Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm

Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. Five public MRI data se...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in psychiatry Vol. 11; p. 16
Main Authors Oh, Jihoon, Oh, Baek-Lok, Lee, Kyong-Uk, Chae, Jeong-Ho, Yun, Kyongsik
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 03.02.2020
Subjects
Online AccessGet full text
ISSN1664-0640
1664-0640
DOI10.3389/fpsyt.2020.00016

Cover

Abstract Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network. The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images. The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.
AbstractList ObjectiveAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.MethodFive public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.ResultsThe deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm’s classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.ConclusionsThe deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.
Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.OBJECTIVEAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.METHODFive public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.RESULTSThe deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.CONCLUSIONSThe deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.
Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network. The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images. The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.
Author Oh, Baek-Lok
Oh, Jihoon
Yun, Kyongsik
Lee, Kyong-Uk
Chae, Jeong-Ho
AuthorAffiliation 2 Department of Ophthalmology, Seoul National University Hospital , Seoul , South Korea
4 Computation and Neural Systems, California Institute of Technology , Pasadena, CA , United States
1 Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea
3 Department of Psychiatry, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea
5 Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA , United States
AuthorAffiliation_xml – name: 3 Department of Psychiatry, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea
– name: 1 Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea
– name: 2 Department of Ophthalmology, Seoul National University Hospital , Seoul , South Korea
– name: 4 Computation and Neural Systems, California Institute of Technology , Pasadena, CA , United States
– name: 5 Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA , United States
Author_xml – sequence: 1
  givenname: Jihoon
  surname: Oh
  fullname: Oh, Jihoon
– sequence: 2
  givenname: Baek-Lok
  surname: Oh
  fullname: Oh, Baek-Lok
– sequence: 3
  givenname: Kyong-Uk
  surname: Lee
  fullname: Lee, Kyong-Uk
– sequence: 4
  givenname: Jeong-Ho
  surname: Chae
  fullname: Chae, Jeong-Ho
– sequence: 5
  givenname: Kyongsik
  surname: Yun
  fullname: Yun, Kyongsik
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32116837$$D View this record in MEDLINE/PubMed
BookMark eNqFUUtvEzEQtlARLaV3TmiPXBJs78ZrX5CqlkekVEhAxdHyju3ElbNebC8o_fX1JqVqOcDJo5nvMfP5JTrqQ28Qek3wvK65eGeHtMtziimeY4wJe4ZOCGPNDLMGHz2qj9FZSjcFgmsharZ4gY5rSgjjdXuCrpba9NnZnevX1TfYuNswbKLpnaqu076X4wh5jMpXV1-X1Q-XN5WqLo0ZqpVRsZ8w534dYhlsX6HnVvlkzu7fU3T98cP3i8-z1ZdPy4vz1QwaRvNMMGWJsBwbbYgA3AggmmFNQSw6xqFrG9BGqIZQ2jFFjLG608q2C0tBg6pP0fKgq4O6kUN0WxV3Mign940Q11LF7MAbSTmloBgvbm3TtZ1gYLvGAlBBiQFetMhBa-wHtfutvH8QJFhOSct90nJKWu6TLpz3B84wdlujoURYAnqyyNNJ7zZyHX7JFuOyjygCb-8FYvg5mpTl1iUw3qvehDFJWjPBOWd08nrz2OvB5M8fFgA7ACCGlKKxElxW2YXJ2vl_XYH_Iv738DsDh8Ti
CitedBy_id crossref_primary_10_1007_s11571_023_10011_x
crossref_primary_10_1016_j_neuroimage_2024_120674
crossref_primary_10_1016_j_schres_2022_01_058
crossref_primary_10_3390_brainsci13020267
crossref_primary_10_1002_hbm_26521
crossref_primary_10_3389_fnins_2021_785595
