Fermionic quantum processing with programmable neutral atom arrays

SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but a...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 120; no. 35; pp. 1 - 10
Main Authors González-Cuadra, D., Bluvstein, D., Kalinowski, M., Kaubruegger, R., Maskara, N., Naldesi, P., Zache, T. V., Kaufman, A. M., Lukin, M. D., Pichler, H., Vermersch, B., Ye, Jun, Zoller, P.
Format Journal Article
LanguageEnglish
Published Washington National Academy of Sciences 29.08.2023
Subjects
Online AccessGet full text
ISSN0027-8424
1091-6490
1091-6490
DOI10.1073/pnas.2304294120

Cover

Abstract SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.
AbstractList SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.
Neutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.
ArticleNumber e2304294120
Author Vermersch, B.
Zoller, P.
Kalinowski, M.
Naldesi, P.
Pichler, H.
Lukin, M. D.
Kaubruegger, R.
Maskara, N.
González-Cuadra, D.
Kaufman, A. M.
Bluvstein, D.
Zache, T. V.
Ye, Jun
Author_xml – sequence: 1
  givenname: D.
  orcidid: 0000-0001-7804-7333
  surname: González-Cuadra
  fullname: González-Cuadra, D.
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
– sequence: 2
  givenname: D.
  surname: Bluvstein
  fullname: Bluvstein, D.
  organization: Harvard University
– sequence: 3
  givenname: M.
  surname: Kalinowski
  fullname: Kalinowski, M.
  organization: Harvard University
– sequence: 4
  givenname: R.
  surname: Kaubruegger
  fullname: Kaubruegger, R.
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
– sequence: 5
  givenname: N.
  surname: Maskara
  fullname: Maskara, N.
  organization: Harvard University
– sequence: 6
  givenname: P.
  surname: Naldesi
  fullname: Naldesi, P.
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
– sequence: 7
  givenname: T. V.
  orcidid: 0000-0003-3549-7160
  surname: Zache
  fullname: Zache, T. V.
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
– sequence: 8
  givenname: A. M.
  surname: Kaufman
  fullname: Kaufman, A. M.
  organization: Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology
– sequence: 9
  givenname: M. D.
  surname: Lukin
  fullname: Lukin, M. D.
  organization: Harvard University
– sequence: 10
  givenname: H.
  surname: Pichler
  fullname: Pichler, H.
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
– sequence: 11
  givenname: B.
  surname: Vermersch
  fullname: Vermersch, B.
  organization: Université Grenoble Alpes, CNRS, Laboratoire de Physique et Modélisation des Milieux Condensés
– sequence: 12
  givenname: Jun
  orcidid: 0000-0003-0076-2112
  surname: Ye
  fullname: Ye, Jun
  organization: Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology
– sequence: 13
  givenname: P.
  surname: Zoller
  fullname: Zoller, P.
  email: peter.zoller@uibk.ac.at
  organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences
BackLink https://www.osti.gov/servlets/purl/2421694$$D View this record in Osti.gov
BookMark eNqFUU1v1DAUtFAR3RbOXCO4IKG0_oodnxBUFCpV4lLOluO83XWV2KnttNp_j8OuiuihPVnWm5k3M-8EHfngAaH3BJ8RLNn55E06owxzqjih-BVaEaxILbjCR2iFMZV1yyk_Ricp3WKMVdPiN-iYSYElpWKFvl1CHF3wzlZ3s_F5HqspBgspOb-pHlzeLv9NNONougEqD3OOZqhMDmNlYjS79Ba9XpshwbvDe4p-X36_ufhZX__6cXXx9bq2XNBcc6kYlR2lnNKGN4J1hvMeJDDgplkL1TZdDwCcKEYA-p4QaIVVrMViDb1ipwjvdWc_md2DGQY9RTeauNME66UOvdSh_9VRKF_2lGnuRugt-MX8Iy0Yp_-feLfVm3Bf1LhoBVmWftgrhJSdTtZlsFsbvAebdYlChOIF9OmwJoa7GVLWo0sWhsF4CHNx1Ja4lBLZFujHJ9DbMEdfeisogZls2F_fzR5lY0gpwlqXxSaXOxWXbngm7_kT3ssNfT74WQYvof8AmT6_VA
CitedBy_id crossref_primary_10_1103_PhysRevLett_131_171902
crossref_primary_10_1038_s42256_024_00831_9
crossref_primary_10_22331_q_2024_10_29_1513
crossref_primary_10_1103_PhysRevLett_132_190001
crossref_primary_10_1007_s44214_025_00077_5
crossref_primary_10_1103_PhysRevB_109_174409
crossref_primary_10_1103_PhysRevResearch_6_023178
crossref_primary_10_1103_PRXQuantum_5_030358
crossref_primary_10_1038_s41586_024_07304_4
crossref_primary_10_1103_PhysRevA_109_013318
crossref_primary_10_21468_SciPostPhys_16_1_033
crossref_primary_10_1103_PhysRevA_110_032430
crossref_primary_10_1063_5_0235279
crossref_primary_10_1103_PhysRevD_110_014507
crossref_primary_10_1103_PhysRevLett_132_230401
crossref_primary_10_1002_andp_202400132
crossref_primary_10_1103_PhysRevB_111_014312
crossref_primary_10_21468_SciPostPhys_16_6_147
crossref_primary_10_1103_PhysRevApplied_20_044002
crossref_primary_10_1103_PhysRevLett_134_053402
crossref_primary_10_1103_PRXQuantum_6_010318
crossref_primary_10_1103_PhysRevResearch_5_043175
crossref_primary_10_1103_PhysRevResearch_6_033293
crossref_primary_10_1103_PhysRevLett_133_063401
crossref_primary_10_1103_PhysRevResearch_6_L022059
crossref_primary_10_21468_SciPostPhys_16_5_135
crossref_primary_10_1088_1751_8121_ad7429
crossref_primary_10_1103_PhysRevA_109_043320
crossref_primary_10_22331_q_2024_09_04_1460
crossref_primary_10_1103_PRXQuantum_5_037001
crossref_primary_10_22331_q_2023_10_16_1140
crossref_primary_10_1038_s41586_023_06481_y
crossref_primary_10_1103_PRXQuantum_5_040309
Cites_doi 10.1126/science.abb9811
10.1103/PhysRevLett.124.120503
10.22331/q-2023-05-15-1004
10.1080/00268976.2011.552441
10.1126/science.1254978
10.1103/PRXQuantum.3.020303
10.1103/PhysRevLett.75.346
10.1038/ncomms5213
10.1103/PhysRevB.104.035118
10.1103/PhysRevA.84.052716
10.1038/nature18274
10.1126/science.1208001
10.1103/PhysRevLett.124.203201
10.1038/nature24622
10.1103/PhysRevLett.108.205301
10.1103/PhysRevLett.123.230501
10.1038/s41586-019-1070-1
10.1016/j.aop.2004.09.010
10.1038/s41586-021-04205-8
10.1103/RevModPhys.82.2313
10.1103/PhysRevLett.128.033201
10.1103/PhysRevB.106.L041101
10.1103/PhysRevLett.114.080402
10.1103/PhysRevLett.129.123201
10.1038/s41586-021-03582-4
10.1103/PhysRevA.94.030301
10.1088/1367-2630/18/2/023023
10.1126/science.abk0603
10.1098/rsta.2021.0064
10.1038/s41586-022-04854-3
10.1103/PhysRevLett.94.170201
10.1038/nature18318
10.1088/0953-4075/49/20/202001
10.1103/PhysRevLett.125.180402
10.1038/s41586-021-04257-w
10.1007/BF02650179
10.1073/pnas.1619152114
10.1038/s41567-020-0903-z
10.1038/s41567-019-0508-6
10.1038/s41567-022-01658-0
10.1140/epjd/e2020-100571-8
10.1126/science.abi8378
10.1126/science.aav9105
10.1038/nature21426
10.1126/science.273.5278.1073
10.1090/S0002-9939-1959-0108732-6
10.1103/RevModPhys.89.041004
10.1080/00107514.2016.1151199
10.1088/1361-6633/ac58a4
10.1088/0953-4075/46/10/104006
10.1103/RevModPhys.93.035003
10.1103/PhysRevLett.118.070501
10.1103/PhysRevLett.95.176407
10.1038/s41586-021-03585-1
10.1038/ncomms8654
10.1126/science.1250057
10.1038/s41586-018-0661-6
10.1088/0034-4885/79/1/014401
10.1126/science.abi8794
10.1116/5.0036562
10.1038/nature23879
10.1103/PhysRevB.101.024306
10.1103/PhysRevLett.131.060601
10.1103/PhysRevLett.101.170504
10.1103/PRXQuantum.2.020310
10.1017/CBO9781139015509
10.1103/PhysRevLett.123.170503
10.1103/PhysRevLett.91.010407
10.1103/PhysRevLett.104.010502
10.1103/PhysRevLett.128.223202
10.1103/PhysRevA.98.032331
10.1103/PhysRevB.105.075132
10.1126/science.abo0608
10.1103/PhysRevLett.79.2586
10.1103/PhysRevA.77.052333
10.1103/PhysRevD.100.034518
10.1002/andp.201300104
10.1088/1742-5468/2005/09/P09012
10.1039/D1CS00932J
10.1103/RevModPhys.92.031001
10.1103/PhysRevResearch.4.033019
10.1126/science.abg8102
10.1103/PhysRevB.37.580
10.1103/PhysRevA.64.022319
10.1103/PhysRevLett.129.160501
10.1038/s41586-019-1177-4
10.1126/science.1201351
10.1080/00018730701223200
10.1038/s41567-022-01678-w
10.1103/PhysRev.80.580
10.1126/science.1148259
10.1038/nature21413
10.22331/q-2020-09-21-327
10.1103/RevModPhys.92.015003
10.1103/PhysRevLett.82.1975
10.1126/science.aal3837
10.1103/PhysRevLett.130.223401
10.1006/aphy.2002.6254
10.1038/nature02008
10.1088/2058-9565/ab8ebc
10.1038/s41467-019-10988-2
10.1038/s41586-022-04592-6
ContentType Journal Article
Copyright Copyright © 2023 the Author(s). Published by PNAS.
Copyright National Academy of Sciences Aug 29, 2023
Copyright © 2023 the Author(s). Published by PNAS. 2023
Copyright_xml – notice: Copyright © 2023 the Author(s). Published by PNAS.
– notice: Copyright National Academy of Sciences Aug 29, 2023
– notice: Copyright © 2023 the Author(s). Published by PNAS. 2023
CorporateAuthor Harvard Univ., Cambridge, MA (United States)
Krell Institute, Ames, IA (United States)
CorporateAuthor_xml – name: Krell Institute, Ames, IA (United States)
– name: Harvard Univ., Cambridge, MA (United States)
DBID AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
ADTOC
UNPAY
DOI 10.1073/pnas.2304294120
DatabaseName CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList
Virology and AIDS Abstracts
CrossRef
MEDLINE - Academic


Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
Statistics
EISSN 1091-6490
ExternalDocumentID 10.1073/pnas.2304294120
PMC10468619
2421694
10_1073_pnas_2304294120
Genre Research Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JENOY
JLS
JSG
KQ8
L7B
LU7
N9A
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
AFOSN
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
.GJ
2AX
3O-
692
6TJ
79B
AAYJJ
ABBHK
ABXSQ
ACHIC
ACKIV
ADQXQ
ADTOC
ADULT
ADXHL
AEUPB
AEXZC
AFHIN
AFQQW
AQVQM
AS~
DCCCD
EJD
HGD
HQ3
HTVGU
IPSME
JAAYA
JBMMH
JHFFW
JKQEH
JLXEF
JPM
JST
MVM
NEJ
NHB
P-O
SA0
UNPAY
VOH
WHG
ZCG
ID FETCH-LOGICAL-c462t-479327b2242254563ba44de7e3e4a5f6985bdeee41931eedd11e86c93806fed93
IEDL.DBID UNPAY
ISSN 0027-8424
1091-6490
IngestDate Sun Oct 26 04:11:38 EDT 2025
Tue Sep 30 17:12:50 EDT 2025
Mon Mar 24 04:18:05 EDT 2025
Fri Sep 05 11:34:28 EDT 2025
Mon Jun 30 09:53:44 EDT 2025
Wed Oct 01 03:16:45 EDT 2025
Thu Apr 24 23:05:43 EDT 2025
Thu Oct 09 22:08:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 35
Keywords digital quantum simulation
quantum chemistry
tweezer arrays
fermionic quantum processor
lattice gauge theories
Language English
License https://creativecommons.org/licenses/by/4.0
This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY).
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-479327b2242254563ba44de7e3e4a5f6985bdeee41931eedd11e86c93806fed93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
SC0021013; SC0021110
USDOE Office of Science (SC)
Edited by Jean Dalibard, College de France, Paris, France; received March 15, 2023; accepted July 26, 2023
ORCID 0000-0003-0076-2112
0000-0003-3549-7160
0000-0001-7804-7333
0000000335497160
0000000300762112
0000000178047333
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1073/pnas.2304294120
PMID 37607226
PQID 2860375320
PQPubID 42026
PageCount 10
ParticipantIDs unpaywall_primary_10_1073_pnas_2304294120
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468619
osti_scitechconnect_2421694
proquest_miscellaneous_2856322178
proquest_journals_2860375320
crossref_citationtrail_10_1073_pnas_2304294120
crossref_primary_10_1073_pnas_2304294120
pnas_primary_10_1073_pnas_2304294120
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230829
PublicationDateYYYYMMDD 2023-08-29
PublicationDate_xml – month: 08
  year: 2023
  text: 20230829
  day: 29
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
– name: United States
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAbbrev Proc Natl Acad Sci USA
PublicationYear 2023
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References Zhou, Wang, Choi, Pichler, Lukin 2020; 10
Scholl 2021; 595
Madjarov 2020; 16
Labuhn 2016; 534
Bernien 2017; 551
Kaufman 2014; 345
Aidelsburger 2022; 380
Borla, Jeevanesan, Pollmann, Moroz 2022; 105
Peruzzo 2014; 5
Gross, Bloch 2017; 357
Morgado, Whitlock 2021; 3
Jaksch, Zoller 2005; 315
Martinez 2016; 534
Mi 2022; 601
Fradkin 2013
Aramthottil 2022; 106
Barends 2015; 6
McClean, Romero, Babbush, Aspuru-Guzik 2016; 18
Lam 2021; 11
Iadecola, Schecter 2020; 101
Daley, Boyd, Ye, Zoller 2008; 101
Nascimbène 2012; 108
Berges, Heller, Mazeliauskas, Venugopalan 2021; 93
Klco, Roggero, Savage 2022; 85
Robens, Alt, Meschede, Emary, Alberti 2015; 5
Whitfield, Havlíček, Troyer 2016; 94
Levine 2019; 123
Yan 2022; 129
Scholl 2022; 3
Kandala 2017; 549
Lamm, Lawrence, Yamauchi 2019; 100
Lloyd 1995; 75
Wen 2017; 89
Semeghini 2021; 374
Salathé 2015; 5
Serwane 2011; 332
Anand 2022; 51
de Léséleuc 2019; 365
Dalmonte, Montangero 2016; 57
Bañuls 2020; 74
Assaad, Grover 2016; 6
Zhang 2022; 607
Ringbauer 2022; 18
O’Malley 2016; 6
Zohar, Farace, Reznik, Cirac 2017; 118
Jaksch, Briegel, Cirac, Gardiner, Zoller 1999; 82
Zhang 2017; 543
Pagano 2022; 4
Ball 2005; 95
McClean 2020; 5
Mandel 2003; 425
Randall 2021; 374
Verstraete, Cirac 2005; 2005
Mandel 2003; 91
Cooper 2018; 8
Ruttley 2023; 130
Bluvstein 2022; 604
Varma 2020; 92
Klco 2018; 98
De Chiara 2008; 77
Lloyd 1996; 273
2020; 369
Bishof 2011; 84
Kyprianidis 2021; 372
McArdle, Endo, Aspuru-Guzik, Benjamin, Yuan 2020; 92
Cong 2022; 12
Graham 2019; 123
Naldesi 2023; 131
Becher 2020; 125
Hartke, Oreg, Jia, Zwierlein 2022; 601
Feynman 1981; 21
Belmechri 2013; 46
Wilson 2022; 128
Tang 2021; 2
Trotter 1959; 10
Kokail 2019; 569
Ebadi 2021; 595
Grimsley, Economou, Barnes, Mayhall 2019; 10
González-Cuadra, Tagliacozzo, Lewenstein, Bermudez 2020; 10
Wiese 2013; 525
Whitfield, Biamonte, Aspuru-Guzik 2011; 109
Reiher, Wiebe, Svore, Wecker, Troyer 2017; 114
Keesling 2019; 568
Ortiz, Gubernatis, Knill, Laflamme 2001; 64
Bergschneider 2019; 15
Lanyon 2011; 334
Spar, Guardado-Sanchez, Chi, Yan, Bakr 2022; 128
Henriet 2020; 4
Satzinger 2021; 374
Murmann 2015; 114
Heinz 2020; 124
Halimeh, Barbiero, Hauke, Grusdt, Bohrdt 2023; 7
Lewenstein 2007; 56
Wilk 2010; 104
Bravyi, Kitaev 2002; 298
Baskaran, Anderson 1988; 37
Hahn 1950; 80
Goban 2018; 563
Schine, Young, Eckner, Martin, Kaufman 2022; 18
Young, Eckner, Schine, Childs, Kaufman 2022; 377
González-Cuadra, Zache, Carrasco, Kraus, Zoller 2022; 129
Saffman, Walker, Mølmer 2010; 82
Saffman 2016; 49
Borla, Verresen, Grusdt, Moroz 2020; 124
Zohar, Cirac, Reznik 2015; 79
Derby, Klassen, Bausch, Cubitt 2021; 104
Ye, Kimble, Katori 2008; 320
Zhang 2014; 345
Abrams, Lloyd 1997; 79
Choi 2017; 543
Troyer, Wiese 2005; 94
Hempel 2018; 8
e_1_3_4_3_2
e_1_3_4_110_2
e_1_3_4_61_2
Robens C. (e_1_3_4_65_2) 2015; 5
e_1_3_4_84_2
e_1_3_4_7_2
e_1_3_4_118_2
e_1_3_4_80_2
e_1_3_4_23_2
e_1_3_4_69_2
e_1_3_4_42_2
Assaad F. F. (e_1_3_4_97_2) 2016; 6
e_1_3_4_27_2
e_1_3_4_46_2
e_1_3_4_88_2
Lam M. R. (e_1_3_4_114_2) 2021; 11
e_1_3_4_102_2
e_1_3_4_72_2
e_1_3_4_95_2
e_1_3_4_106_2
e_1_3_4_30_2
e_1_3_4_91_2
e_1_3_4_11_2
e_1_3_4_34_2
e_1_3_4_57_2
Lam M. R. (e_1_3_4_66_2) 2021; 11
e_1_3_4_53_2
e_1_3_4_15_2
e_1_3_4_38_2
e_1_3_4_76_2
O’Malley P. J. J. (e_1_3_4_14_2) 2016; 6
e_1_3_4_99_2
e_1_3_4_19_2
e_1_3_4_2_2
e_1_3_4_62_2
e_1_3_4_85_2
Hempel C. (e_1_3_4_17_2) 2018; 8
e_1_3_4_117_2
e_1_3_4_6_2
e_1_3_4_81_2
e_1_3_4_43_2
e_1_3_4_24_2
e_1_3_4_47_2
e_1_3_4_89_2
e_1_3_4_28_2
e_1_3_4_101_2
e_1_3_4_73_2
e_1_3_4_96_2
e_1_3_4_105_2
e_1_3_4_50_2
e_1_3_4_92_2
e_1_3_4_109_2
e_1_3_4_12_2
e_1_3_4_58_2
e_1_3_4_54_2
e_1_3_4_31_2
e_1_3_4_16_2
Cooper A. (e_1_3_4_74_2) 2018; 8
e_1_3_4_77_2
e_1_3_4_35_2
e_1_3_4_39_2
e_1_3_4_1_2
González-Cuadra D. (e_1_3_4_93_2) 2020; 10
e_1_3_4_112_2
e_1_3_4_82_2
e_1_3_4_9_2
e_1_3_4_116_2
e_1_3_4_63_2
e_1_3_4_40_2
e_1_3_4_5_2
e_1_3_4_44_2
e_1_3_4_21_2
e_1_3_4_48_2
e_1_3_4_86_2
e_1_3_4_25_2
e_1_3_4_67_2
e_1_3_4_29_2
e_1_3_4_100_2
Salathé Y. (e_1_3_4_20_2) 2015; 5
e_1_3_4_104_2
e_1_3_4_51_2
e_1_3_4_108_2
e_1_3_4_70_2
e_1_3_4_55_2
e_1_3_4_32_2
e_1_3_4_59_2
e_1_3_4_13_2
e_1_3_4_36_2
e_1_3_4_111_2
e_1_3_4_60_2
e_1_3_4_83_2
e_1_3_4_115_2
e_1_3_4_8_2
e_1_3_4_41_2
e_1_3_4_119_2
e_1_3_4_4_2
e_1_3_4_22_2
e_1_3_4_45_2
e_1_3_4_68_2
e_1_3_4_26_2
e_1_3_4_49_2
e_1_3_4_64_2
e_1_3_4_87_2
e_1_3_4_71_2
e_1_3_4_94_2
e_1_3_4_103_2
e_1_3_4_52_2
e_1_3_4_90_2
e_1_3_4_107_2
e_1_3_4_79_2
e_1_3_4_33_2
e_1_3_4_10_2
e_1_3_4_75_2
e_1_3_4_98_2
e_1_3_4_37_2
e_1_3_4_56_2
e_1_3_4_18_2
Cong I. (e_1_3_4_113_2) 2022; 12
Zhou L. (e_1_3_4_78_2) 2020; 10
References_xml – volume: 4
  start-page: 033019
  year: 2022
  article-title: Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms
  publication-title: Phys. Rev. Res.
– volume: 334
  start-page: 57
  year: 2011
  end-page: 61
  article-title: Universal digital quantum simulation with trapped ions
  publication-title: Science
– volume: 10
  start-page: 041007
  year: 2020
  article-title: Robust topological order in fermionic Z2 gauge theories: From Aharonov–Bohm instability to soliton-induced deconfinement
  publication-title: Phys. Rev. X
– volume: 106
  start-page: L041101
  year: 2022
  article-title: Scar states in deconfined Z2 lattice gauge theories
  publication-title: Phys. Rev. B
– volume: 374
  start-page: 1474
  year: 2021
  end-page: 1478
  article-title: Many-body–localized discrete time crystal with a programmable spin-based quantum simulator
  publication-title: Science
– volume: 101
  start-page: 170504
  year: 2008
  article-title: Quantum computing with alkaline-earth-metal atoms
  publication-title: Phys. Rev. Lett.
– volume: 374
  start-page: 1242
  year: 2021
  end-page: 1247
  article-title: Probing topological spin liquids on a programmable quantum simulator
  publication-title: Science
– volume: 64
  start-page: 022319
  year: 2001
  article-title: Quantum algorithms for fermionic simulations
  publication-title: Phys. Rev. A
– volume: 2005
  start-page: P09012
  year: 2005
  end-page: P09012
  article-title: Mapping local Hamiltonians of fermions to local Hamiltonians of spins
  publication-title: J. Stat. Mech.: Theory Exp.
– volume: 124
  start-page: 120503
  year: 2020
  article-title: Confined phases of one-dimensional spinless fermions coupled to Z2 gauge theory
  publication-title: Phys. Rev. Lett.
– volume: 549
  start-page: 242
  year: 2017
  end-page: 246
  article-title: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets
  publication-title: Nature
– volume: 129
  start-page: 123201
  year: 2022
  article-title: Two-dimensional programmable tweezer arrays of fermions
  publication-title: Phys. Rev. Lett.
– volume: 18
  start-page: 1067
  year: 2022
  end-page: 1073
  article-title: Long-lived bell states in an array of optical clock qubits
  publication-title: Nat. Phys.
– volume: 95
  start-page: 176407
  year: 2005
  article-title: Fermions without fermion fields
  publication-title: Phys. Rev. Lett.
– volume: 128
  start-page: 223202
  year: 2022
  article-title: Realization of a Fermi–Hubbard optical tweezer array
  publication-title: Phys. Rev. Lett.
– volume: 16
  start-page: 857
  year: 2020
  end-page: 861
  article-title: High-fidelity entanglement and detection of alkaline-earth Rydberg atoms
  publication-title: Nat. Phys.
– volume: 128
  start-page: 033201
  year: 2022
  article-title: Trapping alkaline earth Rydberg atoms optical tweezer arrays
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 545
  year: 1959
  end-page: 551
  article-title: On the product of semi-groups of operators
  publication-title: Proc. Am. Math. Soc.
– volume: 56
  start-page: 243
  year: 2007
  end-page: 379
  article-title: Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond
  publication-title: Adv. Phys.
– volume: 3
  start-page: 023501
  year: 2021
  article-title: Quantum simulation and computing with Rydberg-interacting qubits
  publication-title: AVS Quant. Sci.
– volume: 551
  start-page: 579
  year: 2017
  end-page: 584
  article-title: Probing many-body dynamics on a 51-atom quantum simulator
  publication-title: Nature
– volume: 91
  start-page: 010407
  year: 2003
  article-title: Coherent transport of neutral atoms in spin-dependent optical lattice potentials
  publication-title: Phys. Rev. Lett.
– volume: 98
  start-page: 032331
  year: 2018
  article-title: Quantum-classical computation of Schwinger model dynamics using quantum computers
  publication-title: Phys. Rev. A
– volume: 604
  start-page: 451
  year: 2022
  end-page: 456
  article-title: A quantum processor based on coherent transport of entangled atom arrays
  publication-title: Nature
– volume: 320
  start-page: 1734
  year: 2008
  end-page: 1738
  article-title: Quantum state engineering and precision metrology using state-insensitive light traps
  publication-title: Science
– volume: 79
  start-page: 014401
  year: 2015
  article-title: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices
  publication-title: Rep. Progr. Phys.
– volume: 569
  start-page: 355
  year: 2019
  end-page: 360
  article-title: Self-verifying variational quantum simulation of lattice models
  publication-title: Nature
– volume: 369
  start-page: 1084
  year: 2020
  end-page: 1089
  article-title: Hartree–Fock on a superconducting qubit quantum computer
  publication-title: Science
– volume: 365
  start-page: 775
  year: 2019
  end-page: 780
  article-title: Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms
  publication-title: Science
– volume: 601
  start-page: 531
  year: 2022
  end-page: 536
  article-title: Time-crystalline eigenstate order on a quantum processor
  publication-title: Nature
– volume: 563
  start-page: 369
  year: 2018
  end-page: 373
  article-title: Emergence of multi-body interactions in a fermionic lattice clock
  publication-title: Nature
– volume: 77
  start-page: 052333
  year: 2008
  article-title: Optimal control of atom transport for quantum gates in optical lattices
  publication-title: Phys. Rev. A
– volume: 595
  start-page: 227
  year: 2021
  end-page: 232
  article-title: Quantum phases of matter on a 256-atom programmable quantum simulator
  publication-title: Nature
– volume: 105
  start-page: 075132
  year: 2022
  article-title: Quantum phases of two-dimensional Z2 gauge theory coupled to single-component fermion matter
  publication-title: Phys. Rev. B
– volume: 108
  start-page: 205301
  year: 2012
  article-title: Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices
  publication-title: Phys. Rev. Lett.
– volume: 3
  start-page: 020303
  year: 2022
  article-title: Microwave engineering of programmable xxz Hamiltonians in arrays of Rydberg atoms
  publication-title: PRX Quant.
– volume: 8
  start-page: 031022
  year: 2018
  article-title: Quantum chemistry calculations on a trapped-ion quantum simulator
  publication-title: Phys. Rev. X
– volume: 4
  start-page: 327
  year: 2020
  article-title: Quantum computing with neutral atoms
  publication-title: Quantum
– volume: 2
  start-page: 020310
  year: 2021
  article-title: qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor
  publication-title: PRX Quant.
– volume: 6
  start-page: 031007
  year: 2016
  article-title: Scalable quantum simulation of molecular energies
  publication-title: Phys. Rev. X
– volume: 345
  start-page: 306
  year: 2014
  end-page: 309
  article-title: Two-particle quantum interference in tunnel-coupled optical tweezers
  publication-title: Science
– volume: 607
  start-page: 468
  year: 2022
  end-page: 473
  article-title: Digital quantum simulation of Floquet symmetry-protected topological phases
  publication-title: Nature
– volume: 11
  start-page: 011035
  year: 2021
  article-title: Demonstration of quantum brachistochrones between distant states of an atom
  publication-title: Phys. Rev. X
– volume: 315
  start-page: 52
  year: 2005
  end-page: 79
  article-title: The cold atom Hubbard toolbox
  publication-title: Ann. Phys.
– volume: 92
  start-page: 015003
  year: 2020
  article-title: Quantum computational chemistry
  publication-title: Rev. Mod. Phys.
– volume: 345
  start-page: 1467
  year: 2014
  end-page: 1473
  article-title: Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism
  publication-title: Science
– volume: 5
  start-page: 011000
  year: 2015
  article-title: Ideal negative measurements in quantum walks disprove theories based on classical trajectories
  publication-title: Phys. Rev. X
– volume: 534
  start-page: 516
  year: 2016
  end-page: 519
  article-title: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer
  publication-title: Nature
– volume: 601
  start-page: 537
  year: 2022
  end-page: 541
  article-title: Quantum register of fermion pairs
  publication-title: Nature
– volume: 534
  start-page: 667
  year: 2016
  end-page: 670
  article-title: Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models
  publication-title: Nature
– volume: 104
  start-page: 035118
  year: 2021
  article-title: Compact fermion to qubit mappings
  publication-title: Phys. Rev. B
– volume: 7
  start-page: 1004
  year: 2023
  article-title: Robust quantum many-body scars in lattice gauge theories
  publication-title: Quantum
– volume: 125
  start-page: 180402
  year: 2020
  article-title: Measurement of identical particle entanglement and the influence of antisymmetrization
  publication-title: Phys. Rev. Lett.
– volume: 37
  start-page: 580
  year: 1988
  end-page: 583
  article-title: Gauge theory of high-temperature superconductors and strongly correlated fermi systems
  publication-title: Phys. Rev. B
– volume: 123
  start-page: 230501
  year: 2019
  article-title: Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 170201
  year: 2005
  article-title: Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 021027
  year: 2015
  article-title: Digital quantum simulation of spin models with circuit quantum electrodynamics
  publication-title: Phys. Rev. X
– volume: 332
  start-page: 336
  year: 2011
  end-page: 338
  article-title: Deterministic preparation of a tunable few-fermion system
  publication-title: Science
– volume: 123
  start-page: 170503
  year: 2019
  article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms
  publication-title: Phys. Rev. Lett.
– volume: 377
  start-page: 885
  year: 2022
  end-page: 889
  article-title: Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice
  publication-title: Science
– volume: 100
  start-page: 034518
  year: 2019
  article-title: General methods for digital quantum simulation of gauge theories
  publication-title: Phys. Rev. D
– volume: 49
  start-page: 202001
  year: 2016
  article-title: Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges
  publication-title: J. Phys. B: Atomic, Mol. Opt. Phys.
– volume: 6
  start-page: 7654
  year: 2015
  article-title: Digital quantum simulation of fermionic models with a superconducting circuit
  publication-title: Nat. Commun.
– volume: 543
  start-page: 217
  year: 2017
  end-page: 220
  article-title: Observation of a discrete time crystal
  publication-title: Nature
– volume: 74
  start-page: 165
  year: 2020
  article-title: Simulating lattice gauge theories within quantum technologies
  publication-title: Eur. Phys. J. D
– volume: 12
  start-page: 021049
  year: 2022
  article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms
  publication-title: Phys. Rev. X
– volume: 92
  start-page: 031001
  year: 2020
  article-title: Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity
  publication-title: Rev. Mod. Phys.
– volume: 543
  start-page: 221
  year: 2017
  end-page: 225
  article-title: Observation of discrete time-crystalline order in a disordered dipolar many-body system
  publication-title: Nature
– volume: 51
  start-page: 1659
  year: 2022
  end-page: 1684
  article-title: A quantum computing view on unitary coupled cluster theory
  publication-title: Chem. Soc. Rev.
– volume: 101
  start-page: 024306
  year: 2020
  article-title: Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals
  publication-title: Phys. Rev. B
– volume: 21
  start-page: 467
  year: 1981
  end-page: 488
  article-title: Simulating physics with computers
  publication-title: Int. J. Theor. Phys.
– volume: 273
  start-page: 1073
  year: 1996
  end-page: 1078
  article-title: Universal quantum simulators
  publication-title: Science
– volume: 380
  start-page: 20210064
  year: 2022
  article-title: Cold atoms meet lattice gauge theory
  publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci.
– volume: 118
  start-page: 070501
  year: 2017
  article-title: Digital quantum simulation of Z2 lattice gauge theories with dynamical fermionic matter
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 041004
  year: 2017
  article-title: Colloquium: Zoo of quantum-topological phases of matter
  publication-title: Rev. Mod. Phys.
– volume: 525
  start-page: 777
  year: 2013
  end-page: 796
  article-title: Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories
  publication-title: Ann. Phys.
– volume: 80
  start-page: 580
  year: 1950
  end-page: 594
  article-title: Spin echoes
  publication-title: Phys. Rev.
– volume: 18
  start-page: 1053
  year: 2022
  end-page: 1057
  article-title: A universal qudit quantum processor with trapped ions
  publication-title: Nat. Phys.
– volume: 374
  start-page: 1237
  year: 2021
  end-page: 1241
  article-title: Realizing topologically ordered states on a quantum processor
  publication-title: Science
– volume: 84
  start-page: 052716
  year: 2011
  article-title: Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock
  publication-title: Phys. Rev. A
– volume: 131
  year: 2023
  article-title: Fermionic correlation functions from randomized measurements in programmable atomic quantum devices
  publication-title: Phys. Rev. Lett.
– volume: 425
  start-page: 937
  year: 2003
  end-page: 940
  article-title: Controlled collisions for multi-particle entanglement of optically trapped atoms
  publication-title: Nature
– volume: 114
  start-page: 080402
  year: 2015
  article-title: Two fermions in a double well: Exploring a fundamental building block of the Hubbard model
  publication-title: Phys. Rev. Lett.
– volume: 82
  start-page: 2313
  year: 2010
  end-page: 2363
  article-title: Quantum information with Rydberg atoms
  publication-title: Rev. Mod. Phys.
– volume: 75
  start-page: 346
  year: 1995
  end-page: 349
  article-title: Almost any quantum logic gate is universal
  publication-title: Phys. Rev. Lett.
– volume: 93
  start-page: 035003
  year: 2021
  article-title: QCD thermalization: Ab initio approaches and interdisciplinary connections
  publication-title: Rev. Mod. Phys.
– volume: 18
  start-page: 023023
  year: 2016
  article-title: The theory of variational hybrid quantum-classical algorithms
  publication-title: New J. Phys.
– volume: 298
  start-page: 210
  year: 2002
  end-page: 226
  article-title: Fermionic quantum computation
  publication-title: Ann. Phys.
– volume: 57
  start-page: 388
  year: 2016
  end-page: 412
  article-title: Lattice gauge theory simulations in the quantum information era
  publication-title: Contemp. Phys.
– volume: 15
  start-page: 640
  year: 2019
  end-page: 644
  article-title: Experimental characterization of two-particle entanglement through position and momentum correlations
  publication-title: Nat. Phys.
– volume: 6
  start-page: 041049
  year: 2016
  article-title: Simple fermionic model of deconfined phases and phase transitions
  publication-title: Phys. Rev. X
– volume: 5
  start-page: 034014
  year: 2020
  article-title: OpenFermion: The electronic structure package for quantum computers
  publication-title: Quant. Sci. Technol.
– volume: 595
  start-page: 233
  year: 2021
  end-page: 238
  article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms
  publication-title: Nature
– year: 2013
  publication-title: Field Theories of Condensed Matter Physics
– volume: 129
  start-page: 160501
  year: 2022
  article-title: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on Rydberg platforms
  publication-title: Phys. Rev. Lett.
– volume: 94
  start-page: 030301
  year: 2016
  article-title: Local spin operators for fermion simulations
  publication-title: Phys. Rev. A
– volume: 85
  start-page: 064301
  year: 2022
  article-title: Standard model physics and the digital quantum revolution: Thoughts about the interface
  publication-title: Rep. Progr. Phys.
– volume: 46
  start-page: 104006
  year: 2013
  article-title: Microwave control of atomic motional states in a spin-dependent optical lattice
  publication-title: J. Phys. B: Atomic, Mol. Opt. Phys.
– volume: 5
  start-page: 4213
  year: 2014
  article-title: A variational eigenvalue solver on a photonic quantum processor
  publication-title: Nat. Commun.
– volume: 124
  start-page: 203201
  year: 2020
  article-title: State-dependent optical lattices for the strontium optical qubit
  publication-title: Phys. Rev. Lett.
– volume: 8
  start-page: 041055
  year: 2018
  article-title: Alkaline-earth atoms in optical tweezers
  publication-title: Phys. Rev. X
– volume: 82
  start-page: 1975
  year: 1999
  end-page: 1978
  article-title: Entanglement of atoms via cold controlled collisions
  publication-title: Phys. Rev. Lett.
– volume: 114
  start-page: 7555
  year: 2017
  end-page: 7560
  article-title: Elucidating reaction mechanisms on quantum computers
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
– volume: 372
  start-page: 1192
  year: 2021
  end-page: 1196
  article-title: Observation of a prethermal discrete time crystal
  publication-title: Science
– volume: 10
  start-page: 021067
  year: 2020
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– volume: 104
  start-page: 010502
  year: 2010
  article-title: Entanglement of two individual neutral atoms using Rydberg blockade
  publication-title: Phys. Rev. Lett.
– volume: 130
  start-page: 223401
  year: 2023
  article-title: Formation of ultracold molecules by merging optical tweezers
  publication-title: Phys. Rev. Lett.
– volume: 568
  start-page: 207
  year: 2019
  end-page: 211
  article-title: Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator
  publication-title: Nature
– volume: 10
  start-page: 3007
  year: 2019
  article-title: An adaptive variational algorithm for exact molecular simulations on a quantum computer
  publication-title: Nat. Commun.
– volume: 357
  start-page: 995
  year: 2017
  end-page: 1001
  article-title: Quantum simulations with ultracold atoms in optical lattices
  publication-title: Science
– volume: 79
  start-page: 2586
  year: 1997
  end-page: 2589
  article-title: Simulation of many-body fermi systems on a universal quantum computer
  publication-title: Phys. Rev. Lett.
– volume: 109
  start-page: 735
  year: 2011
  end-page: 750
  article-title: Simulation of electronic structure Hamiltonians using quantum computers
  publication-title: Mol. Phys.
– ident: e_1_3_4_90_2
– volume: 8
  start-page: 041055
  year: 2018
  ident: e_1_3_4_74_2
  article-title: Alkaline-earth atoms in optical tweezers
  publication-title: Phys. Rev. X
– ident: e_1_3_4_18_2
  doi: 10.1126/science.abb9811
– ident: e_1_3_4_92_2
  doi: 10.1103/PhysRevLett.124.120503
– ident: e_1_3_4_101_2
  doi: 10.22331/q-2023-05-15-1004
– ident: e_1_3_4_9_2
  doi: 10.1080/00268976.2011.552441
– ident: e_1_3_4_117_2
  doi: 10.1126/science.1254978
– ident: e_1_3_4_51_2
  doi: 10.1103/PRXQuantum.3.020303
– ident: e_1_3_4_70_2
  doi: 10.1103/PhysRevLett.75.346
– ident: e_1_3_4_13_2
  doi: 10.1038/ncomms5213
– ident: e_1_3_4_79_2
  doi: 10.1103/PhysRevB.104.035118
– ident: e_1_3_4_119_2
  doi: 10.1103/PhysRevA.84.052716
– ident: e_1_3_4_44_2
  doi: 10.1038/nature18274
– ident: e_1_3_4_19_2
  doi: 10.1126/science.1208001
– ident: e_1_3_4_91_2
– ident: e_1_3_4_75_2
  doi: 10.1103/PhysRevLett.124.203201
– ident: e_1_3_4_45_2
  doi: 10.1038/nature24622
– ident: e_1_3_4_116_2
  doi: 10.1103/PhysRevLett.108.205301
– ident: e_1_3_4_39_2
  doi: 10.1103/PhysRevLett.123.230501
– ident: e_1_3_4_46_2
  doi: 10.1038/s41586-019-1070-1
– ident: e_1_3_4_32_2
  doi: 10.1016/j.aop.2004.09.010
– ident: e_1_3_4_59_2
  doi: 10.1038/s41586-021-04205-8
– ident: e_1_3_4_36_2
  doi: 10.1103/RevModPhys.82.2313
– ident: e_1_3_4_77_2
  doi: 10.1103/PhysRevLett.128.033201
– volume: 12
  start-page: 021049
  year: 2022
  ident: e_1_3_4_113_2
  article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms
  publication-title: Phys. Rev. X
– ident: e_1_3_4_100_2
  doi: 10.1103/PhysRevB.106.L041101
– ident: e_1_3_4_53_2
  doi: 10.1103/PhysRevLett.114.080402
– ident: e_1_3_4_58_2
  doi: 10.1103/PhysRevLett.129.123201
– ident: e_1_3_4_48_2
  doi: 10.1038/s41586-021-03582-4
– ident: e_1_3_4_12_2
  doi: 10.1103/PhysRevA.94.030301
– ident: e_1_3_4_15_2
  doi: 10.1088/1367-2630/18/2/023023
– ident: e_1_3_4_26_2
  doi: 10.1126/science.abk0603
– ident: e_1_3_4_106_2
  doi: 10.1098/rsta.2021.0064
– ident: e_1_3_4_28_2
  doi: 10.1038/s41586-022-04854-3
– ident: e_1_3_4_4_2
  doi: 10.1103/PhysRevLett.94.170201
– ident: e_1_3_4_29_2
  doi: 10.1038/nature18318
– ident: e_1_3_4_37_2
  doi: 10.1088/0953-4075/49/20/202001
– ident: e_1_3_4_55_2
  doi: 10.1103/PhysRevLett.125.180402
– ident: e_1_3_4_27_2
  doi: 10.1038/s41586-021-04257-w
– volume: 10
  start-page: 041007
  year: 2020
  ident: e_1_3_4_93_2
  article-title: Robust topological order in fermionic Z2 gauge theories: From Aharonov–Bohm instability to soliton-induced deconfinement
  publication-title: Phys. Rev. X
– ident: e_1_3_4_5_2
  doi: 10.1007/BF02650179
– volume: 6
  start-page: 031007
  year: 2016
  ident: e_1_3_4_14_2
  article-title: Scalable quantum simulation of molecular energies
  publication-title: Phys. Rev. X
– ident: e_1_3_4_3_2
  doi: 10.1073/pnas.1619152114
– ident: e_1_3_4_40_2
  doi: 10.1038/s41567-020-0903-z
– ident: e_1_3_4_54_2
  doi: 10.1038/s41567-019-0508-6
– volume: 5
  start-page: 021027
  year: 2015
  ident: e_1_3_4_20_2
  article-title: Digital quantum simulation of spin models with circuit quantum electrodynamics
  publication-title: Phys. Rev. X
– ident: e_1_3_4_68_2
  doi: 10.1038/s41567-022-01658-0
– ident: e_1_3_4_105_2
  doi: 10.1140/epjd/e2020-100571-8
– ident: e_1_3_4_24_2
  doi: 10.1126/science.abi8378
– ident: e_1_3_4_47_2
  doi: 10.1126/science.aav9105
– ident: e_1_3_4_22_2
  doi: 10.1038/nature21426
– ident: e_1_3_4_69_2
  doi: 10.1126/science.273.5278.1073
– ident: e_1_3_4_81_2
  doi: 10.1090/S0002-9939-1959-0108732-6
– ident: e_1_3_4_96_2
  doi: 10.1103/RevModPhys.89.041004
– ident: e_1_3_4_104_2
  doi: 10.1080/00107514.2016.1151199
– ident: e_1_3_4_107_2
  doi: 10.1088/1361-6633/ac58a4
– ident: e_1_3_4_67_2
– ident: e_1_3_4_111_2
– ident: e_1_3_4_64_2
  doi: 10.1088/0953-4075/46/10/104006
– ident: e_1_3_4_1_2
  doi: 10.1103/RevModPhys.93.035003
– ident: e_1_3_4_108_2
  doi: 10.1103/PhysRevLett.118.070501
– ident: e_1_3_4_10_2
  doi: 10.1103/PhysRevLett.95.176407
– ident: e_1_3_4_49_2
  doi: 10.1038/s41586-021-03585-1
– ident: e_1_3_4_21_2
  doi: 10.1038/ncomms8654
– ident: e_1_3_4_52_2
  doi: 10.1126/science.1250057
– ident: e_1_3_4_118_2
  doi: 10.1038/s41586-018-0661-6
– ident: e_1_3_4_103_2
  doi: 10.1088/0034-4885/79/1/014401
– ident: e_1_3_4_50_2
  doi: 10.1126/science.abi8794
– ident: e_1_3_4_43_2
  doi: 10.1116/5.0036562
– ident: e_1_3_4_16_2
  doi: 10.1038/nature23879
– ident: e_1_3_4_99_2
  doi: 10.1103/PhysRevB.101.024306
– ident: e_1_3_4_83_2
  doi: 10.1103/PhysRevLett.131.060601
– volume: 11
  start-page: 011035
  year: 2021
  ident: e_1_3_4_114_2
  article-title: Demonstration of quantum brachistochrones between distant states of an atom
  publication-title: Phys. Rev. X
– ident: e_1_3_4_63_2
  doi: 10.1103/PhysRevLett.101.170504
– ident: e_1_3_4_80_2
  doi: 10.1038/nature23879
– volume: 6
  start-page: 041049
  year: 2016
  ident: e_1_3_4_97_2
  article-title: Simple fermionic model of deconfined phases and phase transitions
  publication-title: Phys. Rev. X
– ident: e_1_3_4_89_2
  doi: 10.1103/PRXQuantum.2.020310
– volume: 10
  start-page: 021067
  year: 2020
  ident: e_1_3_4_78_2
  article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices
  publication-title: Phys. Rev. X
– ident: e_1_3_4_94_2
  doi: 10.1017/CBO9781139015509
– ident: e_1_3_4_38_2
  doi: 10.1103/PhysRevLett.123.170503
– ident: e_1_3_4_61_2
  doi: 10.1103/PhysRevLett.91.010407
– ident: e_1_3_4_35_2
  doi: 10.1103/PhysRevLett.104.010502
– ident: e_1_3_4_56_2
  doi: 10.1103/PhysRevLett.128.223202
– ident: e_1_3_4_30_2
  doi: 10.1103/PhysRevA.98.032331
– ident: e_1_3_4_98_2
  doi: 10.1103/PhysRevB.105.075132
– volume: 8
  start-page: 031022
  year: 2018
  ident: e_1_3_4_17_2
  article-title: Quantum chemistry calculations on a trapped-ion quantum simulator
  publication-title: Phys. Rev. X
– ident: e_1_3_4_57_2
  doi: 10.1126/science.abo0608
– volume: 5
  start-page: 011000
  year: 2015
  ident: e_1_3_4_65_2
  article-title: Ideal negative measurements in quantum walks disprove theories based on classical trajectories
  publication-title: Phys. Rev. X
– ident: e_1_3_4_6_2
  doi: 10.1103/PhysRevLett.79.2586
– ident: e_1_3_4_86_2
  doi: 10.1103/PhysRevA.77.052333
– ident: e_1_3_4_109_2
  doi: 10.1103/PhysRevD.100.034518
– ident: e_1_3_4_102_2
  doi: 10.1002/andp.201300104
– ident: e_1_3_4_11_2
  doi: 10.1088/1742-5468/2005/09/P09012
– ident: e_1_3_4_82_2
  doi: 10.1039/D1CS00932J
– ident: e_1_3_4_2_2
  doi: 10.1103/RevModPhys.92.031001
– ident: e_1_3_4_84_2
– ident: e_1_3_4_87_2
  doi: 10.1103/PhysRevResearch.4.033019
– volume: 11
  start-page: 011035
  year: 2021
  ident: e_1_3_4_66_2
  article-title: Demonstration of quantum brachistochrones between distant states of an atom
  publication-title: Phys. Rev. X
– ident: e_1_3_4_25_2
  doi: 10.1126/science.abg8102
– ident: e_1_3_4_95_2
  doi: 10.1103/PhysRevB.37.580
– ident: e_1_3_4_7_2
  doi: 10.1103/PhysRevA.64.022319
– ident: e_1_3_4_110_2
  doi: 10.1103/PhysRevLett.129.160501
– ident: e_1_3_4_31_2
  doi: 10.1038/s41586-019-1177-4
– ident: e_1_3_4_112_2
  doi: 10.1126/science.1201351
– ident: e_1_3_4_33_2
  doi: 10.1080/00018730701223200
– ident: e_1_3_4_76_2
  doi: 10.1038/s41567-022-01678-w
– ident: e_1_3_4_115_2
  doi: 10.1103/PhysRev.80.580
– ident: e_1_3_4_73_2
  doi: 10.1126/science.1148259
– ident: e_1_3_4_23_2
  doi: 10.1038/nature21413
– ident: e_1_3_4_41_2
  doi: 10.22331/q-2020-09-21-327
– ident: e_1_3_4_71_2
  doi: 10.1103/RevModPhys.92.015003
– ident: e_1_3_4_60_2
  doi: 10.1103/PhysRevLett.82.1975
– ident: e_1_3_4_34_2
  doi: 10.1126/science.aal3837
– ident: e_1_3_4_72_2
  doi: 10.1103/PhysRevLett.130.223401
– ident: e_1_3_4_8_2
  doi: 10.1006/aphy.2002.6254
– ident: e_1_3_4_62_2
  doi: 10.1038/nature02008
– ident: e_1_3_4_85_2
  doi: 10.1088/2058-9565/ab8ebc
– ident: e_1_3_4_88_2
  doi: 10.1038/s41467-019-10988-2
– ident: e_1_3_4_42_2
  doi: 10.1038/s41586-022-04592-6
SSID ssj0009580
Score 2.66778
Snippet SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum...
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and...
Neutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models....
SourceID unpaywall
pubmedcentral
osti
proquest
crossref
pnas
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Algorithms
Arrays
ATOMIC AND MOLECULAR PHYSICS
Computers
digital quantum simulation
Fermi-Dirac statistics
fermionic quantum processor
Fermions
Gates
Gates (circuits)
Gauge theory
Hardware
lattice gauge theories
Microprocessors
Neutral atoms
Particle physics
Physical Sciences
Physics
Quantum chemistry
Quantum computers
Qubits (quantum computing)
Simulation
Spelling
Statistics
tweezer arrays
Title Fermionic quantum processing with programmable neutral atom arrays
URI https://www.pnas.org/doi/10.1073/pnas.2304294120
https://www.proquest.com/docview/2860375320
https://www.proquest.com/docview/2856322178
https://www.osti.gov/servlets/purl/2421694
https://pubmed.ncbi.nlm.nih.gov/PMC10468619
https://doi.org/10.1073/pnas.2304294120
UnpaywallVersion publishedVersion
Volume 120
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: HH5
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: KQ8
  dateStart: 19150115
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: DIK
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: GX1
  dateStart: 0
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1091-6490
  dateEnd: 20250502
  omitProxy: true
  ssIdentifier: ssj0009580
  issn: 0027-8424
  databaseCode: RPM
  dateStart: 19150101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcCiXAm0RLg8tEgc4OI2967V9BESIkEA9NFJ6snbttaiaOCGxVaW_npl4k2IQAq7e8WMf4_lmZ_YbgOPA0wgclMQZCJVLJY1dHXvG5Wg88Eouw5wOON_cyl5fXA-CgSVJorMwjfh9yL9PCjWjZGX8bQrPR998XQYIuluw3r_9cfarTuDA_6yoy9ei9XOliDtLEp_nT2jYn9YY9YhoTVGmATGfJkh-rIqJmv9Vw-Ej69PdhN7yu-ukkz_tqtTt9N8TSsc3dGwLPlkEys7qJbMNH0zxGbatjs_YiSWiPv0C513KlCHuXHZf4QxUIzapzxWgvWO0g8tseteIDmCxwlTUD4Z-_Iip6VTNZ1-h3738edFzbc0FNxXSLxcbbX6o0bCjoiO44loJkZnQcCNUkMs4CnRmjBEI_Dy0r5nnmUimMY86MjdZzHegVYwLswtMRUHe8ZVBH0yIHN0ajegjQ7yQac5FEDvQXs5EklpCcqqLMUwWgfGQJzRGyf8xcuBkdcOk5uJ4WXSPpjZBGEFcuCklDaVlQvFvGQsHjhfyrz5kf7kiEqvZ2BxJKhvMqflo1Yw6SYEWVZhxRTI4cD46e5EDUWMlrV5JrN7NluL33YLdm4LuEbq1DpyuFt1rX_rtHbJ7sOEjUKN9cT_eh1Y5rcwBAqtSH8La1cA7tKr1AOc1Gqc
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hcKCXQlpQDRRtJQ7h4DT2rtf2kSKiCImIQyOFk7Vrr0XVxAmJLQS_npl4EzBVRXv1jh_7GM83O7PfAJwGnkbgoCTOQKhcKmns6tgzLkfjgVdyGeZ0wPl6KAcjcTUOxpYkic7CNOL3If8-L9SSkpXxtyk8H33zbRkg6G7B9mh4c35bJ3Dgf1bU5WvR-rlSxL01ic-fT2jYn9YM9YhoTVGmATHfJkjuVMVcPT6oyeSV9envwmD93XXSye9uVepu-vSG0vEfOrYHHy0CZef1kmnDlik-Qdvq-JJ1LBH12Wf40adMGeLOZfcVzkA1ZfP6XAHaO0Y7uMymd03pABYrTEX9YOjHT5laLNTjch9G_cufFwPX1lxwUyH9crXR5ocaDTsqOoIrrpUQmQkNN0IFuYyjQGfGGIHAz0P7mnmeiWQa86gnc5PF_ABaxawwX4CpKMh7vjLogwmRo1ujEX1kiBcyzbkIYge665lIUktITnUxJskqMB7yhMYoeRkjBzqbG-Y1F8ffRY9oahOEEcSFm1LSUFomFP-WsXDgdCX_7kOO1ysisZqNzZGkssGcmr9tmlEnKdCiCjOrSAYHzkdnL3IgaqykzSuJ1bvZUvy6W7F7U9A9QrfWgbPNonvvSw__Q_YIPvgI1Ghf3I-PoVUuKvMVgVWpT6xSPQNNExm2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermionic+quantum+processing+with+programmable+neutral+atom+arrays&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gonz%C3%A1lez-Cuadra%2C+D.&rft.au=Bluvstein%2C+D.&rft.au=Kalinowski%2C+M.&rft.au=Kaubruegger%2C+R.&rft.date=2023-08-29&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=35&rft_id=info:doi/10.1073%2Fpnas.2304294120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2304294120
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon