Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster

Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reci...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in physiology Vol. 10; p. 518
Main Authors Massey, Jonathan H., Akiyama, Noriyoshi, Bien, Tanja, Dreisewerd, Klaus, Wittkopp, Patricia J., Yew, Joanne Y., Takahashi, Aya
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 01.05.2019
Subjects
Online AccessGet full text
ISSN1664-042X
1664-042X
DOI10.3389/fphys.2019.00518

Cover

Abstract Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in females. More specifically, we report that loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in mutants, making the CHC profiles similar to those seen in mutants. These observations suggest that genetic variation affecting and/or activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of and expression in newly eclosed adults in a manner consistent with the and mutant phenotypes. These data suggest that the pleiotropic effects of and might contribute to covariation of pigmentation and CHC profiles in .
AbstractList Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in females. More specifically, we report that loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in mutants, making the CHC profiles similar to those seen in mutants. These observations suggest that genetic variation affecting and/or activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of and expression in newly eclosed adults in a manner consistent with the and mutant phenotypes. These data suggest that the pleiotropic effects of and might contribute to covariation of pigmentation and CHC profiles in .
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila .
Author Dreisewerd, Klaus
Takahashi, Aya
Bien, Tanja
Akiyama, Noriyoshi
Yew, Joanne Y.
Wittkopp, Patricia J.
Massey, Jonathan H.
AuthorAffiliation 7 Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa , Honolulu, HI , United States
8 Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University , Hachioji , Japan
2 Janelia Research Campus of the Howard Hughes Medical Institute , Ashburn, VA , United States
1 Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , United States
3 Department of Biological Sciences, Tokyo Metropolitan University , Hachioji , Japan
6 Department of Molecular, Cellular, and Developmental Biology, University of Michigan , Ann Arbor, MI , United States
4 Institute for Hygiene, University of Münster , Münster , Germany
5 Interdisciplinary Center for Clinical Research, University of Münster , Münster , Germany
AuthorAffiliation_xml – name: 5 Interdisciplinary Center for Clinical Research, University of Münster , Münster , Germany
– name: 1 Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , United States
– name: 7 Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa , Honolulu, HI , United States
– name: 3 Department of Biological Sciences, Tokyo Metropolitan University , Hachioji , Japan
– name: 6 Department of Molecular, Cellular, and Developmental Biology, University of Michigan , Ann Arbor, MI , United States
– name: 2 Janelia Research Campus of the Howard Hughes Medical Institute , Ashburn, VA , United States
– name: 8 Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University , Hachioji , Japan
– name: 4 Institute for Hygiene, University of Münster , Münster , Germany
Author_xml – sequence: 1
  givenname: Jonathan H.
  surname: Massey
  fullname: Massey, Jonathan H.
– sequence: 2
  givenname: Noriyoshi
  surname: Akiyama
  fullname: Akiyama, Noriyoshi
– sequence: 3
  givenname: Tanja
  surname: Bien
  fullname: Bien, Tanja
– sequence: 4
  givenname: Klaus
  surname: Dreisewerd
  fullname: Dreisewerd, Klaus
– sequence: 5
  givenname: Patricia J.
  surname: Wittkopp
  fullname: Wittkopp, Patricia J.
– sequence: 6
  givenname: Joanne Y.
  surname: Yew
  fullname: Yew, Joanne Y.
– sequence: 7
  givenname: Aya
  surname: Takahashi
  fullname: Takahashi, Aya
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31118901$$D View this record in MEDLINE/PubMed
BookMark eNp1Uk1v1DAQjVARLaV3TshHLruMHTtxLkhoKbRSJXoAiZs18cfWVWIHO0Haf493t0UtEr54PJ73nv1mXlcnIQZbVW8prOtadh_cdLfLawa0WwMIKl9UZ7Rp-Ao4-3nyJD6tLnK-h7I4MAD6qjqtKaWyA3pWLbeD9XFOcfKaXDpn9ZxJdMT2MewIBkNmDCQGcuu3ow0zzr4c9vnNMnu9DJjI1c6kqDEVCNnEcYrZH6p8IJ9TzHG68wOS0Q4Y4hbzbNOb6qXDIduLh_28-vHl8vvmanXz7ev15tPNSvOGzSsjwAkA00Ldma5vBArZdzX2UjthsWt7NK0FbbkQ0BnWFhv6vkULrGlYqTyvro-8JuK9mpIfMe1URK8OiZi2ClP5xmCV1LJundB1zZEXDSk1K6EQDEzfMVe4Ph65pqUfrdHFjITDM9LnN8HfqW38rRoBXDJeCN4_EKT4a7F5VqPP2g7FFhuXrBirGWVU8v273z3V-ivy2LdS0BwLdDE4J-uU9sfeFGk_KApqPyPqMCNqPyPqMCMFCP8AH7n_C_kDzhfCaA
CitedBy_id crossref_primary_10_1111_imb_12730
crossref_primary_10_1016_j_ggedit_2023_100025
crossref_primary_10_1111_mec_17294
crossref_primary_10_1111_1744_7917_13024
crossref_primary_10_1016_j_pestbp_2024_105810
crossref_primary_10_1038_s42003_025_07489_y
crossref_primary_10_1111_1755_0998_13908
crossref_primary_10_3389_fevo_2020_00184
crossref_primary_10_1093_g3journal_jkab078
crossref_primary_10_1007_s10534_020_00245_1
crossref_primary_10_1038_s41437_020_00380_y
crossref_primary_10_1038_s41598_023_36558_7
crossref_primary_10_1242_jeb_203414
crossref_primary_10_1002_evl3_251
crossref_primary_10_1093_beheco_arad110
crossref_primary_10_1186_s13071_025_06709_y
crossref_primary_10_3389_fphys_2020_00790
crossref_primary_10_1111_eth_13547
crossref_primary_10_1016_j_gde_2021_01_006
crossref_primary_10_1186_s12862_019_1536_7
crossref_primary_10_1038_s41598_023_30652_6
crossref_primary_10_1186_s13104_021_05766_7
crossref_primary_10_1111_mec_17085
crossref_primary_10_1111_imb_12968
crossref_primary_10_1186_s12862_021_01849_y
crossref_primary_10_3390_genes14020304
crossref_primary_10_1186_s12864_022_08745_9
crossref_primary_10_1371_journal_pone_0260833
crossref_primary_10_3390_insects13110986
Cites_doi 10.1371/journal.pbio.1001230
10.1038/hdy.1988.114
10.1016/j.ibmb.2016.10.007
10.1038/nn.2515
10.1371/journal.pone.0016898
10.1266/ggs.88.165
10.7554/eLife.09861
10.1534/genetics.105.045666
10.1002/neu.10196
10.1016/0305-0491(95)00081-x
10.1111/mec.13432
10.1111/jeb.12988
10.1186/1297-9686-29-5-601
10.1186/s12862-014-0179-y
10.1016/j.ibmb.2004.05.002
10.1016/j.cub.2018.08.047
10.1371/journal.pgen.1006126
10.1051/gse
10.1111/j.1558-5646.1956.tb02868.x
10.4161/fly.6351
10.1371/journal.pgen.1003534
10.1016/j.jinsphys.2008.08.005
10.1242/dev.056309
10.1126/science.1178357
10.1046/j.1365-2583.2003.00419.x
10.1128/JCM.28.3.495-503.1990
10.1016/j.jinsphys.2008.04.008
10.1086/286211
10.1111/j.1365-294X.2011.05089.x
10.1016/j.celrep.2013.06.020
10.1017/s0952836900000030
10.1111/j.1439-0469.1995.tb00213.x
10.1371/journal.pgen.1005708
10.1016/j.tree.2003.09.006
10.1242/dev.127.18.3971
10.1016/j.jinsphys.2011.12.006
10.1086/383621
10.1111/j.1365-294x.2007.03324.x
10.1038/nature10811
10.1371/journal.pgen.1005163
10.1038/hdy.2010.40
10.1016/j.neuron.2007.06.038
10.1534/genetics.113.160713
10.1534/genetics.116.188342
10.1046/j.1365-294x.2003.01833.x
10.1038/ng.332
10.1534/genetics.115.183376
10.1371/journal.pgen.0010063.eor
10.1111/j.1558-5646.2009.00936.x
10.1016/j.jinsphys.2005.04.010
10.1111/j.1439-0469.1999.00112.x
10.1111/mec.14781
10.1016/j.celrep.2014.09.044
10.5962/bhl.title.24013
10.1016/b978-0-12-564485-3.50012-9
10.1242/dev.118.2.401
10.1038/nature09774
10.1126/science.276.5318.1555
10.1016/0303-7207(91)90219-i
10.1016/j.cell.2009.11.004
10.1038/nature05954
10.1016/0022-1910(94)00074-q
10.1016/j.plipres.2015.06.001
10.1016/0022-1910(73)90205-9
10.1111/j.1365-294X.2011.05260.x
10.1101/gr.171546.113
10.1016/s0378-1119(98)00440-5
10.1111/evo.12122
10.1242/jeb.200.12.1821
10.1371/journal.pone.0018316
10.1016/S0040-8166(70)80013-1
10.1016/j.semcdb.2008.10.002
ContentType Journal Article
Copyright Copyright © 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi. 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi
Copyright_xml – notice: Copyright © 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi. 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fphys.2019.00518
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1664-042X
ExternalDocumentID oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f
PMC6504824
31118901
10_3389_fphys_2019_00518
Genre Journal Article
GrantInformation_xml – fundername: NIGMS NIH HHS
  grantid: T32 GM007544
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
DIK
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-d50f500d7039d9b65a58b93ab8cf5ea97bad7e0ce45509d27051bb7ae02662b93
IEDL.DBID DOA
ISSN 1664-042X
IngestDate Wed Aug 27 01:23:29 EDT 2025
Thu Aug 21 14:13:27 EDT 2025
Thu Sep 04 18:06:57 EDT 2025
Mon Jul 21 06:03:07 EDT 2025
Tue Jul 01 04:18:40 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords ebony
tan
pigmentation
Drosophila
trait covariation
cuticular hydrocarbons
pleiotropy
dopamine
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-d50f500d7039d9b65a58b93ab8cf5ea97bad7e0ce45509d27051bb7ae02662b93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Geoffrey A. Head,Baker Heart and Diabetes Institute, Australia
Reviewed by: Jean-Michel Gibert, Centre National de la Recherche Scientifique (CNRS), France; Thomas Williams, University of Dayton, United States
This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology
OpenAccessLink https://doaj.org/article/8c837f5c334a493a88c234a5520db92f
PMID 31118901
PQID 2232121849
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6504824
proquest_miscellaneous_2232121849
pubmed_primary_31118901
crossref_citationtrail_10_3389_fphys_2019_00518
crossref_primary_10_3389_fphys_2019_00518
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-05-01
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 2019-05-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in physiology
PublicationTitleAlternate Front Physiol
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Takahashi (B64) 2013; 88
Drapeau (B22) 2003; 55
Greenwood (B34) 2016; 203
Blows (B9) 1998; 152
Mackay (B42) 2012; 482
Yew (B75) 2015; 59
Parkash (B52); 2
Huang (B41) 2014; 24
Chiang (B15) 2016; 12
Dietzl (B20) 2007; 448
Foley (B28) 2011; 106
Gruntenko (B37) 2012; 58
Ayroles (B3) 2009; 41
Heed (B38) 1959; 5914
Gibbs (B31) 1998; 38
Bastide (B5) 2013; 9
Das (B16) 1995; 33
True (B67) 2003; 18
(B54) 2013
Schluter (B61) 2004; 163
Wicker-Thomas (B72) 2008; 54
Blomquist (B8) 1987
Parkash (B50) 1999; 37
Gruntenko (B35) 2003; 12
Bastock (B7) 1956; 10
Hodgetts (B39) 1973; 19
Walker (B69) 2000; 252
Albert (B1) 2008; 62
Boom (B10) 1990; 28
Rajpurohit (B55) 2017; 30
Telonis-Scott (B66) 2011; 20
Rebeiz (B57); 139
Spector (B62) 1965; 147
Nagy (B49) 2018; 28
Riedel (B60) 2011; 138
Calleja (B13) 2000; 127
McKay (B45) 2003; 12
Hovemann (B40) 1998; 221
David (B17) 1985; 17
Brand (B11) 1993; 118
Drapeau (B21) 2006; 172
Duveau (B23) 2012; 10
Suh (B63) 2007; 55
Endler (B25) 2018; 27
McLean (B46) 2011; 471
Pool (B53) 2007; 16
Flaven-Pouchon (B27) 2016; 79
Endler (B24) 2016; 202
Dembeck (B18); 4
Matute (B44) 2013; 67
Frentiu (B29) 2010; 64
Munjal (B48) 1997; 29
Parkash (B51); 54
Capy (B14) 1988; 61
Bassett (B4) 2013; 4
Dembeck (B19); 11
Miyagi (B47) 2015; 24
Gratz (B33) 2014; 196
Bastide (B6) 2014; 14
True (B68) 2005; 1
Rideout (B59) 2010; 13
Gruntenko (B36) 2005; 51
Wark (B70) 2011; 6
Gibbs (B32) 1997; 200
Bridges (B12) 1923
Wittkopp (B74) 2009; 20
Wicker (B71) 1995; 41
Yew (B76) 2011; 6
Ren (B58) 2014; 9
Wigglesworth (B73) 1970; 2
Rebeiz (B56); 326
Gibbs (B30) 1995; 112
Altaratz (B2) 1991; 81
Ferveur (B26) 1997; 276
Marican (B43) 2004; 34
Takahashi (B65) 2011; 20
References_xml – volume: 10
  year: 2012
  ident: B23
  article-title: Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans.
  publication-title: PLoS Biology
  doi: 10.1371/journal.pbio.1001230
– volume: 61
  year: 1988
  ident: B14
  article-title: Thoracic trident pigmentation in natural populations of Drosophila simulans: a comparison with D. melanogaster.
  publication-title: Heredity
  doi: 10.1038/hdy.1988.114
– volume: 79
  start-page: 87
  year: 2016
  ident: B27
  article-title: Regulation of cuticular hydrocarbon profile maturation by Drosophila tanning hormone, bursicon, and its interaction with desaturase activity.
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2016.10.007
– volume: 13
  year: 2010
  ident: B59
  article-title: Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster.
  publication-title: Nat. Neurosci.
  doi: 10.1038/nn.2515
– volume: 6
  year: 2011
  ident: B76
  article-title: Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0016898
– volume: 88
  start-page: 165
  year: 2013
  ident: B64
  article-title: Pigmentation and behavior: potential association through pleiotropic genes in Drosophila.
  publication-title: Genes Genet. Syst.
  doi: 10.1266/ggs.88.165
– volume: 4
  ident: B18
  article-title: Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster.
  publication-title: eLife
  doi: 10.7554/eLife.09861
– volume: 172
  start-page: 1009
  year: 2006
  ident: B21
  article-title: A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success.
  publication-title: Genetics
  doi: 10.1534/genetics.105.045666
– volume: 55
  start-page: 53
  year: 2003
  ident: B22
  article-title: A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain.
  publication-title: J. Neurobiol.
  doi: 10.1002/neu.10196
– volume: 112
  start-page: 243
  year: 1995
  ident: B30
  article-title: Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation.
  publication-title: Comp. Biochem. Physiol. B
  doi: 10.1016/0305-0491(95)00081-x
– volume: 24
  start-page: 5829
  year: 2015
  ident: B47
  article-title: Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13432
– volume: 30
  start-page: 66
  year: 2017
  ident: B55
  article-title: Adaptive dynamics of cuticular hydrocarbons in Drosophila.
  publication-title: J. Evol. Biol.
  doi: 10.1111/jeb.12988
– volume: 29
  year: 1997
  ident: B48
  article-title: Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations.
  publication-title: Genet. Select. Evol.
  doi: 10.1186/1297-9686-29-5-601
– volume: 14
  year: 2014
  ident: B6
  article-title: Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa.
