Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts
Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny...
Saved in:
Published in | Frontiers in plant science Vol. 12; p. 804568 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
17.12.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1664-462X 1664-462X |
DOI | 10.3389/fpls.2021.804568 |
Cover
Abstract | Peanuts (
Arachis hypogaea
L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect.
Arachis
can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG,
etc
. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid
Arachis duranensis
accessions being a potential AA sub-genome ancestor. In addition,
Arachis monticola
, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various
Arachis
species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings. |
---|---|
AbstractList | Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings. Peanuts ( L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, . Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid accessions being a potential AA sub-genome ancestor. In addition, , a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings. Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc . Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola , a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings. Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings. |
Author | Du, Pei Huang, Bingyan Wu, Yue Fu, Liuyang Shi, Luye Zhang, Xinyou Tian, Xiangyu Wang, Zhenlong Guo, Jia |
AuthorAffiliation | 2 Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences , Zhengzhou , China 1 School of Life Sciences, Zhengzhou University , Zhengzhou , China |
AuthorAffiliation_xml | – name: 2 Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences , Zhengzhou , China – name: 1 School of Life Sciences, Zhengzhou University , Zhengzhou , China |
Author_xml | – sequence: 1 givenname: Xiangyu surname: Tian fullname: Tian, Xiangyu – sequence: 2 givenname: Luye surname: Shi fullname: Shi, Luye – sequence: 3 givenname: Jia surname: Guo fullname: Guo, Jia – sequence: 4 givenname: Liuyang surname: Fu fullname: Fu, Liuyang – sequence: 5 givenname: Pei surname: Du fullname: Du, Pei – sequence: 6 givenname: Bingyan surname: Huang fullname: Huang, Bingyan – sequence: 7 givenname: Yue surname: Wu fullname: Wu, Yue – sequence: 8 givenname: Xinyou surname: Zhang fullname: Zhang, Xinyou – sequence: 9 givenname: Zhenlong surname: Wang fullname: Wang, Zhenlong |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34975994$$D View this record in MEDLINE/PubMed |
BookMark | eNp1UsFu3CAQRVWqJt3m3lPFsZfdArYxXCpFq6SJtFWjqpV6QxiPd4mw2QK2tPn6snFSJZXKBZh57w0zvLfoZPADIPSeklVRCPmp27u4YoTRlSBlxcUrdEY5L5clZ79Onp1P0XmMdySvihAp6zfotChlXUlZnqFpvXM--L3TMeHb3cH5LQy-twZfDNodIkT8HSbQDmv8VScIOYqvD02wrb3XyfoBX04wJLwB3dphi5PHaQf4yod-TvsOr0eX7JTZLb4FPYwpvkOvO-0inD_uC_Tz6vLH-nq5-fblZn2xWZr88rQUjJS0aRiUhGsKXSO4MboWRhSGSFpmkCCScAldITjnbSVp3ZnWiLYpWFcVC3Qz67Ze36l9sL0OB-W1VQ8BH7ZKh2SNA9VKKYzJk2HAS6aloAVjmrXG1Fk63xbo86y1H5seWpO7Dtq9EH2ZGexObf2kRE2FqGUW-PgoEPzvEWJSvY0GnNMD-DEqxmnuh9KKZOiH57X-Fnn6uAzgM8AEH2OAThmbHgaeS1unKFFHk6ijSdTRJGo2SSaSf4hP2v-l_AFVSMGC |
CitedBy_id | crossref_primary_10_3390_biology13080601 crossref_primary_10_32604_phyton_2022_023165 crossref_primary_10_1038_s41588_024_01876_7 crossref_primary_10_1111_pbi_14125 crossref_primary_10_3390_horticulturae10050464 crossref_primary_10_1080_23802359_2024_2353230 |
Cites_doi | 10.1111/j.1365-313X.2004.02202.x 10.1093/bioinformatics/btt403 10.1186/s13059-016-1004-2 10.1139/gen-2014-0037 10.1038/nmeth.4285 10.3146/i0095-3679-28-2-7 10.1186/1471-2229-4-11 10.1017/s1479262110000444 10.3389/fgene.2020.576124 10.1016/S0065-2113(08)60801-9 10.1093/aob/mcu237 10.1007/s10709-011-9556-2 10.1007/s00425-020-03365-7 10.1016/j.gene.2021.145539 10.7717/peerj.9448 10.7717/peerj.7662 10.1073/pnas.162203299 10.3389/fpls.2017.00304 10.1016/j.indcrop.2017.07.029 10.1093/aob/mcw065 10.1093/gbe/evs110 10.1186/s12870-020-02689-6 10.1139/g95-021 10.1139/g11-026 10.3389/fpls.2017.00111 10.3389/fpls.2017.02064 10.13005/bbra/2807 10.1016/j.indcrop.2020.112567 10.1007/s00122-020-03549-5 10.1093/bioinformatics/btx198 10.1186/s12870-019-2121-3 10.3146/ps13-02.1 10.1093/molbev/mst010 10.2135/cropsci2003.1100 10.1016/j.molp.2019.03.005 10.2135/cropsci2005.09-0331 10.1093/gbe/evx180 10.2135/cropsci2016.09.0824 10.1073/pnas.0709121104 10.1111/j.1744-7348.2001.tb00129.x 10.1002/ece3.6839 10.1093/pcp/pcab074 10.1126/science.1253435 10.1093/jhered/esg061 10.1016/j.ygeno.2019.08.024 10.1038/s41598-017-06638-6 10.1038/ng.3517 10.1007/BF00985743 10.1111/tpj.12693 10.1007/s00122-020-03592-2 10.3390/genes10010023 10.1038/s41438-019-0171-1 10.1111/tpj.15351 10.1002/ece3.7614 10.1038/s41588-020-0626-1 10.1073/pnas.0708072104 10.3389/fpls.2016.01106 10.1093/nar/25.5.955 10.1371/journal.pone.0085761 10.1093/nar/gkx391 10.1038/s41588-020-0627-0 10.1111/jse.12179 10.1038/s41588-019-0405-z 10.1093/molbev/msu300 10.1093/aob/mcs237 10.1007/s10681-011-0518-7 10.1007/s11103-011-9762-4 10.1111/tpj.13491 10.1002/j.1537-2197.1991.tb15751.x 10.1111/j.1439-0523.2009.01638.x 10.1093/sysbio/sys029 10.1186/s13007-019-0435-7 10.1002/advs.201901672 10.3390/agronomy10050704 10.1073/pnas.1600899113 10.1002/j.1537-2197.1996.tb13912.x 10.7717/peerj.5349 10.1007/bf00040550 10.1016/j.ygeno.2015.07.004 10.1038/s41598-021-00510-4 10.1007/s00122-005-0017-0 10.1093/jxb/ers192 10.1038/s41588-019-0402-2 10.1038/s41598-021-86820-z 10.1186/1471-2229-10-15 10.1093/molbev/msx248 10.1007/BF00272846 10.1093/nar/29.22.4633 10.1016/j.plgene.2019.100199 10.3732/ajb.91.9.1294 10.1023/A:1012019600318 10.30972/bon.160158 10.1038/s41598-020-66219-y 10.1038/nature11798 10.1038/s41598-017-12026-x 10.2135/cropsci2004.1847 10.3389/fpls.2019.00334 10.1038/s41598-017-01518-5 10.1104/pp.109.137935 10.1186/s13059-020-02154-5 10.1111/jse.12585 10.1007/BF00126757 10.1038/s41598-018-32800-9 |
ContentType | Journal Article |
Copyright | Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang |
Copyright_xml | – notice: Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. – notice: Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang |
DBID | AAYXX CITATION NPM 7X8 5PM DOA |
DOI | 10.3389/fpls.2021.804568 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals - NZ url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Botany |
EISSN | 1664-462X |
ExternalDocumentID | oai_doaj_org_article_d998cc3492e642a981322a2dcc786681 PMC8718879 34975994 10_3389_fpls_2021_804568 |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; |
GroupedDBID | 5VS 9T4 AAFWJ AAKDD AAYXX ACGFO ACGFS ACXDI ADBBV ADRAZ AENEX AFPKN ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV CITATION EBD ECGQY GROUPED_DOAJ GX1 HYE KQ8 M48 M~E OK1 PGMZT RNS RPM IAO IEA IGS IPNFZ ISR NPM RIG 7X8 5PM |
ID | FETCH-LOGICAL-c462t-82041bb2e406a1efb86cca78c83c0914462809069ef38666d5917fcdc8db32f53 |
IEDL.DBID | M48 |
ISSN | 1664-462X |
IngestDate | Wed Aug 27 01:20:31 EDT 2025 Thu Aug 21 18:32:58 EDT 2025 Fri Sep 05 08:03:43 EDT 2025 Thu Jan 02 22:57:27 EST 2025 Tue Jul 01 03:48:57 EDT 2025 Thu Apr 24 23:00:14 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | genetic structure whole plastid genome Arachis maternal hybridization event phylogenomics |
Language | English |
License | Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c462t-82041bb2e406a1efb86cca78c83c0914462809069ef38666d5917fcdc8db32f53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science Reviewed by: Abdullah, Quaid-i-Azam University, Pakistan; Xu Zhang, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), China Edited by: Hai Du, Southwest University, China |
OpenAccessLink | http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.804568 |
PMID | 34975994 |
PQID | 2616281150 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_d998cc3492e642a981322a2dcc786681 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8718879 proquest_miscellaneous_2616281150 pubmed_primary_34975994 crossref_citationtrail_10_3389_fpls_2021_804568 crossref_primary_10_3389_fpls_2021_804568 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-12-17 |
PublicationDateYYYYMMDD | 2021-12-17 |
PublicationDate_xml | – month: 12 year: 2021 text: 2021-12-17 day: 17 |
PublicationDecade | 2020 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Frontiers in plant science |
PublicationTitleAlternate | Front Plant Sci |
PublicationYear | 2021 |
Publisher | Frontiers Media S.A |
Publisher_xml | – name: Frontiers Media S.A |
References | Tonti-Filippini (B84) 2017; 90 Abdullah, Shahzadi (B4) 2019; 19 Moretzsohn (B56) 2013; 111 Li (B48) 2017; 8 Gill (B26) 2009; 151 Zhuang (B106) 2020; 52 Ahmed (B5) 2012; 4 Tan (B81) 2010; 34 Tyagi (B86) 2020; 8 Choi (B18) 2020; 10 Xue (B97) 2019; 6 Bertioli (B10) 2020; 52 Li (B49) 2021; 62 Rozas (B66) 2017; 34 Pandey (B60) 2020; 133 Stalker (B75) 2017; 57 Kalyaanamoorthy (B38) 2017; 14 Raina (B64) 1999; 214 Tillich (B83) 2017; 45 Abdullah, Mehmood (B3); 59 Daniell (B20) 2016; 17 Stalker (B77) 1987; 41 Wang (B90) 2017; 7 He (B30) 2014; 57 Ronquist (B65) 2012; 61 Paterson (B61) 2012; 492 da Cunha (B19) 2008; 55 Wang (B91) 2021; 43 Bertioli (B12) 2019; 51 Song (B74) 2017; 9 Prabhudas (B62) 2016; 7 Zheng (B102) 2020; 11 Wang (B93) 2019; 19 Tallury (B80) 2014; 41 Nguyen (B58) 2014; 32 Moner (B54) 2020; 20 Bertioli (B13) 2011; 9 Krapovickas (B43) 2007; 16 Nock (B59) 2019; 10 Zheng (B104) 2018; 8 Liu (B50) 2020; 10 Blazier (B14) 2016; 117 Chen (B16) 2016; 113 Yin (B99) 2017; 7 Moretzsohn (B57) 2004; 4 Jung (B37) 2003; 94 Jansen (B33) 2007; 104 Wicke (B95) 2011; 76 Varshney (B88) 2009; 128 Lowe (B51) 1997; 25 Hassoubah (B29) 2020; 17 Stalker (B76) 1991; 78 Abdullah, Mehmood (B2); 11 Jarvis (B34) 2003; 43 Simpson (B70) 2001; 28 Kochert (B40) 1996; 83 Leal-Bertioli (B46) 2014; 115 Chen (B17) 2019; 12 Zhang (B101) 2017; 34 Jeon (B35) 2019; 10 Henriquez (B32) 2020; 251 Sigmon (B69) 2017; 108 Ferguson (B23) 2004; 44 Abdullah, Mehmood (B1); 11 Kurtz (B45) 2001; 29 Chalhoub (B15) 2014; 345 Mehmood (B52) 2020; 112 Katoh (B39) 2013; 30 Moore (B55) 2007; 104 Middleton (B53) 2014; 9 Garcia (B24) 1995; 38 Zheng (B103) 2017; 7 Turmel (B85) 2002; 99 Vishwakarma (B89) 2017; 8 Qu (B63) 2019; 15 Wheeler (B94) 2013; 29 He (B31) 2001; 48 Belamkar (B9) 2011; 139 Bertioli (B11) 2016; 48 Yu (B100) 2020; 133 Koppolu (B42) 2010; 10 Kuang (B44) 2011; 54 Xu (B96) 2015; 106 Singh (B71) 1994; 74 Alqahtani (B6) 2021; 11 Beier (B8) 2017; 33 Asaf (B7) 2017; 8 Sugiura (B79) 2004; 40 Guo (B28) 2020; 153 Upadhyaya (B87) 2011; 182 Zhuang (B105) 2019; 51 Yin (B98) 2020; 7 Fávero (B21) 2006; 46 Subrahmanyam (B78) 2001; 139 Lee (B47) 2021; 107 Jin (B36) 2020; 21 Gimenes (B27) 2002; 123 Wang (B92) 2018; 6 Konate (B41) 2020; 10 Seijo (B68) 2004; 91 Singh (B72) 1982; 61 Gibbons (B25) 1972; 21 Schwarz (B67) 2015; 53 Singh (B73) 1996; 43 Tian (B82) 2019; 7 Feldman (B22) 2012; 63 |
References_xml | – volume: 40 start-page: 314 year: 2004 ident: B79 article-title: Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function. publication-title: Plant J. doi: 10.1111/j.1365-313X.2004.02202.x – volume: 29 start-page: 2487 year: 2013 ident: B94 article-title: nhmmer: DNA homology search with profile HMMs. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btt403 – volume: 17 year: 2016 ident: B20 article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering. publication-title: Genome Biol. doi: 10.1186/s13059-016-1004-2 – volume: 57 start-page: 327 year: 2014 ident: B30 article-title: Phylogenetic relationships of species of genus Arachis based on genic sequences. publication-title: Genome doi: 10.1139/gen-2014-0037 – volume: 14 start-page: 587 year: 2017 ident: B38 article-title: ModelFinder: fast model selection for accurate phylogenetic estimates. publication-title: Nat. Methods doi: 10.1038/nmeth.4285 – volume: 28 start-page: 78 year: 2001 ident: B70 article-title: History of Arachis Including Evidence of A. hypogaea L. publication-title: Peanut Sci. doi: 10.3146/i0095-3679-28-2-7 – volume: 4 year: 2004 ident: B57 article-title: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-4-11 – volume: 9 start-page: 134 year: 2011 ident: B13 article-title: An overview of peanut and its wild relatives. publication-title: Plant Genet. Resour. doi: 10.1017/s1479262110000444 – volume: 11 year: 2020 ident: B102 article-title: Chloroplot: an Online Program for the Versatile Plotting of Organelle Genomes. publication-title: Front. Genet. doi: 10.3389/fgene.2020.576124 – volume: 41 start-page: 1 year: 1987 ident: B77 article-title: Speciation, Cytogenetics, and Utilization of Arachis Species. publication-title: Adv. Agron. doi: 10.1016/S0065-2113(08)60801-9 – volume: 115 start-page: 237 year: 2014 ident: B46 article-title: Arachis batizocoi: a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids. publication-title: Ann. Bot. doi: 10.1093/aob/mcu237 – volume: 139 year: 2011 ident: B9 article-title: A first insight into population structure and linkage disequilibrium in the US peanut minicore collection. publication-title: Genetica doi: 10.1007/s10709-011-9556-2 – volume: 251 year: 2020 ident: B32 article-title: Molecular evolution of chloroplast genomes in Monsteroideae (Araceae). publication-title: Planta doi: 10.1007/s00425-020-03365-7 – volume: 55 start-page: 15 year: 2008 ident: B19 article-title: Genetic relationships among Arachis hypogaea L. (AABB) and diploid Arachis species with AA and BB genomes. publication-title: Genet. Resour. Crop Evol. doi: 10.1016/j.gene.2021.145539 – volume: 8 year: 2020 ident: B86 article-title: A comparative analysis of the complete chloroplast genomes of three Chrysanthemum boreale strains. publication-title: PeerJ doi: 10.7717/peerj.9448 – volume: 7 year: 2019 ident: B82 article-title: Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae. publication-title: PeerJ doi: 10.7717/peerj.7662 – volume: 99 year: 2002 ident: B85 article-title: The chloroplast and mitochondrial genome sequences of the charophyte em>Chaetosphaeridium globosum /em>: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.162203299 – volume: 8 year: 2017 ident: B7 article-title: The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00304 – volume: 108 start-page: 629 year: 2017 ident: B69 article-title: Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the non-fertile ‘Sunshine’ cultivar from other accessions. publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2017.07.029 – volume: 117 start-page: 1209 year: 2016 ident: B14 article-title: Variable presence of the inverted repeat and plastome stability in Erodium. publication-title: Ann. Bot. doi: 10.1093/aob/mcw065 – volume: 4 start-page: 1316 year: 2012 ident: B5 article-title: Mutational Dynamics of Aroid Chloroplast Genomes. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evs110 – volume: 20 year: 2020 ident: B54 article-title: Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production. publication-title: BMC Plant Biol. doi: 10.1186/s12870-020-02689-6 – volume: 38 start-page: 166 year: 1995 ident: B24 article-title: Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers. publication-title: Genome doi: 10.1139/g95-021 – volume: 54 start-page: 663 year: 2011 ident: B44 article-title: Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics. publication-title: Genome doi: 10.1139/g11-026 – volume: 8 year: 2017 ident: B48 article-title: A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.00111 – volume: 8 year: 2017 ident: B89 article-title: Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2017.02064 – volume: 17 start-page: 27 year: 2020 ident: B29 article-title: Comparison of Plastome SNPs/INDELs among different Wheat (Triticumsp.) Cultivars. publication-title: Biosci. Biotechnol. Res. Asia doi: 10.13005/bbra/2807 – volume: 153 year: 2020 ident: B28 article-title: Phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony. publication-title: Ind. Crops Prod. doi: 10.1016/j.indcrop.2020.112567 – volume: 133 start-page: 1467 year: 2020 ident: B100 article-title: Epigenomic landscape and epigenetic regulation in maize. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-020-03549-5 – volume: 33 start-page: 2583 year: 2017 ident: B8 article-title: MISA-web: a web server for microsatellite prediction. publication-title: Bioinformatics doi: 10.1093/bioinformatics/btx198 – volume: 19 year: 2019 ident: B93 article-title: Twelve complete chloroplast genomes of wild peanuts: great genetic resources and a better understanding of Arachis phylogeny. publication-title: BMC Plant Biol. doi: 10.1186/s12870-019-2121-3 – volume: 41 start-page: 17 year: 2014 ident: B80 article-title: Greenhouse Evaluation of Section Arachis Wild Species for Sclerotinia Blight and Cylindrocladium Black Rot Resistance. publication-title: Peanut Sci. doi: 10.3146/ps13-02.1 – volume: 30 start-page: 772 year: 2013 ident: B39 article-title: MAFFT Multiple Sequence Alignment Software Version 7: improvements in Performance and Usability. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/mst010 – volume: 43 start-page: 1100 year: 2003 ident: B34 article-title: Biogeography of Wild Arachis. publication-title: Crop Sci. doi: 10.2135/cropsci2003.1100 – volume: 12 start-page: 920 year: 2019 ident: B17 article-title: Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement. publication-title: Mol. Plant doi: 10.1016/j.molp.2019.03.005 – volume: 46 start-page: 1546 year: 2006 ident: B21 article-title: Study of the Evolution of Cultivated Peanut through Crossability Studies among Arachis ipaënsis, A. duranensis, and A. hypogaea. publication-title: Crop Sci. doi: 10.2135/cropsci2005.09-0331 – volume: 34 start-page: 72 year: 2010 ident: B81 article-title: A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance. publication-title: Chin. J. Plant Ecol. – volume: 9 start-page: 2354 year: 2017 ident: B74 article-title: Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids. publication-title: Genome Biol. Evol. doi: 10.1093/gbe/evx180 – volume: 57 start-page: 1102 year: 2017 ident: B75 article-title: Utilizing Wild Species for Peanut Improvement. publication-title: Crop Sci. doi: 10.2135/cropsci2016.09.0824 – volume: 104 year: 2007 ident: B33 article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0709121104 – volume: 139 start-page: 45 year: 2001 ident: B78 article-title: Resistance to groundnut rosette disease in wild Arachis species. publication-title: Ann. Appl. Biol. doi: 10.1111/j.1744-7348.2001.tb00129.x – volume: 43 year: 2021 ident: B91 article-title: Verifying high variation regions based on sect. Arachis chloroplast genome and revealing the interspecies genetic relationship. publication-title: Chin. J. Oil Crop Sci. – volume: 10 start-page: 12129 year: 2020 ident: B18 article-title: Caught in the Act: variation in plastid genome inverted repeat expansion within and between populations of Medicago minima. publication-title: Ecol. Evol. doi: 10.1002/ece3.6839 – volume: 62 start-page: 971 year: 2021 ident: B49 article-title: Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus Pedicularis (Orobanchaceae). publication-title: Plant Cell Physiol. doi: 10.1093/pcp/pcab074 – volume: 345 start-page: 950 year: 2014 ident: B15 article-title: Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. publication-title: Science doi: 10.1126/science.1253435 – volume: 94 start-page: 334 year: 2003 ident: B37 article-title: The Phylogenetic Relationship of Possible Progenitors of the Cultivated Peanut. publication-title: J. Hered. doi: 10.1093/jhered/esg061 – volume: 112 start-page: 1522 year: 2020 ident: B52 article-title: Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae. publication-title: Genomics doi: 10.1016/j.ygeno.2019.08.024 – volume: 7 year: 2017 ident: B90 article-title: Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences. publication-title: Sci. Rep. doi: 10.1038/s41598-017-06638-6 – volume: 48 start-page: 438 year: 2016 ident: B11 article-title: The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut. publication-title: Nat. Genet. doi: 10.1038/ng.3517 – volume: 214 start-page: 251 year: 1999 ident: B64 article-title: Genomic in situ hybridization inArachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species. publication-title: Plant Syst. Evol. doi: 10.1007/BF00985743 – volume: 34 start-page: 1215 year: 2017 ident: B101 article-title: Advances in cleistogamy of angiosperms. publication-title: Pratacultural Sci. doi: 10.1111/tpj.12693 – volume: 133 start-page: 1679 year: 2020 ident: B60 article-title: Translational genomics for achieving higher genetic gains in groundnut. publication-title: Theor. Appl. Genet. doi: 10.1007/s00122-020-03592-2 – volume: 10 year: 2019 ident: B35 article-title: Comparative Analysis of the Complete Chloroplast Genome Sequences of Three Closely Related East-Asian Wild Roses (Rosa sect. Synstylae; Rosaceae). publication-title: Genes doi: 10.3390/genes10010023 – volume: 6 year: 2019 ident: B97 article-title: Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina. publication-title: Hortic. Res. doi: 10.1038/s41438-019-0171-1 – volume: 107 start-page: 861 year: 2021 ident: B47 article-title: The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes. publication-title: Plant J. doi: 10.1111/tpj.15351 – volume: 11 start-page: 7810 ident: B2 article-title: Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae. publication-title: Ecol. Evol. doi: 10.1002/ece3.7614 – volume: 52 start-page: 557 year: 2020 ident: B10 article-title: Evaluating two different models of peanut’s origin. publication-title: Nat. Genet. doi: 10.1038/s41588-020-0626-1 – volume: 104 year: 2007 ident: B55 article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0708072104 – volume: 7 year: 2016 ident: B62 article-title: Shallow Whole Genome Sequencing for the Assembly of Complete Chloroplast Genome Sequence of Arachis hypogaea L. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2016.01106 – volume: 25 start-page: 955 year: 1997 ident: B51 article-title: tRNAscan-SE: a Program for Improved Detection of Transfer RNA Genes in Genomic Sequence. publication-title: Nucleic Acids Res. doi: 10.1093/nar/25.5.955 – volume: 9 year: 2014 ident: B53 article-title: Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe. publication-title: PLoS One doi: 10.1371/journal.pone.0085761 – volume: 45 start-page: W6 year: 2017 ident: B83 article-title: GeSeq – versatile and accurate annotation of organelle genomes. publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkx391 – volume: 52 start-page: 560 year: 2020 ident: B106 article-title: Reply to: evaluating two different models of peanut’s origin. publication-title: Nat. Genet. doi: 10.1038/s41588-020-0627-0 – volume: 53 start-page: 458 year: 2015 ident: B67 article-title: Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids. publication-title: J. Syst. Evol. doi: 10.1111/jse.12179 – volume: 51 start-page: 877 year: 2019 ident: B12 article-title: The genome sequence of segmental allotetraploid peanut Arachis hypogaea. publication-title: Nat. Genet. doi: 10.1038/s41588-019-0405-z – volume: 32 start-page: 268 year: 2014 ident: B58 article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msu300 – volume: 111 start-page: 113 year: 2013 ident: B56 article-title: A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. publication-title: Ann. Bot. doi: 10.1093/aob/mcs237 – volume: 182 year: 2011 ident: B87 article-title: Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits. publication-title: Euphytica doi: 10.1007/s10681-011-0518-7 – volume: 76 start-page: 273 year: 2011 ident: B95 article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function. publication-title: Plant Mol. Biol. doi: 10.1007/s11103-011-9762-4 – volume: 90 start-page: 808 year: 2017 ident: B84 article-title: What can we do with 1000 plastid genomes?. publication-title: Plant J. doi: 10.1111/tpj.13491 – volume: 78 start-page: 238 year: 1991 ident: B76 article-title: Cytological and Interfertility Relationships of Arachis Section Arachis. publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1991.tb15751.x – volume: 128 start-page: 486 year: 2009 ident: B88 article-title: High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers. publication-title: Plant Breed. doi: 10.1111/j.1439-0523.2009.01638.x – volume: 61 start-page: 539 year: 2012 ident: B65 article-title: MrBayes 3.2: efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. publication-title: Syst. Biol. doi: 10.1093/sysbio/sys029 – volume: 15 year: 2019 ident: B63 article-title: PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes. publication-title: Plant Methods doi: 10.1186/s13007-019-0435-7 – volume: 7 year: 2020 ident: B98 article-title: Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut. publication-title: Adv. Sci. doi: 10.1002/advs.201901672 – volume: 10 year: 2020 ident: B41 article-title: Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso. publication-title: Agronomy doi: 10.3390/agronomy10050704 – volume: 113 year: 2016 ident: B16 article-title: Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens. publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1600899113 – volume: 83 start-page: 1282 year: 1996 ident: B40 article-title: RFLP and Cytogenetic Evidence on the Origin and Evolution of Allotetraploid Domesticated Peanut, Arachis hypogaea (Leguminosae). publication-title: Am. J. Bot. doi: 10.1002/j.1537-2197.1996.tb13912.x – volume: 6 year: 2018 ident: B92 article-title: A comparative analysis of the complete chloroplast genome sequences of four peanut botanical varieties. publication-title: PeerJ doi: 10.7717/peerj.5349 – volume: 21 start-page: 78 year: 1972 ident: B25 article-title: The classification of varieties of groundnut (Arachis hypogaea L.). publication-title: Euphytica doi: 10.1007/bf00040550 – volume: 106 start-page: 221 year: 2015 ident: B96 article-title: Dynamics of chloroplast genomes in green plants. publication-title: Genomics doi: 10.1016/j.ygeno.2015.07.004 – volume: 11 ident: B1 article-title: Pseudogenization of the chloroplast threonine (trnT-GGU) gene in the sunflower family (Asteraceae). publication-title: Sci. Rep. doi: 10.1038/s41598-021-00510-4 – volume: 123 start-page: 421 year: 2002 ident: B27 article-title: RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). publication-title: Euphytica doi: 10.1007/s00122-005-0017-0 – volume: 63 start-page: 5045 year: 2012 ident: B22 article-title: Genomic asymmetry in allopolyploid plants: wheat as a model. publication-title: J. Exp. Bot. doi: 10.1093/jxb/ers192 – volume: 51 start-page: 865 year: 2019 ident: B105 article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication. publication-title: Nat. Genet. doi: 10.1038/s41588-019-0402-2 – volume: 11 year: 2021 ident: B6 article-title: The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome. publication-title: Sci. Rep. doi: 10.1038/s41598-021-86820-z – volume: 10 year: 2010 ident: B42 article-title: Genetic relationships among seven sections of genus Arachis studied by using SSR markers. publication-title: BMC Plant Biol. doi: 10.1186/1471-2229-10-15 – volume: 34 start-page: 3299 year: 2017 ident: B66 article-title: DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. publication-title: Mol. Biol. Evol. doi: 10.1093/molbev/msx248 – volume: 61 start-page: 305 year: 1982 ident: B72 article-title: Utilization of wild relatives in genetic improvement of Arachis hypogaea L. publication-title: Theor. Appl. Genet. doi: 10.1007/BF00272846 – volume: 29 start-page: 4633 year: 2001 ident: B45 article-title: REPuter: the manifold applications of repeat analysis on a genomic scale. publication-title: Nucleic Acids Res. doi: 10.1093/nar/29.22.4633 – volume: 19 year: 2019 ident: B4 article-title: Comparative analyses of chloroplast genomes among three Firmiana species: identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae. publication-title: Plant Gene doi: 10.1016/j.plgene.2019.100199 – volume: 91 start-page: 1294 year: 2004 ident: B68 article-title: Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae). publication-title: Am. J. Bot. doi: 10.3732/ajb.91.9.1294 – volume: 48 start-page: 347 year: 2001 ident: B31 article-title: Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. publication-title: Genet. Resour. Crop Evol. doi: 10.1023/A:1012019600318 – volume: 74 start-page: 219 year: 1994 ident: B71 article-title: Phylogenetic relationships in the genus Arachis based on seed protein profiles. publication-title: Euphytica – volume: 16 start-page: 7 year: 2007 ident: B43 article-title: Taxonomy of the genus Aeachis (Leguminosae). publication-title: Bonplandia doi: 10.30972/bon.160158 – volume: 10 year: 2020 ident: B50 article-title: Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns. publication-title: Sci. Rep. doi: 10.1038/s41598-020-66219-y – volume: 492 start-page: 423 year: 2012 ident: B61 article-title: Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres. publication-title: Nature doi: 10.1038/nature11798 – volume: 7 year: 2017 ident: B99 article-title: Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis. publication-title: Sci. Rep. doi: 10.1038/s41598-017-12026-x – volume: 44 start-page: 1847 year: 2004 ident: B23 article-title: Gene Diversity among Botanical Varieties in Peanut (Arachis hypogaea L.). publication-title: Crop Sci. doi: 10.2135/cropsci2004.1847 – volume: 10 year: 2019 ident: B59 article-title: Wild Origins of Macadamia Domestication Identified Through Intraspecific Chloroplast Genome Sequencing. publication-title: Front. Plant Sci. doi: 10.3389/fpls.2019.00334 – volume: 7 year: 2017 ident: B103 article-title: Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants. publication-title: Sci. Rep. doi: 10.1038/s41598-017-01518-5 – volume: 151 start-page: 1167 year: 2009 ident: B26 article-title: Molecular and Chromosomal Evidence for Allopolyploidy in Soybean. publication-title: Plant Physiol. doi: 10.1104/pp.109.137935 – volume: 21 year: 2020 ident: B36 article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes. publication-title: Genome Biol. doi: 10.1186/s13059-020-02154-5 – volume: 59 start-page: 388 ident: B3 article-title: Correlations among oligonucleotide repeats, nucleotide substitutions, and insertion–deletion mutations in chloroplast genomes of plant family Malvaceae. publication-title: J. Syst. Evol. doi: 10.1111/jse.12585 – volume: 43 start-page: 135 year: 1996 ident: B73 article-title: Variation in a wild groundnut species, Arachis duranensis Krapov. & W.C. Gregory. publication-title: Genet. Resour. Crop Evol. doi: 10.1007/BF00126757 – volume: 8 year: 2018 ident: B104 article-title: Genetic Diversity, Population Structure, and Botanical Variety of 320 Global Peanut Accessions Revealed Through Tunable Genotyping-by-Sequencing. publication-title: Sci. Rep. doi: 10.1038/s41598-018-32800-9 |
SSID | ssj0000500997 |
Score | 2.3420916 |
Snippet | Peanuts (
Arachis hypogaea
L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is... Peanuts ( L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest... Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is... |
SourceID | doaj pubmedcentral proquest pubmed crossref |
SourceType | Open Website Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 804568 |
SubjectTerms | Arachis genetic structure maternal hybridization event phylogenomics Plant Science whole plastid genome |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPHgRv41frODFQ2w-Npvdoy2WIioiFryFzWaXCpoUTYX-e2eyaWlF9OI1SZtl3ibzHpl5Q8h5GAV5DGrHj1SQ-4zlOMg9tn6C-UwHBdJ-rLa454Mhu3lOnhdGfWFNmLMHdoHrFKAHtEYPPQNUWUmB8klFhdap4Lxpuo4CGSyIKefqjdQndd8lQYXJjh2_ojt3FF4KZDFiKQ81dv0_cczvpZILuae_STZa0kiv3GK3yIopt8latwJiN90hn70RiO5qDDy4pg8jUOBovPr2oqlzHDEf9NF8AiGkit4pZ_pMB1Ns1WqbMOk1Vj3SW1dQT-uKAi2k_VlfI60sRetNHIRmCgpv0XJSf-ySYf_6qTfw23EKvmY8qn3I9SzM88hADlehsbngAF8qtIg1sAaGXaoQSS6NjSG0vEhAylldaFEAnDaJ98hqWZXmgFCVGGZSWVipIAuGXFpI-9zwQEvGbBB6pDMLbqZbr3EcefGageZAODKEI0M4MgeHRy7mvxg7n41fru0iXvPr0CG7OQD7Jmv3TfbXvvHI2QztDJ4o_EyiSlNN4E48hEggU_bIvkN_fiv4vzSRknkkXdoXS2tZPlO-jBrXblCm8EKXh_-x-COyjvHAspowPSar9fvEnAA5qvPT5jn4Ah0IDDI priority: 102 providerName: Directory of Open Access Journals |
Title | Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34975994 https://www.proquest.com/docview/2616281150 https://pubmed.ncbi.nlm.nih.gov/PMC8718879 https://doaj.org/article/d998cc3492e642a981322a2dcc786681 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYYcNgF8XPrBshIXHYIxImT2AeEAFEqBNM0Uam3yHHsFakkXZui9b_nvTgtFFU7cemhTRrXX533ffF73yPkmAV-FoLa8QLlZx7nGTZyD60XYTzTfo60H7MtfsadLr_tRb3X8uhmAsdLpR32k-qOBif__k7PYcGfoeKEeHtqhwM03g7YiUCCIj6RtXq3CBP5GrLvnL6RDiVur3LpiQuxqbbwX8Y736dPvolH7U2y0RBJeuGQ3yIrptgm65clkL3pDnm-6oMQL4fAjSv6qw-qHM1Ynx41dS4kZkx_m2cgiVTRe-WMoGlniuVbTWEmvcZMSHrnkuxpVVKgirQ9q3WkpaVox4nN0UxO4c5aTKrxLum2rx-uOl7TYsHTPA4qD-I_Z1kWGIjrihmbiRggTYQWoQYmwbFy1Zd-LI0NBSidPAJ5Z3WuRQ4Q2yjcI6tFWZivhKrIcJPI3EoFkZHF0gIViE3sa8m59VmLnM4mN9WN_zi2wRikoEMQjhThSBGO1MHRIj_mZwyd98Z_jr1EvObHoWt2_UY5-pM2izDNQVtqjX6MBmSXkgKluApyrRP4cQKGeDRDO4VVhlsnqjDlBK4UM5gJZM8t8sWhP78UfF8SSclbJFn4XyyMZfGT4rFfO3mDWoWbvPz2EYP_Tj7jfGCqDUv2yWo1mpgDIExVdlg_aIDXmx47rNfEC5VnFoc |
linkProvider | Scholars Portal |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chloroplast+Phylogenomic+Analyses+Reveal+a+Maternal+Hybridization+Event+Leading+to+the+Formation+of+Cultivated+Peanuts&rft.jtitle=Frontiers+in+plant+science&rft.au=Xiangyu+Tian&rft.au=Luye+Shi&rft.au=Jia+Guo&rft.au=Liuyang+Fu&rft.date=2021-12-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.804568&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d998cc3492e642a981322a2dcc786681 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon |