Rethinking Delayed Hemodynamic Responses for fNIRS Classification

Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; p. 1
Main Authors Wang, Zenghui, Fang, Jihong, Zhang, Jun
Format Journal Article
LanguageEnglish
Published United States IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3330911

Cover

Abstract Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent delayed hemodynamic responses of fNIRS signals, which causes many optimization and application problems. Considering the kernel size and receptive field of convolutions, delayed hemodynamic responses as domain knowledge are introduced into fNIRS classification, and a concise and efficient model named fNIRSNet is proposed. We empirically summarize three design guidelines for fNIRSNet. In subject-specific and subject-independent experiments, fNIRSNet outperforms other DNNs on open-access datasets. Specifically, fNIRSNet with only 498 parameters is 6.58% higher than convolutional neural network (CNN) with millions of parameters on mental arithmetic tasks and the floating-point operations (FLOPs) of fNIRSNet are much lower than CNN. Therefore, fNIRSNet is friendly to practical applications and reduces the hardware cost of BCI systems. It may inspire more research on knowledge-driven models for fNIRS BCIs. Code is available at https://github.com/wzhlearning/fNIRSNet.
AbstractList Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent delayed hemodynamic responses of fNIRS signals, which causes many optimization and application problems. Considering the kernel size and receptive field of convolutions, delayed hemodynamic responses as domain knowledge are introduced into fNIRS classification, and a concise and efficient model named fNIRSNet is proposed. We empirically summarize three design guidelines for fNIRSNet. In subject-specific and subject-independent experiments, fNIRSNet outperforms other DNNs on open-access datasets. Specifically, fNIRSNet with only 498 parameters is 6.58% higher than convolutional neural network (CNN) with millions of parameters on mental arithmetic tasks and the floating-point operations (FLOPs) of fNIRSNet are much lower than CNN. Therefore, fNIRSNet is friendly to practical applications and reduces the hardware cost of BCI systems. It may inspire more research on knowledge-driven models for fNIRS BCIs. Code is available at https://github.com/wzhlearning/fNIRSNet.
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent delayed hemodynamic responses of fNIRS signals, which causes many optimization and application problems. Considering the kernel size and receptive field of convolutions, delayed hemodynamic responses as domain knowledge are introduced into fNIRS classification, and a concise and efficient model named fNIRSNet is proposed. We empirically summarize three design guidelines for fNIRSNet. In subject-specific and subject-independent experiments, fNIRSNet outperforms other DNNs on open-access datasets. Specifically, fNIRSNet with only 498 parameters is 6.58% higher than convolutional neural network (CNN) with millions of parameters on mental arithmetic tasks and the floating-point operations (FLOPs) of fNIRSNet are much lower than CNN. Therefore, fNIRSNet is friendly to practical applications and reduces the hardware cost of BCI systems. It may inspire more research on knowledge-driven models for fNIRS BCIs. Code is available at https://github.com/wzhlearning/fNIRSNet.Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS classification can improve the performance of brain-computer interfaces (BCIs). Currently, deep neural networks (DNNs) do not consider the inherent delayed hemodynamic responses of fNIRS signals, which causes many optimization and application problems. Considering the kernel size and receptive field of convolutions, delayed hemodynamic responses as domain knowledge are introduced into fNIRS classification, and a concise and efficient model named fNIRSNet is proposed. We empirically summarize three design guidelines for fNIRSNet. In subject-specific and subject-independent experiments, fNIRSNet outperforms other DNNs on open-access datasets. Specifically, fNIRSNet with only 498 parameters is 6.58% higher than convolutional neural network (CNN) with millions of parameters on mental arithmetic tasks and the floating-point operations (FLOPs) of fNIRSNet are much lower than CNN. Therefore, fNIRSNet is friendly to practical applications and reduces the hardware cost of BCI systems. It may inspire more research on knowledge-driven models for fNIRS BCIs. Code is available at https://github.com/wzhlearning/fNIRSNet.
Author Wang, Zenghui
Zhang, Jun
Fang, Jihong
Author_xml – sequence: 1
  givenname: Zenghui
  orcidid: 0000-0002-0803-6206
  surname: Wang
  fullname: Wang, Zenghui
  organization: School of Electrical Engineering and Automation, Anhui University, Hefei, China
– sequence: 2
  givenname: Jihong
  surname: Fang
  fullname: Fang, Jihong
  organization: Nursing Department, Anhui Provincial Children's Hospital, Hefei, China
– sequence: 3
  givenname: Jun
  orcidid: 0000-0002-5985-8023
  surname: Zhang
  fullname: Zhang, Jun
  organization: School of Artificial Intelligence, Anhui University, Hefei, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37934649$$D View this record in MEDLINE/PubMed
BookMark eNptkl1v0zAYhS00xD7gDyCEInGzmxQ7_oovp7KxStOQunFtOc7r4ZLaJU6E-u9xm1Khiitb9nOOj499ic5CDIDQe4JnhGD1-fnxaXk7q3BFZ5RSrAh5hS4I53WJK4LPdnPKSkYrfI4uU1phTKTg8g06p1JRJpi6QDdLGH748NOHl-ILdGYLbXEP69hug1l7WywhbWJIkAoX-8I9LpZPxbwzKXnnrRl8DG_Ra2e6BO8O4xX6fnf7PL8vH759XcxvHkrLRDWUklbKWcGtIQwbxjivGoqds7LlVLFGSMBgHMW4FsIqxSHTta2xEqQ1HNMrtJh822hWetP7tem3Ohqv9wuxf9GmH7ztQGPbNCIf41TTsnyAqcExkZtRQhhlmuxFJ68xbMz2t-m6oyHBeleuHkLqQe_K1Ydys-p6Um36-GuENOi1Txa6zgSIY9JVXUsmJd2H_XSCruLYh9xPplRFJWdEZurjgRqbNbTHDH-fJwP1BNg-ppzHaeuHfetDb3x3DLv_CadhqxPp6Q3_K_owiTwA_COgeS-n_gMlzbsl
CODEN ITNSB3
CitedBy_id crossref_primary_10_1016_j_inffus_2025_103023
crossref_primary_10_1109_TNSRE_2024_3449316
crossref_primary_10_1080_27706710_2024_2335886
crossref_primary_10_1109_ACCESS_2024_3496079
crossref_primary_10_3390_e27010014
crossref_primary_10_1016_j_bspc_2025_107528
crossref_primary_10_21869_2223_1536_2024_14_2_60_71
crossref_primary_10_1016_j_bspc_2025_107679
crossref_primary_10_1016_j_eswa_2024_123717
Cites_doi 10.1109/ACCESS.2020.2994226
10.1109/ACCESS.2019.2942838
10.1109/TETCI.2018.2858761
10.1109/CVPR.2018.00474
10.3389/fnbot.2020.00010
10.1038/jcbfm.2013.200
10.1109/ACCESS.2023.3296382
10.1109/CVPR.2018.00951
10.1002/mrm.1910320122
10.1109/TNSRE.2016.2628057
10.1109/TNSRE.2022.3149899
10.1016/j.neuroimage.2012.01.029
10.1109/CVPR.2016.308
10.1109/JBHI.2022.3140531
10.1117/1.NPh.5.1.011008
10.1016/j.neuroimage.2009.04.050
10.1109/TNSRE.2021.3115266
10.1088/1741-2552/abf187
10.1109/TNSRE.2022.3190431
10.1016/j.inffus.2023.101898
10.1109/JBHI.2021.3133871
10.1073/pnas.89.13.5951
10.1007/978-3-030-21642-9_8
10.1088/1741-2552/aace8c
10.1088/1741-2552/abb417
10.1109/TBME.2021.3113854
10.3390/electronics8121486
10.1117/1.JBO.26.2.022908
10.1038/s41467-019-09076-2
10.3389/fnins.2020.00584
10.48550/ARXIV.1706.03762
10.1109/TII.2020.3044310
10.1109/JSEN.2021.3115405
10.1109/JSEN.2022.3205956
10.1073/pnas.95.3.765
10.5555/3045118.3045167
10.1016/j.neuroimage.2005.09.048
10.1007/BF02447083
10.1109/ICCV.2017.74
10.1016/j.bspc.2021.102595
10.1016/S1053-8119(03)00311-2
10.1126/science.929199
10.1109/TBME.2022.3193277
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
DOA
DOI 10.1109/TNSRE.2023.3330911
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic


Materials Research Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 5
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
Mathematics
EISSN 1558-0210
EndPage 1
ExternalDocumentID oai_doaj_org_article_0cbb6140f9bd4c7da8ef46155966a9ab
10.1109/tnsre.2023.3330911
37934649
10_1109_TNSRE_2023_3330911
10311392
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 61872004
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
5GY
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AFPKN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
ESBDL
F5P
GROUPED_DOAJ
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
53G
5VS
AAYXX
AETIX
AGSQL
AIBXA
CITATION
EJD
H~9
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ADTOC
UNPAY
ID FETCH-LOGICAL-c462t-7329fc65ca140a44552b30ffc7d5394b67e0eaf300866c995efc68c80961da503
IEDL.DBID UNPAY
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:29:17 EDT 2025
Tue Aug 19 18:24:04 EDT 2025
Fri Jul 11 04:55:58 EDT 2025
Mon Jul 14 07:40:39 EDT 2025
Thu Apr 03 07:02:30 EDT 2025
Thu Apr 24 23:09:19 EDT 2025
Wed Oct 01 01:12:35 EDT 2025
Wed Aug 27 02:35:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-7329fc65ca140a44552b30ffc7d5394b67e0eaf300866c995efc68c80961da503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-5985-8023
0000-0002-0803-6206
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ielx7/7333/4359219/10311392.pdf
PMID 37934649
PQID 2892375417
PQPubID 85423
PageCount 1
ParticipantIDs crossref_citationtrail_10_1109_TNSRE_2023_3330911
crossref_primary_10_1109_TNSRE_2023_3330911
proquest_miscellaneous_2887477350
doaj_primary_oai_doaj_org_article_0cbb6140f9bd4c7da8ef46155966a9ab
unpaywall_primary_10_1109_tnsre_2023_3330911
pubmed_primary_37934649
proquest_journals_2892375417
ieee_primary_10311392
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref11
ref10
ref16
ref19
Maas (ref35); 30
Clevert (ref34) 2015
Srivastava (ref17) 2014; 15
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
SIfre (ref31) 2014
Loshchilov (ref39)
ref37
ref36
ref30
ref33
ref32
ref2
ref1
van der Maaten (ref44) 2008; 9
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
Loshchilov (ref40)
Ishida (ref18)
ref28
ref27
ref29
References_xml – ident: ref23
  doi: 10.1109/ACCESS.2020.2994226
– ident: ref21
  doi: 10.1109/ACCESS.2019.2942838
– year: 2015
  ident: ref34
  article-title: Fast and accurate deep network learning by exponential linear units (ELUs)
  publication-title: arXiv:1511.07289
– ident: ref50
  doi: 10.1109/TETCI.2018.2858761
– volume: 15
  start-page: 1929
  issue: 56
  year: 2014
  ident: ref17
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: ref33
  doi: 10.1109/CVPR.2018.00474
– ident: ref15
  doi: 10.3389/fnbot.2020.00010
– ident: ref27
  doi: 10.1038/jcbfm.2013.200
– ident: ref48
  doi: 10.1109/ACCESS.2023.3296382
– ident: ref42
  doi: 10.1109/CVPR.2018.00951
– ident: ref28
  doi: 10.1002/mrm.1910320122
– ident: ref4
  doi: 10.1109/TNSRE.2016.2628057
– ident: ref45
  doi: 10.1109/TNSRE.2022.3149899
– ident: ref30
  doi: 10.1016/j.neuroimage.2012.01.029
– ident: ref36
  doi: 10.1109/CVPR.2016.308
– ident: ref11
  doi: 10.1109/JBHI.2022.3140531
– ident: ref24
  doi: 10.1117/1.NPh.5.1.011008
– ident: ref16
  doi: 10.1016/j.neuroimage.2009.04.050
– ident: ref6
  doi: 10.1109/TNSRE.2021.3115266
– ident: ref9
  doi: 10.1088/1741-2552/abf187
– ident: ref46
  doi: 10.1109/TNSRE.2022.3190431
– ident: ref47
  doi: 10.1016/j.inffus.2023.101898
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref44
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– ident: ref20
  doi: 10.1109/JBHI.2021.3133871
– ident: ref26
  doi: 10.1073/pnas.89.13.5951
– ident: ref49
  doi: 10.1007/978-3-030-21642-9_8
– ident: ref51
  doi: 10.1088/1741-2552/aace8c
– ident: ref7
  doi: 10.1088/1741-2552/abb417
– start-page: 4554
  volume-title: Proc. 37th Int. Conf. Mach. Learn.
  ident: ref18
  article-title: Do we need zero training loss after achieving zero training error?
– ident: ref2
  doi: 10.1109/TBME.2021.3113854
– ident: ref5
  doi: 10.3390/electronics8121486
– ident: ref8
  doi: 10.1117/1.JBO.26.2.022908
– ident: ref14
  doi: 10.1038/s41467-019-09076-2
– ident: ref10
  doi: 10.3389/fnins.2020.00584
– ident: ref41
  doi: 10.48550/ARXIV.1706.03762
– ident: ref38
  doi: 10.1109/TII.2020.3044310
– ident: ref19
  doi: 10.1109/JSEN.2021.3115405
– ident: ref22
  doi: 10.1109/JSEN.2022.3205956
– ident: ref25
  doi: 10.1073/pnas.95.3.765
– ident: ref32
  doi: 10.5555/3045118.3045167
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref39
  article-title: Decoupled weight decay regularization
– ident: ref29
  doi: 10.1016/j.neuroimage.2005.09.048
– year: 2014
  ident: ref31
  article-title: Rigid-motion scattering for texture classification
  publication-title: arXiv:1403.1687
– ident: ref37
  doi: 10.1007/BF02447083
– ident: ref43
  doi: 10.1109/ICCV.2017.74
– ident: ref3
  doi: 10.1016/j.bspc.2021.102595
– ident: ref13
  doi: 10.1016/S1053-8119(03)00311-2
– ident: ref1
  doi: 10.1126/science.929199
– ident: ref12
  doi: 10.1109/TBME.2022.3193277
– volume: 30
  start-page: 1
  issue: 1
  volume-title: Proc. Int. Conf. Mach. Learn.
  ident: ref35
  article-title: Rectifier nonlinearities improve neural network acoustic models
– start-page: 1
  volume-title: Proc. Int. Conf. Learn. Represent.
  ident: ref40
  article-title: SGDR: Stochastic gradient descent with warm restarts
SSID ssj0017657
Score 2.4953525
Snippet Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technology for monitoring cerebral hemodynamic responses. Enhancing fNIRS...
SourceID doaj
unpaywall
proquest
pubmed
crossref
ieee
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1
SubjectTerms Artificial neural networks
Brain-Computer Interfaces
brain–computer interface (BCI)
Classification
Computational efficiency
Convolution
deep neural network (DNN)
delayed hemodynamic response
domain knowledge
Feature extraction
Floating point arithmetic
Functional near-infrared spectroscopy
Functional near-infrared spectroscopy (fNIRS)
Hemodynamic responses
Hemodynamics
Human-computer interface
Humans
Infrared spectra
Infrared spectroscopy
Kernel
Mathematical models
Mathematics
Medical imaging
Near infrared radiation
Neural networks
Neural Networks, Computer
Neuroimaging
Optimization
Parameters
Receptive field
Spectroscopy
Spectroscopy, Near-Infrared - methods
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hXoADKlAgtEVGAi6Q1o4_Eh9baLUgsYftVuotsh1bHJZsRbOq-u87jrPRrkBw4ZpMnMx4Jp4XT-YBvBM2FFzSJjcsFAhQJM-NrzTGVaGpFdwzG4Hi96maXIpvV_Jqg-or1oSl9sDJcMfUWYtLCA3aNsKVjal8EP1mmlJGGxvfvriMrcHUsH9QKlmuf5Gh-ng-vZidHUWm8COOAF4ztrUM9d36B3qVP2Waj-Hhqr02d7dmsdhYfc534cmQNpKT9LhP4YFvn8H7zRbBZJ76A5APZLbVffs5nMx89yNxJJAvfmHufEMm_ueySWz0KN_XyfobghksCdOvswvSk2XGMqJ-jD24PD-bf57kA3VC7oQqurzkhQ5OSWfQdEYIKQvLaQhoQMm1sKr01JvAI6JRTmvpUbpyVSSAaYyk_AXstMvWvwKiqPe00EzIxgjNjG4UZ8xzF-uXgzYZsLUlazdoFuktFnWPL6iue-vX0fr1YP0MPo7XXKeuGn-VPo0TNErGjtj9AfSTevCT-l9-ksFenN6N26EWmBxmcLCe73oI35saUWgRuYFZmcHb8TQGXtxNMa1frqJMhVCsREfP4GXyk3Fwjm89oYTO4NPoOL8p2rWo_5air_-HovvwKI6ZPhMdwE73a-UPMXHq7Js-Ru4BO4IQyw
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: IEEE Electronic Library (IEL)
  dbid: RIE
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagF-BQXgUCBQUJuEBSJ35kfSzQakFiD9ut1FtkO2NVYslWbSJUfj1jOxvt8hK3KJk4Ho3HmfE8PkJeceNKJmiT6cKV6KAIlmmYKNSrUlHDGRTGO4pfZnJ6yj-fibOhWD3UwgBASD6D3F-GWH6zsr0_KjvwkARoseCOe7OqVCzWGkMGlQxtPVGDecZZSdcVMlQdLGYn86PcA4XnDP13VRRbf6HQrH9AV_mToXmH3OrbC339XS-XGz-f47tktp52zDn5mvedye2PXzo6_jdf98juYIamh3Hd3Cc3oH1AXm-2HE4Xsd9A-iadb3XzfkgO59CdR8yF9CMs9TU06RS-rZqIbo_0Ie8WrlK0iFM3-zQ_SQP4pk9LCmPskdPjo8WHaTZAMWSWy7LLKlYqZ6WwGh0yzbkQpWHUOVs1giluZAUUtGPeQ5JWKQFIPbETDyjTaEHZI7LTrlp4QlJJAWipCi4azVWhVSORe2DW50M7pRNSrEVT24EzD5exrIO_QlUdxFl7cdaDOBPydnznInbp-Cf1ey_xkdJ32A43UCj1oLA1tcag6UKdMg1HNvUEHA9BXCm10iYhe16QG5-LMkzI_noB1cN2cFWjV1t6rOGiSsjL8TEqso_O6BZWvaeZoGtXoeIk5HFceOPgDHdRLrlKyLtxJf7GaNci_1uMPv3LHJ-R254sniTtk53usofnaFt15kXQqZ9BDRuv
  priority: 102
  providerName: IEEE
Title Rethinking Delayed Hemodynamic Responses for fNIRS Classification
URI https://ieeexplore.ieee.org/document/10311392
https://www.ncbi.nlm.nih.gov/pubmed/37934649
https://www.proquest.com/docview/2892375417
https://www.proquest.com/docview/2887477350
https://ieeexplore.ieee.org/ielx7/7333/4359219/10311392.pdf
https://doaj.org/article/0cbb6140f9bd4c7da8ef46155966a9ab
UnpaywallVersion publishedVersion
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0210
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017657
  issn: 1558-0210
  databaseCode: RIE
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-N7gF44HNAYFRBAl4grRM7TiyeCmwqSFSo66QhTYqc5CwmunRiqaD89ZydNGoBIcFbP66OrneXu198_h3AU5GbiMesDHRoIgIoMQ80poriKlIsFxzD3ALFDxM5PhbvT-KTHXjVnYVBRNd8hgP70u3ln-H8ezJMOOdDSu6KYmxohxNQ7UKgsDRXYFfa3aUe7B5PPo4-NQypIhDckTJSwkwDi2zWR2aYGtYV5Z-BnRw-oFUpZYZbacmx97fjVv5UeV6Hq8vqQq--6fl8Ixsd3oTTtR5NE8qXwbLOB8WPXyge_1PRW3CjrVL9UeNWt2EHqzvwbJOR2J81dAT-c3-6RfZ9F0ZTrD83Ixn8tzjXKyz9MZ4vylWlz88KkndtuXjpU8Hsm8m76ZHvZnPariW3xh4cHx7M3oyDdlJDUAgZ1UHCI2UKGRea8JoWIo6jnDNjiqSMuRK5TJChNtwCKFkoFSNJp0Vq582UOmb8HvSqRYUPwJcMkUUqFHGphQq1KiX9A8gL2y5tlPYgXBsqK1rN7DSNeebgDFPZbHI0PciscbPWuB686H5z0ZB4_FX6tbV_J2kJuN0HZKKsjeeMFXlOlQ0zKi8FqalTNMLt8Uqplc492LNm3bhcY0cP9tfulLV3i8uMQG9kRxGHiQdPuq8pzu3mja5wsbQyKSG_hOLKg_uNG3aLc7rJCimUBy87v_xNUefzW4o-_DfxR3DNvm2eP-1Dr_66xMdUkdV53z3J6LvDk_02Cn8CArwsCg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6hcigceBYIFAgScIGkTvzI-lig1RbaPWy3Um-R7UyExJKtaFao_HrGTjba5SVuUTJxMhqPPZ89ng_gpbB1ziWrEpPVOQEUyRODI01-lWtmBcfMeqB4MlHjM_HxXJ73h9XDWRhEDMlnmPrLsJdfLdzSL5XteUoCilhoxL0uCVYU3XGtYdOgUKGwJ_mwSATP2eqMDNN7s8np9CD1VOEpJwSvs2xjHgrl-nt-lT-Fmjdhe9lcmKvvZj5fm34Ob8Nk9eNd1smXdNna1P34pabjf2t2B271gWi83_Wcu3ANm3vwar3ocDzrKg7Er-PpRj3v-7A_xfZzx7oQf8C5ucIqHuPXRdXx25N8yLzFy5hi4rieHE1P40C_6ROTQhs7cHZ4MHs_TnoyhsQJlbdJwXNdOyWdIUhmhJAyt5zVtSsqybWwqkCGpuYeIymntUSSHrmRp5SpjGT8AWw1iwYfQawYIst1JmRlhM6MrhRpj9z5jOhamwiylWlK12vmCTPmZUAsTJfBnKU3Z9mbM4I3wzsXXZ2Of0q_8xYfJH2N7XCDjFL2LlsyZy0FL6zWthKkphlhLcI2rlJGGxvBjjfk2uc6G0awu-pAZT8gXJaEa3PPNpwVEbwYHpMr-_0Z0-Bi6WVGBO4Kcp0IHnYdb2ic0zgqlNARvB164m-Ktg3pv6Ho47_843PYHs9Ojsvjo8mnJ3DDv9KtK-3CVvttiU8p0mrts-BfPwFFzh8A
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9NADLZG9wA88HNAYKAgAS-QNsldLjnxVGBTQaJCXSsNCSm6XHzatC6dWCoofz2-Sxq1gJDgLU3di1zbsb-c8xngGS9MzJKwDFRkYgIoCQsUZpLiKpZhwRlGhQWKH8diNOMfjpPjHXjdvQuDiK75DPv20O3ln-L8ezpIGWMDSu6SYmxghxNQ7UKgsDRXYFfY3aUe7M7Gn4afG4ZUHnDmSBkpYWaBRTbrV2ZCOagryj99Ozm8T6tSyoy20pJj72_Hrfyp8rwOV5fVhVp9U_P5RjY6vAlf1no0TShn_WVd9PWPXyge_1PRW3CjrVL9YeNWt2EHqzvwfJOR2J82dAT-C3-yRfZ9F4YTrE-akQz-O5yrFZb-CM8X5apS56ea5F1bLl76VDD7Zvx-cuS72Zy2a8mtsQezw4Pp21HQTmoINBdxHaQslkaLRCvCa4rzJIkLFhqj0zJhkhcixRCVYRZACS1lgiSd6czOmylVErJ70KsWFT4AX4SIYSwjnpSKy0jJUtA_gEzbdmkjlQfR2lC5bjWz0zTmuYMzocyn46PJQW6Nm7fG9eBl95uLhsTjr9JvrP07SUvA7U6QifI2nvNQFwVVNqGRRclJTZWh4W6PVwglVeHBnjXrxuUaO3qwv3anvL1bXOYEemM7ijhKPXjafU1xbjdvVIWLpZXJCPmlFFce3G_csFuc0U2WCy49eNX55W-KOp_fUvThv4k_gmv2Y_P8aR969dclPqaKrC6etJH3EwOIKhQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rethinking+Delayed+Hemodynamic+Responses+for+fNIRS+Classification&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Wang%2C+Zenghui&rft.au=Fang%2C+Jihong&rft.au=Zhang%2C+Jun&rft.date=2023-01-01&rft.issn=1558-0210&rft.eissn=1558-0210&rft.volume=31&rft.spage=4528&rft_id=info:doi/10.1109%2FTNSRE.2023.3330911&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon