Autoencoder-Based Neural Network Model for Anomaly Detection in Wireless Body Area Networks
In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (I...
Saved in:
| Published in | IoT Vol. 5; no. 4; pp. 852 - 870 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Montreal
MDPI AG
01.12.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2624-831X 2624-831X |
| DOI | 10.3390/iot5040039 |
Cover
| Abstract | In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (ICU) at hospitals or elderly care facilities. However, the collected data are subject to anomalies caused by faulty sensor readings, malicious attacks, or severe health degradation situations that healthcare professionals should investigate further. As a result, anomaly detection plays a crucial role in maintaining data quality across various real-world applications, including healthcare, where it is vital for the early detection of abnormal health conditions. Numerous techniques for anomaly detection have been proposed in the literature, employing methods like statistical analysis and machine learning to identify anomalies in WBANs. However, the lack of normal datasets makes training supervised machine learning models difficult, highlighting the need for unsupervised approaches. In this paper, a novel, efficient, and effective unsupervised anomaly detection model for WBANs is developed using the autoencoder convolutional neural network (CNN) technique. Due to their ability to reconstruct data in a completely unsupervised manner using reconstruction error, autoencoders hold great potential. Real-world physiological data from the PhysioNet dataset evaluated the suggested model’s performance. The experimental findings demonstrate the model’s efficacy, which provides high detection accuracy, as reported F1-Score is 0.96 with a batch size of 256 along with a mean squared logarithmic error (MSLE) below 0.002. Compared to existing unsupervised models, the proposed model outperforms them in effectiveness and efficiency. |
|---|---|
| AbstractList | In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (ICU) at hospitals or elderly care facilities. However, the collected data are subject to anomalies caused by faulty sensor readings, malicious attacks, or severe health degradation situations that healthcare professionals should investigate further. As a result, anomaly detection plays a crucial role in maintaining data quality across various real-world applications, including healthcare, where it is vital for the early detection of abnormal health conditions. Numerous techniques for anomaly detection have been proposed in the literature, employing methods like statistical analysis and machine learning to identify anomalies in WBANs. However, the lack of normal datasets makes training supervised machine learning models difficult, highlighting the need for unsupervised approaches. In this paper, a novel, efficient, and effective unsupervised anomaly detection model for WBANs is developed using the autoencoder convolutional neural network (CNN) technique. Due to their ability to reconstruct data in a completely unsupervised manner using reconstruction error, autoencoders hold great potential. Real-world physiological data from the PhysioNet dataset evaluated the suggested model’s performance. The experimental findings demonstrate the model’s efficacy, which provides high detection accuracy, as reported F1-Score is 0.96 with a batch size of 256 along with a mean squared logarithmic error (MSLE) below 0.002. Compared to existing unsupervised models, the proposed model outperforms them in effectiveness and efficiency. |
| Author | Rassam, Murad A. |
| Author_xml | – sequence: 1 givenname: Murad A. orcidid: 0000-0003-3558-6737 surname: Rassam fullname: Rassam, Murad A. |
| BookMark | eNp9kMtuFDEQRS0UJMKQDV9giR2og9_dXk4SIJECbEAgsbBq3GXkwWkPtlvR_D0dhpcQYlWvW6dU9yE5mvKEhDzm7FRKy57H3DRTjEl7jxwLI1Q3SP7x6I_8ATmpdcsYEwNnnItj8mk9t4yTzyOW7gwqjvQNzgXSEtptLl_o62WUaMiFrqd8A2lPL7ChbzFPNE70QyyYsFZ6lsc9XReEn5v1EbkfIFU8-RFX5P3LF-_OL7vrt6-uztfXnVdGtM7zHpQacIOeI8MQNAQhQgA9gjG4CcMwcgNggjRsY5gC63EpBt1L03MpV-TqwB0zbN2uxBsoe5chuu-NXD47KC36hA6tlWBH2_dKKK2k5XbDhdY907wfNCysZwfWPO1gfwsp_QJy5u5sdr9tXtRPDupdyV9nrM1t81ym5VknubJGMbMcWZGnB5UvudaC4f9I9pfYxwZ3brcCMf1r5Ru7PZtE |
| CitedBy_id | crossref_primary_10_1038_s41598_025_93802_y crossref_primary_10_3390_iot6010010 |
| Cites_doi | 10.3390/computers10070088 10.1002/aic.690370209 10.1109/ACCESS.2020.2997327 10.3390/s18113661 10.1186/s42400-022-00134-9 10.1109/TNSM.2018.2842195 10.1016/j.procs.2015.10.026 10.1109/ICC.2018.8422402 10.1093/comjnl/bxab016 10.3390/s23062948 10.1016/j.comnet.2019.106870 10.3390/s22051951 10.1109/WAINA.2009.200 10.1109/eTELEMED.2009.19 10.3390/s150408764 10.1016/j.comnet.2018.07.009 10.1109/ACCESS.2017.2714258 10.1109/IAICT62357.2024.10617530 10.1016/j.comnet.2019.04.031 10.1142/S0217984918502834 10.1080/13658816.2012.654493 10.1016/j.comnet.2010.05.003 10.1007/978-981-10-7641-1_8 10.1016/j.eswa.2013.11.034 10.1109/SURV.2013.112813.00168 10.1109/IWCMC.2018.8450283 10.1016/j.inffus.2019.06.004 10.1109/JSAC.2020.3020602 10.1145/1814539.1814550 10.4108/ICST.PERVASIVEHEALTH2010.899 10.1007/s10462-013-9395-x |
| ContentType | Journal Article |
| Copyright | 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7X5 8A3 ABUWG AFKRA AZQEC BENPR BEZIV CCPQU DWQXO FRNLG K60 K6~ PHGZM PHGZT PIMPY PKEHL PQBIZ PQBZA PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA |
| DOI | 10.3390/iot5040039 |
| DatabaseName | CrossRef Entrepreneurship Database Entrepreneurship Database (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central (subscription) Business Premium Collection ProQuest One ProQuest Central Business Premium Collection (Alumni) ProQuest Business Collection (Alumni Edition) ProQuest Business Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Business (OCUL) ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest Entrepreneurship Publicly Available Content Database Business Premium Collection ProQuest Business Collection (Alumni Edition) ProQuest One Business ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Entrepreneurship (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Business Collection ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest One Business (Alumni) ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Entrepreneurship CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 2624-831X |
| EndPage | 870 |
| ExternalDocumentID | oai_doaj_org_article_e993a9d977424543919b12557051785a 10.3390/iot5040039 10_3390_iot5040039 |
| GroupedDBID | 6IF 6IK 6IL 6IN 7X5 AADQD AAJGR AAYXX ADZIZ AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BAAKF BEFXN BENPR BEZIV BFFAM BGNUA BKEBE BPEOZ CCPQU CHZPO CITATION FRNLG GROUPED_DOAJ IAO ICD IEGSK IGS IPLJI ISR ITC MODMG M~E OCL OK1 PHGZM PHGZT PIMPY PQBIZ PQBZA RIE RIL ABUWG AZQEC DWQXO K60 K6~ PKEHL PQEST PQQKQ PQUKI PRINS ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c462t-c17a448ebec1e0eff5af22ffa5da66ebf88d16aa6f360b604a9ce6f3857367133 |
| IEDL.DBID | DOA |
| ISSN | 2624-831X |
| IngestDate | Fri Oct 03 12:41:39 EDT 2025 Sun Sep 07 11:14:13 EDT 2025 Mon Jun 30 13:28:27 EDT 2025 Thu Apr 24 22:59:30 EDT 2025 Thu Oct 16 04:42:04 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-c17a448ebec1e0eff5af22ffa5da66ebf88d16aa6f360b604a9ce6f3857367133 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-3558-6737 |
| OpenAccessLink | https://doaj.org/article/e993a9d977424543919b12557051785a |
| PQID | 3149640654 |
| PQPubID | 5465913 |
| PageCount | 19 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e993a9d977424543919b12557051785a unpaywall_primary_10_3390_iot5040039 proquest_journals_3149640654 crossref_primary_10_3390_iot5040039 crossref_citationtrail_10_3390_iot5040039 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Montreal |
| PublicationPlace_xml | – name: Montreal |
| PublicationTitle | IoT |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_14 ref_36 ref_35 ref_12 Ko (ref_13) 2010; 10 Pachauri (ref_8) 2015; 70 ref_11 ref_33 GS (ref_24) 2022; 65 ref_31 Arfaoui (ref_27) 2019; 159 ref_30 Alemdar (ref_16) 2010; 54 (ref_17) 2012; 9 Salem (ref_25) 2020; 39 ref_18 Haque (ref_7) 2015; 15 ref_15 Zhang (ref_22) 2012; 26 Zhang (ref_32) 2021; 35 Lau (ref_4) 2014; 41 Qu (ref_9) 2018; 2018 Arfaoui (ref_26) 2019; 163 Gluhak (ref_19) 2014; 16 ref_23 ref_21 Torabi (ref_39) 2023; 6 Saneja (ref_29) 2018; 32 Khan (ref_3) 2017; 5 ref_40 Salem (ref_28) 2018; 15 Hinton (ref_37) 1993; 6 ref_2 Merrill (ref_34) 2020; 8 Shahid (ref_20) 2015; 43 ref_5 Kramer (ref_38) 1991; 37 Santos (ref_1) 2020; 53 ref_6 Zhang (ref_10) 2018; 143 |
| References_xml | – ident: ref_33 doi: 10.3390/computers10070088 – volume: 37 start-page: 233 year: 1991 ident: ref_38 article-title: Nonlinear Principal Component Analysis Using Autoassociative Neural Networks publication-title: AIChE J. doi: 10.1002/aic.690370209 – ident: ref_30 – volume: 8 start-page: 101824 year: 2020 ident: ref_34 article-title: Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2997327 – ident: ref_6 doi: 10.3390/s18113661 – volume: 6 start-page: 1 year: 2023 ident: ref_39 article-title: Practical Autoencoder Based Anomaly Detection by Using Vector Reconstruction Error publication-title: Cybersecurity doi: 10.1186/s42400-022-00134-9 – volume: 15 start-page: 1018 year: 2018 ident: ref_28 article-title: Event Detection in Wireless Body Area Networks Using Kalman Filter and Power Divergence publication-title: IEEE Trans. Netw. Serv. Manag. doi: 10.1109/TNSM.2018.2842195 – volume: 70 start-page: 325 year: 2015 ident: ref_8 article-title: Anomaly Detection in Medical Wireless Sensor Networks Using Machine Learning Algorithms publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.10.026 – ident: ref_11 doi: 10.1109/ICC.2018.8422402 – volume: 65 start-page: 1752 year: 2022 ident: ref_24 article-title: A Statistical-Based Lightweight Anomaly Detection Framework for Wireless Body Area Networks publication-title: Comput. J. doi: 10.1093/comjnl/bxab016 – ident: ref_35 doi: 10.3390/s23062948 – ident: ref_40 – volume: 6 start-page: 3 year: 1993 ident: ref_37 article-title: Autoencoders, Minimum Description Length and Helmholtz Free Energy publication-title: Adv. Neural Inf. Process. Syst. – volume: 163 start-page: 106870 year: 2019 ident: ref_26 article-title: Game-Based Adaptive Anomaly Detection in Wireless Body Area Networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.106870 – ident: ref_2 doi: 10.3390/s22051951 – ident: ref_23 doi: 10.1109/WAINA.2009.200 – ident: ref_18 – ident: ref_21 – ident: ref_15 doi: 10.1109/eTELEMED.2009.19 – volume: 15 start-page: 8764 year: 2015 ident: ref_7 article-title: Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare publication-title: Sensors doi: 10.3390/s150408764 – volume: 143 start-page: 166 year: 2018 ident: ref_10 article-title: A Bayesian Network Model for Data Losses and Faults in Medical Body Sensor Networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2018.07.009 – volume: 9 start-page: 23 year: 2012 ident: ref_17 article-title: Medical Applications of Wireless Sensor Networks-Current Status and Future Directions publication-title: Med. Glas. – volume: 5 start-page: 13531 year: 2017 ident: ref_3 article-title: A Continuous Change Detection Mechanism to Identify Anomalies in ECG Signals for WBAN-Based Healthcare Environments publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2714258 – ident: ref_36 doi: 10.1109/IAICT62357.2024.10617530 – ident: ref_12 – volume: 159 start-page: 23 year: 2019 ident: ref_27 article-title: Context-Aware Anonymous Authentication Protocols in the Internet of Things Dedicated to e-Health Applications publication-title: Comput. Netw. doi: 10.1016/j.comnet.2019.04.031 – volume: 32 start-page: 1850283 year: 2018 ident: ref_29 article-title: An Integrated Framework for Anomaly Detection in Big Data of Medical Wireless Sensors publication-title: Mod. Phys. Lett. B doi: 10.1142/S0217984918502834 – volume: 26 start-page: 1373 year: 2012 ident: ref_22 article-title: Statistics-Based Outlier Detection for Wireless Sensor Networks publication-title: Int. J. Geogr. Inf. Sci. doi: 10.1080/13658816.2012.654493 – volume: 54 start-page: 2688 year: 2010 ident: ref_16 article-title: Wireless Sensor Networks for Healthcare: A Survey publication-title: Comput. Netw. doi: 10.1016/j.comnet.2010.05.003 – ident: ref_31 doi: 10.1007/978-981-10-7641-1_8 – volume: 41 start-page: 3703 year: 2014 ident: ref_4 article-title: Probabilistic Fault Detector for Wireless Sensor Network publication-title: Expert. Syst. Appl. doi: 10.1016/j.eswa.2013.11.034 – volume: 16 start-page: 1413 year: 2014 ident: ref_19 article-title: Anomaly Detection in Wireless Sensor Networks in a Non-Stationary Environment publication-title: IEEE Commun. Surv. Tutor. doi: 10.1109/SURV.2013.112813.00168 – volume: 2018 start-page: 4071851 year: 2018 ident: ref_9 article-title: A Lightweight Intrusion Detection Method Based on Fuzzy Clustering Algorithm for Wireless Sensor Networks publication-title: Adv. Fuzzy Syst. – ident: ref_5 doi: 10.1109/IWCMC.2018.8450283 – volume: 53 start-page: 222 year: 2020 ident: ref_1 article-title: Online Heart Monitoring Systems on the Internet of Health Things Environments: A Survey, a Reference Model and an Outlook publication-title: Inf. Fusion doi: 10.1016/j.inffus.2019.06.004 – volume: 39 start-page: 526 year: 2020 ident: ref_25 article-title: Markov Models for Anomaly Detection in Wireless Body Area Networks for Secure Health Monitoring publication-title: IEEE J. Sel. Areas Commun. doi: 10.1109/JSAC.2020.3020602 – volume: 35 start-page: 2118 year: 2021 ident: ref_32 article-title: Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals publication-title: IEEE Trans. Knowl. Data Eng. – volume: 10 start-page: 1 year: 2010 ident: ref_13 article-title: MEDiSN: Medical Emergency Detection in Sensor Networks publication-title: ACM Trans. Embed. Comput. Syst. doi: 10.1145/1814539.1814550 – ident: ref_14 doi: 10.4108/ICST.PERVASIVEHEALTH2010.899 – volume: 43 start-page: 515 year: 2015 ident: ref_20 article-title: Bin One-Class Support Vector Machines: Analysis of Outlier Detection for Wireless Sensor Networks in Harsh Environments publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-013-9395-x |
| SSID | ssj0002810112 |
| Score | 2.304945 |
| Snippet | In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital... |
| SourceID | doaj unpaywall proquest crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 852 |
| SubjectTerms | Accuracy anomaly detection autoencoders Big Data Blood pressure Data compression Datasets Electrocardiography Energy consumption Intensive care Machine learning Medical personnel Neural networks Older people Patients Physiology real-world dataset Sensors wireless body area networks |
| SummonAdditionalLinks | – databaseName: ProQuest Central (subscription) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5tBeSkNTumkaBM0lBxFbsrT2oZRsHoRCl1AaWMjByNKoBBx7s_FS9t93xo9NAiFHm7EwM3p8I42-j7FDzKoiY8EJp8CKRGc4pBDWi9gqCGkUYtVWVf6amcvr5Odcz7fYbLgLQ2WVw5zYTtS-drRHfqwQypuErkL-WNwLUo2i09VBQsP20gr-e0sx9oZtS2LGGrHt6fns6vdm10USn1V7BCqNTESq4nnHWaow9z--rRtNnZqUw5-sUi2Z_zME-nZVLez6ny3LJ4vRxQf2vkeR_KQL-w7bguojuzlZNTXxUnpYiimuTp4T9Qbazbpab07CZyVHmMox67-z5ZqfQdPWYlX8tuJUCVvizMentV9j42CHLx922fXF-Z_TS9FrJwiXGNkIF08sZl4UohgiCEHbIGUIVntrDBQhTX1srDVBmagwUWIzB_iQ6okylLh-YqOqruAz40pGRjrIYucgKVRGKVamJx5kQLDi9ZgdDb7KXU8sTvoWZY4JBvk1f_TrmH3b2C46Oo0Xrabk8o0FUWC3L-rl37wfUTkgsrKZJ_wqE00XiLMC0ZqeEOtYqu2Y7Q8By_tx-ZA_9qIxO9wE8ZVf2Xu9lS_snUSU09W37LNRs1zBV0QpTXHQd73_htvkjw priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7a9GF92Q-6sWzZEFtf-uDWlizFfky6hTJY6EMDKX0wsnyCUs8JrcPI_vrdxXbWllL2aHMy4u4kfR8-fQdwSKwqNBZd4BTaINYpLSmC9UFkFfok9JHaVFX-nJqzWfxjruc78KW7C3Pv_70iOn5yvag155lKd2HPaMLbPdibTc9Hl9w1zsg4SFQ0b3RHHw14cNJsBPkfoMgXq2pp179tWd47UCav4LSbSlNHcnO8qvNj9-eRSuPzc30NL1s8KUZNAryBHawO4Gq0qhesUFngbTCmc6oQLMJBdtOm6ltwC7RSEGAVxP9_2XItvmG9qcqqxHUluCa2pD1QjBfFmj6Otht59xZmk-8Xp2dB20UhcLGRdeCioSUOxsGKMETvtfVSem91YY3B3CdJERlrjVcmzE0Y29QhPSR6qAxT2HfQqxYVvgehZGikwzRyDuNcpUy2Uj0sUHqCLYXuw1Hn8cy1EuPc6aLMiGqwi7J_LurD163tshHWeNJqzIHbWrAY9uYF-T1r11aGhLFsWjCSlbHmq8RpTrhND1l_LNG2D4Mu7Fm7Qu8yRdTQxHy1tg-H21R4Ziof_s_sI-xLwj1NxcsAevXtCj8Rbqnzz23i_gV9tOjw priority: 102 providerName: Unpaywall |
| Title | Autoencoder-Based Neural Network Model for Anomaly Detection in Wireless Body Area Networks |
| URI | https://www.proquest.com/docview/3149640654 https://doi.org/10.3390/iot5040039 https://doaj.org/article/e993a9d977424543919b12557051785a |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2624-831X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810112 issn: 2624-831X databaseCode: DOA dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 2624-831X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002810112 issn: 2624-831X databaseCode: RIE dateStart: 20100101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2624-831X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810112 issn: 2624-831X databaseCode: M~E dateStart: 20200101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2624-831X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002810112 issn: 2624-831X databaseCode: BENPR dateStart: 20200101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1ED3oRRcX6URb04iGY7Ga3ybHVFhEsIhYUD2GzmQUlpqIp0ou_3ZkkrRVEL14CWSZhmdnNvBdm3zB2jKzK1wasZyUYL1QxbimE9V5gJLjId4GsqiqvhvpiFF7eqbuFVl9UE1bLA9eOOwVMoCbOCKaIUNE50TjFpKw6JC4VqQoa-VG8QKaeql9GuNQCUeuRSuT1p4_jUtGCpa7gCxmoEur_hi5XJ8WLmb6bPF9INIMNtt4gRN6tZ7bJlqDYYg_dSTkmzckMXr0eZp6Mk6wG2g3rOm5OTc1yjhCUI6N_NvmUn0NZ1VkV_LHgVOWa41eN98bZFF8OZvbk2zYbDfq3Zxde0xfBs6EWpWeDjkFWRe4PwAfnlHFCOGdUZrSG1EVRFmhjtJPaT7UfmtgC3kSqIzWR0h22XIwL2GVcCl8LC3FgLYSpjIk-xaqTgXAIRDLVYiczXyW2EQ2n3hV5guSB_Jp8-bXFjua2L7VUxo9WPXL53ILkrasBDHrSBD35K-gtdjALWNLsubdEItnTIR2WbbHjeRB_mcref0xln60JxDl1hcsBWy5fJ3CIOKVM22yl1x9e37SrpYnXq48-jo2G1937T7Qw5rE |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBLVdRWDYWyUumhBwt7X7EPqEoKKBSIqgqkSD24631USK4dEkcof47fxowfgUoVN462xit7dnb2m_XMN4TsQ1QVKu1MYLjTgZAJLCmA9UGkufNx6CNeZ1VejNXoSnyfyMkauetqYTCtsvOJtaO2pcEz8gMOUF4JLIX8Or0JsGsU_l3tWmjotrWCPawpxtrCjjO3vIUQbn54egTz_Zmxk-PLb6Og7TIQGKFYFZioryFGwY-JXOi8l9oz5r2WVivlMh_HNlJaK89VmKlQ6MQ4uIhlnysM8WDcF2RDcJFA8LcxPB7_-Lk65WHIn1X_cmWKiSDm0aThSOU8CQ-uy0riIsJO5Y92xbp5wD-Id3NRTPXyVuf5o83v5DV51aJWOmjMbIusueIN-TVYVCXyYFo3C4awG1qKVB8gN25yyyk2WsspwGI6KMq_Ol_SI1fVuV8FvS4oZt7m4GnpsLRLGNzp7sn5W3L1LFp8R9aLsnDvCeUsVMy4JDLGiYwnGNIlsm8d8wCOrOyRL52uUtMSmWM_jTyFgAb1mj7otUc-rWSnDX3Hf6WGqPKVBFJu1zfK2Z-0XcGpAySnE4t4mQmJBctJBuhQ9pHlLJa6R3a6CUtbPzBPH6y2R_ZXk_jEq2w_Pcoe2RxdXpyn56fjsw_kJQOE1eTW7JD1arZwu4CQquxja4aU_H5uy78HlT0jRA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEvCASIwmCWGA88RE3s2E0eJtSuqzYG1YSYVImH4PjHNCkkpU019V_kr-IucbpNmva2x0SOlZzvzt_Fd98Rsg9RVSiV1YHmVgWxSMGkANYHkeLWJaGLeJNV-X0qj8_jrzMx2yL_uloYTKvsfGLjqE2l8R95nwOUlzGWQvadT4s4G0--zP8G2EEKT1q7dhrKt1kwBw3dmC_yOLXrKwjnlgcnY1j7T4xNjn4eHge-40CgY8nqQEcDBfEKflhkQ-ucUI4x55QwSkqbuyQxkVRKOi7DXIaxSrWFi0QMuMRwD-Z9RHbw8AucxM7oaHr2Y_PHhyGXVnP8yiSLg4RHs5YvlfM07F9WtUCDwq7lN3bIppHALfT7ZFXO1fpKFcWNjXDynDzzCJYOW5V7QbZs-ZL8Gq7qCjkxjV0EI9gZDUXaDxg3bfPMKTZdKyhAZDosqz-qWNOxrZs8sJJelhSzcAvwunRUmTVMblX35PIVOX8QKb4m22VV2jeEchZKpm0aaW3jnKcY3qViYCxzAJSM6JHPnawy7UnNsbdGkUFwg3LNruXaIx83Y-ctlcedo0Yo8s0IpN9ublSLi8xbc2YB1anUIHZmscDi5TQHpCgGyHiWCNUju92CZd4nLLNrDe6R_c0i3vMqb--fZY88BgvIvp1MT9-RpwzAVptms0u268XKvgewVOcfvBZS8vuhFf8_7osncw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7a9GF92Q-6sWzZEFtf-uDWlizFfky6hTJY6EMDKX0wsnyCUs8JrcPI_vrdxXbWllL2aHMy4u4kfR8-fQdwSKwqNBZd4BTaINYpLSmC9UFkFfok9JHaVFX-nJqzWfxjruc78KW7C3Pv_70iOn5yvag155lKd2HPaMLbPdibTc9Hl9w1zsg4SFQ0b3RHHw14cNJsBPkfoMgXq2pp179tWd47UCav4LSbSlNHcnO8qvNj9-eRSuPzc30NL1s8KUZNAryBHawO4Gq0qhesUFngbTCmc6oQLMJBdtOm6ltwC7RSEGAVxP9_2XItvmG9qcqqxHUluCa2pD1QjBfFmj6Otht59xZmk-8Xp2dB20UhcLGRdeCioSUOxsGKMETvtfVSem91YY3B3CdJERlrjVcmzE0Y29QhPSR6qAxT2HfQqxYVvgehZGikwzRyDuNcpUy2Uj0sUHqCLYXuw1Hn8cy1EuPc6aLMiGqwi7J_LurD163tshHWeNJqzIHbWrAY9uYF-T1r11aGhLFsWjCSlbHmq8RpTrhND1l_LNG2D4Mu7Fm7Qu8yRdTQxHy1tg-H21R4Ziof_s_sI-xLwj1NxcsAevXtCj8Rbqnzz23i_gV9tOjw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-Based+Neural+Network+Model+for+Anomaly+Detection+in+Wireless+Body+Area+Networks&rft.jtitle=IoT&rft.au=Murad+A.+Rassam&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2624-831X&rft.volume=5&rft.issue=4&rft.spage=852&rft.epage=870&rft_id=info:doi/10.3390%2Fiot5040039&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e993a9d977424543919b12557051785a |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-831X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-831X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-831X&client=summon |