crossref_primary_10_3390_brainsci12060788
crossref_primary_10_7210_jrsj_40_796
crossref_primary_10_1177_15500594241253910
crossref_primary_10_3389_fpsyt_2022_826111
crossref_primary_10_3389_fpubh_2022_1049069
crossref_primary_10_1111_srt_70016
crossref_primary_10_1192_bjp_2022_22
crossref_primary_10_3390_brainsci12050615
crossref_primary_10_1038_s41598_025_93912_7
crossref_primary_10_3390_diagnostics11081402
crossref_primary_10_1007_s11011_021_00692_w
crossref_primary_10_3390_s23010280
crossref_primary_10_3389_fbioe_2022_985692
crossref_primary_10_3390_diagnostics14232698
crossref_primary_10_1038_s41380_024_02682_7
crossref_primary_10_1371_journal_pone_0262717
crossref_primary_10_3390_diagnostics13132140
crossref_primary_10_1080_03772063_2025_2469644
crossref_primary_10_3389_fnhum_2023_1280512
crossref_primary_10_3389_fpsyt_2022_1075564
crossref_primary_10_1007_s12652_023_04536_6
crossref_primary_10_1016_j_heliyon_2023_e19422
crossref_primary_10_1038_s41386_022_01514_y
crossref_primary_10_1186_s40658_021_00426_y
crossref_primary_10_1155_2022_1581958
crossref_primary_10_1001_jamanetworkopen_2023_1671
crossref_primary_10_1111_pcn_13625
crossref_primary_10_1016_j_pscychresns_2024_111790
crossref_primary_10_3390_brainsci12040439
crossref_primary_10_1007_s11042_022_13809_9
crossref_primary_10_1007_s13246_023_01225_8
crossref_primary_10_1016_j_eswa_2022_117158
crossref_primary_10_3389_fnins_2023_998818
crossref_primary_10_1080_27706710_2023_2249036
crossref_primary_10_1186_s12916_023_02941_4
crossref_primary_10_1038_s41598_023_41359_z
crossref_primary_10_1016_j_expneurol_2021_113608
crossref_primary_10_1007_s11571_022_09904_0
crossref_primary_10_1016_j_neunet_2021_09_018
crossref_primary_10_1016_j_ajp_2024_104153
crossref_primary_10_1093_schbul_sbad103
crossref_primary_10_1111_pcn_13736
crossref_primary_10_1016_j_ajp_2022_103263
crossref_primary_10_1136_bmjopen_2024_084463
crossref_primary_10_1007_s00330_023_09979_1
crossref_primary_10_1007_s13721_023_00415_4
crossref_primary_10_1016_j_compbiomed_2022_105554
crossref_primary_10_3389_fnins_2022_926426
crossref_primary_10_1016_j_schres_2021_05_018
crossref_primary_10_1007_s11571_022_09897_w
crossref_primary_10_32604_iasc_2021_015049
crossref_primary_10_3389_fninf_2021_777977
crossref_primary_10_3390_diagnostics11030393
crossref_primary_10_1016_j_brainres_2024_148876
crossref_primary_10_2174_2211555204666220131112639
crossref_primary_10_1007_s40473_020_00209_2
crossref_primary_10_1016_j_schres_2021_06_011
crossref_primary_10_1109_TIP_2023_3307975
crossref_primary_10_31083_j_jin2104119
Cites_doi 10.1016/j.biopsych.2005.09.010
10.1038/srep46878
10.1016/S0920-9964(01)00163-3
10.1038/s41380-019-0365-9
10.1016/S0006-3223(01)01303-8
10.1016/j.ebiom.2018.03.017
10.1038/mp.2012.105
10.1016/j.neuroimage.2015.06.030
10.1016/j.schres.2005.04.008
10.1176/appi.ajp.162.3.602
10.3389/fnins.2012.00171
10.1007/978-3-319-10599-4_7
10.1007/s12021-013-9184-3
10.1016/j.neuroimage.2005.02.013
10.1038/mp.2015.209
10.1038/srep38897
10.1093/schbul/sbw130
10.1109/TPAMI.2012.59
10.1016/j.neuroimage.2015.06.065
10.1038/s41380-018-0228-9
10.1371/journal.pcbi.1000532
10.1176/ajp.156.4.544
10.1001/jama.2016.17216
10.1007/978-3-030-00889-5_16
10.1192/bjp.bp.109.070441
10.1016/j.neunet.2015.04.002
10.1038/nature14539
10.1093/schbul/sby189
10.1093/schbul/sbw122
10.1109/IROS.2015.7353481
10.1176/ajp.157.1.16
10.1093/schbul/sbs118
10.1038/nrneurol.2009.215
10.1093/cercor/bhg087
10.1176/appi.ajp.162.12.2233
10.1001/jama.2018.11029
10.1016/j.neuroimage.2015.05.060
10.1016/j.biopsych.2011.01.032
10.1109/3DV.2016.79
10.1016/j.schres.2011.09.005
10.1109/ISBI.2017.7950647
10.1016/j.schres.2017.11.037
10.1145/2647868.2654889
10.1109/ICASSP.2013.6639346
ContentType Journal Article
Copyright Copyright © 2020 Oh, Oh, Lee, Chae and Yun.
Copyright © 2020 Oh, Oh, Lee, Chae and Yun 2020 Oh, Oh, Lee, Chae and Yun
Copyright_xml – notice: Copyright © 2020 Oh, Oh, Lee, Chae and Yun.
– notice: Copyright © 2020 Oh, Oh, Lee, Chae and Yun 2020 Oh, Oh, Lee, Chae and Yun
DBID AAYXX
CITATION
NPM
7X8
5PM
ADTOC
UNPAY
DOA
DOI 10.3389/fpsyt.2020.00016
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
EISSN 1664-0640
ExternalDocumentID oai_doaj_org_article_2822ca68f8074b7b96cfb4fcc2921ec8
10.3389/fpsyt.2020.00016
PMC7008229
32116837
10_3389_fpsyt_2020_00016
Genre Journal Article
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ABIVO
ACGFO
ACGFS
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
PGMZT
RNS
RPM
ACXDI
IPNFZ
NPM
RIG
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c462t-96af19f80ede19c049c1d60d2c95b68cb74cde9a4122b6a1eefdbdaf75f2cdca3
IEDL.DBID UNPAY
ISSN 1664-0640
IngestDate Fri Oct 03 12:51:12 EDT 2025
Sun Oct 26 04:08:07 EDT 2025
Tue Sep 30 15:51:53 EDT 2025
Thu Oct 02 07:39:46 EDT 2025
Mon Jul 21 05:53:29 EDT 2025
Thu Apr 24 23:04:21 EDT 2025
Wed Oct 01 03:51:57 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords deep learning
schizophrenia
classification
MRI
structural abnormalities
Language English
License Copyright © 2020 Oh, Oh, Lee, Chae and Yun.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-96af19f80ede19c049c1d60d2c95b68cb74cde9a4122b6a1eefdbdaf75f2cdca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Stefan Borgwardt, University of Basel, Switzerland
This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry
Reviewed by: Teresa Sanchez-Gutierrez, Universidad Internacional De La Rioja, Spain; Peter Uhlhaas, University of Glasgow, United Kingdom
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fpsyt.2020.00016
PMID 32116837
PQID 2369888626
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2822ca68f8074b7b96cfb4fcc2921ec8
unpaywall_primary_10_3389_fpsyt_2020_00016
pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008229
proquest_miscellaneous_2369888626
pubmed_primary_32116837
crossref_citationtrail_10_3389_fpsyt_2020_00016
crossref_primary_10_3389_fpsyt_2020_00016
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-02-03
PublicationDateYYYYMMDD 2020-02-03
PublicationDate_xml – month: 02
  year: 2020
  text: 2020-02-03
  day: 03
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in psychiatry
PublicationTitleAlternate Front Psychiatry
PublicationYear 2020
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Fischl (B49) 2004; 14
George (B31) 2009; 5
Khosla (B32) 2018
Frisoni (B10) 2010; 6
Okada (B7) 2016; 21
Kogan (B25) 2016; 124
Leucht (B28) 2005; 79
Korolev (B36) 2017
Stead (B51) 2018; 320
Keshavan (B52) 2011; 133
Zhang (B42) 2016
Ji (B33) 2012; 35
Wright (B3) 2000; 157
Pinaya (B15) 2016; 6
Nunes (B16) 2018; 1
Lieberman (B6) 2001; 50
Masters (B40) 2018
Nenadic (B4) 2010; 196
Wang (B20) 2016; 124
Zhang (B41) 2014
Kapur (B8) 2012; 17
Haijma (B2) 2012; 39
Jia (B19) 2014
Maturana (B34) 2015
Mørch-Johnsen (B5) 2016; 43
LeCun (B30) 2015; 521
Gollub (B23) 2013; 11
Jones (B39) 2005; 26
Xiao (B14) 2017; 214
Bustillo (B21) 2016; 43
Price (B9) 2006; 60
Honea (B1) 2005; 162
LeCun (B11) 2015; 521
Milletari (B37) 2016
Durstewitz (B18) 2019; 1
Chyzhyk (B22) 2015; 68
Olabi (B47) 2011; 70
Payan (B35) 2015
Gulshan (B13) 2016; 316
Graham (B50) 2015
(B29) 2000
Robinson (B26) 1999; 156
Ciompi (B12) 2017; 7
Alpert (B24) 2016; 124
Zeng (B53) 2018; 30
Dahl (B38) 2013
Szeszko (B27) 2005; 162
Klein (B45) 2012; 6
Shenton (B48) 2001; 49
Vieira (B17) 2019; 46
Ron (B44) 1995
Krizhevsky (B46) 2012
Srivastava (B43) 2014; 15
References_xml – volume: 60
  start-page: 1
  year: 2006
  ident: B9
  article-title: A multivariate electrophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the western australian family study of schizophrenia
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2005.09.010
– volume: 7
  start-page: 46479
  year: 2017
  ident: B12
  article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning
  publication-title: Sci Rep
  doi: 10.1038/srep46878
– volume: 49
  start-page: 1
  year: 2001
  ident: B48
  article-title: A review of MRI findings in schizophrenia
  publication-title: Schizophr Res
  doi: 10.1016/S0920-9964(01)00163-3
– volume: 1
  start-page: 1583
  year: 2019
  ident: B18
  article-title: Deep neural networks in psychiatry
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-019-0365-9
– volume: 50
  year: 2001
  ident: B6
  article-title: The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches
  publication-title: Biol Psychiatry
  doi: 10.1016/S0006-3223(01)01303-8
– volume: 30
  start-page: 74
  year: 2018
  ident: B53
  article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2018.03.017
– volume: 17
  start-page: 1174
  year: 2012
  ident: B8
  article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2012.105
– volume: 124
  year: 2016
  ident: B25
  article-title: Northwestern University schizophrenia data sharing for SchizConnect: a longitudinal dataset for large-scale integration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.030
– volume: 79
  start-page: 231
  year: 2005
  ident: B28
  article-title: What does the PANSS mean?
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2005.04.008
– volume: 162
  year: 2005
  ident: B27
  article-title: White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.162.3.602
– volume: 6
  year: 2012
  ident: B45
  article-title: 101 labeled brain images and a consistent human cortical labeling protocol
  publication-title: Front Neurosci
  doi: 10.3389/fnins.2012.00171
– start-page: 94
  volume-title: Computer Vision – ECCV 2014 Lecture Notes in Computer Science
  year: 2014
  ident: B41
  article-title: Facial landmark detection by deep multi-task learning
  doi: 10.1007/978-3-319-10599-4_7
– volume: 11
  year: 2013
  ident: B23
  article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-013-9184-3
– volume: 26
  year: 2005
  ident: B39
  article-title: The effect of filter size on VBM analyses of DT-MRI data
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2005.02.013
– volume: 21
  start-page: 1460
  year: 2016
  ident: B7
  article-title: Abnormal asymmetries in subcortical brain volume in schizophrenia
  publication-title: Mol Psychiatry
  doi: 10.1038/mp.2015.209
– volume: 6
  start-page: 38897
  year: 2016
  ident: B15
  article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia
  publication-title: Sci Rep
  doi: 10.1038/srep38897
– volume: 43
  start-page: 75
  year: 2016
  ident: B5
  article-title: Auditory cortex characteristics in schizophrenia: associations with auditory hallucinations
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbw130
– volume: 35
  year: 2012
  ident: B33
  article-title: 3D convolutional neural networks for human action recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.59
– volume: 124
  year: 2016
  ident: B20
  article-title: SchizConnect: mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.06.065
– year: 2016
  ident: B42
  article-title: Understanding deep learning requires rethinking generalization
  publication-title: ArXiv
– volume: 1
  start-page: 1
  year: 2018
  ident: B16
  article-title: Using structural MRI to identify bipolar disorders–13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group
  publication-title: Mol Psychiatry
  doi: 10.1038/s41380-018-0228-9
– year: 2015
  ident: B35
  article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks
  publication-title: ArXiv. Prepr. ArXiv.
– volume: 5
  start-page: e1000532
  year: 2009
  ident: B31
  article-title: Towards a mathematical theory of cortical micro-circuits
  publication-title: PloS Comput Biol
  doi: 10.1371/journal.pcbi.1000532
– volume: 156
  year: 1999
  ident: B26
  article-title: Predictors of treatment response from a first episode of schizophrenia or schizoaffective disorder
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.156.4.544
– volume-title: Diagnostic and Statistical Manual of Mental Disorders
  year: 2000
  ident: B29
– volume: 316
  year: 2016
  ident: B13
  article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs
  publication-title: Jama
  doi: 10.1001/jama.2016.17216
– volume-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support
  year: 2018
  ident: B32
  article-title: 3D convolutional neural networks for classification of functional connectomes
  doi: 10.1007/978-3-030-00889-5_16
– volume: 196
  year: 2010
  ident: B4
  article-title: Auditory hallucinations and brain structure in schizophrenia: voxel-based morphometric study
  publication-title: Br J Psychiatry
  doi: 10.1192/bjp.bp.109.070441
– volume: 68
  start-page: 23
  year: 2015
  ident: B22
  article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2015.04.002
– volume: 521
  start-page: 436
  year: 2015
  ident: B11
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 46
  start-page: 17
  year: 2019
  ident: B17
  article-title: Using machine learning and structural neuroimaging to detect first episode psychosis: reconsidering the evidence
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sby189
– volume: 43
  year: 2016
  ident: B21
  article-title: Glutamatergic and neuronal dysfunction in gray and white matter: a spectroscopic imaging study in a large schizophrenia sample
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbw122
– volume-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE)
  year: 2015
  ident: B34
  article-title: Voxnet: a 3d convolutional neural network for real-time object recognition
  doi: 10.1109/IROS.2015.7353481
– volume-title: Advances in Neural Information Processing Systems 25
  year: 2012
  ident: B46
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 157
  start-page: 16
  year: 2000
  ident: B3
  article-title: Meta-analysis of regional brain volumes in schizophrenia
  publication-title: Am J Psychiatry
  doi: 10.1176/ajp.157.1.16
– volume: 15
  year: 2014
  ident: B43
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach Learn Res.
– volume: 39
  year: 2012
  ident: B2
  article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbs118
– volume: 6
  start-page: 67
  year: 2010
  ident: B10
  article-title: The clinical use of structural MRI in Alzheimer disease
  publication-title: Nat Rev Neurol
  doi: 10.1038/nrneurol.2009.215
– year: 2018
  ident: B40
  article-title: Revisiting small batch training for deep neural networks
  publication-title: ArXiv
– volume: 14
  start-page: 11
  year: 2004
  ident: B49
  article-title: Automatically parcellating the human cerebral cortex
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhg087
– year: 1995
  ident: B44
  article-title: A Study of cross-validation and bootstrap for accuracy estimation and model selection
– volume: 162
  year: 2005
  ident: B1
  article-title: Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies
  publication-title: Am J Psychiatry
  doi: 10.1176/appi.ajp.162.12.2233
– volume: 521
  year: 2015
  ident: B30
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– volume: 320
  year: 2018
  ident: B51
  article-title: Clinical implications and challenges of artificial intelligence and deep learning
  publication-title: JAMA
  doi: 10.1001/jama.2018.11029
– volume: 124
  year: 2016
  ident: B24
  article-title: The northwestern university neuroimaging data archive (NUNDA)
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.05.060
– volume: 70
  start-page: 88
  year: 2011
  ident: B47
  article-title: Are there progressive brain changes in schizophrenia? a meta-analysis of structural magnetic resonance imaging studies
  publication-title: Biol Psychiatry
  doi: 10.1016/j.biopsych.2011.01.032
– year: 2016
  ident: B37
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  doi: 10.1109/3DV.2016.79
– year: 2015
  ident: B50
  article-title: Kaggle diabetic retinopathy detection competition report
– volume: 133
  year: 2011
  ident: B52
  article-title: A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: the Schizo-Bipolar Scale
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2011.09.005
– volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (IEEE)
  year: 2017
  ident: B36
  article-title: Residual and plain convolutional neural networks for 3D brain MRI classification
  doi: 10.1109/ISBI.2017.7950647
– volume: 214
  start-page: 11
  year: 2017
  ident: B14
  article-title: Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI
  publication-title: Schizophr Res
  doi: 10.1016/j.schres.2017.11.037
– volume-title: Proceedings of the 22nd ACM international conference on Multimedia (ACM)
  year: 2014
  ident: B19
  article-title: Caffe: Convolutional architecture for fast feature embedding
  doi: 10.1145/2647868.2654889
– volume-title: 2013 IEEE international conference on acoustics, speech and signal processing (IEEE)
  year: 2013
  ident: B38
  article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout
  doi: 10.1109/ICASSP.2013.6639346
SSID ssj0000399365
Score 2.5362298
Snippet Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains...
ObjectiveAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI)...
SourceID doaj
unpaywall
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 16
SubjectTerms classification
deep learning
MRI
Psychiatry
schizophrenia
structural abnormalities
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLu0FUbWFQFu5Ui9UinbjJE58BAqilZZDKYJbZI_HgLRkV2VRxd93xgmrrEDlwjV2Entm7JmR3zwL8bUqFZJftWlZI6RFQJuaMkCqajvW7BAq5ERxcqKPz4qfF-XF4KovxoR19MCd4EYMcwSr68CsLa5yRkNwRQBQRmUIscx3XJtBMhX3YPa7uuzOJSkLM6Mwv71n7KRiKNeYrzcf-KFI1_9UjPkYKvn6rp3b-792Oh34oaMNsd4HkHKvG_hb8Qrbd2LS1dvGmiV5OsTRyYgJkKeRJpYpNuTk1w95fr24klZ-R5zLnmH1Uu5NL2d_qOHmvTg7Ovx9cJz2FyWkUGi1SI22ITMkIfSYGaCgHzKvx16BKZ2uwVUFeDS2yJRy2maIwTtvQ1UGBR5s_kGstbMWt4TMFSja8YL2hS64LAspgPC8al1J0ZFPxOhBbA30LOJ8mcW0oWyCBd1EQTcs6HiwrROxu3xj3jFo_KfvPmti2Y-5r-MDsoimt4jmOYtIxJcHPTa0VvgAxLY4u7ttVK4NZfxkg4nY7PS6_FVOmbCmbD0R1YrGV8ay2tJeX0U-7qqjzU_Et6VtPDvT7ZeY6Y54w1-MIPL8o1gjU8JPFCMt3Oe4HP4BDNsR-g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Scholars Portal Journals: Open Access
  dbid: M48
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIsFeEIjHhpeMxAWksI2TOPYBoeWxWpDKgaVib5E9trsrhbS0XUH_PR4nLa2oQOIa23EyD8-MPPMNwLOq5C7YVZ2W0mFaeKdTVXpMudQDQQahchQoDj-Jk1Hx8aw8-10e3RNwvjO0o35So1nz8uf35eug8K8o4gz29tBP50tKi-SUpRVcmKtwLdgpRY0chr2zH89lssWi7O4qdy7ch-t5CIiEpK7oG2YqovnvckH_zKS8cdlO9fKHbpoNM3V8C272_iU76gTiNlxx7R0YduW4saSJnW6m2bGYMsBOI4osIXCw4ecP7OvF4pxp9s65KesBWMfsqBlPZmHg210YHb__8vYk7fsopFgIvkiV0D5TXg6cdZnCEBNgZsXAclSlERJNVaB1ShcZ50bozDlvjdW-Kj1Hizq_B3vtpHUHwHKOPByIXthCFFS15YJ_YUmpTRmcJ5vA4YpsNfYg49TroqlDsEE0ryPNa6J5vPcWCTxfr5h2ABt_mfuGOLGeR9DY8cFkNq57TaspLxa1kJ5gfkxllEBvCo_IFc8cygServhYB1Wi-xHdusnlvOa5UFJSiJfA_Y6v661WcpFAtcXxrW_ZHmkvziNcd9Wh6ifwYi0b__zTB_-9zUPYp9fExPL8EewF-XGPg9-0ME-iOvwCU1IZ6Q
  priority: 102
  providerName: Scholars Portal
Title Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm
URI https://www.ncbi.nlm.nih.gov/pubmed/32116837
https://www.proquest.com/docview/2369888626
https://pubmed.ncbi.nlm.nih.gov/PMC7008229
https://doi.org/10.3389/fpsyt.2020.00016
https://doaj.org/article/2822ca68f8074b7b96cfb4fcc2921ec8
UnpaywallVersion publishedVersion
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: KQ8
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: KQ8
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: DOA
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVBFR
  databaseName: Free Medical Journals - Free Access to All
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: DIK
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central (Free e-resource, activated by CARLI)
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: RPM
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVFZP
  databaseName: Scholars Portal Journals: Open Access
  customDbUrl:
  eissn: 1664-0640
  dateEnd: 20250131
  omitProxy: true
  ssIdentifier: ssj0000399365
  issn: 1664-0640
  databaseCode: M48
  dateStart: 20100801
  isFulltext: true
  titleUrlDefault: http://journals.scholarsportal.info
  providerName: Scholars Portal
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wAvDMRXNpiMxAtI2RrHceLHbjANpE6IUTGeIvtsbxMlrdZWaPz1-JysamHi4yVSYluJz3e5O9_dzwAvy4K7oFd1WlQOU-GdTlXhMeWV7ktSCKUjR3F4LI9G4v1pcdrtd1AtzEr8PjhPas9PZ1eU8sgpAyuYJ7dhQxbB6u7Bxuj4w-AL-VNSipQCUm0U8sZha1ongvPfZFH-nhh5Z9FM9dV3PR6vaJ3DzRYCaRbBCinZ5OvuYm528ccvUI7_MqH7cK8zPdmg5ZUHcMs1D2HYVurGaid2spqBx2I2ATuJALMEzsGGH9-xzxfzc6bZG-emrMNmPWOD8dnkMjR8ewSjw7efDo7S7oiFFIXk81RJ7TPlq76zLlMY3AXMrOxbjqowskJTCrROaZFxbqTOnPPWWO3LwnO0qPPH0GsmjXsKLOfIw7_SSyukoIIuF0wPS_JuimBX2QT2rpegxg5_nI7BGNfBDyHS1JE0NZEmhsRlAq-WI6Yt9sYf-u7Tqi77EWp2fBBoX3dCWFPKLGpZeUIAMqVREr0RHpErnjmsEnhxzRN1kDIKnejGTRazmudSVRV5fwk8aXlk-ao8-NAy-PkJlGvcs_Yt6y3NxXlE8i5bwP0EXi_57K8z3fqfzttwl25imnn-DHqBZdzzYEXNzU7cfQjXoah2OmH6CXWRHMI
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wAvfIiPhTFkJF5AytY4jhM_lsE0kDohRsV4iuyzvU2UtFpboe2vn8_JqhYmPh4T20p8vovvl7v7GeBVWXAX9lWdFpXDVHinU1V4THml-5I2hNIRUBweyoOR-HhcHHf_O6gWZiV-H8CT2vXT2QWlPHLKwAruyW3YkEXwunuwMTr8NPhGeEpKkVJAqo1C3jhsbdeJ5Pw3eZS_J0beWTRTffFTj8cru87-_ZYCaRbJCinZ5PvOYm528PIXKsd_mdADuNe5nmzQ6spDuOWaRzBsK3VjtRM7Ws3AYzGbgB1Fglki52DDzx_Y17P5KdPsnXNT1nGznrDB-GRyHhp-PIbR_vsvewdpd8RCikLyeaqk9pnyVd9ZlykMcAEzK_uWoyqMrNCUAq1TWmScG6kz57w1Vvuy8Bwt6vwJ9JpJ4zaB5Rx5-FZ6aYUUVNDlguthyd5NEfwqm8Du9RLU2PGP0zEY4zrgEBJNHUVTk2hiSFwm8Ho5Ytpyb_yh71ta1WU_Ys2ON4Ls684Ia0qZRS0rTwxApjRKojfCI3LFM4dVAi-vdaIOVkahE924yWJW81yqqiL0l8DTVkeWj8oDhpYB5ydQrmnP2rustzRnp5HJu2wJ9xN4s9Szv8702f903oK7dBHTzPPn0Asq47aDFzU3LzoDugItdhrz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Schizophrenia+Using+Structural+MRI+With+a+Deep+Learning+Algorithm&rft.jtitle=Frontiers+in+psychiatry&rft.au=Oh%2C+Jihoon&rft.au=Oh%2C+Baek-Lok&rft.au=Lee%2C+Kyong-Uk&rft.au=Chae%2C+Jeong-Ho&rft.date=2020-02-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-0640&rft.volume=11&rft_id=info:doi/10.3389%2Ffpsyt.2020.00016&rft_id=info%3Apmid%2F32116837&rft.externalDocID=PMC7008229
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-0640&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-0640&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-0640&client=summon