Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm
Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. Five public MRI data se...
Saved in:
| Published in | Frontiers in psychiatry Vol. 11; p. 16 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Switzerland
Frontiers Media S.A
03.02.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1664-0640 1664-0640 |
| DOI | 10.3389/fpsyt.2020.00016 |
Cover
| Abstract | Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.
Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.
The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.
The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings. |
|---|---|
| AbstractList | ObjectiveAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.MethodFive public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.ResultsThe deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm’s classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.ConclusionsThe deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings. Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.OBJECTIVEAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm.Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.METHODFive public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network.The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.RESULTSThe deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images.The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings.CONCLUSIONSThe deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings. Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains challenging. This study aimed to detect schizophrenia in structural MRI data sets using a trained deep learning algorithm. Five public MRI data sets (BrainGluSchi, COBRE, MCICShare, NMorphCH, and NUSDAST) from schizophrenia patients and normal subjects, for a total of 873 structural MRI data sets, were used to train a deep convolutional neural network. The deep learning algorithm trained with structural MR images detected schizophrenia in randomly selected images with reliable performance (area under the receiver operating characteristic curve [AUC] of 0.96). The algorithm could also identify MR images from schizophrenia patients in a previously unencountered data set with an AUC of 0.71 to 0.90. The deep learning algorithm's classification performance degraded to an AUC of 0.71 when a new data set with younger patients and a shorter duration of illness than the training data sets was presented. The brain region contributing the most to the performance of the algorithm was the right temporal area, followed by the right parietal area. Semitrained clinical specialists hardly discriminated schizophrenia patients from healthy controls (AUC: 0.61) in the set of 100 randomly selected brain images. The deep learning algorithm showed good performance in detecting schizophrenia and identified relevant structural features from structural brain MRI data; it had an acceptable classification performance in a separate group of patients at an earlier stage of the disease. Deep learning can be used to delineate the structural characteristics of schizophrenia and to provide supplementary diagnostic information in clinical settings. |
| Author | Oh, Baek-Lok Oh, Jihoon Yun, Kyongsik Lee, Kyong-Uk Chae, Jeong-Ho |
| AuthorAffiliation | 2 Department of Ophthalmology, Seoul National University Hospital , Seoul , South Korea 4 Computation and Neural Systems, California Institute of Technology , Pasadena, CA , United States 1 Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea 3 Department of Psychiatry, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea 5 Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA , United States |
| AuthorAffiliation_xml | – name: 3 Department of Psychiatry, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea – name: 1 Department of Psychiatry, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea , Seoul , South Korea – name: 2 Department of Ophthalmology, Seoul National University Hospital , Seoul , South Korea – name: 4 Computation and Neural Systems, California Institute of Technology , Pasadena, CA , United States – name: 5 Bio-Inspired Technologies and Systems, Jet Propulsion Laboratory, California Institute of Technology , Pasadena, CA , United States |
| Author_xml | – sequence: 1 givenname: Jihoon surname: Oh fullname: Oh, Jihoon – sequence: 2 givenname: Baek-Lok surname: Oh fullname: Oh, Baek-Lok – sequence: 3 givenname: Kyong-Uk surname: Lee fullname: Lee, Kyong-Uk – sequence: 4 givenname: Jeong-Ho surname: Chae fullname: Chae, Jeong-Ho – sequence: 5 givenname: Kyongsik surname: Yun fullname: Yun, Kyongsik |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32116837$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFUUtvEzEQtlARLaV3TmiPXBJs78ZrX5CqlkekVEhAxdHyju3ElbNebC8o_fX1JqVqOcDJo5nvMfP5JTrqQ28Qek3wvK65eGeHtMtziimeY4wJe4ZOCGPNDLMGHz2qj9FZSjcFgmsharZ4gY5rSgjjdXuCrpba9NnZnevX1TfYuNswbKLpnaqu076X4wh5jMpXV1-X1Q-XN5WqLo0ZqpVRsZ8w534dYhlsX6HnVvlkzu7fU3T98cP3i8-z1ZdPy4vz1QwaRvNMMGWJsBwbbYgA3AggmmFNQSw6xqFrG9BGqIZQ2jFFjLG608q2C0tBg6pP0fKgq4O6kUN0WxV3Mign940Q11LF7MAbSTmloBgvbm3TtZ1gYLvGAlBBiQFetMhBa-wHtfutvH8QJFhOSct90nJKWu6TLpz3B84wdlujoURYAnqyyNNJ7zZyHX7JFuOyjygCb-8FYvg5mpTl1iUw3qvehDFJWjPBOWd08nrz2OvB5M8fFgA7ACCGlKKxElxW2YXJ2vl_XYH_Iv738DsDh8Ti |
| CitedBy_id | crossref_primary_10_1007_s11571_023_10011_x crossref_primary_10_1016_j_neuroimage_2024_120674 crossref_primary_10_1016_j_schres_2022_01_058 crossref_primary_10_3390_brainsci13020267 crossref_primary_10_1002_hbm_26521 crossref_primary_10_3389_fnins_2021_785595 crossref_primary_10_3390_brainsci12060788 crossref_primary_10_7210_jrsj_40_796 crossref_primary_10_1177_15500594241253910 crossref_primary_10_3389_fpsyt_2022_826111 crossref_primary_10_3389_fpubh_2022_1049069 crossref_primary_10_1111_srt_70016 crossref_primary_10_1192_bjp_2022_22 crossref_primary_10_3390_brainsci12050615 crossref_primary_10_1038_s41598_025_93912_7 crossref_primary_10_3390_diagnostics11081402 crossref_primary_10_1007_s11011_021_00692_w crossref_primary_10_3390_s23010280 crossref_primary_10_3389_fbioe_2022_985692 crossref_primary_10_3390_diagnostics14232698 crossref_primary_10_1038_s41380_024_02682_7 crossref_primary_10_1371_journal_pone_0262717 crossref_primary_10_3390_diagnostics13132140 crossref_primary_10_1080_03772063_2025_2469644 crossref_primary_10_3389_fnhum_2023_1280512 crossref_primary_10_3389_fpsyt_2022_1075564 crossref_primary_10_1007_s12652_023_04536_6 crossref_primary_10_1016_j_heliyon_2023_e19422 crossref_primary_10_1038_s41386_022_01514_y crossref_primary_10_1186_s40658_021_00426_y crossref_primary_10_1155_2022_1581958 crossref_primary_10_1001_jamanetworkopen_2023_1671 crossref_primary_10_1111_pcn_13625 crossref_primary_10_1016_j_pscychresns_2024_111790 crossref_primary_10_3390_brainsci12040439 crossref_primary_10_1007_s11042_022_13809_9 crossref_primary_10_1007_s13246_023_01225_8 crossref_primary_10_1016_j_eswa_2022_117158 crossref_primary_10_3389_fnins_2023_998818 crossref_primary_10_1080_27706710_2023_2249036 crossref_primary_10_1186_s12916_023_02941_4 crossref_primary_10_1038_s41598_023_41359_z crossref_primary_10_1016_j_expneurol_2021_113608 crossref_primary_10_1007_s11571_022_09904_0 crossref_primary_10_1016_j_neunet_2021_09_018 crossref_primary_10_1016_j_ajp_2024_104153 crossref_primary_10_1093_schbul_sbad103 crossref_primary_10_1111_pcn_13736 crossref_primary_10_1016_j_ajp_2022_103263 crossref_primary_10_1136_bmjopen_2024_084463 crossref_primary_10_1007_s00330_023_09979_1 crossref_primary_10_1007_s13721_023_00415_4 crossref_primary_10_1016_j_compbiomed_2022_105554 crossref_primary_10_3389_fnins_2022_926426 crossref_primary_10_1016_j_schres_2021_05_018 crossref_primary_10_1007_s11571_022_09897_w crossref_primary_10_32604_iasc_2021_015049 crossref_primary_10_3389_fninf_2021_777977 crossref_primary_10_3390_diagnostics11030393 crossref_primary_10_1016_j_brainres_2024_148876 crossref_primary_10_2174_2211555204666220131112639 crossref_primary_10_1007_s40473_020_00209_2 crossref_primary_10_1016_j_schres_2021_06_011 crossref_primary_10_1109_TIP_2023_3307975 crossref_primary_10_31083_j_jin2104119 |
| Cites_doi | 10.1016/j.biopsych.2005.09.010 10.1038/srep46878 10.1016/S0920-9964(01)00163-3 10.1038/s41380-019-0365-9 10.1016/S0006-3223(01)01303-8 10.1016/j.ebiom.2018.03.017 10.1038/mp.2012.105 10.1016/j.neuroimage.2015.06.030 10.1016/j.schres.2005.04.008 10.1176/appi.ajp.162.3.602 10.3389/fnins.2012.00171 10.1007/978-3-319-10599-4_7 10.1007/s12021-013-9184-3 10.1016/j.neuroimage.2005.02.013 10.1038/mp.2015.209 10.1038/srep38897 10.1093/schbul/sbw130 10.1109/TPAMI.2012.59 10.1016/j.neuroimage.2015.06.065 10.1038/s41380-018-0228-9 10.1371/journal.pcbi.1000532 10.1176/ajp.156.4.544 10.1001/jama.2016.17216 10.1007/978-3-030-00889-5_16 10.1192/bjp.bp.109.070441 10.1016/j.neunet.2015.04.002 10.1038/nature14539 10.1093/schbul/sby189 10.1093/schbul/sbw122 10.1109/IROS.2015.7353481 10.1176/ajp.157.1.16 10.1093/schbul/sbs118 10.1038/nrneurol.2009.215 10.1093/cercor/bhg087 10.1176/appi.ajp.162.12.2233 10.1001/jama.2018.11029 10.1016/j.neuroimage.2015.05.060 10.1016/j.biopsych.2011.01.032 10.1109/3DV.2016.79 10.1016/j.schres.2011.09.005 10.1109/ISBI.2017.7950647 10.1016/j.schres.2017.11.037 10.1145/2647868.2654889 10.1109/ICASSP.2013.6639346 |
| ContentType | Journal Article |
| Copyright | Copyright © 2020 Oh, Oh, Lee, Chae and Yun. Copyright © 2020 Oh, Oh, Lee, Chae and Yun 2020 Oh, Oh, Lee, Chae and Yun |
| Copyright_xml | – notice: Copyright © 2020 Oh, Oh, Lee, Chae and Yun. – notice: Copyright © 2020 Oh, Oh, Lee, Chae and Yun 2020 Oh, Oh, Lee, Chae and Yun |
| DBID | AAYXX CITATION NPM 7X8 5PM ADTOC UNPAY DOA |
| DOI | 10.3389/fpsyt.2020.00016 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| EISSN | 1664-0640 |
| ExternalDocumentID | oai_doaj_org_article_2822ca68f8074b7b96cfb4fcc2921ec8 10.3389/fpsyt.2020.00016 PMC7008229 32116837 10_3389_fpsyt_2020_00016 |
| Genre | Journal Article |
| GroupedDBID | 53G 5VS 9T4 AAFWJ AAKDD AAYXX ABIVO ACGFO ACGFS ADBBV ADRAZ AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BAWUL BCNDV CITATION DIK EMOBN GROUPED_DOAJ GX1 HYE KQ8 M48 M~E O5R O5S OK1 PGMZT RNS RPM ACXDI IPNFZ NPM RIG 7X8 5PM ADTOC UNPAY |
| ID | FETCH-LOGICAL-c462t-96af19f80ede19c049c1d60d2c95b68cb74cde9a4122b6a1eefdbdaf75f2cdca3 |
| IEDL.DBID | UNPAY |
| ISSN | 1664-0640 |
| IngestDate | Fri Oct 03 12:51:12 EDT 2025 Sun Oct 26 04:08:07 EDT 2025 Tue Sep 30 15:51:53 EDT 2025 Thu Oct 02 07:39:46 EDT 2025 Mon Jul 21 05:53:29 EDT 2025 Thu Apr 24 23:04:21 EDT 2025 Wed Oct 01 03:51:57 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | deep learning schizophrenia classification MRI structural abnormalities |
| Language | English |
