Energy minimization in dynamic train scheduling and control for metro rail operations
•It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing...
Saved in:
Published in | Transportation research. Part B: methodological Vol. 70; pp. 269 - 284 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0191-2615 1879-2367 |
DOI | 10.1016/j.trb.2014.09.009 |
Cover
Abstract | •It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing Metro Yizhuang Line around 11%.
Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains’ speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn–Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time. |
---|---|
AbstractList | Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains' speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn-Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time. •It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing Metro Yizhuang Line around 11%. Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains’ speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn–Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time. |
Author | Lo, Hong K. Li, Xiang |
Author_xml | – sequence: 1 givenname: Xiang surname: Li fullname: Li, Xiang email: lixiang@mail.buct.edu.cn organization: School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China – sequence: 2 givenname: Hong K. surname: Lo fullname: Lo, Hong K. email: cehklo@ust.hk organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong |
BookMark | eNqNkE1rGzEQhkVwIY7bH5Cbjr3sdkb7KXIqJv0AQy7xWWi1s67MruRI64L76yvbOfVgehhmBt53Pp4HtnDeEWOPCDkC1l_2-Ry6XACWOcgcQN6xJbaNzERRNwu2BJSYiRqre_YQ4x4AihJwybbPjsLuxCfr7GT_6Nl6x63j_cnpyRo-B526aH5Rfxyt23Htem68m4Mf-eADnyiVPKlG7g8ULgPiR_Zh0GOkT-95xbbfnl_XP7LNy_ef66-bzJS1mLNeI0ohJWqhsQU5CGg6rKBGU7Qdicq0NWmJXdUMjYRBQ4qubYu-k-kvWazY5-vcQ_BvR4qzmmw0NI7akT9GhXWdUBSlaP5DWlVNma7AJMWr1AQfY6BBHYKddDgpBHWmrfYq0VZn2gqkOq9YseYfj7HzBcaZ4HjT-XR1UgL121JQ0VhyhnobyMyq9_aG-y_4jJvo |
CitedBy_id | crossref_primary_10_1016_j_trb_2017_08_005 crossref_primary_10_1680_jtran_19_00137 crossref_primary_10_1016_j_trb_2016_08_002 crossref_primary_10_1080_23249935_2017_1332113 crossref_primary_10_1049_itr2_12333 crossref_primary_10_1016_j_apenergy_2024_123111 crossref_primary_10_1016_j_jclepro_2019_01_023 crossref_primary_10_1007_s11424_018_7277_7 crossref_primary_10_1109_TITS_2020_2980556 crossref_primary_10_2139_ssrn_4183580 crossref_primary_10_1017_S1446181116000092 crossref_primary_10_3390_en10122156 crossref_primary_10_3390_en11112946 crossref_primary_10_1016_j_jrtpm_2023_100391 crossref_primary_10_1016_j_ejor_2016_09_044 crossref_primary_10_1016_j_jrtpm_2023_100393 crossref_primary_10_1016_j_trc_2020_102852 crossref_primary_10_1109_TTE_2024_3389960 crossref_primary_10_1016_j_trb_2018_06_006 crossref_primary_10_53502_RAIL_177660 crossref_primary_10_1016_j_cie_2019_02_035 crossref_primary_10_1016_j_trb_2016_06_006 crossref_primary_10_1016_j_trb_2021_04_014 crossref_primary_10_3390_su14095226 crossref_primary_10_1080_21680566_2018_1440361 crossref_primary_10_1080_21680566_2017_1320775 crossref_primary_10_3390_en12101876 crossref_primary_10_1016_j_trb_2015_07_023 crossref_primary_10_1177_0954409718772133 crossref_primary_10_1016_j_trc_2016_05_019 crossref_primary_10_1016_j_trc_2016_11_007 crossref_primary_10_1016_j_trb_2017_05_012 crossref_primary_10_1109_TITS_2018_2818182 crossref_primary_10_3390_en16062689 crossref_primary_10_3390_su13084173 crossref_primary_10_1016_j_apm_2017_11_017 crossref_primary_10_1287_trsc_2022_0269 crossref_primary_10_1109_TITS_2019_2939358 crossref_primary_10_1109_TTE_2021_3059111 crossref_primary_10_1155_2018_1784789 crossref_primary_10_1080_21680566_2019_1589598 crossref_primary_10_1016_j_simpat_2018_01_006 crossref_primary_10_1016_j_ejor_2018_06_034 crossref_primary_10_1080_23249935_2023_2267685 crossref_primary_10_1177_0361198119836984 crossref_primary_10_2139_ssrn_4089781 crossref_primary_10_1108_CMS_01_2017_0002 crossref_primary_10_1109_ACCESS_2022_3217203 crossref_primary_10_3934_mbe_2023580 crossref_primary_10_1109_TITS_2018_2873145 crossref_primary_10_3390_en10040436 crossref_primary_10_1016_j_ijpe_2020_107920 crossref_primary_10_1016_j_cie_2018_11_048 crossref_primary_10_1109_TITS_2016_2535399 crossref_primary_10_1109_TITS_2020_3010245 crossref_primary_10_3390_math10214164 crossref_primary_10_1016_j_energy_2016_10_029 crossref_primary_10_1016_j_ins_2020_12_030 crossref_primary_10_1080_21680566_2023_2297142 crossref_primary_10_3390_sym11030303 crossref_primary_10_1007_s40534_024_00361_5 crossref_primary_10_1016_j_trc_2021_103171 crossref_primary_10_1016_j_tre_2023_103212 crossref_primary_10_1016_j_jrtpm_2023_100405 crossref_primary_10_1016_j_trc_2021_103170 crossref_primary_10_1016_j_trc_2023_104148 crossref_primary_10_1016_j_ejor_2024_03_015 crossref_primary_10_1109_TITS_2015_2447507 crossref_primary_10_1016_j_cie_2022_108721 crossref_primary_10_1016_j_trc_2020_01_008 crossref_primary_10_1109_ACCESS_2019_2915597 crossref_primary_10_1016_j_physa_2020_124927 crossref_primary_10_1016_j_asoc_2016_06_018 crossref_primary_10_1016_j_trd_2016_10_009 crossref_primary_10_1016_j_tre_2016_10_012 crossref_primary_10_3141_2595_09 crossref_primary_10_1109_TITS_2018_2871347 crossref_primary_10_1017_S1446181118000214 crossref_primary_10_1109_TITS_2022_3145390 crossref_primary_10_1007_s12205_022_2051_8 crossref_primary_10_1016_j_trb_2016_07_003 crossref_primary_10_31590_ejosat_1115811 crossref_primary_10_3390_en11123302 crossref_primary_10_1016_j_jrtpm_2025_100515 crossref_primary_10_1016_j_tre_2015_02_004 crossref_primary_10_1109_TITS_2021_3125781 crossref_primary_10_1016_j_cie_2019_106076 crossref_primary_10_1016_j_cie_2020_106594 crossref_primary_10_1109_ACCESS_2021_3132938 crossref_primary_10_4236_jtts_2024_144033 crossref_primary_10_1016_j_jrtpm_2019_100163 crossref_primary_10_1080_21680566_2017_1421109 crossref_primary_10_1155_2020_8894174 crossref_primary_10_1109_TCSS_2023_3303473 crossref_primary_10_1016_j_trb_2020_08_005 crossref_primary_10_1016_j_trc_2020_102629 crossref_primary_10_1007_s12469_017_0160_4 crossref_primary_10_1177_0954409716671546 crossref_primary_10_1287_trsc_2020_1021 crossref_primary_10_1016_j_enconman_2015_10_053 crossref_primary_10_1016_j_etran_2024_100366 crossref_primary_10_1016_j_trb_2016_10_004 crossref_primary_10_1109_ACCESS_2024_3358585 crossref_primary_10_1007_s40864_018_0090_8 crossref_primary_10_1016_j_trb_2017_01_002 crossref_primary_10_1049_iet_its_2020_0346 crossref_primary_10_1016_j_trb_2018_03_012 crossref_primary_10_31590_ejosat_778644 crossref_primary_10_3390_su15129238 crossref_primary_10_1016_j_trb_2020_01_001 crossref_primary_10_1016_j_jrtpm_2015_10_002 crossref_primary_10_1016_j_energy_2023_127617 crossref_primary_10_1155_2018_5983250 crossref_primary_10_1049_itr2_12149 crossref_primary_10_1093_tse_tdaa016 crossref_primary_10_3390_en12142686 crossref_primary_10_1016_j_retrec_2015_10_024 crossref_primary_10_1109_TITS_2023_3318981 crossref_primary_10_1016_j_trc_2017_06_011 crossref_primary_10_1061_JTEPBS_0000269 crossref_primary_10_1109_TITS_2019_2906483 crossref_primary_10_1155_2015_107048 crossref_primary_10_1155_2018_5367295 |
Cites_doi | 10.1016/j.automatica.2013.07.008 10.1109/MVT.2009.934665 10.1017/S0334270000006780 10.1016/0041-5553(85)90006-0 10.1016/S1570-6672(10)60106-7 10.1109/TASE.2012.2201148 10.1061/(ASCE)TE.1943-5436.0000483 10.1109/TITS.2014.2298038 10.1109/TITS.2014.2343958 10.1023/A:1019235819716 10.1142/S0218488513400011 10.1049/ic.2010.0038 10.1109/9.867018 10.1177/0954409711429411 10.1299/jsme1958.11.857 10.1016/j.automatica.2009.07.028 10.1109/TITS.2013.2244885 10.1016/j.enconman.2014.01.060 10.1016/j.trb.2014.03.006 10.1155/2013/805410 10.1109/TITS.2012.2219620 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7ST C1K SOI 8FD FR3 KR7 |
DOI | 10.1016/j.trb.2014.09.009 |
DatabaseName | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Environment Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Environment Abstracts Environmental Sciences and Pollution Management Technology Research Database Civil Engineering Abstracts Engineering Research Database |
DatabaseTitleList | Environment Abstracts Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Engineering |
EISSN | 1879-2367 |
EndPage | 284 |
ExternalDocumentID | 10_1016_j_trb_2014_09_009 S0191261514001635 |
GeographicLocations | China, People's Rep., Beijing |
GeographicLocations_xml | – name: China, People's Rep., Beijing |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 7-5 71M 8P~ 9JO AAAKF AAAKG AACTN AAEDT AAEDW AAFJI AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABDEX ABDMP ABFNM ABLJU ABMAC ABMMH ABPPZ ABUCO ABXDB ABYKQ ACDAQ ACGFS ACNCT ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHRSL AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK APLSM ASPBG AVARZ AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HMY HVGLF HZ~ H~9 IHE J1W KOM LY1 LY7 M3Y M41 MO0 MS~ N9A O-L O9- OAUVE OHT OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SDP SDS SES SET SEW SPCBC SSB SSD SSO SSS SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD 7ST C1K SOI 8FD FR3 KR7 |
ID | FETCH-LOGICAL-c462t-da1192991a2a1809f207b15061c38be25c86ea91b57f790fa00fab883db923693 |
IEDL.DBID | .~1 |
ISSN | 0191-2615 |
IngestDate | Wed Oct 01 14:08:08 EDT 2025 Sat Sep 27 20:28:48 EDT 2025 Thu Apr 24 23:00:50 EDT 2025 Wed Oct 01 04:27:14 EDT 2025 Fri Feb 23 02:33:22 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Kuhn–Tucker conditions Energy minimization Train scheduling and control Metro rail system |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-da1192991a2a1809f207b15061c38be25c86ea91b57f790fa00fab883db923693 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
PQID | 1655741801 |
PQPubID | 23462 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_1660093427 proquest_miscellaneous_1655741801 crossref_primary_10_1016_j_trb_2014_09_009 crossref_citationtrail_10_1016_j_trb_2014_09_009 elsevier_sciencedirect_doi_10_1016_j_trb_2014_09_009 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2014 2014-12-00 20141201 |
PublicationDateYYYYMMDD | 2014-12-01 |
PublicationDate_xml | – month: 12 year: 2014 text: December 2014 |
PublicationDecade | 2010 |
PublicationTitle | Transportation research. Part B: methodological |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Yang, Ning, Li, Tang (b0145) 2014; 1 Howlett, Pudney, Vu (b0070) 2009; 45 Li, Yang (b0090) 2013; 21 Dominguez, Fernandez-Cardador, Cucala, Pecharroman (b0035) 2012; 9 Su, Li, Tang, Gao (b0125) 2013; 14 Rodrigo, Tapia, Mera, Soler (b0120) 2013; 139 Tuyttens, Fei, Mezmaz, Jalwan (b0130) 2013 Howlett, Pudney (b0055) 1995 Howlett, P., 1988. Existence of an optimal strategy for the control of a train. School of Mathematics Report 3, University of South Australia. Yang, Li, Gao, Wang, Tang (b0140) 2013; 14 Pena-Alcaraz, Fernandez, Cucala, Ramos, Pecharroman (b0115) 2012; 226 Howlett (b0065) 2000; 98 Asnis, Dmitruk, Osmolovskii (b0010) 1985; 25 Gonzalez-Gil, Palacin, Batty, Powell (b0040) 2014; 80 Wang, Yu, Zhu, Tang, Ning (b0135) 2014; 15 Bocharnikov, Y.V., Tobias, A.M., Robe, C., 2010. Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation. In: Proceedings of IET Conference on Railway Traction Systems, Birmingham, UK, pp. 32–36. Boyd, Vandenberghe (b0025) 2004 Li, Lo (b0095) 2014; 64 Pascoe, Eichorn (b0110) 2009; 4 Albrecht, Howlett, Pudney, Vu (b0005) 2013; 49 Khmelnitsky (b0085) 2000; 45 Howlett, Pudney (b0060) 1998; 4 Howlett (b0050) 1990; 31 Ishikawa (b0075) 1968; 11 Ding, Liu, Bai, Zhou (b0030) 2011; 11 Asnis (10.1016/j.trb.2014.09.009_b0010) 1985; 25 Ishikawa (10.1016/j.trb.2014.09.009_b0075) 1968; 11 Rodrigo (10.1016/j.trb.2014.09.009_b0120) 2013; 139 Tuyttens (10.1016/j.trb.2014.09.009_b0130) 2013 Yang (10.1016/j.trb.2014.09.009_b0145) 2014; 1 Albrecht (10.1016/j.trb.2014.09.009_b0005) 2013; 49 Howlett (10.1016/j.trb.2014.09.009_b0070) 2009; 45 Su (10.1016/j.trb.2014.09.009_b0125) 2013; 14 Howlett (10.1016/j.trb.2014.09.009_b0065) 2000; 98 Pascoe (10.1016/j.trb.2014.09.009_b0110) 2009; 4 10.1016/j.trb.2014.09.009_b0045 Howlett (10.1016/j.trb.2014.09.009_b0060) 1998; 4 Howlett (10.1016/j.trb.2014.09.009_b0050) 1990; 31 10.1016/j.trb.2014.09.009_b0020 Khmelnitsky (10.1016/j.trb.2014.09.009_b0085) 2000; 45 Boyd (10.1016/j.trb.2014.09.009_b0025) 2004 Pena-Alcaraz (10.1016/j.trb.2014.09.009_b0115) 2012; 226 Wang (10.1016/j.trb.2014.09.009_b0135) 2014; 15 Ding (10.1016/j.trb.2014.09.009_b0030) 2011; 11 Li (10.1016/j.trb.2014.09.009_b0090) 2013; 21 Gonzalez-Gil (10.1016/j.trb.2014.09.009_b0040) 2014; 80 Yang (10.1016/j.trb.2014.09.009_b0140) 2013; 14 Howlett (10.1016/j.trb.2014.09.009_b0055) 1995 Li (10.1016/j.trb.2014.09.009_b0095) 2014; 64 Dominguez (10.1016/j.trb.2014.09.009_b0035) 2012; 9 |
References_xml | – reference: Howlett, P., 1988. Existence of an optimal strategy for the control of a train. School of Mathematics Report 3, University of South Australia. – volume: 226 start-page: 397 year: 2012 end-page: 408 ident: b0115 article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy publication-title: Journal of Rail and Rapid Transit – volume: 139 start-page: 321 year: 2013 end-page: 329 ident: b0120 article-title: Optimizing electric rail energy consumption using the lagrange multiplier technique publication-title: Journal of Transportation Engineering – volume: 11 start-page: 96 year: 2011 end-page: 101 ident: b0030 article-title: A two-level optimization model and algorithm for energy-efficient urban train operation publication-title: Journal of Transportation Systems Engineering and Information Technology – volume: 80 start-page: 509 year: 2014 end-page: 524 ident: b0040 article-title: A systems approach to reduce urban rail energy consumption publication-title: Energy Conversion and Management – year: 1995 ident: b0055 article-title: Energy-Efficient Train Control – volume: 49 start-page: 3072 year: 2013 end-page: 3078 ident: b0005 article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness publication-title: Automatica – volume: 64 start-page: 73 year: 2014 end-page: 89 ident: b0095 article-title: An energy-efficient scheduling and speed control approach for metro rail operations publication-title: Transportation Research Part B – volume: 4 start-page: 553 year: 1998 end-page: 568 ident: b0060 article-title: An optimal driving strategy for a solar powered car on an undulating road publication-title: Dynamics of Continuous, Discrete and Impulsive Systems – volume: 11 start-page: 857 year: 1968 end-page: 865 ident: b0075 article-title: Application of optimization theory for bounded state variable problems to the operation of trains publication-title: Bulletin of JSME – volume: 14 start-page: 438 year: 2013 end-page: 447 ident: b0140 article-title: A cooperative scheduling model for timetable optimization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2004 ident: b0025 article-title: Convex Optimization – volume: 25 start-page: 37 year: 1985 end-page: 44 ident: b0010 article-title: Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle publication-title: USSR Computational Mathematics and Mathematical Physics – volume: 15 start-page: 1083 year: 2014 end-page: 1090 ident: b0135 article-title: Finite-state markov modeling for wireless channels in tunnel communication-based train control systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 1 start-page: 1 year: 2014 ident: b0145 article-title: A two-objective timetable optimization model in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 31 start-page: 454 year: 1990 end-page: 471 ident: b0050 article-title: An optimal strategy for the control of a train publication-title: Journal of the Australian Mathematical Society Series B – volume: 45 start-page: 2692 year: 2009 end-page: 2698 ident: b0070 article-title: Local energy minimization in optimal train control publication-title: Automatica – volume: 21 start-page: 1 year: 2013 end-page: 15 ident: b0090 article-title: A stochastic timetable optimization model in subway systems publication-title: International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems – volume: 98 start-page: 65 year: 2000 end-page: 87 ident: b0065 article-title: The optimal control of a train publication-title: Annals of Operations Research – volume: 14 start-page: 883 year: 2013 end-page: 893 ident: b0125 article-title: A subway train timetable optimization approach based on energy-efficient operation strategy publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 45 start-page: 1257 year: 2000 end-page: 1266 ident: b0085 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control – volume: 4 start-page: 16 year: 2009 end-page: 21 ident: b0110 article-title: What is communication-based train control? publication-title: IEEE Vehicular Technology Magazine – reference: Bocharnikov, Y.V., Tobias, A.M., Robe, C., 2010. Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation. In: Proceedings of IET Conference on Railway Traction Systems, Birmingham, UK, pp. 32–36. – volume: 9 start-page: 496 year: 2012 end-page: 504 ident: b0035 article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles publication-title: IEEE Transactions on Automation Science and Engineering – start-page: 1 year: 2013 end-page: 12 ident: b0130 article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control publication-title: Mathematical Problems in Engineering – volume: 49 start-page: 3072 issue: 10 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0005 article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness publication-title: Automatica doi: 10.1016/j.automatica.2013.07.008 – volume: 4 start-page: 16 issue: 4 year: 2009 ident: 10.1016/j.trb.2014.09.009_b0110 article-title: What is communication-based train control? publication-title: IEEE Vehicular Technology Magazine doi: 10.1109/MVT.2009.934665 – volume: 31 start-page: 454 year: 1990 ident: 10.1016/j.trb.2014.09.009_b0050 article-title: An optimal strategy for the control of a train publication-title: Journal of the Australian Mathematical Society Series B doi: 10.1017/S0334270000006780 – volume: 25 start-page: 37 issue: 6 year: 1985 ident: 10.1016/j.trb.2014.09.009_b0010 article-title: Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle publication-title: USSR Computational Mathematics and Mathematical Physics doi: 10.1016/0041-5553(85)90006-0 – ident: 10.1016/j.trb.2014.09.009_b0045 – year: 1995 ident: 10.1016/j.trb.2014.09.009_b0055 – volume: 11 start-page: 96 issue: 1 year: 2011 ident: 10.1016/j.trb.2014.09.009_b0030 article-title: A two-level optimization model and algorithm for energy-efficient urban train operation publication-title: Journal of Transportation Systems Engineering and Information Technology doi: 10.1016/S1570-6672(10)60106-7 – volume: 9 start-page: 496 issue: 3 year: 2012 ident: 10.1016/j.trb.2014.09.009_b0035 article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles publication-title: IEEE Transactions on Automation Science and Engineering doi: 10.1109/TASE.2012.2201148 – volume: 139 start-page: 321 issue: 3 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0120 article-title: Optimizing electric rail energy consumption using the lagrange multiplier technique publication-title: Journal of Transportation Engineering doi: 10.1061/(ASCE)TE.1943-5436.0000483 – volume: 15 start-page: 1083 issue: 3 year: 2014 ident: 10.1016/j.trb.2014.09.009_b0135 article-title: Finite-state markov modeling for wireless channels in tunnel communication-based train control systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2298038 – volume: 1 start-page: 1 year: 2014 ident: 10.1016/j.trb.2014.09.009_b0145 article-title: A two-objective timetable optimization model in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2014.2343958 – volume: 98 start-page: 65 issue: 1–4 year: 2000 ident: 10.1016/j.trb.2014.09.009_b0065 article-title: The optimal control of a train publication-title: Annals of Operations Research doi: 10.1023/A:1019235819716 – year: 2004 ident: 10.1016/j.trb.2014.09.009_b0025 – volume: 21 start-page: 1 issue: Supp. 1 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0090 article-title: A stochastic timetable optimization model in subway systems publication-title: International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems doi: 10.1142/S0218488513400011 – ident: 10.1016/j.trb.2014.09.009_b0020 doi: 10.1049/ic.2010.0038 – volume: 45 start-page: 1257 issue: 7 year: 2000 ident: 10.1016/j.trb.2014.09.009_b0085 article-title: On an optimal control problem of train operation publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.867018 – volume: 226 start-page: 397 issue: 4 year: 2012 ident: 10.1016/j.trb.2014.09.009_b0115 article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy publication-title: Journal of Rail and Rapid Transit doi: 10.1177/0954409711429411 – volume: 11 start-page: 857 issue: 47 year: 1968 ident: 10.1016/j.trb.2014.09.009_b0075 article-title: Application of optimization theory for bounded state variable problems to the operation of trains publication-title: Bulletin of JSME doi: 10.1299/jsme1958.11.857 – volume: 4 start-page: 553 issue: 4 year: 1998 ident: 10.1016/j.trb.2014.09.009_b0060 article-title: An optimal driving strategy for a solar powered car on an undulating road publication-title: Dynamics of Continuous, Discrete and Impulsive Systems – volume: 45 start-page: 2692 issue: 11 year: 2009 ident: 10.1016/j.trb.2014.09.009_b0070 article-title: Local energy minimization in optimal train control publication-title: Automatica doi: 10.1016/j.automatica.2009.07.028 – volume: 14 start-page: 883 issue: 2 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0125 article-title: A subway train timetable optimization approach based on energy-efficient operation strategy publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2013.2244885 – volume: 80 start-page: 509 year: 2014 ident: 10.1016/j.trb.2014.09.009_b0040 article-title: A systems approach to reduce urban rail energy consumption publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.01.060 – volume: 64 start-page: 73 year: 2014 ident: 10.1016/j.trb.2014.09.009_b0095 article-title: An energy-efficient scheduling and speed control approach for metro rail operations publication-title: Transportation Research Part B doi: 10.1016/j.trb.2014.03.006 – start-page: 1 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0130 article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control publication-title: Mathematical Problems in Engineering doi: 10.1155/2013/805410 – volume: 14 start-page: 438 issue: 1 year: 2013 ident: 10.1016/j.trb.2014.09.009_b0140 article-title: A cooperative scheduling model for timetable optimization in subway systems publication-title: IEEE Transactions on Intelligent Transportation Systems doi: 10.1109/TITS.2012.2219620 |
SSID | ssj0003401 |
Score | 2.4759774 |
Snippet | •It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving... Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 269 |
SubjectTerms | Cycle time Demand Energy consumption Energy minimization Headways Kuhn–Tucker conditions Metro rail system Optimization Passengers Timetables Train scheduling and control Trains |
Title | Energy minimization in dynamic train scheduling and control for metro rail operations |
URI | https://dx.doi.org/10.1016/j.trb.2014.09.009 https://www.proquest.com/docview/1655741801 https://www.proquest.com/docview/1660093427 |
Volume | 70 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2367 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003401 issn: 0191-2615 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH0apYH2UFT0LsJtnN41hKS1XoRQu9LbvdDVTatPRx9bc7k2x8IT14CCRhliSzk5kv2ZlvCLnLeCz8UBgviyPmcaOtl2aJ8DgXwnCttFYF2-cwGoz401iMa6Rb1cJgWqXz_aVPL7y1O9N22mwvp9P2C4ATP8CAzBG3hFhojuxfYNMP719pHiFnrieh76F0tbJZ5HhtVhqzu0qqU8xJ_Ds2_fLSRejpH5Mjhxlpp7ytE1KzeYPsVyXF6wY5_MYqeEpGvaKejyJryNyVWdJpTk3ZfJ4WXSEofNVClMFidKpyQ13KOgUMS-cWdilIzehiaUsTWZ-RUb_32h14rnuCN-FRsPGM8gG9AfxTgUKSrixgsUY-QX8SJtoGYpJEVqW-FnEWpyxTDDadJKHRAPqiNDwn9XyR2wtCU6ONSVgcCK241VoDTDOJQaacjIehahJW6U1OHLU4PstMVjlkbxJULVHVkqUSVN0k959DliWvxi5hXk2G_GEcEvz-rmG31cRJeGlwJUTldrFdSz8SAml7mL9LJsLfPTyIL_93-StygEdl7ss1qW9WW3sDCGajW4WJtshe5_F5MPwAPKTwAg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlvV_AkhG6S3TyOUpSqtRcteFt2uxuoaFps_f_OJJuiIj14CIRklySzm5kv2W--AbgsRCrDWNqgSBMeCGtckBeZDISQ0gqjjdGV2ucg6Q3F_Yt8aUG3yYUhWqX3_bVPr7y1P9Lx1uxMx-POE4KTMKKALAi3xHIFVoVEn9yG1eu7h95g4ZBjwX1ZwjCgDs3iZkXzmn8YInjVaqdES_w7PP1y1FX0ud2CTQ8b2XV9Z9vQcuUOrDVZxbMd2PgmLLgLw5sqpY-RcMi7z7Rk45LZuv48qwpDMPywxUBD-ehMl5Z51jpDGMveHe4ybPXGJlNXz5LZHgxvb567vcAXUAhGIonmgdUhAjhEgDrSpNNVRDw1JCkYjuLMuEiOssTpPDQyLdKcF5rjZrIstgZxX5LH-9AuJ6U7AJZbY23G00gaLZwxBpGazSyJ5RQijvUh8MZuauTVxelZ3lRDI3tVaGpFplY8V2jqQ7hadJnW0hrLGotmMNSP-aHQ9S_rdtEMnML3hhZDdOkmnzMVJlKScg8Pl7VJ6I-PiNKj_13-HNZ6z4991b8bPBzDOp2pqTAn0J5_fLpTBDRzc-Yn7Bdo8_Kt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+minimization+in+dynamic+train+scheduling+and+control+for+metro+rail+operations&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Li%2C+Xiang&rft.au=Lo%2C+Hong+K&rft.date=2014-12-01&rft.issn=0191-2615&rft.volume=70&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1016%2Fj.trb.2014.09.009&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon |