Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts

Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in plant science Vol. 12; p. 804568
Main Authors Tian, Xiangyu, Shi, Luye, Guo, Jia, Fu, Liuyang, Du, Pei, Huang, Bingyan, Wu, Yue, Zhang, Xinyou, Wang, Zhenlong
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 17.12.2021
Subjects
Online AccessGet full text
ISSN1664-462X
1664-462X
DOI10.3389/fpls.2021.804568

Cover

Abstract Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc . Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola , a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
AbstractList Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Peanuts ( L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, . Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid accessions being a potential AA sub-genome ancestor. In addition, , a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc . Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola , a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest of society to improve the productivity and quality of peanuts with transgenic means. However, the lack of a robust phylogeny of cultivated and wild peanut species has limited the utilization of genetic resources in peanut molecular breeding. In this study, a total of 33 complete peanut plastomes were sequenced, analyzed and used for phylogenetic analyses. Our results suggest that sect. Arachis can be subdivided into two lineages. All the cultivated species are contained in Lineage I with AABB and AA are the two predominant genome types present, while species in Lineage II possess diverse genome types, including BB, KK, GG, etc. Phylogenetic studies also indicate that all allotetraploid cultivated peanut species have been derived from a possible maternal hybridization event with one of the diploid Arachis duranensis accessions being a potential AA sub-genome ancestor. In addition, Arachis monticola, a tetraploid wild species, is placed in the same group with all the cultivated peanuts, and it may represent a transitional species, which has been through the recent hybridization event. This research could facilitate a better understanding of the taxonomic status of various Arachis species/accessions and the evolutionary relationship among them, and assists in the correct and efficient use of germplasm resources in breeding efforts to improve peanuts for the benefit of human beings.
Author Du, Pei
Huang, Bingyan
Wu, Yue
Fu, Liuyang
Shi, Luye
Zhang, Xinyou
Tian, Xiangyu
Wang, Zhenlong
Guo, Jia
AuthorAffiliation 2 Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences , Zhengzhou , China
1 School of Life Sciences, Zhengzhou University , Zhengzhou , China
AuthorAffiliation_xml – name: 2 Key Laboratory of Oil Crops in Huang-Huai-Hai Plains, Ministry of Agriculture and Rural Affairs, Henan Provincial Key Laboratory for Oil Crops Improvement, Henan Institute of Crop Molecular Breeding, Henan Academy of Agricultural Sciences , Zhengzhou , China
– name: 1 School of Life Sciences, Zhengzhou University , Zhengzhou , China
Author_xml – sequence: 1
  givenname: Xiangyu
  surname: Tian
  fullname: Tian, Xiangyu
– sequence: 2
  givenname: Luye
  surname: Shi
  fullname: Shi, Luye
– sequence: 3
  givenname: Jia
  surname: Guo
  fullname: Guo, Jia
– sequence: 4
  givenname: Liuyang
  surname: Fu
  fullname: Fu, Liuyang
– sequence: 5
  givenname: Pei
  surname: Du
  fullname: Du, Pei
– sequence: 6
  givenname: Bingyan
  surname: Huang
  fullname: Huang, Bingyan
– sequence: 7
  givenname: Yue
  surname: Wu
  fullname: Wu, Yue
– sequence: 8
  givenname: Xinyou
  surname: Zhang
  fullname: Zhang, Xinyou
– sequence: 9
  givenname: Zhenlong
  surname: Wang
  fullname: Wang, Zhenlong
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34975994$$D View this record in MEDLINE/PubMed
BookMark eNp1UsFu3CAQRVWqJt3m3lPFsZfdArYxXCpFq6SJtFWjqpV6QxiPd4mw2QK2tPn6snFSJZXKBZh57w0zvLfoZPADIPSeklVRCPmp27u4YoTRlSBlxcUrdEY5L5clZ79Onp1P0XmMdySvihAp6zfotChlXUlZnqFpvXM--L3TMeHb3cH5LQy-twZfDNodIkT8HSbQDmv8VScIOYqvD02wrb3XyfoBX04wJLwB3dphi5PHaQf4yod-TvsOr0eX7JTZLb4FPYwpvkOvO-0inD_uC_Tz6vLH-nq5-fblZn2xWZr88rQUjJS0aRiUhGsKXSO4MboWRhSGSFpmkCCScAldITjnbSVp3ZnWiLYpWFcVC3Qz67Ze36l9sL0OB-W1VQ8BH7ZKh2SNA9VKKYzJk2HAS6aloAVjmrXG1Fk63xbo86y1H5seWpO7Dtq9EH2ZGexObf2kRE2FqGUW-PgoEPzvEWJSvY0GnNMD-DEqxmnuh9KKZOiH57X-Fnn6uAzgM8AEH2OAThmbHgaeS1unKFFHk6ijSdTRJGo2SSaSf4hP2v-l_AFVSMGC
CitedBy_id crossref_primary_10_3390_biology13080601
crossref_primary_10_32604_phyton_2022_023165
crossref_primary_10_1038_s41588_024_01876_7
crossref_primary_10_1111_pbi_14125
crossref_primary_10_3390_horticulturae10050464
crossref_primary_10_1080_23802359_2024_2353230
Cites_doi 10.1111/j.1365-313X.2004.02202.x
10.1093/bioinformatics/btt403
10.1186/s13059-016-1004-2
10.1139/gen-2014-0037
10.1038/nmeth.4285
10.3146/i0095-3679-28-2-7
10.1186/1471-2229-4-11
10.1017/s1479262110000444
10.3389/fgene.2020.576124
10.1016/S0065-2113(08)60801-9
10.1093/aob/mcu237
10.1007/s10709-011-9556-2
10.1007/s00425-020-03365-7
10.1016/j.gene.2021.145539
10.7717/peerj.9448
10.7717/peerj.7662
10.1073/pnas.162203299
10.3389/fpls.2017.00304
10.1016/j.indcrop.2017.07.029
10.1093/aob/mcw065
10.1093/gbe/evs110
10.1186/s12870-020-02689-6
10.1139/g95-021
10.1139/g11-026
10.3389/fpls.2017.00111
10.3389/fpls.2017.02064
10.13005/bbra/2807
10.1016/j.indcrop.2020.112567
10.1007/s00122-020-03549-5
10.1093/bioinformatics/btx198
10.1186/s12870-019-2121-3
10.3146/ps13-02.1
10.1093/molbev/mst010
10.2135/cropsci2003.1100
10.1016/j.molp.2019.03.005
10.2135/cropsci2005.09-0331
10.1093/gbe/evx180
10.2135/cropsci2016.09.0824
10.1073/pnas.0709121104
10.1111/j.1744-7348.2001.tb00129.x
10.1002/ece3.6839
10.1093/pcp/pcab074
10.1126/science.1253435
10.1093/jhered/esg061
10.1016/j.ygeno.2019.08.024
10.1038/s41598-017-06638-6
10.1038/ng.3517
10.1007/BF00985743
10.1111/tpj.12693
10.1007/s00122-020-03592-2
10.3390/genes10010023
10.1038/s41438-019-0171-1
10.1111/tpj.15351
10.1002/ece3.7614
10.1038/s41588-020-0626-1
10.1073/pnas.0708072104
10.3389/fpls.2016.01106
10.1093/nar/25.5.955
10.1371/journal.pone.0085761
10.1093/nar/gkx391
10.1038/s41588-020-0627-0
10.1111/jse.12179
10.1038/s41588-019-0405-z
10.1093/molbev/msu300
10.1093/aob/mcs237
10.1007/s10681-011-0518-7
10.1007/s11103-011-9762-4
10.1111/tpj.13491
10.1002/j.1537-2197.1991.tb15751.x
10.1111/j.1439-0523.2009.01638.x
10.1093/sysbio/sys029
10.1186/s13007-019-0435-7
10.1002/advs.201901672
10.3390/agronomy10050704
10.1073/pnas.1600899113
10.1002/j.1537-2197.1996.tb13912.x
10.7717/peerj.5349
10.1007/bf00040550
10.1016/j.ygeno.2015.07.004
10.1038/s41598-021-00510-4
10.1007/s00122-005-0017-0
10.1093/jxb/ers192
10.1038/s41588-019-0402-2
10.1038/s41598-021-86820-z
10.1186/1471-2229-10-15
10.1093/molbev/msx248
10.1007/BF00272846
10.1093/nar/29.22.4633
10.1016/j.plgene.2019.100199
10.3732/ajb.91.9.1294
10.1023/A:1012019600318
10.30972/bon.160158
10.1038/s41598-020-66219-y
10.1038/nature11798
10.1038/s41598-017-12026-x
10.2135/cropsci2004.1847
10.3389/fpls.2019.00334
10.1038/s41598-017-01518-5
10.1104/pp.109.137935
10.1186/s13059-020-02154-5
10.1111/jse.12585
10.1007/BF00126757
10.1038/s41598-018-32800-9
ContentType Journal Article
Copyright Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang.
Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang
Copyright_xml – notice: Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang.
– notice: Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang. 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fpls.2021.804568
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
PubMed
CrossRef

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals - NZ
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Botany
EISSN 1664-462X
ExternalDocumentID oai_doaj_org_article_d998cc3492e642a981322a2dcc786681
PMC8718879
34975994
10_3389_fpls_2021_804568
Genre Journal Article
GrantInformation_xml – fundername: ;
GroupedDBID 5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
CITATION
EBD
ECGQY
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IGS
IPNFZ
ISR
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-82041bb2e406a1efb86cca78c83c0914462809069ef38666d5917fcdc8db32f53
IEDL.DBID M48
ISSN 1664-462X
IngestDate Wed Aug 27 01:20:31 EDT 2025
Thu Aug 21 18:32:58 EDT 2025
Fri Sep 05 08:03:43 EDT 2025
Thu Jan 02 22:57:27 EST 2025
Tue Jul 01 03:48:57 EDT 2025
Thu Apr 24 23:00:14 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords genetic structure
whole plastid genome
Arachis
maternal hybridization event
phylogenomics
Language English
License Copyright © 2021 Tian, Shi, Guo, Fu, Du, Huang, Wu, Zhang and Wang.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-82041bb2e406a1efb86cca78c83c0914462809069ef38666d5917fcdc8db32f53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science
Reviewed by: Abdullah, Quaid-i-Azam University, Pakistan; Xu Zhang, Wuhan Botanical Garden, Chinese Academy of Sciences (CAS), China
Edited by: Hai Du, Southwest University, China
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fpls.2021.804568
PMID 34975994
PQID 2616281150
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d998cc3492e642a981322a2dcc786681
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8718879
proquest_miscellaneous_2616281150
pubmed_primary_34975994
crossref_citationtrail_10_3389_fpls_2021_804568
crossref_primary_10_3389_fpls_2021_804568
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-12-17
PublicationDateYYYYMMDD 2021-12-17
PublicationDate_xml – month: 12
  year: 2021
  text: 2021-12-17
  day: 17
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in plant science
PublicationTitleAlternate Front Plant Sci
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Tonti-Filippini (B84) 2017; 90
Abdullah, Shahzadi (B4) 2019; 19
Moretzsohn (B56) 2013; 111
Li (B48) 2017; 8
Gill (B26) 2009; 151
Zhuang (B106) 2020; 52
Ahmed (B5) 2012; 4
Tan (B81) 2010; 34
Tyagi (B86) 2020; 8
Choi (B18) 2020; 10
Xue (B97) 2019; 6
Bertioli (B10) 2020; 52
Li (B49) 2021; 62
Rozas (B66) 2017; 34
Pandey (B60) 2020; 133
Stalker (B75) 2017; 57
Kalyaanamoorthy (B38) 2017; 14
Raina (B64) 1999; 214
Tillich (B83) 2017; 45
Abdullah, Mehmood (B3); 59
Daniell (B20) 2016; 17
Stalker (B77) 1987; 41
Wang (B90) 2017; 7
He (B30) 2014; 57
Ronquist (B65) 2012; 61
Paterson (B61) 2012; 492
da Cunha (B19) 2008; 55
Wang (B91) 2021; 43
Bertioli (B12) 2019; 51
Song (B74) 2017; 9
Prabhudas (B62) 2016; 7
Zheng (B102) 2020; 11
Wang (B93) 2019; 19
Tallury (B80) 2014; 41
Nguyen (B58) 2014; 32
Moner (B54) 2020; 20
Bertioli (B13) 2011; 9
Krapovickas (B43) 2007; 16
Nock (B59) 2019; 10
Zheng (B104) 2018; 8
Liu (B50) 2020; 10
Blazier (B14) 2016; 117
Chen (B16) 2016; 113
Yin (B99) 2017; 7
Moretzsohn (B57) 2004; 4
Jung (B37) 2003; 94
Jansen (B33) 2007; 104
Wicke (B95) 2011; 76
Varshney (B88) 2009; 128
Lowe (B51) 1997; 25
Hassoubah (B29) 2020; 17
Stalker (B76) 1991; 78
Abdullah, Mehmood (B2); 11
Jarvis (B34) 2003; 43
Simpson (B70) 2001; 28
Kochert (B40) 1996; 83
Leal-Bertioli (B46) 2014; 115
Chen (B17) 2019; 12
Zhang (B101) 2017; 34
Jeon (B35) 2019; 10
Henriquez (B32) 2020; 251
Sigmon (B69) 2017; 108
Ferguson (B23) 2004; 44
Abdullah, Mehmood (B1); 11
Kurtz (B45) 2001; 29
Chalhoub (B15) 2014; 345
Mehmood (B52) 2020; 112
Katoh (B39) 2013; 30
Moore (B55) 2007; 104
Middleton (B53) 2014; 9
Garcia (B24) 1995; 38
Zheng (B103) 2017; 7
Turmel (B85) 2002; 99
Vishwakarma (B89) 2017; 8
Qu (B63) 2019; 15
Wheeler (B94) 2013; 29
He (B31) 2001; 48
Belamkar (B9) 2011; 139
Bertioli (B11) 2016; 48
Yu (B100) 2020; 133
Koppolu (B42) 2010; 10
Kuang (B44) 2011; 54
Xu (B96) 2015; 106
Singh (B71) 1994; 74
Alqahtani (B6) 2021; 11
Beier (B8) 2017; 33
Asaf (B7) 2017; 8
Sugiura (B79) 2004; 40
Guo (B28) 2020; 153
Upadhyaya (B87) 2011; 182
Zhuang (B105) 2019; 51
Yin (B98) 2020; 7
Fávero (B21) 2006; 46
Subrahmanyam (B78) 2001; 139
Lee (B47) 2021; 107
Jin (B36) 2020; 21
Gimenes (B27) 2002; 123
Wang (B92) 2018; 6
Konate (B41) 2020; 10
Seijo (B68) 2004; 91
Singh (B72) 1982; 61
Gibbons (B25) 1972; 21
Schwarz (B67) 2015; 53
Singh (B73) 1996; 43
Tian (B82) 2019; 7
Feldman (B22) 2012; 63
References_xml – volume: 40
  start-page: 314
  year: 2004
  ident: B79
  article-title: Plastid transformation reveals that moss tRNAArg-CCG is not essential for plastid function.
  publication-title: Plant J.
  doi: 10.1111/j.1365-313X.2004.02202.x
– volume: 29
  start-page: 2487
  year: 2013
  ident: B94
  article-title: nhmmer: DNA homology search with profile HMMs.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btt403
– volume: 17
  year: 2016
  ident: B20
  article-title: Chloroplast genomes: diversity, evolution, and applications in genetic engineering.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-016-1004-2
– volume: 57
  start-page: 327
  year: 2014
  ident: B30
  article-title: Phylogenetic relationships of species of genus Arachis based on genic sequences.
  publication-title: Genome
  doi: 10.1139/gen-2014-0037
– volume: 14
  start-page: 587
  year: 2017
  ident: B38
  article-title: ModelFinder: fast model selection for accurate phylogenetic estimates.
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.4285
– volume: 28
  start-page: 78
  year: 2001
  ident: B70
  article-title: History of Arachis Including Evidence of A. hypogaea L.
  publication-title: Peanut Sci.
  doi: 10.3146/i0095-3679-28-2-7
– volume: 4
  year: 2004
  ident: B57
  article-title: Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-4-11
– volume: 9
  start-page: 134
  year: 2011
  ident: B13
  article-title: An overview of peanut and its wild relatives.
  publication-title: Plant Genet. Resour.
  doi: 10.1017/s1479262110000444
– volume: 11
  year: 2020
  ident: B102
  article-title: Chloroplot: an Online Program for the Versatile Plotting of Organelle Genomes.
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.576124
– volume: 41
  start-page: 1
  year: 1987
  ident: B77
  article-title: Speciation, Cytogenetics, and Utilization of Arachis Species.
  publication-title: Adv. Agron.
  doi: 10.1016/S0065-2113(08)60801-9
– volume: 115
  start-page: 237
  year: 2014
  ident: B46
  article-title: Arachis batizocoi: a study of its relationship to cultivated peanut (A. hypogaea) and its potential for introgression of wild genes into the peanut crop using induced allotetraploids.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcu237
– volume: 139
  year: 2011
  ident: B9
  article-title: A first insight into population structure and linkage disequilibrium in the US peanut minicore collection.
  publication-title: Genetica
  doi: 10.1007/s10709-011-9556-2
– volume: 251
  year: 2020
  ident: B32
  article-title: Molecular evolution of chloroplast genomes in Monsteroideae (Araceae).
  publication-title: Planta
  doi: 10.1007/s00425-020-03365-7
– volume: 55
  start-page: 15
  year: 2008
  ident: B19
  article-title: Genetic relationships among Arachis hypogaea L. (AABB) and diploid Arachis species with AA and BB genomes.
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1016/j.gene.2021.145539
– volume: 8
  year: 2020
  ident: B86
  article-title: A comparative analysis of the complete chloroplast genomes of three Chrysanthemum boreale strains.
  publication-title: PeerJ
  doi: 10.7717/peerj.9448
– volume: 7
  year: 2019
  ident: B82
  article-title: Plastome sequences help to improve the systematic position of trinerved Lindera species in the family Lauraceae.
  publication-title: PeerJ
  doi: 10.7717/peerj.7662
– volume: 99
  year: 2002
  ident: B85
  article-title: The chloroplast and mitochondrial genome sequences of the charophyte em>Chaetosphaeridium globosum /em>: insights into the timing of the events that restructured organelle DNAs within the green algal lineage that led to land plants.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.162203299
– volume: 8
  year: 2017
  ident: B7
  article-title: The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00304
– volume: 108
  start-page: 629
  year: 2017
  ident: B69
  article-title: Complete chloroplast genome sequencing of vetiver grass (Chrysopogon zizanioides) identifies markers that distinguish the non-fertile ‘Sunshine’ cultivar from other accessions.
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2017.07.029
– volume: 117
  start-page: 1209
  year: 2016
  ident: B14
  article-title: Variable presence of the inverted repeat and plastome stability in Erodium.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcw065
– volume: 4
  start-page: 1316
  year: 2012
  ident: B5
  article-title: Mutational Dynamics of Aroid Chloroplast Genomes.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evs110
– volume: 20
  year: 2020
  ident: B54
  article-title: Two divergent chloroplast genome sequence clades captured in the domesticated rice gene pool may have significance for rice production.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-020-02689-6
– volume: 38
  start-page: 166
  year: 1995
  ident: B24
  article-title: Introgression analysis of an interspecific hybrid population in peanuts (Arachis hypogaea L.) using RFLP and RAPD markers.
  publication-title: Genome
  doi: 10.1139/g95-021
– volume: 54
  start-page: 663
  year: 2011
  ident: B44
  article-title: Complete chloroplast genome sequence of Magnolia kwangsiensis (Magnoliaceae): implication for DNA barcoding and population genetics.
  publication-title: Genome
  doi: 10.1139/g11-026
– volume: 8
  year: 2017
  ident: B48
  article-title: A Phylogenetic Analysis of Chloroplast Genomes Elucidates the Relationships of the Six Economically Important Brassica Species Comprising the Triangle of U.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.00111
– volume: 8
  year: 2017
  ident: B89
  article-title: Genome-Wide Discovery and Deployment of Insertions and Deletions Markers Provided Greater Insights on Species, Genomes, and Sections Relationships in the Genus Arachis.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2017.02064
– volume: 17
  start-page: 27
  year: 2020
  ident: B29
  article-title: Comparison of Plastome SNPs/INDELs among different Wheat (Triticumsp.) Cultivars.
  publication-title: Biosci. Biotechnol. Res. Asia
  doi: 10.13005/bbra/2807
– volume: 153
  year: 2020
  ident: B28
  article-title: Phylogenetic analysis based on chloroplast genome uncover evolutionary relationship of all the nine species and six cultivars of tree peony.
  publication-title: Ind. Crops Prod.
  doi: 10.1016/j.indcrop.2020.112567
– volume: 133
  start-page: 1467
  year: 2020
  ident: B100
  article-title: Epigenomic landscape and epigenetic regulation in maize.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-020-03549-5
– volume: 33
  start-page: 2583
  year: 2017
  ident: B8
  article-title: MISA-web: a web server for microsatellite prediction.
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btx198
– volume: 19
  year: 2019
  ident: B93
  article-title: Twelve complete chloroplast genomes of wild peanuts: great genetic resources and a better understanding of Arachis phylogeny.
  publication-title: BMC Plant Biol.
  doi: 10.1186/s12870-019-2121-3
– volume: 41
  start-page: 17
  year: 2014
  ident: B80
  article-title: Greenhouse Evaluation of Section Arachis Wild Species for Sclerotinia Blight and Cylindrocladium Black Rot Resistance.
  publication-title: Peanut Sci.
  doi: 10.3146/ps13-02.1
– volume: 30
  start-page: 772
  year: 2013
  ident: B39
  article-title: MAFFT Multiple Sequence Alignment Software Version 7: improvements in Performance and Usability.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/mst010
– volume: 43
  start-page: 1100
  year: 2003
  ident: B34
  article-title: Biogeography of Wild Arachis.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2003.1100
– volume: 12
  start-page: 920
  year: 2019
  ident: B17
  article-title: Sequencing of Cultivated Peanut, Arachis hypogaea, Yields Insights into Genome Evolution and Oil Improvement.
  publication-title: Mol. Plant
  doi: 10.1016/j.molp.2019.03.005
– volume: 46
  start-page: 1546
  year: 2006
  ident: B21
  article-title: Study of the Evolution of Cultivated Peanut through Crossability Studies among Arachis ipaënsis, A. duranensis, and A. hypogaea.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2005.09-0331
– volume: 34
  start-page: 72
  year: 2010
  ident: B81
  article-title: A review of geocarpy and amphicarpy in angiosperms, with special reference to their ecological adaptive significance.
  publication-title: Chin. J. Plant Ecol.
– volume: 9
  start-page: 2354
  year: 2017
  ident: B74
  article-title: Evolutionary Comparisons of the Chloroplast Genome in Lauraceae and Insights into Loss Events in the Magnoliids.
  publication-title: Genome Biol. Evol.
  doi: 10.1093/gbe/evx180
– volume: 57
  start-page: 1102
  year: 2017
  ident: B75
  article-title: Utilizing Wild Species for Peanut Improvement.
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2016.09.0824
– volume: 104
  year: 2007
  ident: B33
  article-title: Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0709121104
– volume: 139
  start-page: 45
  year: 2001
  ident: B78
  article-title: Resistance to groundnut rosette disease in wild Arachis species.
  publication-title: Ann. Appl. Biol.
  doi: 10.1111/j.1744-7348.2001.tb00129.x
– volume: 43
  year: 2021
  ident: B91
  article-title: Verifying high variation regions based on sect. Arachis chloroplast genome and revealing the interspecies genetic relationship.
  publication-title: Chin. J. Oil Crop Sci.
– volume: 10
  start-page: 12129
  year: 2020
  ident: B18
  article-title: Caught in the Act: variation in plastid genome inverted repeat expansion within and between populations of Medicago minima.
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.6839
– volume: 62
  start-page: 971
  year: 2021
  ident: B49
  article-title: Plastid NDH Pseudogenization and Gene Loss in a Recently Derived Lineage from the Largest Hemiparasitic Plant Genus Pedicularis (Orobanchaceae).
  publication-title: Plant Cell Physiol.
  doi: 10.1093/pcp/pcab074
– volume: 345
  start-page: 950
  year: 2014
  ident: B15
  article-title: Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome.
  publication-title: Science
  doi: 10.1126/science.1253435
– volume: 94
  start-page: 334
  year: 2003
  ident: B37
  article-title: The Phylogenetic Relationship of Possible Progenitors of the Cultivated Peanut.
  publication-title: J. Hered.
  doi: 10.1093/jhered/esg061
– volume: 112
  start-page: 1522
  year: 2020
  ident: B52
  article-title: Characterization of Withania somnifera chloroplast genome and its comparison with other selected species of Solanaceae.
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2019.08.024
– volume: 7
  year: 2017
  ident: B90
  article-title: Comparative Analysis of Four Buckwheat Species Based on Morphology and Complete Chloroplast Genome Sequences.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-06638-6
– volume: 48
  start-page: 438
  year: 2016
  ident: B11
  article-title: The genome sequences of Arachis duranensis and Arachis ipaensis, the diploid ancestors of cultivated peanut.
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3517
– volume: 214
  start-page: 251
  year: 1999
  ident: B64
  article-title: Genomic in situ hybridization inArachis (Fabaceae) identifies the diploid wild progenitors of cultivated (A. hypogaea) and related wild (A. monticola) peanut species.
  publication-title: Plant Syst. Evol.
  doi: 10.1007/BF00985743
– volume: 34
  start-page: 1215
  year: 2017
  ident: B101
  article-title: Advances in cleistogamy of angiosperms.
  publication-title: Pratacultural Sci.
  doi: 10.1111/tpj.12693
– volume: 133
  start-page: 1679
  year: 2020
  ident: B60
  article-title: Translational genomics for achieving higher genetic gains in groundnut.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/s00122-020-03592-2
– volume: 10
  year: 2019
  ident: B35
  article-title: Comparative Analysis of the Complete Chloroplast Genome Sequences of Three Closely Related East-Asian Wild Roses (Rosa sect. Synstylae; Rosaceae).
  publication-title: Genes
  doi: 10.3390/genes10010023
– volume: 6
  year: 2019
  ident: B97
  article-title: Comparative analysis of the complete chloroplast genome among Prunus mume, P. armeniaca, and P. salicina.
  publication-title: Hortic. Res.
  doi: 10.1038/s41438-019-0171-1
– volume: 107
  start-page: 861
  year: 2021
  ident: B47
  article-title: The chicken or the egg? Plastome evolution and an independent loss of the inverted repeat in papilionoid legumes.
  publication-title: Plant J.
  doi: 10.1111/tpj.15351
– volume: 11
  start-page: 7810
  ident: B2
  article-title: Comparative plastome analysis of Blumea, with implications for genome evolution and phylogeny of Asteroideae.
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.7614
– volume: 52
  start-page: 557
  year: 2020
  ident: B10
  article-title: Evaluating two different models of peanut’s origin.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0626-1
– volume: 104
  year: 2007
  ident: B55
  article-title: Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0708072104
– volume: 7
  year: 2016
  ident: B62
  article-title: Shallow Whole Genome Sequencing for the Assembly of Complete Chloroplast Genome Sequence of Arachis hypogaea L.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2016.01106
– volume: 25
  start-page: 955
  year: 1997
  ident: B51
  article-title: tRNAscan-SE: a Program for Improved Detection of Transfer RNA Genes in Genomic Sequence.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/25.5.955
– volume: 9
  year: 2014
  ident: B53
  article-title: Sequencing of Chloroplast Genomes from Wheat, Barley, Rye and Their Relatives Provides a Detailed Insight into the Evolution of the Triticeae Tribe.
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0085761
– volume: 45
  start-page: W6
  year: 2017
  ident: B83
  article-title: GeSeq – versatile and accurate annotation of organelle genomes.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkx391
– volume: 52
  start-page: 560
  year: 2020
  ident: B106
  article-title: Reply to: evaluating two different models of peanut’s origin.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-020-0627-0
– volume: 53
  start-page: 458
  year: 2015
  ident: B67
  article-title: Plastid genome sequences of legumes reveal parallel inversions and multiple losses of rps16 in papilionoids.
  publication-title: J. Syst. Evol.
  doi: 10.1111/jse.12179
– volume: 51
  start-page: 877
  year: 2019
  ident: B12
  article-title: The genome sequence of segmental allotetraploid peanut Arachis hypogaea.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0405-z
– volume: 32
  start-page: 268
  year: 2014
  ident: B58
  article-title: IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msu300
– volume: 111
  start-page: 113
  year: 2013
  ident: B56
  article-title: A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers.
  publication-title: Ann. Bot.
  doi: 10.1093/aob/mcs237
– volume: 182
  year: 2011
  ident: B87
  article-title: Phenotypic diversity and identification of wild Arachis accessions with useful agronomic and nutritional traits.
  publication-title: Euphytica
  doi: 10.1007/s10681-011-0518-7
– volume: 76
  start-page: 273
  year: 2011
  ident: B95
  article-title: The evolution of the plastid chromosome in land plants: gene content, gene order, gene function.
  publication-title: Plant Mol. Biol.
  doi: 10.1007/s11103-011-9762-4
– volume: 90
  start-page: 808
  year: 2017
  ident: B84
  article-title: What can we do with 1000 plastid genomes?.
  publication-title: Plant J.
  doi: 10.1111/tpj.13491
– volume: 78
  start-page: 238
  year: 1991
  ident: B76
  article-title: Cytological and Interfertility Relationships of Arachis Section Arachis.
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1991.tb15751.x
– volume: 128
  start-page: 486
  year: 2009
  ident: B88
  article-title: High level of natural variation in a groundnut (Arachis hypogaea L.) germplasm collection assayed by selected informative SSR markers.
  publication-title: Plant Breed.
  doi: 10.1111/j.1439-0523.2009.01638.x
– volume: 61
  start-page: 539
  year: 2012
  ident: B65
  article-title: MrBayes 3.2: efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space.
  publication-title: Syst. Biol.
  doi: 10.1093/sysbio/sys029
– volume: 15
  year: 2019
  ident: B63
  article-title: PGA: a software package for rapid, accurate, and flexible batch annotation of plastomes.
  publication-title: Plant Methods
  doi: 10.1186/s13007-019-0435-7
– volume: 7
  year: 2020
  ident: B98
  article-title: Comparison of Arachis monticola with Diploid and Cultivated Tetraploid Genomes Reveals Asymmetric Subgenome Evolution and Improvement of Peanut.
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201901672
– volume: 10
  year: 2020
  ident: B41
  article-title: Past, Present and Future Perspectives on Groundnut Breeding in Burkina Faso.
  publication-title: Agronomy
  doi: 10.3390/agronomy10050704
– volume: 113
  year: 2016
  ident: B16
  article-title: Draft genome of the peanut A-genome progenitor (Arachis duranensis) provides insights into geocarpy, oil biosynthesis, and allergens.
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1600899113
– volume: 83
  start-page: 1282
  year: 1996
  ident: B40
  article-title: RFLP and Cytogenetic Evidence on the Origin and Evolution of Allotetraploid Domesticated Peanut, Arachis hypogaea (Leguminosae).
  publication-title: Am. J. Bot.
  doi: 10.1002/j.1537-2197.1996.tb13912.x
– volume: 6
  year: 2018
  ident: B92
  article-title: A comparative analysis of the complete chloroplast genome sequences of four peanut botanical varieties.
  publication-title: PeerJ
  doi: 10.7717/peerj.5349
– volume: 21
  start-page: 78
  year: 1972
  ident: B25
  article-title: The classification of varieties of groundnut (Arachis hypogaea L.).
  publication-title: Euphytica
  doi: 10.1007/bf00040550
– volume: 106
  start-page: 221
  year: 2015
  ident: B96
  article-title: Dynamics of chloroplast genomes in green plants.
  publication-title: Genomics
  doi: 10.1016/j.ygeno.2015.07.004
– volume: 11
  ident: B1
  article-title: Pseudogenization of the chloroplast threonine (trnT-GGU) gene in the sunflower family (Asteraceae).
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-00510-4
– volume: 123
  start-page: 421
  year: 2002
  ident: B27
  article-title: RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae).
  publication-title: Euphytica
  doi: 10.1007/s00122-005-0017-0
– volume: 63
  start-page: 5045
  year: 2012
  ident: B22
  article-title: Genomic asymmetry in allopolyploid plants: wheat as a model.
  publication-title: J. Exp. Bot.
  doi: 10.1093/jxb/ers192
– volume: 51
  start-page: 865
  year: 2019
  ident: B105
  article-title: The genome of cultivated peanut provides insight into legume karyotypes, polyploid evolution and crop domestication.
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-019-0402-2
– volume: 11
  year: 2021
  ident: B6
  article-title: The evolutionary fate of rpl32 and rps16 losses in the Euphorbia schimperi (Euphorbiaceae) plastome.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-86820-z
– volume: 10
  year: 2010
  ident: B42
  article-title: Genetic relationships among seven sections of genus Arachis studied by using SSR markers.
  publication-title: BMC Plant Biol.
  doi: 10.1186/1471-2229-10-15
– volume: 34
  start-page: 3299
  year: 2017
  ident: B66
  article-title: DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets.
  publication-title: Mol. Biol. Evol.
  doi: 10.1093/molbev/msx248
– volume: 61
  start-page: 305
  year: 1982
  ident: B72
  article-title: Utilization of wild relatives in genetic improvement of Arachis hypogaea L.
  publication-title: Theor. Appl. Genet.
  doi: 10.1007/BF00272846
– volume: 29
  start-page: 4633
  year: 2001
  ident: B45
  article-title: REPuter: the manifold applications of repeat analysis on a genomic scale.
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/29.22.4633
– volume: 19
  year: 2019
  ident: B4
  article-title: Comparative analyses of chloroplast genomes among three Firmiana species: identification of mutational hotspots and phylogenetic relationship with other species of Malvaceae.
  publication-title: Plant Gene
  doi: 10.1016/j.plgene.2019.100199
– volume: 91
  start-page: 1294
  year: 2004
  ident: B68
  article-title: Physical mapping of the 5S and 18S–25S rRNA genes by FISH as evidence that Arachis duranensis and A. ipaensis are the wild diploid progenitors of A. hypogaea (Leguminosae).
  publication-title: Am. J. Bot.
  doi: 10.3732/ajb.91.9.1294
– volume: 48
  start-page: 347
  year: 2001
  ident: B31
  article-title: Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers.
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1023/A:1012019600318
– volume: 74
  start-page: 219
  year: 1994
  ident: B71
  article-title: Phylogenetic relationships in the genus Arachis based on seed protein profiles.
  publication-title: Euphytica
– volume: 16
  start-page: 7
  year: 2007
  ident: B43
  article-title: Taxonomy of the genus Aeachis (Leguminosae).
  publication-title: Bonplandia
  doi: 10.30972/bon.160158
– volume: 10
  year: 2020
  ident: B50
  article-title: Patterns and Rates of Plastid rps12 Gene Evolution Inferred in a Phylogenetic Context using Plastomic Data of Ferns.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-020-66219-y
– volume: 492
  start-page: 423
  year: 2012
  ident: B61
  article-title: Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres.
  publication-title: Nature
  doi: 10.1038/nature11798
– volume: 7
  year: 2017
  ident: B99
  article-title: Development of chloroplast genome resources for peanut (Arachis hypogaea L.) and other species of Arachis.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-12026-x
– volume: 44
  start-page: 1847
  year: 2004
  ident: B23
  article-title: Gene Diversity among Botanical Varieties in Peanut (Arachis hypogaea L.).
  publication-title: Crop Sci.
  doi: 10.2135/cropsci2004.1847
– volume: 10
  year: 2019
  ident: B59
  article-title: Wild Origins of Macadamia Domestication Identified Through Intraspecific Chloroplast Genome Sequencing.
  publication-title: Front. Plant Sci.
  doi: 10.3389/fpls.2019.00334
– volume: 7
  year: 2017
  ident: B103
  article-title: Inferring the evolutionary mechanism of the chloroplast genome size by comparing whole-chloroplast genome sequences in seed plants.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-017-01518-5
– volume: 151
  start-page: 1167
  year: 2009
  ident: B26
  article-title: Molecular and Chromosomal Evidence for Allopolyploidy in Soybean.
  publication-title: Plant Physiol.
  doi: 10.1104/pp.109.137935
– volume: 21
  year: 2020
  ident: B36
  article-title: GetOrganelle: a fast and versatile toolkit for accurate de novo assembly of organelle genomes.
  publication-title: Genome Biol.
  doi: 10.1186/s13059-020-02154-5
– volume: 59
  start-page: 388
  ident: B3
  article-title: Correlations among oligonucleotide repeats, nucleotide substitutions, and insertion–deletion mutations in chloroplast genomes of plant family Malvaceae.
  publication-title: J. Syst. Evol.
  doi: 10.1111/jse.12585
– volume: 43
  start-page: 135
  year: 1996
  ident: B73
  article-title: Variation in a wild groundnut species, Arachis duranensis Krapov. & W.C. Gregory.
  publication-title: Genet. Resour. Crop Evol.
  doi: 10.1007/BF00126757
– volume: 8
  year: 2018
  ident: B104
  article-title: Genetic Diversity, Population Structure, and Botanical Variety of 320 Global Peanut Accessions Revealed Through Tunable Genotyping-by-Sequencing.
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32800-9
SSID ssj0000500997
Score 2.3420916
Snippet Peanuts ( Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is...
Peanuts ( L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is in the interest...
Peanuts (Arachis hypogaea L.) offer numerous healthy benefits, and the production of peanuts has a prominent role in global food security. As a result, it is...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 804568
SubjectTerms Arachis
genetic structure
maternal hybridization event
phylogenomics
Plant Science
whole plastid genome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPHgRv41frODFQ2w-Npvdoy2WIioiFryFzWaXCpoUTYX-e2eyaWlF9OI1SZtl3ibzHpl5Q8h5GAV5DGrHj1SQ-4zlOMg9tn6C-UwHBdJ-rLa454Mhu3lOnhdGfWFNmLMHdoHrFKAHtEYPPQNUWUmB8klFhdap4Lxpuo4CGSyIKefqjdQndd8lQYXJjh2_ojt3FF4KZDFiKQ81dv0_cczvpZILuae_STZa0kiv3GK3yIopt8latwJiN90hn70RiO5qDDy4pg8jUOBovPr2oqlzHDEf9NF8AiGkit4pZ_pMB1Ns1WqbMOk1Vj3SW1dQT-uKAi2k_VlfI60sRetNHIRmCgpv0XJSf-ySYf_6qTfw23EKvmY8qn3I9SzM88hADlehsbngAF8qtIg1sAaGXaoQSS6NjSG0vEhAylldaFEAnDaJ98hqWZXmgFCVGGZSWVipIAuGXFpI-9zwQEvGbBB6pDMLbqZbr3EcefGageZAODKEI0M4MgeHRy7mvxg7n41fru0iXvPr0CG7OQD7Jmv3TfbXvvHI2QztDJ4o_EyiSlNN4E48hEggU_bIvkN_fiv4vzSRknkkXdoXS2tZPlO-jBrXblCm8EKXh_-x-COyjvHAspowPSar9fvEnAA5qvPT5jn4Ah0IDDI
  priority: 102
  providerName: Directory of Open Access Journals
Title Chloroplast Phylogenomic Analyses Reveal a Maternal Hybridization Event Leading to the Formation of Cultivated Peanuts
URI https://www.ncbi.nlm.nih.gov/pubmed/34975994
https://www.proquest.com/docview/2616281150
https://pubmed.ncbi.nlm.nih.gov/PMC8718879
https://doaj.org/article/d998cc3492e642a981322a2dcc786681
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3PT9swFLYYcNgF8XPrBshIXHYIxImT2AeEAFEqBNM0Uam3yHHsFakkXZui9b_nvTgtFFU7cemhTRrXX533ffF73yPkmAV-FoLa8QLlZx7nGTZyD60XYTzTfo60H7MtfsadLr_tRb3X8uhmAsdLpR32k-qOBif__k7PYcGfoeKEeHtqhwM03g7YiUCCIj6RtXq3CBP5GrLvnL6RDiVur3LpiQuxqbbwX8Y736dPvolH7U2y0RBJeuGQ3yIrptgm65clkL3pDnm-6oMQL4fAjSv6qw-qHM1Ynx41dS4kZkx_m2cgiVTRe-WMoGlniuVbTWEmvcZMSHrnkuxpVVKgirQ9q3WkpaVox4nN0UxO4c5aTKrxLum2rx-uOl7TYsHTPA4qD-I_Z1kWGIjrihmbiRggTYQWoQYmwbFy1Zd-LI0NBSidPAJ5Z3WuRQ4Q2yjcI6tFWZivhKrIcJPI3EoFkZHF0gIViE3sa8m59VmLnM4mN9WN_zi2wRikoEMQjhThSBGO1MHRIj_mZwyd98Z_jr1EvObHoWt2_UY5-pM2izDNQVtqjX6MBmSXkgKluApyrRP4cQKGeDRDO4VVhlsnqjDlBK4UM5gJZM8t8sWhP78UfF8SSclbJFn4XyyMZfGT4rFfO3mDWoWbvPz2EYP_Tj7jfGCqDUv2yWo1mpgDIExVdlg_aIDXmx47rNfEC5VnFoc
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chloroplast+Phylogenomic+Analyses+Reveal+a+Maternal+Hybridization+Event+Leading+to+the+Formation+of+Cultivated+Peanuts&rft.jtitle=Frontiers+in+plant+science&rft.au=Xiangyu+Tian&rft.au=Luye+Shi&rft.au=Jia+Guo&rft.au=Liuyang+Fu&rft.date=2021-12-17&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-462X&rft.volume=12&rft_id=info:doi/10.3389%2Ffpls.2021.804568&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d998cc3492e642a981322a2dcc786681
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-462X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-462X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-462X&client=summon