| License | Copyright © 2020 Oh, Oh, Lee, Chae and Yun. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-96af19f80ede19c049c1d60d2c95b68cb74cde9a4122b6a1eefdbdaf75f2cdca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Stefan Borgwardt, University of Basel, Switzerland This article was submitted to Schizophrenia, a section of the journal Frontiers in Psychiatry Reviewed by: Teresa Sanchez-Gutierrez, Universidad Internacional De La Rioja, Spain; Peter Uhlhaas, University of Glasgow, United Kingdom |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.3389/fpsyt.2020.00016 |
| PMID | 32116837 |
| PQID | 2369888626 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2822ca68f8074b7b96cfb4fcc2921ec8 unpaywall_primary_10_3389_fpsyt_2020_00016 pubmedcentral_primary_oai_pubmedcentral_nih_gov_7008229 proquest_miscellaneous_2369888626 pubmed_primary_32116837 crossref_citationtrail_10_3389_fpsyt_2020_00016 crossref_primary_10_3389_fpsyt_2020_00016 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-02-03 |
| PublicationDateYYYYMMDD | 2020-02-03 |
| PublicationDate_xml | – month: 02 year: 2020 text: 2020-02-03 day: 03 |
| PublicationDecade | 2020 |
| PublicationPlace | Switzerland |
| PublicationPlace_xml | – name: Switzerland |
| PublicationTitle | Frontiers in psychiatry |
| PublicationTitleAlternate | Front Psychiatry |
| PublicationYear | 2020 |
| Publisher | Frontiers Media S.A |
| Publisher_xml | – name: Frontiers Media S.A |
| References | Fischl (B49) 2004; 14 George (B31) 2009; 5 Khosla (B32) 2018 Frisoni (B10) 2010; 6 Okada (B7) 2016; 21 Kogan (B25) 2016; 124 Leucht (B28) 2005; 79 Korolev (B36) 2017 Stead (B51) 2018; 320 Keshavan (B52) 2011; 133 Zhang (B42) 2016 Ji (B33) 2012; 35 Wright (B3) 2000; 157 Pinaya (B15) 2016; 6 Nunes (B16) 2018; 1 Lieberman (B6) 2001; 50 Masters (B40) 2018 Nenadic (B4) 2010; 196 Wang (B20) 2016; 124 Zhang (B41) 2014 Kapur (B8) 2012; 17 Haijma (B2) 2012; 39 Jia (B19) 2014 Maturana (B34) 2015 Mørch-Johnsen (B5) 2016; 43 LeCun (B30) 2015; 521 Gollub (B23) 2013; 11 Jones (B39) 2005; 26 Xiao (B14) 2017; 214 Bustillo (B21) 2016; 43 Price (B9) 2006; 60 Honea (B1) 2005; 162 LeCun (B11) 2015; 521 Milletari (B37) 2016 Durstewitz (B18) 2019; 1 Chyzhyk (B22) 2015; 68 Olabi (B47) 2011; 70 Payan (B35) 2015 Gulshan (B13) 2016; 316 Graham (B50) 2015 (B29) 2000 Robinson (B26) 1999; 156 Ciompi (B12) 2017; 7 Alpert (B24) 2016; 124 Zeng (B53) 2018; 30 Dahl (B38) 2013 Szeszko (B27) 2005; 162 Klein (B45) 2012; 6 Shenton (B48) 2001; 49 Vieira (B17) 2019; 46 Ron (B44) 1995 Krizhevsky (B46) 2012 Srivastava (B43) 2014; 15 |
| References_xml | – volume: 60 start-page: 1 year: 2006 ident: B9 article-title: A multivariate electrophysiological endophenotype, from a unitary cohort, shows greater research utility than any single feature in the western australian family study of schizophrenia publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2005.09.010 – volume: 7 start-page: 46479 year: 2017 ident: B12 article-title: Towards automatic pulmonary nodule management in lung cancer screening with deep learning publication-title: Sci Rep doi: 10.1038/srep46878 – volume: 49 start-page: 1 year: 2001 ident: B48 article-title: A review of MRI findings in schizophrenia publication-title: Schizophr Res doi: 10.1016/S0920-9964(01)00163-3 – volume: 1 start-page: 1583 year: 2019 ident: B18 article-title: Deep neural networks in psychiatry publication-title: Mol Psychiatry doi: 10.1038/s41380-019-0365-9 – volume: 50 year: 2001 ident: B6 article-title: The early stages of schizophrenia: speculations on pathogenesis, pathophysiology, and therapeutic approaches publication-title: Biol Psychiatry doi: 10.1016/S0006-3223(01)01303-8 – volume: 30 start-page: 74 year: 2018 ident: B53 article-title: Multi-site diagnostic classification of schizophrenia using discriminant deep learning with functional connectivity MRI publication-title: EBioMedicine doi: 10.1016/j.ebiom.2018.03.017 – volume: 17 start-page: 1174 year: 2012 ident: B8 article-title: Why has it taken so long for biological psychiatry to develop clinical tests and what to do about it publication-title: Mol Psychiatry doi: 10.1038/mp.2012.105 – volume: 124 year: 2016 ident: B25 article-title: Northwestern University schizophrenia data sharing for SchizConnect: a longitudinal dataset for large-scale integration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.030 – volume: 79 start-page: 231 year: 2005 ident: B28 article-title: What does the PANSS mean? publication-title: Schizophr Res doi: 10.1016/j.schres.2005.04.008 – volume: 162 year: 2005 ident: B27 article-title: White matter abnormalities in first-episode schizophrenia or schizoaffective disorder: a diffusion tensor imaging study publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.162.3.602 – volume: 6 year: 2012 ident: B45 article-title: 101 labeled brain images and a consistent human cortical labeling protocol publication-title: Front Neurosci doi: 10.3389/fnins.2012.00171 – start-page: 94 volume-title: Computer Vision – ECCV 2014 Lecture Notes in Computer Science year: 2014 ident: B41 article-title: Facial landmark detection by deep multi-task learning doi: 10.1007/978-3-319-10599-4_7 – volume: 11 year: 2013 ident: B23 article-title: The MCIC collection: a shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia publication-title: Neuroinformatics doi: 10.1007/s12021-013-9184-3 – volume: 26 year: 2005 ident: B39 article-title: The effect of filter size on VBM analyses of DT-MRI data publication-title: Neuroimage doi: 10.1016/j.neuroimage.2005.02.013 – volume: 21 start-page: 1460 year: 2016 ident: B7 article-title: Abnormal asymmetries in subcortical brain volume in schizophrenia publication-title: Mol Psychiatry doi: 10.1038/mp.2015.209 – volume: 6 start-page: 38897 year: 2016 ident: B15 article-title: Using deep belief network modelling to characterize differences in brain morphometry in schizophrenia publication-title: Sci Rep doi: 10.1038/srep38897 – volume: 43 start-page: 75 year: 2016 ident: B5 article-title: Auditory cortex characteristics in schizophrenia: associations with auditory hallucinations publication-title: Schizophr Bull doi: 10.1093/schbul/sbw130 – volume: 35 year: 2012 ident: B33 article-title: 3D convolutional neural networks for human action recognition publication-title: IEEE Trans Pattern Anal Mach Intell doi: 10.1109/TPAMI.2012.59 – volume: 124 year: 2016 ident: B20 article-title: SchizConnect: mediating neuroimaging databases on schizophrenia and related disorders for large-scale integration publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.06.065 – year: 2016 ident: B42 article-title: Understanding deep learning requires rethinking generalization publication-title: ArXiv – volume: 1 start-page: 1 year: 2018 ident: B16 article-title: Using structural MRI to identify bipolar disorders–13 site machine learning study in 3020 individuals from the ENIGMA bipolar disorders working group publication-title: Mol Psychiatry doi: 10.1038/s41380-018-0228-9 – year: 2015 ident: B35 article-title: Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks publication-title: ArXiv. Prepr. ArXiv. – volume: 5 start-page: e1000532 year: 2009 ident: B31 article-title: Towards a mathematical theory of cortical micro-circuits publication-title: PloS Comput Biol doi: 10.1371/journal.pcbi.1000532 – volume: 156 year: 1999 ident: B26 article-title: Predictors of treatment response from a first episode of schizophrenia or schizoaffective disorder publication-title: Am J Psychiatry doi: 10.1176/ajp.156.4.544 – volume-title: Diagnostic and Statistical Manual of Mental Disorders year: 2000 ident: B29 – volume: 316 year: 2016 ident: B13 article-title: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs publication-title: Jama doi: 10.1001/jama.2016.17216 – volume-title: Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support year: 2018 ident: B32 article-title: 3D convolutional neural networks for classification of functional connectomes doi: 10.1007/978-3-030-00889-5_16 – volume: 196 year: 2010 ident: B4 article-title: Auditory hallucinations and brain structure in schizophrenia: voxel-based morphometric study publication-title: Br J Psychiatry doi: 10.1192/bjp.bp.109.070441 – volume: 68 start-page: 23 year: 2015 ident: B22 article-title: Computer aided diagnosis of schizophrenia on resting state fMRI data by ensembles of ELM publication-title: Neural Netw doi: 10.1016/j.neunet.2015.04.002 – volume: 521 start-page: 436 year: 2015 ident: B11 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 46 start-page: 17 year: 2019 ident: B17 article-title: Using machine learning and structural neuroimaging to detect first episode psychosis: reconsidering the evidence publication-title: Schizophr Bull doi: 10.1093/schbul/sby189 – volume: 43 year: 2016 ident: B21 article-title: Glutamatergic and neuronal dysfunction in gray and white matter: a spectroscopic imaging study in a large schizophrenia sample publication-title: Schizophr Bull doi: 10.1093/schbul/sbw122 – volume-title: 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE) year: 2015 ident: B34 article-title: Voxnet: a 3d convolutional neural network for real-time object recognition doi: 10.1109/IROS.2015.7353481 – volume-title: Advances in Neural Information Processing Systems 25 year: 2012 ident: B46 article-title: ImageNet classification with deep convolutional neural networks – volume: 157 start-page: 16 year: 2000 ident: B3 article-title: Meta-analysis of regional brain volumes in schizophrenia publication-title: Am J Psychiatry doi: 10.1176/ajp.157.1.16 – volume: 15 year: 2014 ident: B43 article-title: Dropout: a simple way to prevent neural networks from overfitting publication-title: J. Mach Learn Res. – volume: 39 year: 2012 ident: B2 article-title: Brain volumes in schizophrenia: a meta-analysis in over 18 000 subjects publication-title: Schizophr Bull doi: 10.1093/schbul/sbs118 – volume: 6 start-page: 67 year: 2010 ident: B10 article-title: The clinical use of structural MRI in Alzheimer disease publication-title: Nat Rev Neurol doi: 10.1038/nrneurol.2009.215 – year: 2018 ident: B40 article-title: Revisiting small batch training for deep neural networks publication-title: ArXiv – volume: 14 start-page: 11 year: 2004 ident: B49 article-title: Automatically parcellating the human cerebral cortex publication-title: Cereb. Cortex doi: 10.1093/cercor/bhg087 – year: 1995 ident: B44 article-title: A Study of cross-validation and bootstrap for accuracy estimation and model selection – volume: 162 year: 2005 ident: B1 article-title: Regional deficits in brain volume in schizophrenia: a meta-analysis of voxel-based morphometry studies publication-title: Am J Psychiatry doi: 10.1176/appi.ajp.162.12.2233 – volume: 521 year: 2015 ident: B30 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 320 year: 2018 ident: B51 article-title: Clinical implications and challenges of artificial intelligence and deep learning publication-title: JAMA doi: 10.1001/jama.2018.11029 – volume: 124 year: 2016 ident: B24 article-title: The northwestern university neuroimaging data archive (NUNDA) publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.05.060 – volume: 70 start-page: 88 year: 2011 ident: B47 article-title: Are there progressive brain changes in schizophrenia? a meta-analysis of structural magnetic resonance imaging studies publication-title: Biol Psychiatry doi: 10.1016/j.biopsych.2011.01.032 – year: 2016 ident: B37 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation doi: 10.1109/3DV.2016.79 – year: 2015 ident: B50 article-title: Kaggle diabetic retinopathy detection competition report – volume: 133 year: 2011 ident: B52 article-title: A dimensional approach to the psychosis spectrum between bipolar disorder and schizophrenia: the Schizo-Bipolar Scale publication-title: Schizophr Res doi: 10.1016/j.schres.2011.09.005 – volume-title: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017) (IEEE) year: 2017 ident: B36 article-title: Residual and plain convolutional neural networks for 3D brain MRI classification doi: 10.1109/ISBI.2017.7950647 – volume: 214 start-page: 11 year: 2017 ident: B14 article-title: Support vector machine-based classification of first episode drug-naïve schizophrenia patients and healthy controls using structural MRI publication-title: Schizophr Res doi: 10.1016/j.schres.2017.11.037 – volume-title: Proceedings of the 22nd ACM international conference on Multimedia (ACM) year: 2014 ident: B19 article-title: Caffe: Convolutional architecture for fast feature embedding doi: 10.1145/2647868.2654889 – volume-title: 2013 IEEE international conference on acoustics, speech and signal processing (IEEE) year: 2013 ident: B38 article-title: Improving deep neural networks for LVCSR using rectified linear units and dropout doi: 10.1109/ICASSP.2013.6639346 |
| SSID | ssj0000399365 |
| Score | 2.5362298 |
| Snippet | Although distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI) remains... ObjectiveAlthough distinctive structural abnormalities occur in patients with schizophrenia, detecting schizophrenia with magnetic resonance imaging (MRI)... |
| SourceID | doaj unpaywall pubmedcentral proquest pubmed crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
| StartPage | 16 |
| SubjectTerms | classification deep learning MRI Psychiatry schizophrenia structural abnormalities |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BTtwwELUqLu0FUbWFQFu5Ui9UinbjJE58BAqilZZDKYJbZI_HgLRkV2VRxd93xgmrrEDlwjV2Entm7JmR3zwL8bUqFZJftWlZI6RFQJuaMkCqajvW7BAq5ERxcqKPz4qfF-XF4KovxoR19MCd4EYMcwSr68CsLa5yRkNwRQBQRmUIscx3XJtBMhX3YPa7uuzOJSkLM6Mwv71n7KRiKNeYrzcf-KFI1_9UjPkYKvn6rp3b-792Oh34oaMNsd4HkHKvG_hb8Qrbd2LS1dvGmiV5OsTRyYgJkKeRJpYpNuTk1w95fr24klZ-R5zLnmH1Uu5NL2d_qOHmvTg7Ovx9cJz2FyWkUGi1SI22ITMkIfSYGaCgHzKvx16BKZ2uwVUFeDS2yJRy2maIwTtvQ1UGBR5s_kGstbMWt4TMFSja8YL2hS64LAspgPC8al1J0ZFPxOhBbA30LOJ8mcW0oWyCBd1EQTcs6HiwrROxu3xj3jFo_KfvPmti2Y-5r-MDsoimt4jmOYtIxJcHPTa0VvgAxLY4u7ttVK4NZfxkg4nY7PS6_FVOmbCmbD0R1YrGV8ay2tJeX0U-7qqjzU_Et6VtPDvT7ZeY6Y54w1-MIPL8o1gjU8JPFCMt3Oe4HP4BDNsR-g priority: 102 providerName: Directory of Open Access Journals – databaseName: Scholars Portal Journals: Open Access dbid: M48 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB7BIsFeEIjHhpeMxAWksI2TOPYBoeWxWpDKgaVib5E9trsrhbS0XUH_PR4nLa2oQOIa23EyD8-MPPMNwLOq5C7YVZ2W0mFaeKdTVXpMudQDQQahchQoDj-Jk1Hx8aw8-10e3RNwvjO0o35So1nz8uf35eug8K8o4gz29tBP50tKi-SUpRVcmKtwLdgpRY0chr2zH89lssWi7O4qdy7ch-t5CIiEpK7oG2YqovnvckH_zKS8cdlO9fKHbpoNM3V8C272_iU76gTiNlxx7R0YduW4saSJnW6m2bGYMsBOI4osIXCw4ecP7OvF4pxp9s65KesBWMfsqBlPZmHg210YHb__8vYk7fsopFgIvkiV0D5TXg6cdZnCEBNgZsXAclSlERJNVaB1ShcZ50bozDlvjdW-Kj1Hizq_B3vtpHUHwHKOPByIXthCFFS15YJ_YUmpTRmcJ5vA4YpsNfYg49TroqlDsEE0ryPNa6J5vPcWCTxfr5h2ABt_mfuGOLGeR9DY8cFkNq57TaspLxa1kJ5gfkxllEBvCo_IFc8cygServhYB1Wi-xHdusnlvOa5UFJSiJfA_Y6v661WcpFAtcXxrW_ZHmkvziNcd9Wh6ifwYi0b__zTB_-9zUPYp9fExPL8EewF-XGPg9-0ME-iOvwCU1IZ6Q priority: 102 providerName: Scholars Portal |
| Title | Identifying Schizophrenia Using Structural MRI With a Deep Learning Algorithm |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/32116837 https://www.proquest.com/docview/2369888626 https://pubmed.ncbi.nlm.nih.gov/PMC7008229 https://doi.org/10.3389/fpsyt.2020.00016 https://doaj.org/article/2822ca68f8074b7b96cfb4fcc2921ec8 |
| UnpaywallVersion | publishedVersion |
| Volume | 11 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: KQ8 dateStart: 20090101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: KQ8 dateStart: 20100101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: DOA dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVBFR databaseName: Free Medical Journals - Free Access to All customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: DIK dateStart: 20100101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central (Free e-resource, activated by CARLI) customDbUrl: eissn: 1664-0640 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: RPM dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVFZP databaseName: Scholars Portal Journals: Open Access customDbUrl: eissn: 1664-0640 dateEnd: 20250131 omitProxy: true ssIdentifier: ssj0000399365 issn: 1664-0640 databaseCode: M48 dateStart: 20100801 isFulltext: true titleUrlDefault: http://journals.scholarsportal.info providerName: Scholars Portal |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wAvDMRXNpiMxAtI2RrHceLHbjANpE6IUTGeIvtsbxMlrdZWaPz1-JysamHi4yVSYluJz3e5O9_dzwAvy4K7oFd1WlQOU-GdTlXhMeWV7ktSCKUjR3F4LI9G4v1pcdrtd1AtzEr8PjhPas9PZ1eU8sgpAyuYJ7dhQxbB6u7Bxuj4w-AL-VNSipQCUm0U8sZha1ongvPfZFH-nhh5Z9FM9dV3PR6vaJ3DzRYCaRbBCinZ5OvuYm528ccvUI7_MqH7cK8zPdmg5ZUHcMs1D2HYVurGaid2spqBx2I2ATuJALMEzsGGH9-xzxfzc6bZG-emrMNmPWOD8dnkMjR8ewSjw7efDo7S7oiFFIXk81RJ7TPlq76zLlMY3AXMrOxbjqowskJTCrROaZFxbqTOnPPWWO3LwnO0qPPH0GsmjXsKLOfIw7_SSyukoIIuF0wPS_JuimBX2QT2rpegxg5_nI7BGNfBDyHS1JE0NZEmhsRlAq-WI6Yt9sYf-u7Tqi77EWp2fBBoX3dCWFPKLGpZeUIAMqVREr0RHpErnjmsEnhxzRN1kDIKnejGTRazmudSVRV5fwk8aXlk-ao8-NAy-PkJlGvcs_Yt6y3NxXlE8i5bwP0EXi_57K8z3fqfzttwl25imnn-DHqBZdzzYEXNzU7cfQjXoah2OmH6CXWRHMI |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED9B9wAvfIiPhTFkJF5AytY4jhM_lsE0kDohRsV4iuyzvU2UtFpboe2vn8_JqhYmPh4T20p8vovvl7v7GeBVWXAX9lWdFpXDVHinU1V4THml-5I2hNIRUBweyoOR-HhcHHf_O6gWZiV-H8CT2vXT2QWlPHLKwAruyW3YkEXwunuwMTr8NPhGeEpKkVJAqo1C3jhsbdeJ5Pw3eZS_J0beWTRTffFTj8cru87-_ZYCaRbJCinZ5PvOYm528PIXKsd_mdADuNe5nmzQ6spDuOWaRzBsK3VjtRM7Ws3AYzGbgB1Fglki52DDzx_Y17P5KdPsnXNT1nGznrDB-GRyHhp-PIbR_vsvewdpd8RCikLyeaqk9pnyVd9ZlykMcAEzK_uWoyqMrNCUAq1TWmScG6kz57w1Vvuy8Bwt6vwJ9JpJ4zaB5Rx5-FZ6aYUUVNDlguthyd5NEfwqm8Du9RLU2PGP0zEY4zrgEBJNHUVTk2hiSFwm8Ho5Ytpyb_yh71ta1WU_Ys2ON4Ls684Ia0qZRS0rTwxApjRKojfCI3LFM4dVAi-vdaIOVkahE924yWJW81yqqiL0l8DTVkeWj8oDhpYB5ydQrmnP2rustzRnp5HJu2wJ9xN4s9Szv8702f903oK7dBHTzPPn0Asq47aDFzU3LzoDugItdhrz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identifying+Schizophrenia+Using+Structural+MRI+With+a+Deep+Learning+Algorithm&rft.jtitle=Frontiers+in+psychiatry&rft.au=Oh%2C+Jihoon&rft.au=Oh%2C+Baek-Lok&rft.au=Lee%2C+Kyong-Uk&rft.au=Chae%2C+Jeong-Ho&rft.date=2020-02-03&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-0640&rft.volume=11&rft_id=info:doi/10.3389%2Ffpsyt.2020.00016&rft_id=info%3Apmid%2F32116837&rft.externalDocID=PMC7008229 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-0640&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-0640&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-0640&client=summon |