Incorporating High-Frequency Physiologic Data Using Computational Dictionary Learning Improves Prediction of Delayed Cerebral Ischemia Compared to Existing Methods

Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bed...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in neurology Vol. 9; p. 122
Main Authors Megjhani, Murad, Terilli, Kalijah, Frey, Hans-Peter, Velazquez, Angela G., Doyle, Kevin William, Connolly, Edward Sander, Roh, David Jinou, Agarwal, Sachin, Claassen, Jan, Elhadad, Noemie, Park, Soojin
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 07.03.2018
Subjects
Online AccessGet full text
ISSN1664-2295
1664-2295
DOI10.3389/fneur.2018.00122

Cover

Abstract Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bedside monitors. We develop and validate a prediction model for DCI after SAH, demonstrating improved precision over standard methods alone. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Modified Fisher Scale was considered the standard grading scale in clinical use; baseline features also analyzed included age, sex, Hunt-Hess, and Glasgow Coma Scales. An unsupervised approach using convolution dictionary learning was used to extract features from physiological time series (systolic blood pressure and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial least squares and linear and kernel support vector machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: AUC 0.66. Combined baseline and physiologic features with redundant feature reduction: AUC 0.71 on derivation dataset and 0.78 on validation dataset. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that we could incorporate individual physiologic data to achieve higher classification accuracy.
AbstractList Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bedside monitors. We develop and validate a prediction model for DCI after SAH, demonstrating improved precision over standard methods alone. 488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Modified Fisher Scale was considered the standard grading scale in clinical use; baseline features also analyzed included age, sex, Hunt-Hess, and Glasgow Coma Scales. An unsupervised approach using convolution dictionary learning was used to extract features from physiological time series (systolic blood pressure and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial least squares and linear and kernel support vector machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset. The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: AUC 0.66. Combined baseline and physiologic features with redundant feature reduction: AUC 0.71 on derivation dataset and 0.78 on validation dataset. Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that we could incorporate individual physiologic data to achieve higher classification accuracy.
PurposeAccurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bedside monitors. We develop and validate a prediction model for DCI after SAH, demonstrating improved precision over standard methods alone.Methods488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Modified Fisher Scale was considered the standard grading scale in clinical use; baseline features also analyzed included age, sex, Hunt–Hess, and Glasgow Coma Scales. An unsupervised approach using convolution dictionary learning was used to extract features from physiological time series (systolic blood pressure and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial least squares and linear and kernel support vector machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset.ResultsThe performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: AUC 0.66. Combined baseline and physiologic features with redundant feature reduction: AUC 0.71 on derivation dataset and 0.78 on validation dataset.ConclusionCurrent DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that we could incorporate individual physiologic data to achieve higher classification accuracy.
Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bedside monitors. We develop and validate a prediction model for DCI after SAH, demonstrating improved precision over standard methods alone.PURPOSEAccurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor neurological outcome. This paper presents a model using convolution dictionary learning to extract features from physiological data available from bedside monitors. We develop and validate a prediction model for DCI after SAH, demonstrating improved precision over standard methods alone.488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Modified Fisher Scale was considered the standard grading scale in clinical use; baseline features also analyzed included age, sex, Hunt-Hess, and Glasgow Coma Scales. An unsupervised approach using convolution dictionary learning was used to extract features from physiological time series (systolic blood pressure and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial least squares and linear and kernel support vector machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset.METHODS488 consecutive SAH admissions from 2006 to 2014 to a tertiary care hospital were included. Models were trained on 80%, while 20% were set aside for validation testing. Modified Fisher Scale was considered the standard grading scale in clinical use; baseline features also analyzed included age, sex, Hunt-Hess, and Glasgow Coma Scales. An unsupervised approach using convolution dictionary learning was used to extract features from physiological time series (systolic blood pressure and diastolic blood pressure, heart rate, respiratory rate, and oxygen saturation). Classifiers (partial least squares and linear and kernel support vector machines) were trained on feature subsets of the derivation dataset. Models were applied to the validation dataset.The performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: AUC 0.66. Combined baseline and physiologic features with redundant feature reduction: AUC 0.71 on derivation dataset and 0.78 on validation dataset.RESULTSThe performances of the best classifiers on the validation dataset are reported by feature subset. Standard grading scale (mFS): AUC 0.54. Combined demographics and grading scales (baseline features): AUC 0.63. Kernel derived physiologic features: AUC 0.66. Combined baseline and physiologic features with redundant feature reduction: AUC 0.71 on derivation dataset and 0.78 on validation dataset.Current DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that we could incorporate individual physiologic data to achieve higher classification accuracy.CONCLUSIONCurrent DCI prediction tools rely on admission imaging and are advantageously simple to employ. However, using an agnostic and computationally inexpensive learning approach for high-frequency physiologic time series data, we demonstrated that we could incorporate individual physiologic data to achieve higher classification accuracy.
Author Connolly, Edward Sander
Agarwal, Sachin
Roh, David Jinou
Claassen, Jan
Elhadad, Noemie
Terilli, Kalijah
Velazquez, Angela G.
Frey, Hans-Peter
Megjhani, Murad
Park, Soojin
Doyle, Kevin William
AuthorAffiliation 1 Department of Neurology, Columbia University , New York, NY , United States
2 Department of Neurosurgery, Columbia University , New York, NY , United States
3 Department of Biomedical Informatics, Columbia University , New York, NY , United States
AuthorAffiliation_xml – name: 1 Department of Neurology, Columbia University , New York, NY , United States
– name: 2 Department of Neurosurgery, Columbia University , New York, NY , United States
– name: 3 Department of Biomedical Informatics, Columbia University , New York, NY , United States
Author_xml – sequence: 1
  givenname: Murad
  surname: Megjhani
  fullname: Megjhani, Murad
– sequence: 2
  givenname: Kalijah
  surname: Terilli
  fullname: Terilli, Kalijah
– sequence: 3
  givenname: Hans-Peter
  surname: Frey
  fullname: Frey, Hans-Peter
– sequence: 4
  givenname: Angela G.
  surname: Velazquez
  fullname: Velazquez, Angela G.
– sequence: 5
  givenname: Kevin William
  surname: Doyle
  fullname: Doyle, Kevin William
– sequence: 6
  givenname: Edward Sander
  surname: Connolly
  fullname: Connolly, Edward Sander
– sequence: 7
  givenname: David Jinou
  surname: Roh
  fullname: Roh, David Jinou
– sequence: 8
  givenname: Sachin
  surname: Agarwal
  fullname: Agarwal, Sachin
– sequence: 9
  givenname: Jan
  surname: Claassen
  fullname: Claassen, Jan
– sequence: 10
  givenname: Noemie
  surname: Elhadad
  fullname: Elhadad, Noemie
– sequence: 11
  givenname: Soojin
  surname: Park
  fullname: Park, Soojin
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29563892$$D View this record in MEDLINE/PubMed
BookMark eNp1ksFv2yAUxtHUae2y3neaOO6SDGyMzWXSlLRrpEzrYT0jwM82lQ0Z2NXy9-wfHXHaqZ00LqDH9_0e6Htv0ZnzDhB6T8kqzyvxqXEwhVVGaLUihGbZK3RBOWfLLBPF2bPzObqM8Z6klQuR8_wNOk9VnhDZBfq9dcaHvQ9qtK7FN7btltcBfk7gzAHfdodofe9ba_BGjQrfxaNq7Yf9NCaHd6rHG2vmUzjgHajgjortsA_-ASK-DVCf7rFv8AZ6dYAaryGADsm7jaaDwaoZqZIWjx5f_bJxfs03GDtfx3fodaP6CJeP-wLdXV_9WN8sd9-_btdfdkvDeDYuq7rktMlYA0LXijJV1ryquWK6yHXDSKNLxqEohOLAKWhBKiOY5oVRAEWp8gXanri1V_dyH-yQ_iS9snIu-NBKFUZrepA1JzkthSoyDYyqrEpYQTUpGqIZ5JBYn0-s_aQHqA24Mf33BfTljbOdbP2DLCpWiBTVAn18BASf0oijHGw00PfKgZ-iTLmXhJPUOEk_PO_1t8lTyknATwITfIwBGmnsKb7U2vaSEnmcKDlP1JFcyXmikpH8Y3xi_9fyB69y09g
CitedBy_id crossref_primary_10_1186_s12874_019_0847_0
crossref_primary_10_1007_s12028_022_01481_8
crossref_primary_10_1016_j_imu_2021_100817
crossref_primary_10_1016_j_wneu_2023_03_036
crossref_primary_10_1227_neu_0000000000001857
crossref_primary_10_2196_54121
crossref_primary_10_1111_aas_13582
crossref_primary_10_1111_ane_13541
crossref_primary_10_1161_STROKEAHA_120_032546
crossref_primary_10_1007_s11940_020_00622_8
Cites_doi 10.1016/j.artmed.2006.08.002
10.1109/TSP.2006.881199
10.1007/s12028-015-0125-x
10.1111/j.1466-8238.2007.00358.x
10.1145/1961189.1961199
10.1561/2200000016
10.1148/radiology.148.3.6878708
10.1161/STROKEAHA.108.544700
10.1016/0003-2670(86)80028-9
10.1109/TIP.2006.881969
10.3171/JNS.2008.109.12.1052
10.1166/jmihi.2011.1019
10.1111/j.1365-2362.2011.02562.x
10.1109/TPAMI.2005.159
10.1161/01.STR.30.7.1402
10.1385/NCC:2:2:110
10.1161/STROKEAHA.113.001125
10.1109/TPAMI.2016.2527652
10.1371/journal.pone.0066341
10.1109/JPROC.2015.2501978
10.3171/jns.2003.98.2.0319
10.1007/s12028-014-9976-9