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-014-0179-y
– volume: 34
  start-page: 823
  year: 2004
  ident: B43
  article-title: Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster.
  publication-title: Insect Biochem. Mol. Biol.
  doi: 10.1016/j.ibmb.2004.05.002
– volume: 28
  start-page: 3450
  year: 2018
  ident: B49
  article-title: Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change.
  publication-title: Curr. Biol.
  doi: 10.1016/j.cub.2018.08.047
– volume: 12
  year: 2016
  ident: B15
  article-title: Steroid hormone signaling is essential for pheromone production and oenocyte survival.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1006126
– volume: 17
  year: 1985
  ident: B17
  article-title: Thoracic trident pigmentation in Drosophila melanogaster: differentiation of geographical populations.
  publication-title: Génét. Sélect. Évol.
  doi: 10.1051/gse
– volume: 10
  start-page: 421
  year: 1956
  ident: B7
  article-title: A gene mutation which changes a behavior pattern.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.1956.tb02868.x
– volume: 2
  start-page: 111
  ident: B52
  article-title: Climatic adaptations of body melanisation in Drosophila melanogaster from Western Himalayas.
  publication-title: Fly
  doi: 10.4161/fly.6351
– volume: 9
  year: 2013
  ident: B5
  article-title: A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1003534
– volume: 54
  start-page: 1423
  year: 2008
  ident: B72
  article-title: Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster.
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2008.08.005
– year: 2013
  ident: B54
  publication-title: R: A Language and Environment for Statistical Computing.
– volume: 138
  start-page: 149
  year: 2011
  ident: B60
  article-title: Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle.
  publication-title: Development
  doi: 10.1242/dev.056309
– volume: 326
  start-page: 1663
  ident: B56
  article-title: Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population.
  publication-title: Science
  doi: 10.1126/science.1178357
– volume: 12
  start-page: 353
  year: 2003
  ident: B35
  article-title: Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous.
  publication-title: Insect Mol. Biol.
  doi: 10.1046/j.1365-2583.2003.00419.x
– volume: 28
  start-page: 495
  year: 1990
  ident: B10
  article-title: Rapid and simple method for purification of nucleic acids.
  publication-title: J. Clin. Microbiol.
  doi: 10.1128/JCM.28.3.495-503.1990
– volume: 54
  start-page: 1050
  ident: B51
  article-title: Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster.
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2008.04.008
– volume: 152
  start-page: 826
  year: 1998
  ident: B9
  article-title: Levels of mate recognition within and between two Drosophila species and their hybrids.
  publication-title: Am. Nat.
  doi: 10.1086/286211
– volume: 20
  start-page: 2100
  year: 2011
  ident: B66
  article-title: The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia.
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2011.05089.x
– volume: 4
  start-page: 220
  year: 2013
  ident: B4
  article-title: Highly efficient targeted mutagenesis of Drosophila with CRISPR/Cas9 system.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2013.06.020
– volume: 252
  start-page: 293
  year: 2000
  ident: B69
  article-title: Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus).
  publication-title: J. Zool.
  doi: 10.1017/s0952836900000030
– volume: 62
  start-page: 76
  year: 2008
  ident: B1
  article-title: The genetics of adaptive shape shift in stickleback: pleiotropy and effect size.
  publication-title: Evolution
– volume: 33
  start-page: 84
  year: 1995
  ident: B16
  article-title: Abdominal pigmentation in Drosophila melanogaster females from natural Indian populations.
  publication-title: J. Zool. Syst. Evol. Res.
  doi: 10.1111/j.1439-0469.1995.tb00213.x
– volume: 38
  start-page: 471
  year: 1998
  ident: B31
  article-title: Water-proofing properties of cuticular lipids.
  publication-title: Am. Zool.
  doi: 10.1371/journal.pgen.1005708
– volume: 18
  start-page: 640
  year: 2003
  ident: B67
  article-title: Insect melanism: the molecules matter.
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2003.09.006
– volume: 127
  start-page: 3971
  year: 2000
  ident: B13
  article-title: Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila.
  publication-title: Development
  doi: 10.1242/dev.127.18.3971
– volume: 58
  start-page: 348
  year: 2012
  ident: B37
  article-title: Downregulation of the dopamine D2-like receptor in corpus allatum affects juvenile hormone synthesis in Drosophila melanogaster females.
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2011.12.006
– volume: 163
  start-page: 809
  year: 2004
  ident: B61
  article-title: Parallel evolution and inheritance of quantitative traits.
  publication-title: Am. Nat.
  doi: 10.1086/383621
– volume: 16
  start-page: 2844
  year: 2007
  ident: B53
  article-title: The genetic basis of adaptive pigmentation variation in Drosophila melanogaster.
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294x.2007.03324.x
– volume: 482
  start-page: 173
  year: 2012
  ident: B42
  article-title: The Drosophila melanogaster genetic reference panel.
  publication-title: Nature
  doi: 10.1038/nature10811
– volume: 11
  ident: B19
  article-title: Genetic architecture of abdominal pigmentation in Drosophila melanogaster.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.1005163
– volume: 106
  year: 2011
  ident: B28
  article-title: Quantitative genetic analysis suggests causal association between cuticular hydrocarbon composition and desiccation survival in Drosophila melanogaster.
  publication-title: Heredity
  doi: 10.1038/hdy.2010.40
– volume: 55
  start-page: 435
  year: 2007
  ident: B63
  article-title: Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity.
  publication-title: Neuron
  doi: 10.1016/j.neuron.2007.06.038
– volume: 196
  start-page: 961
  year: 2014
  ident: B33
  article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila.
  publication-title: Genetics
  doi: 10.1534/genetics.113.160713
– volume: 203
  start-page: 677
  year: 2016
  ident: B34
  article-title: Evolution of schooling behavior in threespine sticklebacks is shaped by the Eda gene.
  publication-title: Genetics
  doi: 10.1534/genetics.116.188342
– volume: 12
  start-page: 1137
  year: 2003
  ident: B45
  article-title: Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits.
  publication-title: Mol. Ecol.
  doi: 10.1046/j.1365-294x.2003.01833.x
– volume: 41
  start-page: 299
  year: 2009
  ident: B3
  article-title: Systems genetics of complex traits in Drosophila melanogaster.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.332
– volume: 202
  start-page: 843
  year: 2016
  ident: B24
  article-title: Reconciling differences in pool-GWAS between populations: a case study of female abdominal pigmentation in Drosophila melanogaster.
  publication-title: Genetics
  doi: 10.1534/genetics.115.183376
– volume: 1
  year: 2005
  ident: B68
  article-title: Drosophila tan encodes a novel hydrolase required in pigmentation and vision.
  publication-title: PLoS Genetics
  doi: 10.1371/journal.pgen.0010063.eor
– volume: 64
  start-page: 1784
  year: 2010
  ident: B29
  article-title: Clines in cuticular hydrocarbons in two Drosophila species with independent population histories.
  publication-title: Evolution
  doi: 10.1111/j.1558-5646.2009.00936.x
– volume: 51
  start-page: 959
  year: 2005
  ident: B36
  article-title: Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis.
  publication-title: J. Insect Physiol.
  doi: 10.1016/j.jinsphys.2005.04.010
– volume: 37
  start-page: 133
  year: 1999
  ident: B50
  article-title: Phenotypic variability of thoracic pigmentation in Indian populations of Drosophila melanogaster.
  publication-title: J. Zool. Syst. Evol. Res.
  doi: 10.1111/j.1439-0469.1999.00112.x
– volume: 27
  start-page: 3207
  year: 2018
  ident: B25
  article-title: Pleiotropic effects of regulatory variation in tan result in correlation of two pigmentation traits in Drosophila melanogaster.
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.14781
– volume: 9
  start-page: 1151
  year: 2014
  ident: B58
  article-title: Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila.
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2014.09.044
– year: 1923
  ident: B12
  publication-title: Third-Chromosome Group of Mutant Characters of Drosophila melanogaster.
  doi: 10.5962/bhl.title.24013
– volume: 147
  start-page: 86
  year: 1965
  ident: B62
  article-title: Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase.
  publication-title: J. Pharmacol. Exp. Ther.
– start-page: 217
  year: 1987
  ident: B8
  article-title: “Biosynthesis and endocrine regulation of sex pheromone production in Diptera,” in
  publication-title: Pheromone Biochemistry
  doi: 10.1016/b978-0-12-564485-3.50012-9
– volume: 118
  start-page: 401
  year: 1993
  ident: B11
  article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes.
  publication-title: Development
  doi: 10.1242/dev.118.2.401
– volume: 471
  year: 2011
  ident: B46
  article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits.
  publication-title: Nature
  doi: 10.1038/nature09774
– volume: 276
  start-page: 1555
  year: 1997
  ident: B26
  article-title: Genetic feminization of pheromones and its behavioral consequences in Drosophila males.
  publication-title: Science
  doi: 10.1126/science.276.5318.1555
– volume: 81
  start-page: 205
  year: 1991
  ident: B2
  article-title: Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila.
  publication-title: Mol. Cell. Endocrinol.
  doi: 10.1016/0303-7207(91)90219-i
– volume: 5914
  start-page: 155
  year: 1959
  ident: B38
  article-title: Genetic studies on the cardini group of Drosophila in the West Indies.
  publication-title: Univ. Texas Publ.
– volume: 139
  start-page: 1189
  ident: B57
  article-title: Evolution of the tan locus contributed to pigment loss in Drosophila santomea: a response to Matute et al.
  publication-title: Cell
  doi: 10.1016/j.cell.2009.11.004
– volume: 448
  start-page: 151
  year: 2007
  ident: B20
  article-title: A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila.
  publication-title: Nature
  doi: 10.1038/nature05954
– volume: 41
  start-page: 65
  year: 1995
  ident: B71
  article-title: Hormonal control of sex pheromone biosynthesis in Drosophila melanogaster.
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(94)00074-q
– volume: 59
  start-page: 88
  year: 2015
  ident: B75
  article-title: Insect pheromones: An overview of function, form, and discovery.
  publication-title: Prog. Lipid Res.
  doi: 10.1016/j.plipres.2015.06.001
– volume: 19
  start-page: 1211
  year: 1973
  ident: B39
  article-title: Tyrosine and catecholamine metabolism in wild-type Drosophila melanogaster and a mutant, ebony.
  publication-title: J. Insect Physiol.
  doi: 10.1016/0022-1910(73)90205-9
– volume: 20
  start-page: 4277
  year: 2011
  ident: B65
  article-title: Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster.
  publication-title: Mol. Ecol.
  doi: 10.1111/j.1365-294X.2011.05260.x
– volume: 24
  start-page: 1193
  year: 2014
  ident: B41
  article-title: Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines.
  publication-title: Genome Res.
  doi: 10.1101/gr.171546.113
– volume: 221
  start-page: 1
  year: 1998
  ident: B40
  article-title: The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression.
  publication-title: Gene
  doi: 10.1016/s0378-1119(98)00440-5
– volume: 67
  start-page: 2451
  year: 2013
  ident: B44
  article-title: The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila.
  publication-title: Evolution
  doi: 10.1111/evo.12122
– volume: 200
  start-page: 1821
  year: 1997
  ident: B32
  article-title: Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster.
  publication-title: J. Exp. Biol.
  doi: 10.1242/jeb.200.12.1821
– volume: 6
  year: 2011
  ident: B70
  article-title: Heritable differences in schooling behavior among threespine sticklebacks revealed by a novel assay.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018316
– volume: 2
  start-page: 155
  year: 1970
  ident: B73
  article-title: Structural lipids in the insect cuticle and the function of the oenocytes.
  publication-title: Tissue Cell
  doi: 10.1016/S0040-8166(70)80013-1
– volume: 20
  start-page: 65
  year: 2009
  ident: B74
  article-title: Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy.
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2008.10.002
SSID ssj0000402001
Score 2.4004283
Snippet Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as...
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also...
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 518
SubjectTerms cuticular hydrocarbons
Drosophila
ebony
Physiology
pigmentation
pleiotropy
tan
SummonAdditionalLinks – databaseName: Scholars Portal Open Access Journals
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggoDxCARkJIXEIzcOO7QNCpVCtkEA9sFJvkV9ZImWdku5K3X_PjJMuLFpx4hY5tpzMeF72zGdCXjcWFq3QIrW-yRBUW6WqlCZ1KnMuN1zlFuudv36rZnP25YJf_C6Pngh4tTe0w_uk5kP37vrn5gMI_HuMOMHeHje4CYBZWgg9yXN5m9yJp0WYyDc5-1EvY6iU5eNZ5d6BO7YpQvjv8zv_Tp_8wx6d3Sf3JkeSnoycf0Bu-fCQHJ4ECKKXG_qGxtTOuGd-SNbnnW_71dBftpaOeMVXtG8o6JqwoTo4Ci4i7QM9bxfLqRgpxPbTdQTn0AOdbRzYOj3AEIpKZEr2om2gn4Z4GULbabr0nQ79QiP8wiMyP_v8_XSWTvctpJZVxSp1PGt4ljlQAsopU3HNpVGlNtI23GsljHbCZ9ZjJbRyhQCaGSO0hziuKqDnY3IQ-uCfEupAzHMtuBOlZsYz5RgoB2u9MA0zlUzI8Q2lazuBkeOdGF0NQQnypo68qZE3deRNQt5uR1yOQBz_6PsRmbfthxDasaEfFvUkkbW0EJs33JYl0wz-UkpbwCPnReaMKpqEvLphfQ0ih-coOvh-DROBF5pjaKwS8mRcCtupSrAdEnyshIidRbLzLbtvQvsjwnqDr8xkwZ79j48_IneRHGNm5nNysBrW_gV4TyvzMgrFLx3FHQw
  priority: 102
  providerName: Scholars Portal
Title Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster
URI https://www.ncbi.nlm.nih.gov/pubmed/31118901
https://www.proquest.com/docview/2232121849
https://pubmed.ncbi.nlm.nih.gov/PMC6504824
https://doaj.org/article/8c837f5c334a493a88c234a5520db92f
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K26St26YoUAI9mJVtyZKOSdqwFBJyaCA3o5dTw64cnN3D_vvOyM6yW0p76cUYW0JiXpqRRt8Q8rl1ILTSyNyFliGots51pWzuNfO-sEIXDu87X13X81v-_U7c7ZT6wpywER54JNxMOQihWuGqihuuK6OUK-FViJJ5q8sWrS_TbCeYSjYYwyJWjOeSEIXpWYs7BZjKhfiUAmt87KxDCa7_Tz7m76mSO2vP5UvyYnIa6dk42VfkWYivyeFZhIB5uaGnNKVxpv3xQ7K-WYSuXw39Q-foiE38SPuWgl2JG2qip-AO0j7Sm-5-OV08iun7xToBcZiBzjce1jUzQBeKBmNK7KJdpF-HVPigWxi6DAsT-3uDUAtH5Pby24-LeT7VVsgdr8tV7gVrBWMeFF57bWthhLJAXqtcK4LR0hovA3MBbz1rX0qgmbXSBIjZ6hJaviEHsY_hHaEeVLowUnhZGW4D156DIXAuSNtyW6uMzJ4o3bgJeBzrXywaCECQN03iTYO8aRJvMvJl2-NhBN34S9tzZN62HcJlpw8gRM0kRM2_hCgjJ0-sb0C98MzExNCvYSDwOAsMg3VG3o6isB2qgnVCgT-VEbknJHtz2f8Tu58Jwhv8Yq5K_v5_TP4DeY7kGLMwP5KD1bAOx-ApreynpBTwvOLqF1IkFWE
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pleiotropic+Effects+of+ebony+and+tan+on+Pigmentation+and+Cuticular+Hydrocarbon+Composition+in+Drosophila+melanogaster&rft.jtitle=Frontiers+in+physiology&rft.au=Jonathan+H.+Massey&rft.au=Jonathan+H.+Massey&rft.au=Noriyoshi+Akiyama&rft.au=Tanja+Bien&rft.date=2019-05-01&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphys.2019.00518&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon