Energy minimization in dynamic train scheduling and control for metro rail operations

•It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing...

Full description

Saved in:
Bibliographic Details
Published inTransportation research. Part B: methodological Vol. 70; pp. 269 - 284
Main Authors Li, Xiang, Lo, Hong K.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2014
Subjects
Online AccessGet full text
ISSN0191-2615
1879-2367
DOI10.1016/j.trb.2014.09.009

Cover

Abstract •It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing Metro Yizhuang Line around 11%. Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains’ speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn–Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time.
AbstractList Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains' speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn-Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time.
•It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving performance.•The optimal operation strategy is solved by using the Kuhn–Tucker conditions.•It reduces the net energy consumption of the Beijing Metro Yizhuang Line around 11%. Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be adjusted correspondingly to satisfy the passenger demands while minimizing energy consumption. In order to solve this problem, we propose a dynamic train scheduling and control framework. First, we forecast the passenger demand, and determine the headway and cycle time for the next cycle. Then we optimize the reference timetable and speed profile for trains at the next cycle subject to the headway and cycle time constraints. Finally, the automatic train control system is used to operate trains with real-life conditions based on the reference timetable and speed profile. In this paper, we focus on the optimization of the timetable and speed profile. Generally speaking, the former distributes the cycle time to different stations and inter-stations under the headway constraint, and the latter controls the trains’ speeds at inter-stations to reduce the consumption on tractive energy and increase the storage on regenerative energy. In order to achieve a global optimality on energy saving, we formulate an integrated energy-efficient timetable and speed profile optimization model, which is transformed to a convex optimization problem by using the linear approximation method. We use the Kuhn–Tucker conditions to solve the optimal solution and present some numerical experiments based on the actual operation data of Beijing Metro Yizhuang Line of China, which shows that the integrated approach can reduce the net energy consumption around 11% than the practical timetable. Furthermore, with given passenger demand sequence at off-peak hours, the dynamic scheduling and integrated optimization approach with adaptive cycle time can reduce the net energy consumption around 7% than the static scheduling and integrated optimization approach with fixed cycle time.
Author Lo, Hong K.
Li, Xiang
Author_xml – sequence: 1
  givenname: Xiang
  surname: Li
  fullname: Li, Xiang
  email: lixiang@mail.buct.edu.cn
  organization: School of Economics and Management, Beijing University of Chemical Technology, Beijing 100029, China
– sequence: 2
  givenname: Hong K.
  surname: Lo
  fullname: Lo, Hong K.
  email: cehklo@ust.hk
  organization: Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Hong Kong
BookMark eNqNkE1rGzEQhkVwIY7bH5Cbjr3sdkb7KXIqJv0AQy7xWWi1s67MruRI64L76yvbOfVgehhmBt53Pp4HtnDeEWOPCDkC1l_2-Ry6XACWOcgcQN6xJbaNzERRNwu2BJSYiRqre_YQ4x4AihJwybbPjsLuxCfr7GT_6Nl6x63j_cnpyRo-B526aH5Rfxyt23Htem68m4Mf-eADnyiVPKlG7g8ULgPiR_Zh0GOkT-95xbbfnl_XP7LNy_ef66-bzJS1mLNeI0ohJWqhsQU5CGg6rKBGU7Qdicq0NWmJXdUMjYRBQ4qubYu-k-kvWazY5-vcQ_BvR4qzmmw0NI7akT9GhXWdUBSlaP5DWlVNma7AJMWr1AQfY6BBHYKddDgpBHWmrfYq0VZn2gqkOq9YseYfj7HzBcaZ4HjT-XR1UgL121JQ0VhyhnobyMyq9_aG-y_4jJvo
CitedBy_id crossref_primary_10_1016_j_trb_2017_08_005
crossref_primary_10_1680_jtran_19_00137
crossref_primary_10_1016_j_trb_2016_08_002
crossref_primary_10_1080_23249935_2017_1332113
crossref_primary_10_1049_itr2_12333
crossref_primary_10_1016_j_apenergy_2024_123111
crossref_primary_10_1016_j_jclepro_2019_01_023
crossref_primary_10_1007_s11424_018_7277_7
crossref_primary_10_1109_TITS_2020_2980556
crossref_primary_10_2139_ssrn_4183580
crossref_primary_10_1017_S1446181116000092
crossref_primary_10_3390_en10122156
crossref_primary_10_3390_en11112946
crossref_primary_10_1016_j_jrtpm_2023_100391
crossref_primary_10_1016_j_ejor_2016_09_044
crossref_primary_10_1016_j_jrtpm_2023_100393
crossref_primary_10_1016_j_trc_2020_102852
crossref_primary_10_1109_TTE_2024_3389960
crossref_primary_10_1016_j_trb_2018_06_006
crossref_primary_10_53502_RAIL_177660
crossref_primary_10_1016_j_cie_2019_02_035
crossref_primary_10_1016_j_trb_2016_06_006
crossref_primary_10_1016_j_trb_2021_04_014
crossref_primary_10_3390_su14095226
crossref_primary_10_1080_21680566_2018_1440361
crossref_primary_10_1080_21680566_2017_1320775
crossref_primary_10_3390_en12101876
crossref_primary_10_1016_j_trb_2015_07_023
crossref_primary_10_1177_0954409718772133
crossref_primary_10_1016_j_trc_2016_05_019
crossref_primary_10_1016_j_trc_2016_11_007
crossref_primary_10_1016_j_trb_2017_05_012
crossref_primary_10_1109_TITS_2018_2818182
crossref_primary_10_3390_en16062689
crossref_primary_10_3390_su13084173
crossref_primary_10_1016_j_apm_2017_11_017
crossref_primary_10_1287_trsc_2022_0269
crossref_primary_10_1109_TITS_2019_2939358
crossref_primary_10_1109_TTE_2021_3059111
crossref_primary_10_1155_2018_1784789
crossref_primary_10_1080_21680566_2019_1589598
crossref_primary_10_1016_j_simpat_2018_01_006
crossref_primary_10_1016_j_ejor_2018_06_034
crossref_primary_10_1080_23249935_2023_2267685
crossref_primary_10_1177_0361198119836984
crossref_primary_10_2139_ssrn_4089781
crossref_primary_10_1108_CMS_01_2017_0002
crossref_primary_10_1109_ACCESS_2022_3217203
crossref_primary_10_3934_mbe_2023580
crossref_primary_10_1109_TITS_2018_2873145
crossref_primary_10_3390_en10040436
crossref_primary_10_1016_j_ijpe_2020_107920
crossref_primary_10_1016_j_cie_2018_11_048
crossref_primary_10_1109_TITS_2016_2535399
crossref_primary_10_1109_TITS_2020_3010245
crossref_primary_10_3390_math10214164
crossref_primary_10_1016_j_energy_2016_10_029
crossref_primary_10_1016_j_ins_2020_12_030
crossref_primary_10_1080_21680566_2023_2297142
crossref_primary_10_3390_sym11030303
crossref_primary_10_1007_s40534_024_00361_5
crossref_primary_10_1016_j_trc_2021_103171
crossref_primary_10_1016_j_tre_2023_103212
crossref_primary_10_1016_j_jrtpm_2023_100405
crossref_primary_10_1016_j_trc_2021_103170
crossref_primary_10_1016_j_trc_2023_104148
crossref_primary_10_1016_j_ejor_2024_03_015
crossref_primary_10_1109_TITS_2015_2447507
crossref_primary_10_1016_j_cie_2022_108721
crossref_primary_10_1016_j_trc_2020_01_008
crossref_primary_10_1109_ACCESS_2019_2915597
crossref_primary_10_1016_j_physa_2020_124927
crossref_primary_10_1016_j_asoc_2016_06_018
crossref_primary_10_1016_j_trd_2016_10_009
crossref_primary_10_1016_j_tre_2016_10_012
crossref_primary_10_3141_2595_09
crossref_primary_10_1109_TITS_2018_2871347
crossref_primary_10_1017_S1446181118000214
crossref_primary_10_1109_TITS_2022_3145390
crossref_primary_10_1007_s12205_022_2051_8
crossref_primary_10_1016_j_trb_2016_07_003
crossref_primary_10_31590_ejosat_1115811
crossref_primary_10_3390_en11123302
crossref_primary_10_1016_j_jrtpm_2025_100515
crossref_primary_10_1016_j_tre_2015_02_004
crossref_primary_10_1109_TITS_2021_3125781
crossref_primary_10_1016_j_cie_2019_106076
crossref_primary_10_1016_j_cie_2020_106594
crossref_primary_10_1109_ACCESS_2021_3132938
crossref_primary_10_4236_jtts_2024_144033
crossref_primary_10_1016_j_jrtpm_2019_100163
crossref_primary_10_1080_21680566_2017_1421109
crossref_primary_10_1155_2020_8894174
crossref_primary_10_1109_TCSS_2023_3303473
crossref_primary_10_1016_j_trb_2020_08_005
crossref_primary_10_1016_j_trc_2020_102629
crossref_primary_10_1007_s12469_017_0160_4
crossref_primary_10_1177_0954409716671546
crossref_primary_10_1287_trsc_2020_1021
crossref_primary_10_1016_j_enconman_2015_10_053
crossref_primary_10_1016_j_etran_2024_100366
crossref_primary_10_1016_j_trb_2016_10_004
crossref_primary_10_1109_ACCESS_2024_3358585
crossref_primary_10_1007_s40864_018_0090_8
crossref_primary_10_1016_j_trb_2017_01_002
crossref_primary_10_1049_iet_its_2020_0346
crossref_primary_10_1016_j_trb_2018_03_012
crossref_primary_10_31590_ejosat_778644
crossref_primary_10_3390_su15129238
crossref_primary_10_1016_j_trb_2020_01_001
crossref_primary_10_1016_j_jrtpm_2015_10_002
crossref_primary_10_1016_j_energy_2023_127617
crossref_primary_10_1155_2018_5983250
crossref_primary_10_1049_itr2_12149
crossref_primary_10_1093_tse_tdaa016
crossref_primary_10_3390_en12142686
crossref_primary_10_1016_j_retrec_2015_10_024
crossref_primary_10_1109_TITS_2023_3318981
crossref_primary_10_1016_j_trc_2017_06_011
crossref_primary_10_1061_JTEPBS_0000269
crossref_primary_10_1109_TITS_2019_2906483
crossref_primary_10_1155_2015_107048
crossref_primary_10_1155_2018_5367295
Cites_doi 10.1016/j.automatica.2013.07.008
10.1109/MVT.2009.934665
10.1017/S0334270000006780
10.1016/0041-5553(85)90006-0
10.1016/S1570-6672(10)60106-7
10.1109/TASE.2012.2201148
10.1061/(ASCE)TE.1943-5436.0000483
10.1109/TITS.2014.2298038
10.1109/TITS.2014.2343958
10.1023/A:1019235819716
10.1142/S0218488513400011
10.1049/ic.2010.0038
10.1109/9.867018
10.1177/0954409711429411
10.1299/jsme1958.11.857
10.1016/j.automatica.2009.07.028
10.1109/TITS.2013.2244885
10.1016/j.enconman.2014.01.060
10.1016/j.trb.2014.03.006
10.1155/2013/805410
10.1109/TITS.2012.2219620
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7ST
C1K
SOI
8FD
FR3
KR7
DOI 10.1016/j.trb.2014.09.009
DatabaseName CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Environment Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Environment Abstracts
Environmental Sciences and Pollution Management
Technology Research Database
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList Environment Abstracts
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2367
EndPage 284
ExternalDocumentID 10_1016_j_trb_2014_09_009
S0191261514001635
GeographicLocations China, People's Rep., Beijing
GeographicLocations_xml – name: China, People's Rep., Beijing
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABDEX
ABDMP
ABFNM
ABLJU
ABMAC
ABMMH
ABPPZ
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNCT
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHRSL
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OHT
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SET
SEW
SPCBC
SSB
SSD
SSO
SSS
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
7ST
C1K
SOI
8FD
FR3
KR7
ID FETCH-LOGICAL-c462t-da1192991a2a1809f207b15061c38be25c86ea91b57f790fa00fab883db923693
IEDL.DBID .~1
ISSN 0191-2615
IngestDate Wed Oct 01 14:08:08 EDT 2025
Sat Sep 27 20:28:48 EDT 2025
Thu Apr 24 23:00:50 EDT 2025
Wed Oct 01 04:27:14 EDT 2025
Fri Feb 23 02:33:22 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Kuhn–Tucker conditions
Energy minimization
Train scheduling and control
Metro rail system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-da1192991a2a1809f207b15061c38be25c86ea91b57f790fa00fab883db923693
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1655741801
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_1660093427
proquest_miscellaneous_1655741801
crossref_primary_10_1016_j_trb_2014_09_009
crossref_citationtrail_10_1016_j_trb_2014_09_009
elsevier_sciencedirect_doi_10_1016_j_trb_2014_09_009
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2014
2014-12-00
20141201
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: December 2014
PublicationDecade 2010
PublicationTitle Transportation research. Part B: methodological
PublicationYear 2014
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Yang, Ning, Li, Tang (b0145) 2014; 1
Howlett, Pudney, Vu (b0070) 2009; 45
Li, Yang (b0090) 2013; 21
Dominguez, Fernandez-Cardador, Cucala, Pecharroman (b0035) 2012; 9
Su, Li, Tang, Gao (b0125) 2013; 14
Rodrigo, Tapia, Mera, Soler (b0120) 2013; 139
Tuyttens, Fei, Mezmaz, Jalwan (b0130) 2013
Howlett, Pudney (b0055) 1995
Howlett, P., 1988. Existence of an optimal strategy for the control of a train. School of Mathematics Report 3, University of South Australia.
Yang, Li, Gao, Wang, Tang (b0140) 2013; 14
Pena-Alcaraz, Fernandez, Cucala, Ramos, Pecharroman (b0115) 2012; 226
Howlett (b0065) 2000; 98
Asnis, Dmitruk, Osmolovskii (b0010) 1985; 25
Gonzalez-Gil, Palacin, Batty, Powell (b0040) 2014; 80
Wang, Yu, Zhu, Tang, Ning (b0135) 2014; 15
Bocharnikov, Y.V., Tobias, A.M., Robe, C., 2010. Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation. In: Proceedings of IET Conference on Railway Traction Systems, Birmingham, UK, pp. 32–36.
Boyd, Vandenberghe (b0025) 2004
Li, Lo (b0095) 2014; 64
Pascoe, Eichorn (b0110) 2009; 4
Albrecht, Howlett, Pudney, Vu (b0005) 2013; 49
Khmelnitsky (b0085) 2000; 45
Howlett, Pudney (b0060) 1998; 4
Howlett (b0050) 1990; 31
Ishikawa (b0075) 1968; 11
Ding, Liu, Bai, Zhou (b0030) 2011; 11
Asnis (10.1016/j.trb.2014.09.009_b0010) 1985; 25
Ishikawa (10.1016/j.trb.2014.09.009_b0075) 1968; 11
Rodrigo (10.1016/j.trb.2014.09.009_b0120) 2013; 139
Tuyttens (10.1016/j.trb.2014.09.009_b0130) 2013
Yang (10.1016/j.trb.2014.09.009_b0145) 2014; 1
Albrecht (10.1016/j.trb.2014.09.009_b0005) 2013; 49
Howlett (10.1016/j.trb.2014.09.009_b0070) 2009; 45
Su (10.1016/j.trb.2014.09.009_b0125) 2013; 14
Howlett (10.1016/j.trb.2014.09.009_b0065) 2000; 98
Pascoe (10.1016/j.trb.2014.09.009_b0110) 2009; 4
10.1016/j.trb.2014.09.009_b0045
Howlett (10.1016/j.trb.2014.09.009_b0060) 1998; 4
Howlett (10.1016/j.trb.2014.09.009_b0050) 1990; 31
10.1016/j.trb.2014.09.009_b0020
Khmelnitsky (10.1016/j.trb.2014.09.009_b0085) 2000; 45
Boyd (10.1016/j.trb.2014.09.009_b0025) 2004
Pena-Alcaraz (10.1016/j.trb.2014.09.009_b0115) 2012; 226
Wang (10.1016/j.trb.2014.09.009_b0135) 2014; 15
Ding (10.1016/j.trb.2014.09.009_b0030) 2011; 11
Li (10.1016/j.trb.2014.09.009_b0090) 2013; 21
Gonzalez-Gil (10.1016/j.trb.2014.09.009_b0040) 2014; 80
Yang (10.1016/j.trb.2014.09.009_b0140) 2013; 14
Howlett (10.1016/j.trb.2014.09.009_b0055) 1995
Li (10.1016/j.trb.2014.09.009_b0095) 2014; 64
Dominguez (10.1016/j.trb.2014.09.009_b0035) 2012; 9
References_xml – reference: Howlett, P., 1988. Existence of an optimal strategy for the control of a train. School of Mathematics Report 3, University of South Australia.
– volume: 226
  start-page: 397
  year: 2012
  end-page: 408
  ident: b0115
  article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy
  publication-title: Journal of Rail and Rapid Transit
– volume: 139
  start-page: 321
  year: 2013
  end-page: 329
  ident: b0120
  article-title: Optimizing electric rail energy consumption using the lagrange multiplier technique
  publication-title: Journal of Transportation Engineering
– volume: 11
  start-page: 96
  year: 2011
  end-page: 101
  ident: b0030
  article-title: A two-level optimization model and algorithm for energy-efficient urban train operation
  publication-title: Journal of Transportation Systems Engineering and Information Technology
– volume: 80
  start-page: 509
  year: 2014
  end-page: 524
  ident: b0040
  article-title: A systems approach to reduce urban rail energy consumption
  publication-title: Energy Conversion and Management
– year: 1995
  ident: b0055
  article-title: Energy-Efficient Train Control
– volume: 49
  start-page: 3072
  year: 2013
  end-page: 3078
  ident: b0005
  article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness
  publication-title: Automatica
– volume: 64
  start-page: 73
  year: 2014
  end-page: 89
  ident: b0095
  article-title: An energy-efficient scheduling and speed control approach for metro rail operations
  publication-title: Transportation Research Part B
– volume: 4
  start-page: 553
  year: 1998
  end-page: 568
  ident: b0060
  article-title: An optimal driving strategy for a solar powered car on an undulating road
  publication-title: Dynamics of Continuous, Discrete and Impulsive Systems
– volume: 11
  start-page: 857
  year: 1968
  end-page: 865
  ident: b0075
  article-title: Application of optimization theory for bounded state variable problems to the operation of trains
  publication-title: Bulletin of JSME
– volume: 14
  start-page: 438
  year: 2013
  end-page: 447
  ident: b0140
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2004
  ident: b0025
  article-title: Convex Optimization
– volume: 25
  start-page: 37
  year: 1985
  end-page: 44
  ident: b0010
  article-title: Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle
  publication-title: USSR Computational Mathematics and Mathematical Physics
– volume: 15
  start-page: 1083
  year: 2014
  end-page: 1090
  ident: b0135
  article-title: Finite-state markov modeling for wireless channels in tunnel communication-based train control systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 1
  start-page: 1
  year: 2014
  ident: b0145
  article-title: A two-objective timetable optimization model in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 31
  start-page: 454
  year: 1990
  end-page: 471
  ident: b0050
  article-title: An optimal strategy for the control of a train
  publication-title: Journal of the Australian Mathematical Society Series B
– volume: 45
  start-page: 2692
  year: 2009
  end-page: 2698
  ident: b0070
  article-title: Local energy minimization in optimal train control
  publication-title: Automatica
– volume: 21
  start-page: 1
  year: 2013
  end-page: 15
  ident: b0090
  article-title: A stochastic timetable optimization model in subway systems
  publication-title: International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems
– volume: 98
  start-page: 65
  year: 2000
  end-page: 87
  ident: b0065
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
– volume: 14
  start-page: 883
  year: 2013
  end-page: 893
  ident: b0125
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 45
  start-page: 1257
  year: 2000
  end-page: 1266
  ident: b0085
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
– volume: 4
  start-page: 16
  year: 2009
  end-page: 21
  ident: b0110
  article-title: What is communication-based train control?
  publication-title: IEEE Vehicular Technology Magazine
– reference: Bocharnikov, Y.V., Tobias, A.M., Robe, C., 2010. Reduction of train and net energy consumption using genetic algorithms for trajectory optimisation. In: Proceedings of IET Conference on Railway Traction Systems, Birmingham, UK, pp. 32–36.
– volume: 9
  start-page: 496
  year: 2012
  end-page: 504
  ident: b0035
  article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles
  publication-title: IEEE Transactions on Automation Science and Engineering
– start-page: 1
  year: 2013
  end-page: 12
  ident: b0130
  article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control
  publication-title: Mathematical Problems in Engineering
– volume: 49
  start-page: 3072
  issue: 10
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0005
  article-title: Energy-efficient train control: from local convexity to global optimization and uniqueness
  publication-title: Automatica
  doi: 10.1016/j.automatica.2013.07.008
– volume: 4
  start-page: 16
  issue: 4
  year: 2009
  ident: 10.1016/j.trb.2014.09.009_b0110
  article-title: What is communication-based train control?
  publication-title: IEEE Vehicular Technology Magazine
  doi: 10.1109/MVT.2009.934665
– volume: 31
  start-page: 454
  year: 1990
  ident: 10.1016/j.trb.2014.09.009_b0050
  article-title: An optimal strategy for the control of a train
  publication-title: Journal of the Australian Mathematical Society Series B
  doi: 10.1017/S0334270000006780
– volume: 25
  start-page: 37
  issue: 6
  year: 1985
  ident: 10.1016/j.trb.2014.09.009_b0010
  article-title: Solution of the problem of the energetically optimal control of the motion of a train by the maximum principle
  publication-title: USSR Computational Mathematics and Mathematical Physics
  doi: 10.1016/0041-5553(85)90006-0
– ident: 10.1016/j.trb.2014.09.009_b0045
– year: 1995
  ident: 10.1016/j.trb.2014.09.009_b0055
– volume: 11
  start-page: 96
  issue: 1
  year: 2011
  ident: 10.1016/j.trb.2014.09.009_b0030
  article-title: A two-level optimization model and algorithm for energy-efficient urban train operation
  publication-title: Journal of Transportation Systems Engineering and Information Technology
  doi: 10.1016/S1570-6672(10)60106-7
– volume: 9
  start-page: 496
  issue: 3
  year: 2012
  ident: 10.1016/j.trb.2014.09.009_b0035
  article-title: Energy savings in metropolitan railway substations through regenerative energy recovery and optimal design of ATO speed profiles
  publication-title: IEEE Transactions on Automation Science and Engineering
  doi: 10.1109/TASE.2012.2201148
– volume: 139
  start-page: 321
  issue: 3
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0120
  article-title: Optimizing electric rail energy consumption using the lagrange multiplier technique
  publication-title: Journal of Transportation Engineering
  doi: 10.1061/(ASCE)TE.1943-5436.0000483
– volume: 15
  start-page: 1083
  issue: 3
  year: 2014
  ident: 10.1016/j.trb.2014.09.009_b0135
  article-title: Finite-state markov modeling for wireless channels in tunnel communication-based train control systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2298038
– volume: 1
  start-page: 1
  year: 2014
  ident: 10.1016/j.trb.2014.09.009_b0145
  article-title: A two-objective timetable optimization model in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2014.2343958
– volume: 98
  start-page: 65
  issue: 1–4
  year: 2000
  ident: 10.1016/j.trb.2014.09.009_b0065
  article-title: The optimal control of a train
  publication-title: Annals of Operations Research
  doi: 10.1023/A:1019235819716
– year: 2004
  ident: 10.1016/j.trb.2014.09.009_b0025
– volume: 21
  start-page: 1
  issue: Supp. 1
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0090
  article-title: A stochastic timetable optimization model in subway systems
  publication-title: International Journal of Uncertainty, Fuzziness & Knowledge-Based Systems
  doi: 10.1142/S0218488513400011
– ident: 10.1016/j.trb.2014.09.009_b0020
  doi: 10.1049/ic.2010.0038
– volume: 45
  start-page: 1257
  issue: 7
  year: 2000
  ident: 10.1016/j.trb.2014.09.009_b0085
  article-title: On an optimal control problem of train operation
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.867018
– volume: 226
  start-page: 397
  issue: 4
  year: 2012
  ident: 10.1016/j.trb.2014.09.009_b0115
  article-title: Optimal underground timetable design based on power flow for maximizing the use of regenerative-braking energy
  publication-title: Journal of Rail and Rapid Transit
  doi: 10.1177/0954409711429411
– volume: 11
  start-page: 857
  issue: 47
  year: 1968
  ident: 10.1016/j.trb.2014.09.009_b0075
  article-title: Application of optimization theory for bounded state variable problems to the operation of trains
  publication-title: Bulletin of JSME
  doi: 10.1299/jsme1958.11.857
– volume: 4
  start-page: 553
  issue: 4
  year: 1998
  ident: 10.1016/j.trb.2014.09.009_b0060
  article-title: An optimal driving strategy for a solar powered car on an undulating road
  publication-title: Dynamics of Continuous, Discrete and Impulsive Systems
– volume: 45
  start-page: 2692
  issue: 11
  year: 2009
  ident: 10.1016/j.trb.2014.09.009_b0070
  article-title: Local energy minimization in optimal train control
  publication-title: Automatica
  doi: 10.1016/j.automatica.2009.07.028
– volume: 14
  start-page: 883
  issue: 2
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0125
  article-title: A subway train timetable optimization approach based on energy-efficient operation strategy
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2013.2244885
– volume: 80
  start-page: 509
  year: 2014
  ident: 10.1016/j.trb.2014.09.009_b0040
  article-title: A systems approach to reduce urban rail energy consumption
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2014.01.060
– volume: 64
  start-page: 73
  year: 2014
  ident: 10.1016/j.trb.2014.09.009_b0095
  article-title: An energy-efficient scheduling and speed control approach for metro rail operations
  publication-title: Transportation Research Part B
  doi: 10.1016/j.trb.2014.03.006
– start-page: 1
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0130
  article-title: Simulation-based genetic algorithm towards an energy-efficient railway traffic control
  publication-title: Mathematical Problems in Engineering
  doi: 10.1155/2013/805410
– volume: 14
  start-page: 438
  issue: 1
  year: 2013
  ident: 10.1016/j.trb.2014.09.009_b0140
  article-title: A cooperative scheduling model for timetable optimization in subway systems
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2012.2219620
SSID ssj0003401
Score 2.4759774
Snippet •It proposes a dynamic train scheduling and control framework for metro rail system.•A convex optimization model is formulated to improve its energy saving...
Since the passenger demands change frequently in daily metro rail operations, the headway, cycle time, timetable and speed profile for trains should be...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 269
SubjectTerms Cycle time
Demand
Energy consumption
Energy minimization
Headways
Kuhn–Tucker conditions
Metro rail system
Optimization
Passengers
Timetables
Train scheduling and control
Trains
Title Energy minimization in dynamic train scheduling and control for metro rail operations
URI https://dx.doi.org/10.1016/j.trb.2014.09.009
https://www.proquest.com/docview/1655741801
https://www.proquest.com/docview/1660093427
Volume 70
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2367
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003401
  issn: 0191-2615
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH0apYH2UFT0LsJtnN41hKS1XoRQu9LbvdDVTatPRx9bc7k2x8IT14CCRhliSzk5kv2ZlvCLnLeCz8UBgviyPmcaOtl2aJ8DgXwnCttFYF2-cwGoz401iMa6Rb1cJgWqXz_aVPL7y1O9N22mwvp9P2C4ATP8CAzBG3hFhojuxfYNMP719pHiFnrieh76F0tbJZ5HhtVhqzu0qqU8xJ_Ds2_fLSRejpH5Mjhxlpp7ytE1KzeYPsVyXF6wY5_MYqeEpGvaKejyJryNyVWdJpTk3ZfJ4WXSEofNVClMFidKpyQ13KOgUMS-cWdilIzehiaUsTWZ-RUb_32h14rnuCN-FRsPGM8gG9AfxTgUKSrixgsUY-QX8SJtoGYpJEVqW-FnEWpyxTDDadJKHRAPqiNDwn9XyR2wtCU6ONSVgcCK241VoDTDOJQaacjIehahJW6U1OHLU4PstMVjlkbxJULVHVkqUSVN0k959DliWvxi5hXk2G_GEcEvz-rmG31cRJeGlwJUTldrFdSz8SAml7mL9LJsLfPTyIL_93-StygEdl7ss1qW9WW3sDCGajW4WJtshe5_F5MPwAPKTwAg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5qPagH8YlvV_AkhG6S3TyOUpSqtRcteFt2uxuoaFps_f_OJJuiIj14CIRklySzm5kv2W--AbgsRCrDWNqgSBMeCGtckBeZDISQ0gqjjdGV2ucg6Q3F_Yt8aUG3yYUhWqX3_bVPr7y1P9Lx1uxMx-POE4KTMKKALAi3xHIFVoVEn9yG1eu7h95g4ZBjwX1ZwjCgDs3iZkXzmn8YInjVaqdES_w7PP1y1FX0ud2CTQ8b2XV9Z9vQcuUOrDVZxbMd2PgmLLgLw5sqpY-RcMi7z7Rk45LZuv48qwpDMPywxUBD-ehMl5Z51jpDGMveHe4ybPXGJlNXz5LZHgxvb567vcAXUAhGIonmgdUhAjhEgDrSpNNVRDw1JCkYjuLMuEiOssTpPDQyLdKcF5rjZrIstgZxX5LH-9AuJ6U7AJZbY23G00gaLZwxBpGazSyJ5RQijvUh8MZuauTVxelZ3lRDI3tVaGpFplY8V2jqQ7hadJnW0hrLGotmMNSP-aHQ9S_rdtEMnML3hhZDdOkmnzMVJlKScg8Pl7VJ6I-PiNKj_13-HNZ6z4991b8bPBzDOp2pqTAn0J5_fLpTBDRzc-Yn7Bdo8_Kt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Energy+minimization+in+dynamic+train+scheduling+and+control+for+metro+rail+operations&rft.jtitle=Transportation+research.+Part+B%3A+methodological&rft.au=Li%2C+Xiang&rft.au=Lo%2C+Hong+K&rft.date=2014-12-01&rft.issn=0191-2615&rft.volume=70&rft.spage=269&rft.epage=284&rft_id=info:doi/10.1016%2Fj.trb.2014.09.009&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0191-2615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0191-2615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0191-2615&client=summon