Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster
Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, and , which encode enzymes catalyzing reci...
Saved in:
Published in | Frontiers in physiology Vol. 10; p. 518 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
01.05.2019
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-042X 1664-042X |
DOI | 10.3389/fphys.2019.00518 |
Cover
Abstract | Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly
also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes,
and
, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in
females. More specifically, we report that
loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas
loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in
mutants, making the CHC profiles similar to those seen in
mutants. These observations suggest that genetic variation affecting
and/or
activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the
Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of
and
expression in newly eclosed adults in a manner consistent with the
and
mutant phenotypes. These data suggest that the pleiotropic effects of
and
might contribute to covariation of pigmentation and CHC profiles in
. |
---|---|
AbstractList | Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly
also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes,
and
, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in
females. More specifically, we report that
loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas
loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in
mutants, making the CHC profiles similar to those seen in
mutants. These observations suggest that genetic variation affecting
and/or
activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the
Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of
and
expression in newly eclosed adults in a manner consistent with the
and
mutant phenotypes. These data suggest that the pleiotropic effects of
and
might contribute to covariation of pigmentation and CHC profiles in
. Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila. Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila.Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan, which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila. Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also affect traits such as circadian rhythms, vision, and mating behavior. Here, we present evidence that two pigmentation genes, ebony and tan , which encode enzymes catalyzing reciprocal reactions in the melanin biosynthesis pathway, also affect cuticular hydrocarbon (CHC) composition in D. melanogaster females. More specifically, we report that ebony loss-of-function mutants have a CHC profile that is biased toward long (>25C) chain CHCs, whereas tan loss-of-function mutants have a CHC profile that is biased toward short (<25C) chain CHCs. Moreover, pharmacological inhibition of dopamine synthesis, a key step in the melanin synthesis pathway, reversed the changes in CHC composition seen in ebony mutants, making the CHC profiles similar to those seen in tan mutants. These observations suggest that genetic variation affecting ebony and/or tan activity might cause correlated changes in pigmentation and CHC composition in natural populations. We tested this possibility using the Drosophila Genetic Reference Panel (DGRP) and found that CHC composition covaried with pigmentation as well as levels of ebony and tan expression in newly eclosed adults in a manner consistent with the ebony and tan mutant phenotypes. These data suggest that the pleiotropic effects of ebony and tan might contribute to covariation of pigmentation and CHC profiles in Drosophila . |
Author | Dreisewerd, Klaus Takahashi, Aya Bien, Tanja Akiyama, Noriyoshi Yew, Joanne Y. Wittkopp, Patricia J. Massey, Jonathan H. |
AuthorAffiliation | 7 Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa , Honolulu, HI , United States 8 Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University , Hachioji , Japan 2 Janelia Research Campus of the Howard Hughes Medical Institute , Ashburn, VA , United States 1 Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , United States 3 Department of Biological Sciences, Tokyo Metropolitan University , Hachioji , Japan 6 Department of Molecular, Cellular, and Developmental Biology, University of Michigan , Ann Arbor, MI , United States 4 Institute for Hygiene, University of Münster , Münster , Germany 5 Interdisciplinary Center for Clinical Research, University of Münster , Münster , Germany |
AuthorAffiliation_xml | – name: 5 Interdisciplinary Center for Clinical Research, University of Münster , Münster , Germany – name: 1 Department of Ecology and Evolutionary Biology, University of Michigan , Ann Arbor, MI , United States – name: 7 Pacific Biosciences Research Center, University of Hawaiʻi at Mānoa , Honolulu, HI , United States – name: 3 Department of Biological Sciences, Tokyo Metropolitan University , Hachioji , Japan – name: 6 Department of Molecular, Cellular, and Developmental Biology, University of Michigan , Ann Arbor, MI , United States – name: 2 Janelia Research Campus of the Howard Hughes Medical Institute , Ashburn, VA , United States – name: 8 Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University , Hachioji , Japan – name: 4 Institute for Hygiene, University of Münster , Münster , Germany |
Author_xml | – sequence: 1 givenname: Jonathan H. surname: Massey fullname: Massey, Jonathan H. – sequence: 2 givenname: Noriyoshi surname: Akiyama fullname: Akiyama, Noriyoshi – sequence: 3 givenname: Tanja surname: Bien fullname: Bien, Tanja – sequence: 4 givenname: Klaus surname: Dreisewerd fullname: Dreisewerd, Klaus – sequence: 5 givenname: Patricia J. surname: Wittkopp fullname: Wittkopp, Patricia J. – sequence: 6 givenname: Joanne Y. surname: Yew fullname: Yew, Joanne Y. – sequence: 7 givenname: Aya surname: Takahashi fullname: Takahashi, Aya |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31118901$$D View this record in MEDLINE/PubMed |
BookMark | eNp1Uk1v1DAQjVARLaV3TshHLruMHTtxLkhoKbRSJXoAiZs18cfWVWIHO0Haf493t0UtEr54PJ73nv1mXlcnIQZbVW8prOtadh_cdLfLawa0WwMIKl9UZ7Rp-Ao4-3nyJD6tLnK-h7I4MAD6qjqtKaWyA3pWLbeD9XFOcfKaXDpn9ZxJdMT2MewIBkNmDCQGcuu3ow0zzr4c9vnNMnu9DJjI1c6kqDEVCNnEcYrZH6p8IJ9TzHG68wOS0Q4Y4hbzbNOb6qXDIduLh_28-vHl8vvmanXz7ev15tPNSvOGzSsjwAkA00Ldma5vBArZdzX2UjthsWt7NK0FbbkQ0BnWFhv6vkULrGlYqTyvro-8JuK9mpIfMe1URK8OiZi2ClP5xmCV1LJundB1zZEXDSk1K6EQDEzfMVe4Ph65pqUfrdHFjITDM9LnN8HfqW38rRoBXDJeCN4_EKT4a7F5VqPP2g7FFhuXrBirGWVU8v273z3V-ivy2LdS0BwLdDE4J-uU9sfeFGk_KApqPyPqMCNqPyPqMCMFCP8AH7n_C_kDzhfCaA |
CitedBy_id | crossref_primary_10_1111_imb_12730 crossref_primary_10_1016_j_ggedit_2023_100025 crossref_primary_10_1111_mec_17294 crossref_primary_10_1111_1744_7917_13024 crossref_primary_10_1016_j_pestbp_2024_105810 crossref_primary_10_1038_s42003_025_07489_y crossref_primary_10_1111_1755_0998_13908 crossref_primary_10_3389_fevo_2020_00184 crossref_primary_10_1093_g3journal_jkab078 crossref_primary_10_1007_s10534_020_00245_1 crossref_primary_10_1038_s41437_020_00380_y crossref_primary_10_1038_s41598_023_36558_7 crossref_primary_10_1242_jeb_203414 crossref_primary_10_1002_evl3_251 crossref_primary_10_1093_beheco_arad110 crossref_primary_10_1186_s13071_025_06709_y crossref_primary_10_3389_fphys_2020_00790 crossref_primary_10_1111_eth_13547 crossref_primary_10_1016_j_gde_2021_01_006 crossref_primary_10_1186_s12862_019_1536_7 crossref_primary_10_1038_s41598_023_30652_6 crossref_primary_10_1186_s13104_021_05766_7 crossref_primary_10_1111_mec_17085 crossref_primary_10_1111_imb_12968 crossref_primary_10_1186_s12862_021_01849_y crossref_primary_10_3390_genes14020304 crossref_primary_10_1186_s12864_022_08745_9 crossref_primary_10_1371_journal_pone_0260833 crossref_primary_10_3390_insects13110986 |
Cites_doi | 10.1371/journal.pbio.1001230 10.1038/hdy.1988.114 10.1016/j.ibmb.2016.10.007 10.1038/nn.2515 10.1371/journal.pone.0016898 10.1266/ggs.88.165 10.7554/eLife.09861 10.1534/genetics.105.045666 10.1002/neu.10196 10.1016/0305-0491(95)00081-x 10.1111/mec.13432 10.1111/jeb.12988 10.1186/1297-9686-29-5-601 10.1186/s12862-014-0179-y 10.1016/j.ibmb.2004.05.002 10.1016/j.cub.2018.08.047 10.1371/journal.pgen.1006126 10.1051/gse 10.1111/j.1558-5646.1956.tb02868.x 10.4161/fly.6351 10.1371/journal.pgen.1003534 10.1016/j.jinsphys.2008.08.005 10.1242/dev.056309 10.1126/science.1178357 10.1046/j.1365-2583.2003.00419.x 10.1128/JCM.28.3.495-503.1990 10.1016/j.jinsphys.2008.04.008 10.1086/286211 10.1111/j.1365-294X.2011.05089.x 10.1016/j.celrep.2013.06.020 10.1017/s0952836900000030 10.1111/j.1439-0469.1995.tb00213.x 10.1371/journal.pgen.1005708 10.1016/j.tree.2003.09.006 10.1242/dev.127.18.3971 10.1016/j.jinsphys.2011.12.006 10.1086/383621 10.1111/j.1365-294x.2007.03324.x 10.1038/nature10811 10.1371/journal.pgen.1005163 10.1038/hdy.2010.40 10.1016/j.neuron.2007.06.038 10.1534/genetics.113.160713 10.1534/genetics.116.188342 10.1046/j.1365-294x.2003.01833.x 10.1038/ng.332 10.1534/genetics.115.183376 10.1371/journal.pgen.0010063.eor 10.1111/j.1558-5646.2009.00936.x 10.1016/j.jinsphys.2005.04.010 10.1111/j.1439-0469.1999.00112.x 10.1111/mec.14781 10.1016/j.celrep.2014.09.044 10.5962/bhl.title.24013 10.1016/b978-0-12-564485-3.50012-9 10.1242/dev.118.2.401 10.1038/nature09774 10.1126/science.276.5318.1555 10.1016/0303-7207(91)90219-i 10.1016/j.cell.2009.11.004 10.1038/nature05954 10.1016/0022-1910(94)00074-q 10.1016/j.plipres.2015.06.001 10.1016/0022-1910(73)90205-9 10.1111/j.1365-294X.2011.05260.x 10.1101/gr.171546.113 10.1016/s0378-1119(98)00440-5 10.1111/evo.12122 10.1242/jeb.200.12.1821 10.1371/journal.pone.0018316 10.1016/S0040-8166(70)80013-1 10.1016/j.semcdb.2008.10.002 |
ContentType | Journal Article |
Copyright | Copyright © 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi. 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi |
Copyright_xml | – notice: Copyright © 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi. 2019 Massey, Akiyama, Bien, Dreisewerd, Wittkopp, Yew and Takahashi |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fphys.2019.00518 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1664-042X |
ExternalDocumentID | oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f PMC6504824 31118901 10_3389_fphys_2019_00518 |
Genre | Journal Article |
GrantInformation_xml | – fundername: NIGMS NIH HHS grantid: T32 GM007544 |
GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION DIK EMOBN F5P GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM IPNFZ NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-d50f500d7039d9b65a58b93ab8cf5ea97bad7e0ce45509d27051bb7ae02662b93 |
IEDL.DBID | DOA |
ISSN | 1664-042X |
IngestDate | Wed Aug 27 01:23:29 EDT 2025 Thu Aug 21 14:13:27 EDT 2025 Thu Sep 04 18:06:57 EDT 2025 Mon Jul 21 06:03:07 EDT 2025 Tue Jul 01 04:18:40 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | ebony tan pigmentation Drosophila trait covariation cuticular hydrocarbons pleiotropy dopamine |
Language | English |
License | This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-d50f500d7039d9b65a58b93ab8cf5ea97bad7e0ce45509d27051bb7ae02662b93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Geoffrey A. Head,Baker Heart and Diabetes Institute, Australia Reviewed by: Jean-Michel Gibert, Centre National de la Recherche Scientifique (CNRS), France; Thomas Williams, University of Dayton, United States This article was submitted to Integrative Physiology, a section of the journal Frontiers in Physiology |
OpenAccessLink | https://doaj.org/article/8c837f5c334a493a88c234a5520db92f |
PMID | 31118901 |
PQID | 2232121849 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f pubmedcentral_primary_oai_pubmedcentral_nih_gov_6504824 proquest_miscellaneous_2232121849 pubmed_primary_31118901 crossref_citationtrail_10_3389_fphys_2019_00518 crossref_primary_10_3389_fphys_2019_00518 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-05-01 |
PublicationDateYYYYMMDD | 2019-05-01 |
PublicationDate_xml | – month: 05 year: 2019 text: 2019-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in physiology |
PublicationTitleAlternate | Front Physiol |
PublicationYear | 2019 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Takahashi (B64) 2013; 88 Drapeau (B22) 2003; 55 Greenwood (B34) 2016; 203 Blows (B9) 1998; 152 Mackay (B42) 2012; 482 Yew (B75) 2015; 59 Parkash (B52); 2 Huang (B41) 2014; 24 Chiang (B15) 2016; 12 Dietzl (B20) 2007; 448 Foley (B28) 2011; 106 Gruntenko (B37) 2012; 58 Ayroles (B3) 2009; 41 Heed (B38) 1959; 5914 Gibbs (B31) 1998; 38 Bastide (B5) 2013; 9 Das (B16) 1995; 33 True (B67) 2003; 18 (B54) 2013 Schluter (B61) 2004; 163 Wicker-Thomas (B72) 2008; 54 Blomquist (B8) 1987 Parkash (B50) 1999; 37 Gruntenko (B35) 2003; 12 Bastock (B7) 1956; 10 Hodgetts (B39) 1973; 19 Walker (B69) 2000; 252 Albert (B1) 2008; 62 Boom (B10) 1990; 28 Rajpurohit (B55) 2017; 30 Telonis-Scott (B66) 2011; 20 Rebeiz (B57); 139 Spector (B62) 1965; 147 Nagy (B49) 2018; 28 Riedel (B60) 2011; 138 Calleja (B13) 2000; 127 McKay (B45) 2003; 12 Hovemann (B40) 1998; 221 David (B17) 1985; 17 Brand (B11) 1993; 118 Drapeau (B21) 2006; 172 Duveau (B23) 2012; 10 Suh (B63) 2007; 55 Endler (B25) 2018; 27 McLean (B46) 2011; 471 Pool (B53) 2007; 16 Flaven-Pouchon (B27) 2016; 79 Endler (B24) 2016; 202 Dembeck (B18); 4 Matute (B44) 2013; 67 Frentiu (B29) 2010; 64 Munjal (B48) 1997; 29 Parkash (B51); 54 Capy (B14) 1988; 61 Bassett (B4) 2013; 4 Dembeck (B19); 11 Miyagi (B47) 2015; 24 Gratz (B33) 2014; 196 Bastide (B6) 2014; 14 True (B68) 2005; 1 Rideout (B59) 2010; 13 Gruntenko (B36) 2005; 51 Wark (B70) 2011; 6 Gibbs (B32) 1997; 200 Bridges (B12) 1923 Wittkopp (B74) 2009; 20 Wicker (B71) 1995; 41 Yew (B76) 2011; 6 Ren (B58) 2014; 9 Wigglesworth (B73) 1970; 2 Rebeiz (B56); 326 Gibbs (B30) 1995; 112 Altaratz (B2) 1991; 81 Ferveur (B26) 1997; 276 Marican (B43) 2004; 34 Takahashi (B65) 2011; 20 |
References_xml | – volume: 10 year: 2012 ident: B23 article-title: Role of pleiotropy in the evolution of a cryptic developmental variation in Caenorhabditis elegans. publication-title: PLoS Biology doi: 10.1371/journal.pbio.1001230 – volume: 61 year: 1988 ident: B14 article-title: Thoracic trident pigmentation in natural populations of Drosophila simulans: a comparison with D. melanogaster. publication-title: Heredity doi: 10.1038/hdy.1988.114 – volume: 79 start-page: 87 year: 2016 ident: B27 article-title: Regulation of cuticular hydrocarbon profile maturation by Drosophila tanning hormone, bursicon, and its interaction with desaturase activity. publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2016.10.007 – volume: 13 year: 2010 ident: B59 article-title: Control of sexual differentiation and behavior by the doublesex gene in Drosophila melanogaster. publication-title: Nat. Neurosci. doi: 10.1038/nn.2515 – volume: 6 year: 2011 ident: B76 article-title: Male-specific transfer and fine scale spatial differences of newly identified cuticular hydrocarbons and triacylglycerides in a Drosophila species pair. publication-title: PLoS One doi: 10.1371/journal.pone.0016898 – volume: 88 start-page: 165 year: 2013 ident: B64 article-title: Pigmentation and behavior: potential association through pleiotropic genes in Drosophila. publication-title: Genes Genet. Syst. doi: 10.1266/ggs.88.165 – volume: 4 ident: B18 article-title: Genetic architecture of natural variation in cuticular hydrocarbon composition in Drosophila melanogaster. publication-title: eLife doi: 10.7554/eLife.09861 – volume: 172 start-page: 1009 year: 2006 ident: B21 article-title: A cis-regulatory sequence within the yellow locus of Drosophila melanogaster required for normal male mating success. publication-title: Genetics doi: 10.1534/genetics.105.045666 – volume: 55 start-page: 53 year: 2003 ident: B22 article-title: A gene necessary for normal male courtship, yellow, acts downstream of fruitless in the Drosophila melanogaster larval brain. publication-title: J. Neurobiol. doi: 10.1002/neu.10196 – volume: 112 start-page: 243 year: 1995 ident: B30 article-title: Physical properties of insect cuticular hydrocarbons: the effects of chain length, methyl-branching and unsaturation. publication-title: Comp. Biochem. Physiol. B doi: 10.1016/0305-0491(95)00081-x – volume: 24 start-page: 5829 year: 2015 ident: B47 article-title: Complex patterns of cis-regulatory polymorphisms in ebony underlie standing pigmentation variation in Drosophila melanogaster. publication-title: Mol. Ecol. doi: 10.1111/mec.13432 – volume: 30 start-page: 66 year: 2017 ident: B55 article-title: Adaptive dynamics of cuticular hydrocarbons in Drosophila. publication-title: J. Evol. Biol. doi: 10.1111/jeb.12988 – volume: 29 year: 1997 ident: B48 article-title: Thoracic trident pigmentation in Drosophila melanogaster: latitudinal and altitudinal clines in Indian populations. publication-title: Genet. Select. Evol. doi: 10.1186/1297-9686-29-5-601 – volume: 14 year: 2014 ident: B6 article-title: Pigmentation in Drosophila melanogaster reaches its maximum in Ethiopia and correlates most strongly with ultra-violet radiation in sub-Saharan Africa. publication-title: BMC Evol. Biol. doi: 10.1186/s12862-014-0179-y – volume: 34 start-page: 823 year: 2004 ident: B43 article-title: Female-specific regulation of cuticular hydrocarbon biosynthesis by dopamine in Drosophila melanogaster. publication-title: Insect Biochem. Mol. Biol. doi: 10.1016/j.ibmb.2004.05.002 – volume: 28 start-page: 3450 year: 2018 ident: B49 article-title: Correlated evolution of two copulatory organs via a single cis-regulatory nucleotide change. publication-title: Curr. Biol. doi: 10.1016/j.cub.2018.08.047 – volume: 12 year: 2016 ident: B15 article-title: Steroid hormone signaling is essential for pheromone production and oenocyte survival. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1006126 – volume: 17 year: 1985 ident: B17 article-title: Thoracic trident pigmentation in Drosophila melanogaster: differentiation of geographical populations. publication-title: Génét. Sélect. Évol. doi: 10.1051/gse – volume: 10 start-page: 421 year: 1956 ident: B7 article-title: A gene mutation which changes a behavior pattern. publication-title: Evolution doi: 10.1111/j.1558-5646.1956.tb02868.x – volume: 2 start-page: 111 ident: B52 article-title: Climatic adaptations of body melanisation in Drosophila melanogaster from Western Himalayas. publication-title: Fly doi: 10.4161/fly.6351 – volume: 9 year: 2013 ident: B5 article-title: A genome-wide, fine-scale map of natural pigmentation variation in Drosophila melanogaster. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1003534 – volume: 54 start-page: 1423 year: 2008 ident: B72 article-title: Interaction of dopamine, female pheromones, locomotion and sex behavior in Drosophila melanogaster. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2008.08.005 – year: 2013 ident: B54 publication-title: R: A Language and Environment for Statistical Computing. – volume: 138 start-page: 149 year: 2011 ident: B60 article-title: Megalin-dependent yellow endocytosis restricts melanization in the Drosophila cuticle. publication-title: Development doi: 10.1242/dev.056309 – volume: 326 start-page: 1663 ident: B56 article-title: Stepwise modification of a modular enhancer underlies adaptation in a Drosophila population. publication-title: Science doi: 10.1126/science.1178357 – volume: 12 start-page: 353 year: 2003 ident: B35 article-title: Stress response in a juvenile hormone-deficient Drosophila melanogaster mutant apterous. publication-title: Insect Mol. Biol. doi: 10.1046/j.1365-2583.2003.00419.x – volume: 28 start-page: 495 year: 1990 ident: B10 article-title: Rapid and simple method for purification of nucleic acids. publication-title: J. Clin. Microbiol. doi: 10.1128/JCM.28.3.495-503.1990 – volume: 54 start-page: 1050 ident: B51 article-title: Changes in body melanisation and desiccation resistance in highland vs. lowland populations of D. melanogaster. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2008.04.008 – volume: 152 start-page: 826 year: 1998 ident: B9 article-title: Levels of mate recognition within and between two Drosophila species and their hybrids. publication-title: Am. Nat. doi: 10.1086/286211 – volume: 20 start-page: 2100 year: 2011 ident: B66 article-title: The molecular genetics of clinal variation: a case study of ebony and thoracic trident pigmentation in Drosophila melanogaster from eastern Australia. publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2011.05089.x – volume: 4 start-page: 220 year: 2013 ident: B4 article-title: Highly efficient targeted mutagenesis of Drosophila with CRISPR/Cas9 system. publication-title: Cell Rep. doi: 10.1016/j.celrep.2013.06.020 – volume: 252 start-page: 293 year: 2000 ident: B69 article-title: Net evolutionary trajectories of body shape evolution within a microgeographic radiation of threespine sticklebacks (Gasterosteus aculeatus). publication-title: J. Zool. doi: 10.1017/s0952836900000030 – volume: 62 start-page: 76 year: 2008 ident: B1 article-title: The genetics of adaptive shape shift in stickleback: pleiotropy and effect size. publication-title: Evolution – volume: 33 start-page: 84 year: 1995 ident: B16 article-title: Abdominal pigmentation in Drosophila melanogaster females from natural Indian populations. publication-title: J. Zool. Syst. Evol. Res. doi: 10.1111/j.1439-0469.1995.tb00213.x – volume: 38 start-page: 471 year: 1998 ident: B31 article-title: Water-proofing properties of cuticular lipids. publication-title: Am. Zool. doi: 10.1371/journal.pgen.1005708 – volume: 18 start-page: 640 year: 2003 ident: B67 article-title: Insect melanism: the molecules matter. publication-title: Trends Ecol. Evol. doi: 10.1016/j.tree.2003.09.006 – volume: 127 start-page: 3971 year: 2000 ident: B13 article-title: Generation of medial and lateral dorsal body domains by the pannier gene of Drosophila. publication-title: Development doi: 10.1242/dev.127.18.3971 – volume: 58 start-page: 348 year: 2012 ident: B37 article-title: Downregulation of the dopamine D2-like receptor in corpus allatum affects juvenile hormone synthesis in Drosophila melanogaster females. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2011.12.006 – volume: 163 start-page: 809 year: 2004 ident: B61 article-title: Parallel evolution and inheritance of quantitative traits. publication-title: Am. Nat. doi: 10.1086/383621 – volume: 16 start-page: 2844 year: 2007 ident: B53 article-title: The genetic basis of adaptive pigmentation variation in Drosophila melanogaster. publication-title: Mol. Ecol. doi: 10.1111/j.1365-294x.2007.03324.x – volume: 482 start-page: 173 year: 2012 ident: B42 article-title: The Drosophila melanogaster genetic reference panel. publication-title: Nature doi: 10.1038/nature10811 – volume: 11 ident: B19 article-title: Genetic architecture of abdominal pigmentation in Drosophila melanogaster. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.1005163 – volume: 106 year: 2011 ident: B28 article-title: Quantitative genetic analysis suggests causal association between cuticular hydrocarbon composition and desiccation survival in Drosophila melanogaster. publication-title: Heredity doi: 10.1038/hdy.2010.40 – volume: 55 start-page: 435 year: 2007 ident: B63 article-title: Drosophila ebony activity is required in glia for the circadian regulation of locomotor activity. publication-title: Neuron doi: 10.1016/j.neuron.2007.06.038 – volume: 196 start-page: 961 year: 2014 ident: B33 article-title: Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. publication-title: Genetics doi: 10.1534/genetics.113.160713 – volume: 203 start-page: 677 year: 2016 ident: B34 article-title: Evolution of schooling behavior in threespine sticklebacks is shaped by the Eda gene. publication-title: Genetics doi: 10.1534/genetics.116.188342 – volume: 12 start-page: 1137 year: 2003 ident: B45 article-title: Genetics of drought adaptation in Arabidopsis thaliana: I. Pleiotropy contributes to genetic correlations among ecological traits. publication-title: Mol. Ecol. doi: 10.1046/j.1365-294x.2003.01833.x – volume: 41 start-page: 299 year: 2009 ident: B3 article-title: Systems genetics of complex traits in Drosophila melanogaster. publication-title: Nat. Genet. doi: 10.1038/ng.332 – volume: 202 start-page: 843 year: 2016 ident: B24 article-title: Reconciling differences in pool-GWAS between populations: a case study of female abdominal pigmentation in Drosophila melanogaster. publication-title: Genetics doi: 10.1534/genetics.115.183376 – volume: 1 year: 2005 ident: B68 article-title: Drosophila tan encodes a novel hydrolase required in pigmentation and vision. publication-title: PLoS Genetics doi: 10.1371/journal.pgen.0010063.eor – volume: 64 start-page: 1784 year: 2010 ident: B29 article-title: Clines in cuticular hydrocarbons in two Drosophila species with independent population histories. publication-title: Evolution doi: 10.1111/j.1558-5646.2009.00936.x – volume: 51 start-page: 959 year: 2005 ident: B36 article-title: Effects of dopamine on juvenile hormone metabolism and fitness in Drosophila virilis. publication-title: J. Insect Physiol. doi: 10.1016/j.jinsphys.2005.04.010 – volume: 37 start-page: 133 year: 1999 ident: B50 article-title: Phenotypic variability of thoracic pigmentation in Indian populations of Drosophila melanogaster. publication-title: J. Zool. Syst. Evol. Res. doi: 10.1111/j.1439-0469.1999.00112.x – volume: 27 start-page: 3207 year: 2018 ident: B25 article-title: Pleiotropic effects of regulatory variation in tan result in correlation of two pigmentation traits in Drosophila melanogaster. publication-title: Mol. Ecol. doi: 10.1111/mec.14781 – volume: 9 start-page: 1151 year: 2014 ident: B58 article-title: Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. publication-title: Cell Rep. doi: 10.1016/j.celrep.2014.09.044 – year: 1923 ident: B12 publication-title: Third-Chromosome Group of Mutant Characters of Drosophila melanogaster. doi: 10.5962/bhl.title.24013 – volume: 147 start-page: 86 year: 1965 ident: B62 article-title: Blockade of endogenous norepinephrine synthesis by α-methyl-tyrosine, an inhibitor of tyrosine hydroxylase. publication-title: J. Pharmacol. Exp. Ther. – start-page: 217 year: 1987 ident: B8 article-title: “Biosynthesis and endocrine regulation of sex pheromone production in Diptera,” in publication-title: Pheromone Biochemistry doi: 10.1016/b978-0-12-564485-3.50012-9 – volume: 118 start-page: 401 year: 1993 ident: B11 article-title: Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. publication-title: Development doi: 10.1242/dev.118.2.401 – volume: 471 year: 2011 ident: B46 article-title: Human-specific loss of regulatory DNA and the evolution of human-specific traits. publication-title: Nature doi: 10.1038/nature09774 – volume: 276 start-page: 1555 year: 1997 ident: B26 article-title: Genetic feminization of pheromones and its behavioral consequences in Drosophila males. publication-title: Science doi: 10.1126/science.276.5318.1555 – volume: 81 start-page: 205 year: 1991 ident: B2 article-title: Regulation of juvenile hormone synthesis in wild-type and apterous mutant Drosophila. publication-title: Mol. Cell. Endocrinol. doi: 10.1016/0303-7207(91)90219-i – volume: 5914 start-page: 155 year: 1959 ident: B38 article-title: Genetic studies on the cardini group of Drosophila in the West Indies. publication-title: Univ. Texas Publ. – volume: 139 start-page: 1189 ident: B57 article-title: Evolution of the tan locus contributed to pigment loss in Drosophila santomea: a response to Matute et al. publication-title: Cell doi: 10.1016/j.cell.2009.11.004 – volume: 448 start-page: 151 year: 2007 ident: B20 article-title: A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila. publication-title: Nature doi: 10.1038/nature05954 – volume: 41 start-page: 65 year: 1995 ident: B71 article-title: Hormonal control of sex pheromone biosynthesis in Drosophila melanogaster. publication-title: J. Insect Physiol. doi: 10.1016/0022-1910(94)00074-q – volume: 59 start-page: 88 year: 2015 ident: B75 article-title: Insect pheromones: An overview of function, form, and discovery. publication-title: Prog. Lipid Res. doi: 10.1016/j.plipres.2015.06.001 – volume: 19 start-page: 1211 year: 1973 ident: B39 article-title: Tyrosine and catecholamine metabolism in wild-type Drosophila melanogaster and a mutant, ebony. publication-title: J. Insect Physiol. doi: 10.1016/0022-1910(73)90205-9 – volume: 20 start-page: 4277 year: 2011 ident: B65 article-title: Divergent enhancer haplotype of ebony on inversion In(3R)Payne associated with pigmentation variation in a tropical population of Drosophila melanogaster. publication-title: Mol. Ecol. doi: 10.1111/j.1365-294X.2011.05260.x – volume: 24 start-page: 1193 year: 2014 ident: B41 article-title: Natural variation in genome architecture among 205 Drosophila melanogaster Genetic Reference Panel lines. publication-title: Genome Res. doi: 10.1101/gr.171546.113 – volume: 221 start-page: 1 year: 1998 ident: B40 article-title: The Drosophila ebony gene is closely related to microbial peptide synthetases and shows specific cuticle and nervous system expression. publication-title: Gene doi: 10.1016/s0378-1119(98)00440-5 – volume: 67 start-page: 2451 year: 2013 ident: B44 article-title: The influence of abdominal pigmentation on desiccation and ultraviolet resistance in two species of Drosophila. publication-title: Evolution doi: 10.1111/evo.12122 – volume: 200 start-page: 1821 year: 1997 ident: B32 article-title: Physiological mechanisms of evolved desiccation resistance in Drosophila melanogaster. publication-title: J. Exp. Biol. doi: 10.1242/jeb.200.12.1821 – volume: 6 year: 2011 ident: B70 article-title: Heritable differences in schooling behavior among threespine sticklebacks revealed by a novel assay. publication-title: PLoS One doi: 10.1371/journal.pone.0018316 – volume: 2 start-page: 155 year: 1970 ident: B73 article-title: Structural lipids in the insect cuticle and the function of the oenocytes. publication-title: Tissue Cell doi: 10.1016/S0040-8166(70)80013-1 – volume: 20 start-page: 65 year: 2009 ident: B74 article-title: Development and evolution of insect pigmentation: genetic mechanisms and the potential consequences of pleiotropy. publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2008.10.002 |
SSID | ssj0000402001 |
Score | 2.4004283 |
Snippet | Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly
also affect traits such as... Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also... Pleiotropic genes are genes that affect more than one trait. For example, many genes required for pigmentation in the fruit fly Drosophila melanogaster also... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 518 |
SubjectTerms | cuticular hydrocarbons Drosophila ebony Physiology pigmentation pleiotropy tan |
SummonAdditionalLinks | – databaseName: Scholars Portal Open Access Journals dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELagXLggoDxCARkJIXEIzcOO7QNCpVCtkEA9sFJvkV9ZImWdku5K3X_PjJMuLFpx4hY5tpzMeF72zGdCXjcWFq3QIrW-yRBUW6WqlCZ1KnMuN1zlFuudv36rZnP25YJf_C6Pngh4tTe0w_uk5kP37vrn5gMI_HuMOMHeHje4CYBZWgg9yXN5m9yJp0WYyDc5-1EvY6iU5eNZ5d6BO7YpQvjv8zv_Tp_8wx6d3Sf3JkeSnoycf0Bu-fCQHJ4ECKKXG_qGxtTOuGd-SNbnnW_71dBftpaOeMVXtG8o6JqwoTo4Ci4i7QM9bxfLqRgpxPbTdQTn0AOdbRzYOj3AEIpKZEr2om2gn4Z4GULbabr0nQ79QiP8wiMyP_v8_XSWTvctpJZVxSp1PGt4ljlQAsopU3HNpVGlNtI23GsljHbCZ9ZjJbRyhQCaGSO0hziuKqDnY3IQ-uCfEupAzHMtuBOlZsYz5RgoB2u9MA0zlUzI8Q2lazuBkeOdGF0NQQnypo68qZE3deRNQt5uR1yOQBz_6PsRmbfthxDasaEfFvUkkbW0EJs33JYl0wz-UkpbwCPnReaMKpqEvLphfQ0ih-coOvh-DROBF5pjaKwS8mRcCtupSrAdEnyshIidRbLzLbtvQvsjwnqDr8xkwZ79j48_IneRHGNm5nNysBrW_gV4TyvzMgrFLx3FHQw priority: 102 providerName: Scholars Portal |
Title | Pleiotropic Effects of ebony and tan on Pigmentation and Cuticular Hydrocarbon Composition in Drosophila melanogaster |
URI | https://www.ncbi.nlm.nih.gov/pubmed/31118901 https://www.proquest.com/docview/2232121849 https://pubmed.ncbi.nlm.nih.gov/PMC6504824 https://doaj.org/article/8c837f5c334a493a88c234a5520db92f |
Volume | 10 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1La9wwEBYlp15K26St26YoUAI9mJVtyZKOSdqwFBJyaCA3o5dTw64cnN3D_vvOyM6yW0p76cUYW0JiXpqRRt8Q8rl1ILTSyNyFliGots51pWzuNfO-sEIXDu87X13X81v-_U7c7ZT6wpywER54JNxMOQihWuGqihuuK6OUK-FViJJ5q8sWrS_TbCeYSjYYwyJWjOeSEIXpWYs7BZjKhfiUAmt87KxDCa7_Tz7m76mSO2vP5UvyYnIa6dk42VfkWYivyeFZhIB5uaGnNKVxpv3xQ7K-WYSuXw39Q-foiE38SPuWgl2JG2qip-AO0j7Sm-5-OV08iun7xToBcZiBzjce1jUzQBeKBmNK7KJdpF-HVPigWxi6DAsT-3uDUAtH5Pby24-LeT7VVsgdr8tV7gVrBWMeFF57bWthhLJAXqtcK4LR0hovA3MBbz1rX0qgmbXSBIjZ6hJaviEHsY_hHaEeVLowUnhZGW4D156DIXAuSNtyW6uMzJ4o3bgJeBzrXywaCECQN03iTYO8aRJvMvJl2-NhBN34S9tzZN62HcJlpw8gRM0kRM2_hCgjJ0-sb0C98MzExNCvYSDwOAsMg3VG3o6isB2qgnVCgT-VEbknJHtz2f8Tu58Jwhv8Yq5K_v5_TP4DeY7kGLMwP5KD1bAOx-ApreynpBTwvOLqF1IkFWE |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Pleiotropic+Effects+of+ebony+and+tan+on+Pigmentation+and+Cuticular+Hydrocarbon+Composition+in+Drosophila+melanogaster&rft.jtitle=Frontiers+in+physiology&rft.au=Jonathan+H.+Massey&rft.au=Jonathan+H.+Massey&rft.au=Noriyoshi+Akiyama&rft.au=Tanja+Bien&rft.date=2019-05-01&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-042X&rft.volume=10&rft_id=info:doi/10.3389%2Ffphys.2019.00518&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_8c837f5c334a493a88c234a5520db92f |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-042X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-042X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-042X&client=summon |