10.1093/bioinformatics/btv109
10.1227/01.NEU.0000218821.34014.1B
10.1126/scitranslmed.3001304
10.1609/aaai.v30i1.10219
10.1007/bf00994018
10.1161/hs0901.095677
10.1093/bioinformatics/btx108
10.1161/01.STR.0000016401.49688.2F
10.1097/00006123-198001000-00001
10.3171/2016.1.JNS152554
10.1002/ana.410140602
10.1161/STROKEAHA.111.638403
10.1212/WNL.55.5.658
10.1212/01.WNL.0000035748.91128.C2
10.1227/01.NEU.0000163081.55025.CD
10.1109/TIP.2015.2495260
10.1007/978-1-4939-1985-7_6
10.1227/01.neu.0000306090.30517.ae
10.1186/1471-2105-15-S6-S2
10.1109/JBHI.2014.2330827
10.1145/2382577.2382579
10.1161/STROKEAHA.110.589275
10.1016/j.artmed.2007.06.003
10.1007/978-3-7091-0353-1_1
ContentType Journal Article
Copyright Copyright © 2018 Megjhani, Terilli, Frey, Velazquez, Doyle, Connolly, Roh, Agarwal, Claassen, Elhadad and Park. 2018 Megjhani, Terilli, Frey, Velazquez, Doyle, Connolly, Roh, Agarwal, Claassen, Elhadad and Park
Copyright_xml – notice: Copyright © 2018 Megjhani, Terilli, Frey, Velazquez, Doyle, Connolly, Roh, Agarwal, Claassen, Elhadad and Park. 2018 Megjhani, Terilli, Frey, Velazquez, Doyle, Connolly, Roh, Agarwal, Claassen, Elhadad and Park
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fneur.2018.00122
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1664-2295
ExternalDocumentID oai_doaj_org_article_d603179a52be41a2855991b05f0b4e3e
PMC5845900
29563892
10_3389_fneur_2018_00122
Genre Journal Article
GrantInformation_xml – fundername: NIEHS NIH HHS
  grantid: K01 ES026833
– fundername: National Science Foundation
  grantid: 1344668
– fundername: National Institutes of Health
  grantid: 5K01ES026833
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
E3Z
EMOBN
F5P
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
O5R
O5S
OK1
P2P
PGMZT
RNS
RPM
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-8d761f24fe9bda14a7d68d6a4b53bf40fb746e559a6e61eb908c94b65caee57a3
IEDL.DBID M48
ISSN 1664-2295
IngestDate Wed Aug 27 01:09:00 EDT 2025
Thu Aug 21 18:27:33 EDT 2025
Thu Sep 04 18:50:50 EDT 2025
Thu Jan 02 22:55:43 EST 2025
Tue Jul 01 03:19:18 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords critical care
time series
machine learning
convolutional dictionary learning
subarachnoid hemorrhage
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-8d761f24fe9bda14a7d68d6a4b53bf40fb746e559a6e61eb908c94b65caee57a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Reviewed by: Ivan Silva, Rush University Medical Center, United States; Christopher Lawrence Kramer, University of Chicago, United States; Laurel Jean Cherian, Rush University, United States
Specialty section: This article was submitted to Neurocritical and Neurohospitalist Care, a section of the journal Frontiers in Neurology
Edited by: Rajeev Kumar Garg, Rush University, United States
OpenAccessLink https://doaj.org/article/d603179a52be41a2855991b05f0b4e3e
PMID 29563892
PQID 2017060855
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d603179a52be41a2855991b05f0b4e3e
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5845900
proquest_miscellaneous_2017060855
pubmed_primary_29563892
crossref_citationtrail_10_3389_fneur_2018_00122
crossref_primary_10_3389_fneur_2018_00122
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-07
PublicationDateYYYYMMDD 2018-03-07
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-07
  day: 07
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in neurology
PublicationTitleAlternate Front Neurol
PublicationYear 2018
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Verduijn (B25) 2007; 41
Heros (B17) 1983; 14
Akhtar (B52) 2016; 38
Kaufman (B62) 2012; 6
Mairal (B41) 2009
Schmidt (B8) 2008; 109
Charpentier (B6) 1999; 30
Roos (B3) 2002; 33
Hackett (B5) 2000; 55
Boyd (B51) 2011; 3
Wohlberg (B40) 2016
Geladi (B57) 1986; 185
Crobeddu (B18) 2012; 43
Rabinstein (B9) 2003; 98
Peng (B54) 2005; 27
Calviere (B21) 2015; 23
Fisher (B14) 1980; 6
Rosen (B13) 2005; 2
B34
Wohlberg (B38) 2016; 25
Cogliati (B46) 2015
Wohlberg (B48) 2014
Nemati (B32) 2014
Mayer (B4) 2002; 59
Kirmani (B10) 2002; 58
Frontera (B16) 2006; 59
Megjhani (B44) 2015; 31
Johnson (B49) 2016; 104
Cortes (B56) 1995; 20
Marlin (B37) 2012
Claassen (B15) 2001; 32
de Rooij (B20) 2013; 44
Saria (B26) 2010; 2
Qureshi (B2) 2005; 57
Aharon (B42) 2006; 54
Steyerberg (B60) 2012; 42
Vergouwen (B12) 2010; 41
Lasko (B47) 2013; 8
Yang (B53) 2016
Frontera (B11) 2009; 40
Lobo (B61) 2008; 17
Lehman (B30) 2015; 19
Wohlberg (B39) 2016
Dua (B29) 2011; 1
Kavukcuoglu (B50) 2010
Elad (B43) 2006; 15
Dorsch (B7) 2011; 110
Megjhani (B45) 2017; 33
Shea (B1) 2007; 61
Saria (B27) 2010
Foreman (B19) 2016; 126
Mayer (B28) 2014; 15
Schulam (B31) 2015
Chang (B58) 2011; 2
Huang (B55) 2005
Stacey (B24) 2007; 39
Luo (B33) 2016
Hanley (B59) 1983; 148
Sacchi (B23) 2015; 1246
Roederer (B22) 2014; 21
Bahadori (B36) 2015
Kale (B35) 2014
References_xml – volume: 39
  start-page: 1
  year: 2007
  ident: B24
  article-title: Temporal abstraction in intelligent clinical data analysis: a survey
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2006.08.002
– volume: 54
  start-page: 4311
  year: 2006
  ident: B42
  article-title: SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans Sig Process
  doi: 10.1109/TSP.2006.881199
– start-page: 7173
  year: 2014
  ident: B48
  article-title: Efficient convolutional sparse coding
– volume: 23
  start-page: 253
  year: 2015
  ident: B21
  article-title: Prediction of delayed cerebral ischemia after subarachnoid hemorrhage using cerebral blood flow velocities and cerebral autoregulation assessment
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-015-0125-x
– year: 2010
  ident: B27
  article-title: Learning individual and population level traits from clinical temporal data
– start-page: 228
  year: 2015
  ident: B36
  article-title: Functional subspace clustering with application to time series
– volume: 17
  start-page: 145
  year: 2008
  ident: B61
  article-title: AUC: a misleading measure of the performance of predictive distribution models
  publication-title: Global Ecol Biogeography
  doi: 10.1111/j.1466-8238.2007.00358.x
– volume: 2
  start-page: 27
  year: 2011
  ident: B58
  article-title: LIBSVM: a library for support vector machines
  publication-title: ACM Trans Intell Syst Technol
  doi: 10.1145/1961189.1961199
– volume: 3
  start-page: 1
  year: 2011
  ident: B51
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found Trends Mach Learn
  doi: 10.1561/2200000016
– volume: 148
  start-page: 839
  year: 1983
  ident: B59
  article-title: A method of comparing the areas under receiver operating characteristic curves derived from the same cases
  publication-title: Radiology
  doi: 10.1148/radiology.148.3.6878708
– volume: 40
  start-page: 1963
  year: 2009
  ident: B11
  article-title: Defining vasospasm after subarachnoid hemorrhage: what is the most clinically relevant definition?
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.108.544700
– volume: 185
  start-page: 1
  year: 1986
  ident: B57
  article-title: Partial least-squares regression: a tutorial
  publication-title: Anal Chim Acta
  doi: 10.1016/0003-2670(86)80028-9
– volume: 15
  start-page: 3736
  year: 2006
  ident: B43
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2006.881969
– volume: 109
  start-page: 1052
  year: 2008
  ident: B8
  article-title: Frequency and clinical impact of asymptomatic cerebral infarction due to vasospasm after subarachnoid hemorrhage
  publication-title: J Neurosurg
  doi: 10.3171/JNS.2008.109.12.1052
– start-page: 2956
  year: 2015
  ident: B31
  article-title: Clustering longitudinal clinical marker trajectories from electronic health data: applications to phenotyping and endotype discovery
– volume: 1
  start-page: 164
  year: 2011
  ident: B29
  article-title: Temporal pattern mining for multivariate time series classification
  publication-title: J Med Imag Health Inform
  doi: 10.1166/jmihi.2011.1019
– volume: 42
  start-page: 216
  year: 2012
  ident: B60
  article-title: Assessing the incremental value of diagnostic and prognostic markers: a review and illustration
  publication-title: Eur J Clin Invest
  doi: 10.1111/j.1365-2362.2011.02562.x
– volume: 27
  start-page: 1226
  year: 2005
  ident: B54
  article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2005.159
– start-page: 42
  year: 2016
  ident: B33
  article-title: Predicting icu mortality risk by grouping temporal trends from a multivariate panel of physiologic measurements
– volume: 30
  start-page: 1402
  year: 1999
  ident: B6
  article-title: Multivariate analysis of predictors of cerebral vasospasm occurrence after aneurysmal subarachnoid hemorrhage
  publication-title: Stroke
  doi: 10.1161/01.STR.30.7.1402
– start-page: 389
  year: 2012
  ident: B37
  article-title: Unsupervised pattern discovery in electronic health care data using probabilistic clustering models
– start-page: 1090
  year: 2010
  ident: B50
  article-title: Learning convolutional feature hierarchies for visual recognition
– volume: 2
  start-page: 110
  year: 2005
  ident: B13
  article-title: Subarachnoid hemorrhage grading scales: a systematic review
  publication-title: Neurocrit Care
  doi: 10.1385/NCC:2:2:110
– volume: 44
  start-page: 1288
  year: 2013
  ident: B20
  article-title: Early prediction of delayed cerebral ischemia after subarachnoid hemorrhage: development and validation of a practical risk chart
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.113.001125
– start-page: 1
  year: 2016
  ident: B39
  article-title: Convolutional sparse representations as an image model for impulse noise restoration
– volume: 38
  start-page: 2374
  year: 2016
  ident: B52
  article-title: Discriminative Bayesian dictionary learning for classification
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2527652
– ident: B34
– volume: 8
  start-page: e66341
  year: 2013
  ident: B47
  article-title: Computational phenotype discovery using unsupervised feature learning over noisy, sparse, and irregular clinical data
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0066341
– volume: 104
  start-page: 444
  year: 2016
  ident: B49
  article-title: Machine learning and decision support in critical care
  publication-title: Proc IEEE Inst Electr Electron Eng
  doi: 10.1109/JPROC.2015.2501978
– volume: 98
  start-page: 319
  year: 2003
  ident: B9
  article-title: Symptomatic vasospasm and outcomes following aneurysmal subarachnoid hemorrhage: a comparison between surgical repair and endovascular coil occlusion
  publication-title: J Neurosurg
  doi: 10.3171/jns.2003.98.2.0319
– start-page: 1
  year: 2015
  ident: B46
  article-title: Piano music transcription with fast convolutional sparse coding
– volume: 21
  start-page: 444
  year: 2014
  ident: B22
  article-title: Prediction of significant vasospasm in aneurysmal subarachnoid hemorrhage using automated data
  publication-title: Neurocrit Care
  doi: 10.1007/s12028-014-9976-9
– volume: 31
  start-page: 2190
  year: 2015
  ident: B44
  article-title: Population-scale three-dimensional reconstruction and quantitative profiling of microglia arbors
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btv109
– volume: 59
  start-page: 21
  year: 2006
  ident: B16
  article-title: Prediction of symptomatic vasospasm after subarachnoid hemorrhage: the modified Fisher scale
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000218821.34014.1B
– volume: 2
  start-page: 48ra65
  year: 2010
  ident: B26
  article-title: Integration of early physiological responses predicts later illness severity in preterm infants
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.3001304
– year: 2016
  ident: B53
  article-title: Analysis-synthesis dictionary learning for universality-particularity representation based classification
  doi: 10.1609/aaai.v30i1.10219
– volume: 20
  start-page: 273
  year: 1995
  ident: B56
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/bf00994018
– volume: 32
  start-page: 2012
  year: 2001
  ident: B15
  article-title: Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited
  publication-title: Stroke
  doi: 10.1161/hs0901.095677
– volume: 33
  start-page: 2182
  year: 2017
  ident: B45
  article-title: Morphologically constrained spectral unmixing by dictionary learning for multiplex fluorescence microscopy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx108
– volume: 33
  start-page: 1595
  year: 2002
  ident: B3
  article-title: Direct costs of modern treatment of aneurysmal subarachnoid hemorrhage in the first year after diagnosis
  publication-title: Stroke
  doi: 10.1161/01.STR.0000016401.49688.2F
– volume: 6
  start-page: 1
  year: 1980
  ident: B14
  article-title: Relation of cerebral vasospasm to subarachnoid hemorrhage visualized by computerized tomographic scanning
  publication-title: Neurosurgery
  doi: 10.1097/00006123-198001000-00001
– start-page: 260
  year: 2014
  ident: B35
  article-title: An examination of multivariate time series hashing with applications to health care
– volume: 126
  start-page: 1530
  year: 2016
  ident: B19
  article-title: External validation of the practical risk chart for the prediction of delayed cerebral ischemia following aneurysmal subarachnoid hemorrhage
  publication-title: J Neurosurg
  doi: 10.3171/2016.1.JNS152554
– start-page: 1833
  year: 2016
  ident: B40
  article-title: Boundary handling for convolutional sparse representations
– volume: 14
  start-page: 599
  year: 1983
  ident: B17
  article-title: Cerebral vasospasm after subarachnoid hemorrhage: an update
  publication-title: Ann Neurol
  doi: 10.1002/ana.410140602
– start-page: 689
  year: 2009
  ident: B41
  article-title: Online dictionary learning for sparse coding
– volume: 43
  start-page: 697
  year: 2012
  ident: B18
  article-title: Predicting the lack of development of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.111.638403
– volume: 55
  start-page: 658
  year: 2000
  ident: B5
  article-title: Health outcomes 1 year after subarachnoid hemorrhage: an international population-based study. The Australian cooperative research on subarachnoid hemorrhage study group
  publication-title: Neurology
  doi: 10.1212/WNL.55.5.658
– volume: 59
  start-page: 1750
  year: 2002
  ident: B4
  article-title: Global and domain-specific cognitive impairment and outcome after subarachnoid hemorrhage
  publication-title: Neurology
  doi: 10.1212/01.WNL.0000035748.91128.C2
– volume: 58
  start-page: A159
  year: 2002
  ident: B10
  article-title: Silent cerebral infarctions in poor-grade patients with subarachnoid hemorrhage
  publication-title: Neurology
– start-page: 4365
  year: 2005
  ident: B55
  article-title: Weighted support vector machine for classification with uneven training class sizes
– volume: 57
  start-page: 1
  year: 2005
  ident: B2
  article-title: Trends in hospitalization and mortality for subarachnoid hemorrhage and unruptured aneurysms in the United States
  publication-title: Neurosurgery
  doi: 10.1227/01.NEU.0000163081.55025.CD
– year: 2014
  ident: B32
  article-title: Supervised learning in dynamic Bayesian networks
– volume: 25
  start-page: 301
  year: 2016
  ident: B38
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2015.2495260
– volume: 1246
  start-page: 89
  year: 2015
  ident: B23
  article-title: Analyzing complex patients’ temporal histories: new frontiers in temporal data mining
  publication-title: Data Mining Clin Med
  doi: 10.1007/978-1-4939-1985-7_6
– volume: 61
  start-page: 1131
  year: 2007
  ident: B1
  article-title: Characteristics of nontraumatic subarachnoid hemorrhage in the United States in 2003
  publication-title: Neurosurgery
  doi: 10.1227/01.neu.0000306090.30517.ae
– volume: 15
  start-page: S2
  year: 2014
  ident: B28
  article-title: Selection of entropy-measure parameters for knowledge discovery in heart rate variability data
  publication-title: BMC Bioinform
  doi: 10.1186/1471-2105-15-S6-S2
– volume: 19
  start-page: 1068
  year: 2015
  ident: B30
  article-title: A physiological time series dynamics-based approach to patient monitoring and outcome prediction
  publication-title: IEEE J Biomed Health Inform
  doi: 10.1109/JBHI.2014.2330827
– volume: 6
  start-page: 15
  year: 2012
  ident: B62
  article-title: Leakage in data mining: formulation, detection, and avoidance
  publication-title: ACM Trans Knowl Discov Data
  doi: 10.1145/2382577.2382579
– volume: 41
  start-page: 2391
  year: 2010
  ident: B12
  article-title: Definition of delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group
  publication-title: Stroke
  doi: 10.1161/STROKEAHA.110.589275
– volume: 41
  start-page: 1
  year: 2007
  ident: B25
  article-title: Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2007.06.003
– volume: 110
  start-page: 5
  year: 2011
  ident: B7
  article-title: A clinical review of cerebral vasospasm and delayed ischaemia following aneurysm rupture
  publication-title: Acta Neurochir Suppl
  doi: 10.1007/978-3-7091-0353-1_1
SSID ssj0000399363
Score 2.1864042
Snippet Accurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor...
PurposeAccurate prediction of delayed cerebral ischemia (DCI) after subarachnoid hemorrhage (SAH) can be critical for planning interventions to prevent poor...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 122
SubjectTerms convolutional dictionary learning
critical care
machine learning
Neuroscience
subarachnoid hemorrhage
time series
SummonAdditionalLinks – databaseName: Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nj9MwELXQHlZcECxfBXZlJC4cosaO48RH2G61i1TEgZX2FtnOGCqVFKVZif4e_igzdrZqEYIL1zi2R56xPWM_v2HsjayMr53yGUhfZMo7kbkQ8gyd3xZAGWGAHicvPurLa_XhprzZS_VFmLBED5wGbtpSGuTK2FI6UMLKmiiyhMvLkDsFBdDqm5t8L5iKazDtu7pI95IYhZlpIH5IgnIRdlJIebAPRbr-P_mYv0Ml9_ae-UP2YHQa-bsk7CN2D7oTdrwYr8Ufs59XxEYZGYlxJ-KE3cjmfQJJb3kEeaY1js_sYHmECfCUz2E8C-SzZXzgYPstHylXv_B04AAb_qmnrqicrwOfwcpuoeXn0NOt84pfYYQM35Y2NkmAdj6s-cUPWj2wlUXMUb15wq7nF5_PL7Mx-0LmlZZDVreVFkGqAMa1VihbtbputVWuLFxQeXCV0oDasBq0AGfy2hvldOktQFnZ4ik76tYdPGccgxYvSnQNQoEOUKGd8QoDYIf6RAehhQmb3umi8SM1OWXIWDUYopD2mqi9hrTXRO1N2Ntdje-JluMv_74n9e7-I0Lt-AHNrBnNrPmXmU3Y6zvjaHAC0q2K7WB9u6GOiIEIK0zYs2Qsu64kRp8oEopQHZjRgSyHJd3yayT5RseQErq--B_Cv2T3aTgidK56xY6G_hZO0Zca3FmcNr8Ai2Eg_Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Incorporating High-Frequency Physiologic Data Using Computational Dictionary Learning Improves Prediction of Delayed Cerebral Ischemia Compared to Existing Methods
URI https://www.ncbi.nlm.nih.gov/pubmed/29563892
https://www.proquest.com/docview/2017060855
https://pubmed.ncbi.nlm.nih.gov/PMC5845900
https://doaj.org/article/d603179a52be41a2855991b05f0b4e3e
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lj9MwELbQIiEuiDflsTISFw5m48RxkgNCsN1qF6mIA5X2FtnOeKlUEkiz0vb38EeZcbyFogpxjR3byYw939jjbxh7lRaVK61yAlKXCeWsFNb7RCD4bQBUJSugy8nzT_p0oT6e5-e_r0fHH7je69pRPqlFv3pz9WPzDif8W_I40d4eeaJ-pCgtCouUKS7IN9EuaXLF5hHsh3WZbHFIrSa1VoLyWI_nlnsb2bFTgc5_Hwb9O5TyD9s0u8vuRFDJ349acI_dgPY-uzWPx-YP2M8zYqsMjMVoqTjFdohZPwZRb3gIAh3XQD41g-EhjICP-R7iXiGfLsMFCNNveKRkveDjhgSs-eeeuqJy3nk-hZXZQMOPoadT6RU_w98M35YmNEkB73zo-MkVrS7YyjzksF4_ZIvZyZfjUxGzMwindDqIsim09KnyUNnGSGWKRpeNNsrmmfUq8bZQGtBhMRq0BFslpauU1bkzAHlhskfsoO1aeMI4OjVO5ggdfIYAKdO2cgodZKukQQDRwIQdXcuidpG6nDJorGp0YUh6dZBeTdKrg_Qm7PX2je8jbcc_6n4g8W7rEeF2eND1F3Wcv3VD2biLyuSpBRxWWhJTm7RJ7hOrIMMhvrxWjhonKJ26mBa6yzV1RAxF-MKEPR6VZdsVqiAhRhxCsaNGO2PZLWmXXwMJOAJHSvj69D_6fcZu09eGyLniOTsY-kt4gVBqsIdhC-IwzJNfP90htg
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Incorporating+High-Frequency+Physiologic+Data+Using+Computational+Dictionary+Learning+Improves+Prediction+of+Delayed+Cerebral+Ischemia+Compared+to+Existing+Methods&rft.jtitle=Frontiers+in+neurology&rft.au=Megjhani%2C+Murad&rft.au=Terilli%2C+Kalijah&rft.au=Frey%2C+Hans-Peter&rft.au=Velazquez%2C+Angela+G&rft.date=2018-03-07&rft.issn=1664-2295&rft.eissn=1664-2295&rft.volume=9&rft.spage=122&rft_id=info:doi/10.3389%2Ffneur.2018.00122&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-2295&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-2295&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-2295&client=summon