Autoencoder-Based Neural Network Model for Anomaly Detection in Wireless Body Area Networks

In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (I...

Full description

Saved in:
Bibliographic Details
Published inIoT Vol. 5; no. 4; pp. 852 - 870
Main Author Rassam, Murad A.
Format Journal Article
LanguageEnglish
Published Montreal MDPI AG 01.12.2024
Subjects
Online AccessGet full text
ISSN2624-831X
2624-831X
DOI10.3390/iot5040039

Cover

Abstract In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (ICU) at hospitals or elderly care facilities. However, the collected data are subject to anomalies caused by faulty sensor readings, malicious attacks, or severe health degradation situations that healthcare professionals should investigate further. As a result, anomaly detection plays a crucial role in maintaining data quality across various real-world applications, including healthcare, where it is vital for the early detection of abnormal health conditions. Numerous techniques for anomaly detection have been proposed in the literature, employing methods like statistical analysis and machine learning to identify anomalies in WBANs. However, the lack of normal datasets makes training supervised machine learning models difficult, highlighting the need for unsupervised approaches. In this paper, a novel, efficient, and effective unsupervised anomaly detection model for WBANs is developed using the autoencoder convolutional neural network (CNN) technique. Due to their ability to reconstruct data in a completely unsupervised manner using reconstruction error, autoencoders hold great potential. Real-world physiological data from the PhysioNet dataset evaluated the suggested model’s performance. The experimental findings demonstrate the model’s efficacy, which provides high detection accuracy, as reported F1-Score is 0.96 with a batch size of 256 along with a mean squared logarithmic error (MSLE) below 0.002. Compared to existing unsupervised models, the proposed model outperforms them in effectiveness and efficiency.
AbstractList In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital signs of the human body. Healthcare providers and consultants use such collected data to assess the status of patients in intensive care units (ICU) at hospitals or elderly care facilities. However, the collected data are subject to anomalies caused by faulty sensor readings, malicious attacks, or severe health degradation situations that healthcare professionals should investigate further. As a result, anomaly detection plays a crucial role in maintaining data quality across various real-world applications, including healthcare, where it is vital for the early detection of abnormal health conditions. Numerous techniques for anomaly detection have been proposed in the literature, employing methods like statistical analysis and machine learning to identify anomalies in WBANs. However, the lack of normal datasets makes training supervised machine learning models difficult, highlighting the need for unsupervised approaches. In this paper, a novel, efficient, and effective unsupervised anomaly detection model for WBANs is developed using the autoencoder convolutional neural network (CNN) technique. Due to their ability to reconstruct data in a completely unsupervised manner using reconstruction error, autoencoders hold great potential. Real-world physiological data from the PhysioNet dataset evaluated the suggested model’s performance. The experimental findings demonstrate the model’s efficacy, which provides high detection accuracy, as reported F1-Score is 0.96 with a batch size of 256 along with a mean squared logarithmic error (MSLE) below 0.002. Compared to existing unsupervised models, the proposed model outperforms them in effectiveness and efficiency.
Author Rassam, Murad A.
Author_xml – sequence: 1
  givenname: Murad A.
  orcidid: 0000-0003-3558-6737
  surname: Rassam
  fullname: Rassam, Murad A.
BookMark eNp9kMtuFDEQRS0UJMKQDV9giR2og9_dXk4SIJECbEAgsbBq3GXkwWkPtlvR_D0dhpcQYlWvW6dU9yE5mvKEhDzm7FRKy57H3DRTjEl7jxwLI1Q3SP7x6I_8ATmpdcsYEwNnnItj8mk9t4yTzyOW7gwqjvQNzgXSEtptLl_o62WUaMiFrqd8A2lPL7ChbzFPNE70QyyYsFZ6lsc9XReEn5v1EbkfIFU8-RFX5P3LF-_OL7vrt6-uztfXnVdGtM7zHpQacIOeI8MQNAQhQgA9gjG4CcMwcgNggjRsY5gC63EpBt1L03MpV-TqwB0zbN2uxBsoe5chuu-NXD47KC36hA6tlWBH2_dKKK2k5XbDhdY907wfNCysZwfWPO1gfwsp_QJy5u5sdr9tXtRPDupdyV9nrM1t81ym5VknubJGMbMcWZGnB5UvudaC4f9I9pfYxwZ3brcCMf1r5Ru7PZtE
CitedBy_id crossref_primary_10_1038_s41598_025_93802_y
crossref_primary_10_3390_iot6010010
Cites_doi 10.3390/computers10070088
10.1002/aic.690370209
10.1109/ACCESS.2020.2997327
10.3390/s18113661
10.1186/s42400-022-00134-9
10.1109/TNSM.2018.2842195
10.1016/j.procs.2015.10.026
10.1109/ICC.2018.8422402
10.1093/comjnl/bxab016
10.3390/s23062948
10.1016/j.comnet.2019.106870
10.3390/s22051951
10.1109/WAINA.2009.200
10.1109/eTELEMED.2009.19
10.3390/s150408764
10.1016/j.comnet.2018.07.009
10.1109/ACCESS.2017.2714258
10.1109/IAICT62357.2024.10617530
10.1016/j.comnet.2019.04.031
10.1142/S0217984918502834
10.1080/13658816.2012.654493
10.1016/j.comnet.2010.05.003
10.1007/978-981-10-7641-1_8
10.1016/j.eswa.2013.11.034
10.1109/SURV.2013.112813.00168
10.1109/IWCMC.2018.8450283
10.1016/j.inffus.2019.06.004
10.1109/JSAC.2020.3020602
10.1145/1814539.1814550
10.4108/ICST.PERVASIVEHEALTH2010.899
10.1007/s10462-013-9395-x
ContentType Journal Article
Copyright 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7X5
8A3
ABUWG
AFKRA
AZQEC
BENPR
BEZIV
CCPQU
DWQXO
FRNLG
K60
K6~
PHGZM
PHGZT
PIMPY
PKEHL
PQBIZ
PQBZA
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/iot5040039
DatabaseName CrossRef
Entrepreneurship Database
Entrepreneurship Database (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central (subscription)
Business Premium Collection
ProQuest One
ProQuest Central
Business Premium Collection (Alumni)
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Business (OCUL)
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Entrepreneurship
Publicly Available Content Database
Business Premium Collection
ProQuest Business Collection (Alumni Edition)
ProQuest One Business
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Entrepreneurship (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Business Collection
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest One Business (Alumni)
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Entrepreneurship
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
EISSN 2624-831X
EndPage 870
ExternalDocumentID oai_doaj_org_article_e993a9d977424543919b12557051785a
10.3390/iot5040039
10_3390_iot5040039
GroupedDBID 6IF
6IK
6IL
6IN
7X5
AADQD
AAJGR
AAYXX
ADZIZ
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BAAKF
BEFXN
BENPR
BEZIV
BFFAM
BGNUA
BKEBE
BPEOZ
CCPQU
CHZPO
CITATION
FRNLG
GROUPED_DOAJ
IAO
ICD
IEGSK
IGS
IPLJI
ISR
ITC
MODMG
M~E
OCL
OK1
PHGZM
PHGZT
PIMPY
PQBIZ
PQBZA
RIE
RIL
ABUWG
AZQEC
DWQXO
K60
K6~
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c462t-c17a448ebec1e0eff5af22ffa5da66ebf88d16aa6f360b604a9ce6f3857367133
IEDL.DBID DOA
ISSN 2624-831X
IngestDate Fri Oct 03 12:41:39 EDT 2025
Sun Sep 07 11:14:13 EDT 2025
Mon Jun 30 13:28:27 EDT 2025
Thu Apr 24 22:59:30 EDT 2025
Thu Oct 16 04:42:04 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-c17a448ebec1e0eff5af22ffa5da66ebf88d16aa6f360b604a9ce6f3857367133
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-3558-6737
OpenAccessLink https://doaj.org/article/e993a9d977424543919b12557051785a
PQID 3149640654
PQPubID 5465913
PageCount 19
ParticipantIDs doaj_primary_oai_doaj_org_article_e993a9d977424543919b12557051785a
unpaywall_primary_10_3390_iot5040039
proquest_journals_3149640654
crossref_primary_10_3390_iot5040039
crossref_citationtrail_10_3390_iot5040039
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Montreal
PublicationPlace_xml – name: Montreal
PublicationTitle IoT
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_14
ref_36
ref_35
ref_12
Ko (ref_13) 2010; 10
Pachauri (ref_8) 2015; 70
ref_11
ref_33
GS (ref_24) 2022; 65
ref_31
Arfaoui (ref_27) 2019; 159
ref_30
Alemdar (ref_16) 2010; 54
(ref_17) 2012; 9
Salem (ref_25) 2020; 39
ref_18
Haque (ref_7) 2015; 15
ref_15
Zhang (ref_22) 2012; 26
Zhang (ref_32) 2021; 35
Lau (ref_4) 2014; 41
Qu (ref_9) 2018; 2018
Arfaoui (ref_26) 2019; 163
Gluhak (ref_19) 2014; 16
ref_23
ref_21
Torabi (ref_39) 2023; 6
Saneja (ref_29) 2018; 32
Khan (ref_3) 2017; 5
ref_40
Salem (ref_28) 2018; 15
Hinton (ref_37) 1993; 6
ref_2
Merrill (ref_34) 2020; 8
Shahid (ref_20) 2015; 43
ref_5
Kramer (ref_38) 1991; 37
Santos (ref_1) 2020; 53
ref_6
Zhang (ref_10) 2018; 143
References_xml – ident: ref_33
  doi: 10.3390/computers10070088
– volume: 37
  start-page: 233
  year: 1991
  ident: ref_38
  article-title: Nonlinear Principal Component Analysis Using Autoassociative Neural Networks
  publication-title: AIChE J.
  doi: 10.1002/aic.690370209
– ident: ref_30
– volume: 8
  start-page: 101824
  year: 2020
  ident: ref_34
  article-title: Modified Autoencoder Training and Scoring for Robust Unsupervised Anomaly Detection in Deep Learning
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2997327
– ident: ref_6
  doi: 10.3390/s18113661
– volume: 6
  start-page: 1
  year: 2023
  ident: ref_39
  article-title: Practical Autoencoder Based Anomaly Detection by Using Vector Reconstruction Error
  publication-title: Cybersecurity
  doi: 10.1186/s42400-022-00134-9
– volume: 15
  start-page: 1018
  year: 2018
  ident: ref_28
  article-title: Event Detection in Wireless Body Area Networks Using Kalman Filter and Power Divergence
  publication-title: IEEE Trans. Netw. Serv. Manag.
  doi: 10.1109/TNSM.2018.2842195
– volume: 70
  start-page: 325
  year: 2015
  ident: ref_8
  article-title: Anomaly Detection in Medical Wireless Sensor Networks Using Machine Learning Algorithms
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.10.026
– ident: ref_11
  doi: 10.1109/ICC.2018.8422402
– volume: 65
  start-page: 1752
  year: 2022
  ident: ref_24
  article-title: A Statistical-Based Lightweight Anomaly Detection Framework for Wireless Body Area Networks
  publication-title: Comput. J.
  doi: 10.1093/comjnl/bxab016
– ident: ref_35
  doi: 10.3390/s23062948
– ident: ref_40
– volume: 6
  start-page: 3
  year: 1993
  ident: ref_37
  article-title: Autoencoders, Minimum Description Length and Helmholtz Free Energy
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 163
  start-page: 106870
  year: 2019
  ident: ref_26
  article-title: Game-Based Adaptive Anomaly Detection in Wireless Body Area Networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.106870
– ident: ref_2
  doi: 10.3390/s22051951
– ident: ref_23
  doi: 10.1109/WAINA.2009.200
– ident: ref_18
– ident: ref_21
– ident: ref_15
  doi: 10.1109/eTELEMED.2009.19
– volume: 15
  start-page: 8764
  year: 2015
  ident: ref_7
  article-title: Sensor Anomaly Detection in Wireless Sensor Networks for Healthcare
  publication-title: Sensors
  doi: 10.3390/s150408764
– volume: 143
  start-page: 166
  year: 2018
  ident: ref_10
  article-title: A Bayesian Network Model for Data Losses and Faults in Medical Body Sensor Networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2018.07.009
– volume: 9
  start-page: 23
  year: 2012
  ident: ref_17
  article-title: Medical Applications of Wireless Sensor Networks-Current Status and Future Directions
  publication-title: Med. Glas.
– volume: 5
  start-page: 13531
  year: 2017
  ident: ref_3
  article-title: A Continuous Change Detection Mechanism to Identify Anomalies in ECG Signals for WBAN-Based Healthcare Environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2714258
– ident: ref_36
  doi: 10.1109/IAICT62357.2024.10617530
– ident: ref_12
– volume: 159
  start-page: 23
  year: 2019
  ident: ref_27
  article-title: Context-Aware Anonymous Authentication Protocols in the Internet of Things Dedicated to e-Health Applications
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2019.04.031
– volume: 32
  start-page: 1850283
  year: 2018
  ident: ref_29
  article-title: An Integrated Framework for Anomaly Detection in Big Data of Medical Wireless Sensors
  publication-title: Mod. Phys. Lett. B
  doi: 10.1142/S0217984918502834
– volume: 26
  start-page: 1373
  year: 2012
  ident: ref_22
  article-title: Statistics-Based Outlier Detection for Wireless Sensor Networks
  publication-title: Int. J. Geogr. Inf. Sci.
  doi: 10.1080/13658816.2012.654493
– volume: 54
  start-page: 2688
  year: 2010
  ident: ref_16
  article-title: Wireless Sensor Networks for Healthcare: A Survey
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2010.05.003
– ident: ref_31
  doi: 10.1007/978-981-10-7641-1_8
– volume: 41
  start-page: 3703
  year: 2014
  ident: ref_4
  article-title: Probabilistic Fault Detector for Wireless Sensor Network
  publication-title: Expert. Syst. Appl.
  doi: 10.1016/j.eswa.2013.11.034
– volume: 16
  start-page: 1413
  year: 2014
  ident: ref_19
  article-title: Anomaly Detection in Wireless Sensor Networks in a Non-Stationary Environment
  publication-title: IEEE Commun. Surv. Tutor.
  doi: 10.1109/SURV.2013.112813.00168
– volume: 2018
  start-page: 4071851
  year: 2018
  ident: ref_9
  article-title: A Lightweight Intrusion Detection Method Based on Fuzzy Clustering Algorithm for Wireless Sensor Networks
  publication-title: Adv. Fuzzy Syst.
– ident: ref_5
  doi: 10.1109/IWCMC.2018.8450283
– volume: 53
  start-page: 222
  year: 2020
  ident: ref_1
  article-title: Online Heart Monitoring Systems on the Internet of Health Things Environments: A Survey, a Reference Model and an Outlook
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2019.06.004
– volume: 39
  start-page: 526
  year: 2020
  ident: ref_25
  article-title: Markov Models for Anomaly Detection in Wireless Body Area Networks for Secure Health Monitoring
  publication-title: IEEE J. Sel. Areas Commun.
  doi: 10.1109/JSAC.2020.3020602
– volume: 35
  start-page: 2118
  year: 2021
  ident: ref_32
  article-title: Unsupervised Deep Anomaly Detection for Multi-Sensor Time-Series Signals
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 10
  start-page: 1
  year: 2010
  ident: ref_13
  article-title: MEDiSN: Medical Emergency Detection in Sensor Networks
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/1814539.1814550
– ident: ref_14
  doi: 10.4108/ICST.PERVASIVEHEALTH2010.899
– volume: 43
  start-page: 515
  year: 2015
  ident: ref_20
  article-title: Bin One-Class Support Vector Machines: Analysis of Outlier Detection for Wireless Sensor Networks in Harsh Environments
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-013-9395-x
SSID ssj0002810112
Score 2.304945
Snippet In medical healthcare services, Wireless Body Area Networks (WBANs) are enabler tools for tracking healthcare conditions by monitoring some critical vital...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 852
SubjectTerms Accuracy
anomaly detection
autoencoders
Big Data
Blood pressure
Data compression
Datasets
Electrocardiography
Energy consumption
Intensive care
Machine learning
Medical personnel
Neural networks
Older people
Patients
Physiology
real-world dataset
Sensors
wireless body area networks
SummonAdditionalLinks – databaseName: ProQuest Central (subscription)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1La9wwEBbp5tBeSkNTumkaBM0lBxFbsrT2oZRsHoRCl1AaWMjByNKoBBx7s_FS9t93xo9NAiFHm7EwM3p8I42-j7FDzKoiY8EJp8CKRGc4pBDWi9gqCGkUYtVWVf6amcvr5Odcz7fYbLgLQ2WVw5zYTtS-drRHfqwQypuErkL-WNwLUo2i09VBQsP20gr-e0sx9oZtS2LGGrHt6fns6vdm10USn1V7BCqNTESq4nnHWaow9z--rRtNnZqUw5-sUi2Z_zME-nZVLez6ny3LJ4vRxQf2vkeR_KQL-w7bguojuzlZNTXxUnpYiimuTp4T9Qbazbpab07CZyVHmMox67-z5ZqfQdPWYlX8tuJUCVvizMentV9j42CHLx922fXF-Z_TS9FrJwiXGNkIF08sZl4UohgiCEHbIGUIVntrDBQhTX1srDVBmagwUWIzB_iQ6okylLh-YqOqruAz40pGRjrIYucgKVRGKVamJx5kQLDi9ZgdDb7KXU8sTvoWZY4JBvk1f_TrmH3b2C46Oo0Xrabk8o0FUWC3L-rl37wfUTkgsrKZJ_wqE00XiLMC0ZqeEOtYqu2Y7Q8By_tx-ZA_9qIxO9wE8ZVf2Xu9lS_snUSU09W37LNRs1zBV0QpTXHQd73_htvkjw
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7a9GF92Q-6sWzZEFtf-uDWlizFfky6hTJY6EMDKX0wsnyCUs8JrcPI_vrdxXbWllL2aHMy4u4kfR8-fQdwSKwqNBZd4BTaINYpLSmC9UFkFfok9JHaVFX-nJqzWfxjruc78KW7C3Pv_70iOn5yvag155lKd2HPaMLbPdibTc9Hl9w1zsg4SFQ0b3RHHw14cNJsBPkfoMgXq2pp179tWd47UCav4LSbSlNHcnO8qvNj9-eRSuPzc30NL1s8KUZNAryBHawO4Gq0qhesUFngbTCmc6oQLMJBdtOm6ltwC7RSEGAVxP9_2XItvmG9qcqqxHUluCa2pD1QjBfFmj6Otht59xZmk-8Xp2dB20UhcLGRdeCioSUOxsGKMETvtfVSem91YY3B3CdJERlrjVcmzE0Y29QhPSR6qAxT2HfQqxYVvgehZGikwzRyDuNcpUy2Uj0sUHqCLYXuw1Hn8cy1EuPc6aLMiGqwi7J_LurD163tshHWeNJqzIHbWrAY9uYF-T1r11aGhLFsWjCSlbHmq8RpTrhND1l_LNG2D4Mu7Fm7Qu8yRdTQxHy1tg-H21R4Ziof_s_sI-xLwj1NxcsAevXtCj8Rbqnzz23i_gV9tOjw
  priority: 102
  providerName: Unpaywall
Title Autoencoder-Based Neural Network Model for Anomaly Detection in Wireless Body Area Networks
URI https://www.proquest.com/docview/3149640654
https://doi.org/10.3390/iot5040039
https://doaj.org/article/e993a9d977424543919b12557051785a
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2624-831X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810112
  issn: 2624-831X
  databaseCode: DOA
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2624-831X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002810112
  issn: 2624-831X
  databaseCode: RIE
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2624-831X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810112
  issn: 2624-831X
  databaseCode: M~E
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2624-831X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002810112
  issn: 2624-831X
  databaseCode: BENPR
  dateStart: 20200101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1ED3oRRcX6URb04iGY7Ga3ybHVFhEsIhYUD2GzmQUlpqIp0ou_3ZkkrRVEL14CWSZhmdnNvBdm3zB2jKzK1wasZyUYL1QxbimE9V5gJLjId4GsqiqvhvpiFF7eqbuFVl9UE1bLA9eOOwVMoCbOCKaIUNE50TjFpKw6JC4VqQoa-VG8QKaeql9GuNQCUeuRSuT1p4_jUtGCpa7gCxmoEur_hi5XJ8WLmb6bPF9INIMNtt4gRN6tZ7bJlqDYYg_dSTkmzckMXr0eZp6Mk6wG2g3rOm5OTc1yjhCUI6N_NvmUn0NZ1VkV_LHgVOWa41eN98bZFF8OZvbk2zYbDfq3Zxde0xfBs6EWpWeDjkFWRe4PwAfnlHFCOGdUZrSG1EVRFmhjtJPaT7UfmtgC3kSqIzWR0h22XIwL2GVcCl8LC3FgLYSpjIk-xaqTgXAIRDLVYiczXyW2EQ2n3hV5guSB_Jp8-bXFjua2L7VUxo9WPXL53ILkrasBDHrSBD35K-gtdjALWNLsubdEItnTIR2WbbHjeRB_mcref0xln60JxDl1hcsBWy5fJ3CIOKVM22yl1x9e37SrpYnXq48-jo2G1937T7Qw5rE
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF5RONBLVdRWDYWyUumhBwt7X7EPqEoKKBSIqgqkSD24631USK4dEkcof47fxowfgUoVN462xit7dnb2m_XMN4TsQ1QVKu1MYLjTgZAJLCmA9UGkufNx6CNeZ1VejNXoSnyfyMkauetqYTCtsvOJtaO2pcEz8gMOUF4JLIX8Or0JsGsU_l3tWmjotrWCPawpxtrCjjO3vIUQbn54egTz_Zmxk-PLb6Og7TIQGKFYFZioryFGwY-JXOi8l9oz5r2WVivlMh_HNlJaK89VmKlQ6MQ4uIhlnysM8WDcF2RDcJFA8LcxPB7_-Lk65WHIn1X_cmWKiSDm0aThSOU8CQ-uy0riIsJO5Y92xbp5wD-Id3NRTPXyVuf5o83v5DV51aJWOmjMbIusueIN-TVYVCXyYFo3C4awG1qKVB8gN25yyyk2WsspwGI6KMq_Ol_SI1fVuV8FvS4oZt7m4GnpsLRLGNzp7sn5W3L1LFp8R9aLsnDvCeUsVMy4JDLGiYwnGNIlsm8d8wCOrOyRL52uUtMSmWM_jTyFgAb1mj7otUc-rWSnDX3Hf6WGqPKVBFJu1zfK2Z-0XcGpAySnE4t4mQmJBctJBuhQ9pHlLJa6R3a6CUtbPzBPH6y2R_ZXk_jEq2w_Pcoe2RxdXpyn56fjsw_kJQOE1eTW7JD1arZwu4CQquxja4aU_H5uy78HlT0jRA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELbGJgEvCASIwmCWGA88RE3s2E0eJtSuqzYG1YSYVImH4PjHNCkkpU019V_kr-IucbpNmva2x0SOlZzvzt_Fd98Rsg9RVSiV1YHmVgWxSMGkANYHkeLWJaGLeJNV-X0qj8_jrzMx2yL_uloYTKvsfGLjqE2l8R95nwOUlzGWQvadT4s4G0--zP8G2EEKT1q7dhrKt1kwBw3dmC_yOLXrKwjnlgcnY1j7T4xNjn4eHge-40CgY8nqQEcDBfEKflhkQ-ucUI4x55QwSkqbuyQxkVRKOi7DXIaxSrWFi0QMuMRwD-Z9RHbw8AucxM7oaHr2Y_PHhyGXVnP8yiSLg4RHs5YvlfM07F9WtUCDwq7lN3bIppHALfT7ZFXO1fpKFcWNjXDynDzzCJYOW5V7QbZs-ZL8Gq7qCjkxjV0EI9gZDUXaDxg3bfPMKTZdKyhAZDosqz-qWNOxrZs8sJJelhSzcAvwunRUmTVMblX35PIVOX8QKb4m22VV2jeEchZKpm0aaW3jnKcY3qViYCxzAJSM6JHPnawy7UnNsbdGkUFwg3LNruXaIx83Y-ctlcedo0Yo8s0IpN9ublSLi8xbc2YB1anUIHZmscDi5TQHpCgGyHiWCNUju92CZd4nLLNrDe6R_c0i3vMqb--fZY88BgvIvp1MT9-RpwzAVptms0u268XKvgewVOcfvBZS8vuhFf8_7osncw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3fa9swED7a9GF92Q-6sWzZEFtf-uDWlizFfky6hTJY6EMDKX0wsnyCUs8JrcPI_vrdxXbWllL2aHMy4u4kfR8-fQdwSKwqNBZd4BTaINYpLSmC9UFkFfok9JHaVFX-nJqzWfxjruc78KW7C3Pv_70iOn5yvag155lKd2HPaMLbPdibTc9Hl9w1zsg4SFQ0b3RHHw14cNJsBPkfoMgXq2pp179tWd47UCav4LSbSlNHcnO8qvNj9-eRSuPzc30NL1s8KUZNAryBHawO4Gq0qhesUFngbTCmc6oQLMJBdtOm6ltwC7RSEGAVxP9_2XItvmG9qcqqxHUluCa2pD1QjBfFmj6Otht59xZmk-8Xp2dB20UhcLGRdeCioSUOxsGKMETvtfVSem91YY3B3CdJERlrjVcmzE0Y29QhPSR6qAxT2HfQqxYVvgehZGikwzRyDuNcpUy2Uj0sUHqCLYXuw1Hn8cy1EuPc6aLMiGqwi7J_LurD163tshHWeNJqzIHbWrAY9uYF-T1r11aGhLFsWjCSlbHmq8RpTrhND1l_LNG2D4Mu7Fm7Qu8yRdTQxHy1tg-H21R4Ziof_s_sI-xLwj1NxcsAevXtCj8Rbqnzz23i_gV9tOjw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-Based+Neural+Network+Model+for+Anomaly+Detection+in+Wireless+Body+Area+Networks&rft.jtitle=IoT&rft.au=Murad+A.+Rassam&rft.date=2024-12-01&rft.pub=MDPI+AG&rft.eissn=2624-831X&rft.volume=5&rft.issue=4&rft.spage=852&rft.epage=870&rft_id=info:doi/10.3390%2Fiot5040039&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e993a9d977424543919b12557051785a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2624-831X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2624-831X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2624-831X&client=summon