Optical Coherence Tomography findings in acute and chronic central serous chorioretinopathy
  publication-title: Int. J. Ophthalmol
– volume: 13
  start-page: 1731
  year: 2013
  end-page: 1737
  ident: bib0060
  article-title: Optical Coherence Tomography classification of diabetic cystoid macular edema
  publication-title: Clin. Ophthalmol
– volume: 27
  start-page: 155
  year: 2011
  end-page: 159
  ident: bib0015
  article-title: Frequency and patterns of eye diseases in retina clinic of a tertiary care hospital in Karachi
  publication-title: Pak. J. Ophthalmol
– volume: 145
  start-page: 700
  year: 2009
  end-page: 706
  ident: bib0025
  article-title: Clinically significant macular edema and survival in type 1 and type 2 diabetes
  publication-title: Am. J. Ophthalmol
– volume: 33
  start-page: 455
  year: 2016
  end-page: 463
  ident: bib0105
  article-title: Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images
  publication-title: J. Opt. Soc. Am. A. Opt Image Sci Vis
– volume: 87
  start-page: 211
  year: 2009
  ident: 10.1016/j.cmpb.2016.09.004_bib0080
  article-title: Alterations of intraretinal layers in acute central serous chorioretinopathy
  publication-title: Acta Ophthalmol
  doi: 10.1111/j.1755-3768.2008.01468.x
– volume: 27
  start-page: 165
  year: 2011
  ident: 10.1016/j.cmpb.2016.09.004_bib0010
  article-title: Blindness and poverty
  publication-title: Pak. J. Ophthalmol
– volume: 59
  start-page: 1109
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2016.09.004_bib0090
  article-title: Automated segmentation of intraretinal cystoid fluid in Optical Coherence Tomography
  publication-title: IEEE Trans. Biomed. Eng
  doi: 10.1109/TBME.2012.2184759
– volume: 5
  start-page: 3568
  year: 2014
  ident: 10.1016/j.cmpb.2016.09.004_bib0095
  article-title: Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.5.003568
– volume: 27
  start-page: 155
  year: 2011
  ident: 10.1016/j.cmpb.2016.09.004_bib0015
  article-title: Frequency and patterns of eye diseases in retina clinic of a tertiary care hospital in Karachi
  publication-title: Pak. J. Ophthalmol
– volume: 121
  start-page: 719
  year: 2014
  ident: 10.1016/j.cmpb.2016.09.004_bib0055
  article-title: En face enhanced-depth swept-source Optical Coherence Tomography features of chronic central serous chorioretinopathy
  publication-title: Ophthalmology
  doi: 10.1016/j.ophtha.2013.10.014
– volume: 12
  start-page: 1494
  year: 2015
  ident: 10.1016/j.cmpb.2016.09.004_bib0085
  article-title: Automated segmentation of intraretinal cystoid macular edema for retinal 3D OCT images with macular hole
  publication-title: Proc. IEEE Int. Symp. Biomed. Imaging
– volume: 145
  start-page: 700
  issue: 4
  year: 2009
  ident: 10.1016/j.cmpb.2016.09.004_bib0025
  article-title: Clinically significant macular edema and survival in type 1 and type 2 diabetes
  publication-title: Am. J. Ophthalmol
  doi: 10.1016/j.ajo.2007.11.019
– volume: 13
  start-page: 1731
  year: 2013
  ident: 10.1016/j.cmpb.2016.09.004_bib0060
  article-title: Optical Coherence Tomography classification of diabetic cystoid macular edema
  publication-title: Clin. Ophthalmol
– volume: 40
  start-page: 140
  year: 2015
  ident: 10.1016/j.cmpb.2016.09.004_bib0110
  article-title: A novel 2D-ABC adaptive filter algorithm: a comparative study
  publication-title: Digit. Signal Process
  doi: 10.1016/j.dsp.2015.02.010
– volume: 7
  start-page: 350
  year: 2014
  ident: 10.1016/j.cmpb.2016.09.004_bib0065
  article-title: Comparison of autofluorescence and Optical Coherence Tomography findings in acute and chronic central serous chorioretinopathy
  publication-title: Int. J. Ophthalmol
– volume: 45
  start-page: 7801
  year: 2015
  ident: 10.1016/j.cmpb.2016.09.004_bib0070
  article-title: Role of Optical Coherence Tomography in central serous chorioretinopathy
  publication-title: J. Evol. Med. Dent. Sci
  doi: 10.14260/jemds/2015/1135
– year: 2012
  ident: 10.1016/j.cmpb.2016.09.004_bib0020
  article-title: Diabetic macular edema
– volume: 25
  start-page: 83
  year: 2001
  ident: 10.1016/j.cmpb.2016.09.004_bib0030
  article-title: Types of central serous retinopathy, analysis of shape, topographic distribution and number of leakage sites
  publication-title: Coll. Antropol
– volume: 4
  start-page: 128
  year: 2012
  ident: 10.1016/j.cmpb.2016.09.004_bib0035
  article-title: Optical Coherence Tomographic assessment of macular thickness and morphological patterns in diabetic macular edema: prognosis after modified grid photocoagulation
  publication-title: Nepal J. Ophthalmol
  doi: 10.3126/nepjoph.v4i1.5864
– volume: 4
  start-page: 1
  year: 2013
  ident: 10.1016/j.cmpb.2016.09.004_bib0045
  article-title: Grading of age-related macular degeneration: comparison between color fundus photography, fluorescein angiography, and spectral domain Optical Coherence Tomography
  publication-title: J. Ophthalmol
  doi: 10.1155/2013/385915
– year: 2014
  ident: 10.1016/j.cmpb.2016.09.004_bib0100
  article-title: Automated classification between age-related macular degeneration and diabetic macular edema in OCT image using image segmentation
– volume: 1
  start-page: 370
  year: 2008
  ident: 10.1016/j.cmpb.2016.09.004_bib0050
  article-title: Optical Coherence Tomography for assessment of diabetic macular edema
  publication-title: Int. J. Ophthalmol
– volume: 33
  start-page: 455
  year: 2016
  ident: 10.1016/j.cmpb.2016.09.004_bib0105
  article-title: Structure tensor based automated detection of macular edema and central serous retinopathy using optical coherence tomography images
  publication-title: J. Opt. Soc. Am. A. Opt Image Sci Vis
  doi: 10.1364/JOSAA.33.000455
– volume: 71
  start-page: 759
  year: 2008
  ident: 10.1016/j.cmpb.2016.09.004_bib0040
  article-title: Detection of diabetic foveal edema with bio microscopy, fluorescein angiography and Optical Coherence Tomography
  publication-title: Arq. Bras. Oftalmol
  doi: 10.1590/S0004-27492008000500030
– volume: 9
  start-page: 1871
  year: 2008
  ident: 10.1016/j.cmpb.2016.09.004_bib0115
  article-title: LIBLINEAR: a library for large linear classification
  publication-title: J. Mach. Learn. Res
– volume: 244
  start-page: 1415
  year: 2006
  ident: 10.1016/j.cmpb.2016.09.004_bib0075
  article-title: Three-dimensional optical coherence tomographic findings in central serous chorioretinopathy
  publication-title: Graefes Arch. Clin. Exp. Ophthalmol
  doi: 10.1007/s00417-006-0277-7
SSID ssj0002556
Score 2.3390188
Snippet •An automated method is proposed here to diagnose two common macular syndromes by reconstructing 3D retinal surfaces.•To the best of our knowledge, this paper...
Highlights • This paper proposes a novel approach to automatically diagnose Macular Edema (ME), Central Serous Retinopathy (CSR) and healthy pathologies from...
Macular diseases tend to damage macula within human retina due to which the central vision of a person is affected. Macular edema (ME) and central serous...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Automation
Central Serous Chorioretinopathy - diagnosis
Central serous retinopathy (CSR)
Humans
Imaging, Three-Dimensional
Internal Medicine
Macular edema (ME)
Macular Edema - diagnosis
Medical image analysis
Optical coherence tomography
Other
Retina - diagnostic imaging
Retinal surfaces
Structure tensor
Support Vector Machine
Tomography, Optical Coherence
Title Automated diagnosis of macular edema and central serous retinopathy through robust reconstruction of 3D retinal surfaces
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260716304357
https://www.clinicalkey.es/playcontent/1-s2.0-S0169260716304357
https://dx.doi.org/10.1016/j.cmpb.2016.09.004
https://www.ncbi.nlm.nih.gov/pubmed/28110716
https://www.proquest.com/docview/1861592786
Volume 137
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Complete Freedom Collection
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Journals
  customDbUrl:
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7565
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002556
  issn: 0169-2607
  databaseCode: AKRWK
  dateStart: 19850501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEA_HCeKL-O2eekTwTeq2TZqkj8vpsSp3L3pwbyGfsOK2y3UX9MW_3ZkmXRHPE3xrQ6YfmUkyQ37zG0JewbZgvGWs8JWJBWc-FKYuVSF8MMqDjxAkZiOfnYvlBf9w2VwekJMpFwZhlXntT2v6uFrnlnkezflmtZp_Qh6RGunRBITkrMGMcs4lVjF48-MXzAMpthK_d1tg75w4kzBebr2xCO8SI9dpLtZ2zeb0N-dz3IRO75G72Xuki_SB98lB6B6Q22f5fPwh-bbYbXvwQYOnPmHoVgPtI12bEW5Kgw9rQ03naQZlUrBAiP0p5jJ2PZYn_k5z6R561dvdsKVjyLynmcWnsbepP4rvriKCuh6Ri9N3n0-WRa6tUDgu6m0RuGmMK6WLPLTMBKecA9_FR2VbJWJdGl_J0hoevYVmF6JlcBHayHylomCPyWHXd-EpoU2sowQvU0mP7Gu2rT3H0zrDTCOjDzNSTYOqXSYex_oXX_WEMPuiUREaFaHLVoMiZuT1XmaTaDdu7M0mXekpoRSWQA27wo1S8jqpMORZPOhKD7Uu9R-WNiPNXvI3Y_3nG19OhqRhFuPRjOkCaFlXCjzLtpZKzMiTZGH7_64VxuiVOPrPtz4jd_AuYXCek0MwmPACPKmtPR6nyjG5tXj_cXn-ExiLH4k
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VIgEXxJstBYzEDYVN7MR2jlWhWqDbC63Um2XHtrSITVbNrgQXfns9sbMVohSJW-R48vCM7Rn5m28A3oZtQVvDWGYL7bOSWZdpmsuMW6elDT6CE5iNPD_hs7Py83l1vgOHYy4MwirT2h_X9GG1Ti3TNJrT1WIx_Yo8IhTp0XgIyVklbsHtsqICI7D3v65wHsixFQm-6wy7p8yZCPJqliuD-C4-kJ2mam3X7E5_8z6HXejoAdxP7iM5iF_4EHZc-wjuzNMB-WP4cbBZd8EJdZbYCKJb9KTzZKkHvClx1i010a0lCZVJggmG4J9gMmPbYX3inyTV7iEXndn0azLEzFueWXwa-xD7o_jmwiOq6wmcHX08PZxlqbhC1pScrjNX6ko3uWh86WqmXSObJjgv1ktTS-5prm0hcqNLb01obpw3LFy42jNbSM_ZU9htu9Y9B1J56kVwM6WwSL9mampLPK7TTFfCWzeBYhxU1STmcSyA8V2NELNvChWhUBEqr1VQxATebWVWkXfjxt5s1JUaM0rDGqjCtnCjlLhOyvVpGveqUD1VufrD1CZQbSV_s9Z_vvHNaEgqTGM8m9GtC1pWhQyuZU2F5BN4Fi1s-99UYpBe8L3_fOtruDs7nR-r408nX17APbwTATn7sBuMx70MbtXavBqmzSWJgyEe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+diagnosis+of+macular+edema+and+central+serous+retinopathy+through+robust+reconstruction+of+3D+retinal+surfaces&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Syed%2C+Adeel+M&rft.au=Hassan%2C+Taimur&rft.au=Akram%2C+M+Usman&rft.au=Naz%2C+Samra&rft.date=2016-12-01&rft.eissn=1872-7565&rft.volume=137&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cmpb.2016.09.004&rft_id=info%3Apmid%2F28110716&rft.externalDocID=28110716
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon