Fermionic quantum processing with programmable neutral atom arrays
SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but a...
        Saved in:
      
    
          | Published in | Proceedings of the National Academy of Sciences - PNAS Vol. 120; no. 35; pp. 1 - 10 | 
|---|---|
| Main Authors | , , , , , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Washington
          National Academy of Sciences
    
        29.08.2023
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0027-8424 1091-6490 1091-6490  | 
| DOI | 10.1073/pnas.2304294120 | 
Cover
| Abstract | SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads.
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics. | 
    
|---|---|
| AbstractList | SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads.
Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics. Neutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models. In this work, we envision the next generation of programmable atomic quantum simulators, where not only the atom’s internal but also motional degrees of freedom are controlled to process quantum information. In the case of fermionic atoms, this allows to encode and simulate fermionic models locally, where Fermi statistics are guaranteed at the hardware level. We develop a set of fermionic quantum gates acting on this fermionic register, including digital tunneling gates, and use it to construct fermionic circuits. This approach reduces circuit depths for quantum simulation significantly compared to qubit encodings, which always incur resource overheads. Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and particle physics.-5.4pc]Please note that the spelling of the following author names in the manuscript differs from the spelling provided in the article metadata: D. González-Cuadra, D. Bluvstein, M. Kalinowski, R. Kaubruegger, N. Maskara, P. Naldesi, T. V. Zache, A. M. Kaufman, M. D. Lukin, H. Pichler, B. Vermersch, Jun Ye, and P. Zoller. The spelling provided in the manuscript has been retained; please confirm. Although qubit-based quantum computers can potentially tackle this problem more efficiently than classical devices, encoding nonlocal fermionic statistics introduces an overhead in the required resources, limiting their applicability on near-term architectures. In this work, we present a fermionic quantum processor, where fermionic models are locally encoded in a fermionic register and simulated in a hardware-efficient manner using fermionic gates. We consider in particular fermionic atoms in programmable tweezer arrays and develop different protocols to implement nonlocal gates, guaranteeing Fermi statistics at the hardware level. We use this gate set, together with Rydberg-mediated interaction gates, to find efficient circuit decompositions for digital and variational quantum simulation algorithms, illustrated here for molecular energy estimation. Finally, we consider a combined fermion-qubit architecture, where both the motional and internal degrees of freedom of the atoms are harnessed to efficiently implement quantum phase estimation as well as to simulate lattice gauge theory dynamics.  | 
    
| ArticleNumber | e2304294120 | 
    
| Author | Vermersch, B. Zoller, P. Kalinowski, M. Naldesi, P. Pichler, H. Lukin, M. D. Kaubruegger, R. Maskara, N. González-Cuadra, D. Kaufman, A. M. Bluvstein, D. Zache, T. V. Ye, Jun  | 
    
| Author_xml | – sequence: 1 givenname: D. orcidid: 0000-0001-7804-7333 surname: González-Cuadra fullname: González-Cuadra, D. organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences – sequence: 2 givenname: D. surname: Bluvstein fullname: Bluvstein, D. organization: Harvard University – sequence: 3 givenname: M. surname: Kalinowski fullname: Kalinowski, M. organization: Harvard University – sequence: 4 givenname: R. surname: Kaubruegger fullname: Kaubruegger, R. organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences – sequence: 5 givenname: N. surname: Maskara fullname: Maskara, N. organization: Harvard University – sequence: 6 givenname: P. surname: Naldesi fullname: Naldesi, P. organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences – sequence: 7 givenname: T. V. orcidid: 0000-0003-3549-7160 surname: Zache fullname: Zache, T. V. organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences – sequence: 8 givenname: A. M. surname: Kaufman fullname: Kaufman, A. M. organization: Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology – sequence: 9 givenname: M. D. surname: Lukin fullname: Lukin, M. D. organization: Harvard University – sequence: 10 givenname: H. surname: Pichler fullname: Pichler, H. organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences – sequence: 11 givenname: B. surname: Vermersch fullname: Vermersch, B. organization: Université Grenoble Alpes, CNRS, Laboratoire de Physique et Modélisation des Milieux Condensés – sequence: 12 givenname: Jun orcidid: 0000-0003-0076-2112 surname: Ye fullname: Ye, Jun organization: Joint Institute for Laboratory Astrophysics, University of Colorado and National Institute of Standards and Technology – sequence: 13 givenname: P. surname: Zoller fullname: Zoller, P. email: peter.zoller@uibk.ac.at organization: Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences  | 
    
| BackLink | https://www.osti.gov/servlets/purl/2421694$$D View this record in Osti.gov | 
    
| BookMark | eNqFUU1v1DAUtFAR3RbOXCO4IKG0_oodnxBUFCpV4lLOluO83XWV2KnttNp_j8OuiuihPVnWm5k3M-8EHfngAaH3BJ8RLNn55E06owxzqjih-BVaEaxILbjCR2iFMZV1yyk_Ricp3WKMVdPiN-iYSYElpWKFvl1CHF3wzlZ3s_F5HqspBgspOb-pHlzeLv9NNONougEqD3OOZqhMDmNlYjS79Ba9XpshwbvDe4p-X36_ufhZX__6cXXx9bq2XNBcc6kYlR2lnNKGN4J1hvMeJDDgplkL1TZdDwCcKEYA-p4QaIVVrMViDb1ipwjvdWc_md2DGQY9RTeauNME66UOvdSh_9VRKF_2lGnuRugt-MX8Iy0Yp_-feLfVm3Bf1LhoBVmWftgrhJSdTtZlsFsbvAebdYlChOIF9OmwJoa7GVLWo0sWhsF4CHNx1Ja4lBLZFujHJ9DbMEdfeisogZls2F_fzR5lY0gpwlqXxSaXOxWXbngm7_kT3ssNfT74WQYvof8AmT6_VA | 
    
| CitedBy_id | crossref_primary_10_1103_PhysRevLett_131_171902 crossref_primary_10_1038_s42256_024_00831_9 crossref_primary_10_22331_q_2024_10_29_1513 crossref_primary_10_1103_PhysRevLett_132_190001 crossref_primary_10_1007_s44214_025_00077_5 crossref_primary_10_1103_PhysRevB_109_174409 crossref_primary_10_1103_PhysRevResearch_6_023178 crossref_primary_10_1103_PRXQuantum_5_030358 crossref_primary_10_1038_s41586_024_07304_4 crossref_primary_10_1103_PhysRevA_109_013318 crossref_primary_10_21468_SciPostPhys_16_1_033 crossref_primary_10_1103_PhysRevA_110_032430 crossref_primary_10_1063_5_0235279 crossref_primary_10_1103_PhysRevD_110_014507 crossref_primary_10_1103_PhysRevLett_132_230401 crossref_primary_10_1002_andp_202400132 crossref_primary_10_1103_PhysRevB_111_014312 crossref_primary_10_21468_SciPostPhys_16_6_147 crossref_primary_10_1103_PhysRevApplied_20_044002 crossref_primary_10_1103_PhysRevLett_134_053402 crossref_primary_10_1103_PRXQuantum_6_010318 crossref_primary_10_1103_PhysRevResearch_5_043175 crossref_primary_10_1103_PhysRevResearch_6_033293 crossref_primary_10_1103_PhysRevLett_133_063401 crossref_primary_10_1103_PhysRevResearch_6_L022059 crossref_primary_10_21468_SciPostPhys_16_5_135 crossref_primary_10_1088_1751_8121_ad7429 crossref_primary_10_1103_PhysRevA_109_043320 crossref_primary_10_22331_q_2024_09_04_1460 crossref_primary_10_1103_PRXQuantum_5_037001 crossref_primary_10_22331_q_2023_10_16_1140 crossref_primary_10_1038_s41586_023_06481_y crossref_primary_10_1103_PRXQuantum_5_040309  | 
    
| Cites_doi | 10.1126/science.abb9811 10.1103/PhysRevLett.124.120503 10.22331/q-2023-05-15-1004 10.1080/00268976.2011.552441 10.1126/science.1254978 10.1103/PRXQuantum.3.020303 10.1103/PhysRevLett.75.346 10.1038/ncomms5213 10.1103/PhysRevB.104.035118 10.1103/PhysRevA.84.052716 10.1038/nature18274 10.1126/science.1208001 10.1103/PhysRevLett.124.203201 10.1038/nature24622 10.1103/PhysRevLett.108.205301 10.1103/PhysRevLett.123.230501 10.1038/s41586-019-1070-1 10.1016/j.aop.2004.09.010 10.1038/s41586-021-04205-8 10.1103/RevModPhys.82.2313 10.1103/PhysRevLett.128.033201 10.1103/PhysRevB.106.L041101 10.1103/PhysRevLett.114.080402 10.1103/PhysRevLett.129.123201 10.1038/s41586-021-03582-4 10.1103/PhysRevA.94.030301 10.1088/1367-2630/18/2/023023 10.1126/science.abk0603 10.1098/rsta.2021.0064 10.1038/s41586-022-04854-3 10.1103/PhysRevLett.94.170201 10.1038/nature18318 10.1088/0953-4075/49/20/202001 10.1103/PhysRevLett.125.180402 10.1038/s41586-021-04257-w 10.1007/BF02650179 10.1073/pnas.1619152114 10.1038/s41567-020-0903-z 10.1038/s41567-019-0508-6 10.1038/s41567-022-01658-0 10.1140/epjd/e2020-100571-8 10.1126/science.abi8378 10.1126/science.aav9105 10.1038/nature21426 10.1126/science.273.5278.1073 10.1090/S0002-9939-1959-0108732-6 10.1103/RevModPhys.89.041004 10.1080/00107514.2016.1151199 10.1088/1361-6633/ac58a4 10.1088/0953-4075/46/10/104006 10.1103/RevModPhys.93.035003 10.1103/PhysRevLett.118.070501 10.1103/PhysRevLett.95.176407 10.1038/s41586-021-03585-1 10.1038/ncomms8654 10.1126/science.1250057 10.1038/s41586-018-0661-6 10.1088/0034-4885/79/1/014401 10.1126/science.abi8794 10.1116/5.0036562 10.1038/nature23879 10.1103/PhysRevB.101.024306 10.1103/PhysRevLett.131.060601 10.1103/PhysRevLett.101.170504 10.1103/PRXQuantum.2.020310 10.1017/CBO9781139015509 10.1103/PhysRevLett.123.170503 10.1103/PhysRevLett.91.010407 10.1103/PhysRevLett.104.010502 10.1103/PhysRevLett.128.223202 10.1103/PhysRevA.98.032331 10.1103/PhysRevB.105.075132 10.1126/science.abo0608 10.1103/PhysRevLett.79.2586 10.1103/PhysRevA.77.052333 10.1103/PhysRevD.100.034518 10.1002/andp.201300104 10.1088/1742-5468/2005/09/P09012 10.1039/D1CS00932J 10.1103/RevModPhys.92.031001 10.1103/PhysRevResearch.4.033019 10.1126/science.abg8102 10.1103/PhysRevB.37.580 10.1103/PhysRevA.64.022319 10.1103/PhysRevLett.129.160501 10.1038/s41586-019-1177-4 10.1126/science.1201351 10.1080/00018730701223200 10.1038/s41567-022-01678-w 10.1103/PhysRev.80.580 10.1126/science.1148259 10.1038/nature21413 10.22331/q-2020-09-21-327 10.1103/RevModPhys.92.015003 10.1103/PhysRevLett.82.1975 10.1126/science.aal3837 10.1103/PhysRevLett.130.223401 10.1006/aphy.2002.6254 10.1038/nature02008 10.1088/2058-9565/ab8ebc 10.1038/s41467-019-10988-2 10.1038/s41586-022-04592-6  | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright © 2023 the Author(s). Published by PNAS. Copyright National Academy of Sciences Aug 29, 2023 Copyright © 2023 the Author(s). Published by PNAS. 2023  | 
    
| Copyright_xml | – notice: Copyright © 2023 the Author(s). Published by PNAS. – notice: Copyright National Academy of Sciences Aug 29, 2023 – notice: Copyright © 2023 the Author(s). Published by PNAS. 2023  | 
    
| CorporateAuthor | Harvard Univ., Cambridge, MA (United States) Krell Institute, Ames, IA (United States)  | 
    
| CorporateAuthor_xml | – name: Krell Institute, Ames, IA (United States) – name: Harvard Univ., Cambridge, MA (United States)  | 
    
| DBID | AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM ADTOC UNPAY  | 
    
| DOI | 10.1073/pnas.2304294120 | 
    
| DatabaseName | CrossRef Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Immunology Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts Algology Mycology and Protozoology Abstracts (Microbiology C) Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic OSTI.GOV - Hybrid OSTI.GOV PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts MEDLINE - Academic  | 
    
| DatabaseTitleList | Virology and AIDS Abstracts CrossRef MEDLINE - Academic  | 
    
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Sciences (General) Physics Statistics  | 
    
| EISSN | 1091-6490 | 
    
| ExternalDocumentID | 10.1073/pnas.2304294120 PMC10468619 2421694 10_1073_pnas_2304294120  | 
    
| Genre | Research Article | 
    
| GroupedDBID | --- -DZ -~X .55 0R~ 123 29P 2FS 2WC 4.4 53G 5RE 5VS 85S AACGO AAFWJ AANCE ABOCM ABPLY ABPPZ ABTLG ABZEH ACGOD ACIWK ACNCT ACPRK AENEX AFFNX AFRAH ALMA_UNASSIGNED_HOLDINGS BKOMP CS3 D0L DIK DU5 E3Z EBS F5P FRP GX1 H13 HH5 HYE JENOY JLS JSG KQ8 L7B LU7 N9A N~3 O9- OK1 PNE PQQKQ R.V RHI RNA RNS RPM RXW SJN TAE TN5 UKR W8F WH7 WOQ WOW X7M XSW Y6R YBH YKV YSK ZCA ~02 ~KM AAYXX CITATION 7QG 7QL 7QP 7QR 7SN 7SS 7T5 7TK 7TM 7TO 7U9 8FD AFOSN C1K FR3 H94 M7N P64 RC3 7X8 OIOZB OTOTI 5PM .GJ 2AX 3O- 692 6TJ 79B AAYJJ ABBHK ABXSQ ACHIC ACKIV ADQXQ ADTOC ADULT ADXHL AEUPB AEXZC AFHIN AFQQW AQVQM AS~ DCCCD EJD HGD HQ3 HTVGU IPSME JAAYA JBMMH JHFFW JKQEH JLXEF JPM JST MVM NEJ NHB P-O SA0 UNPAY VOH WHG ZCG  | 
    
| ID | FETCH-LOGICAL-c462t-479327b2242254563ba44de7e3e4a5f6985bdeee41931eedd11e86c93806fed93 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0027-8424 1091-6490  | 
    
| IngestDate | Sun Oct 26 04:11:38 EDT 2025 Tue Sep 30 17:12:50 EDT 2025 Mon Mar 24 04:18:05 EDT 2025 Fri Sep 05 11:34:28 EDT 2025 Mon Jun 30 09:53:44 EDT 2025 Wed Oct 01 03:16:45 EDT 2025 Thu Apr 24 23:05:43 EDT 2025 Thu Oct 09 22:08:20 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 35 | 
    
| Keywords | digital quantum simulation quantum chemistry tweezer arrays fermionic quantum processor lattice gauge theories  | 
    
| Language | English | 
    
| License | https://creativecommons.org/licenses/by/4.0 This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY). cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c462t-479327b2242254563ba44de7e3e4a5f6985bdeee41931eedd11e86c93806fed93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 SC0021013; SC0021110 USDOE Office of Science (SC) Edited by Jean Dalibard, College de France, Paris, France; received March 15, 2023; accepted July 26, 2023  | 
    
| ORCID | 0000-0003-0076-2112 0000-0003-3549-7160 0000-0001-7804-7333 0000000335497160 0000000300762112 0000000178047333  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1073/pnas.2304294120 | 
    
| PMID | 37607226 | 
    
| PQID | 2860375320 | 
    
| PQPubID | 42026 | 
    
| PageCount | 10 | 
    
| ParticipantIDs | unpaywall_primary_10_1073_pnas_2304294120 pubmedcentral_primary_oai_pubmedcentral_nih_gov_10468619 osti_scitechconnect_2421694 proquest_miscellaneous_2856322178 proquest_journals_2860375320 crossref_citationtrail_10_1073_pnas_2304294120 crossref_primary_10_1073_pnas_2304294120 pnas_primary_10_1073_pnas_2304294120  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230829 | 
    
| PublicationDateYYYYMMDD | 2023-08-29 | 
    
| PublicationDate_xml | – month: 08 year: 2023 text: 20230829 day: 29  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Washington | 
    
| PublicationPlace_xml | – name: Washington – name: United States  | 
    
| PublicationTitle | Proceedings of the National Academy of Sciences - PNAS | 
    
| PublicationTitleAbbrev | Proc Natl Acad Sci USA | 
    
| PublicationYear | 2023 | 
    
| Publisher | National Academy of Sciences | 
    
| Publisher_xml | – name: National Academy of Sciences | 
    
| References | Zhou, Wang, Choi, Pichler, Lukin 2020; 10 Scholl 2021; 595 Madjarov 2020; 16 Labuhn 2016; 534 Bernien 2017; 551 Kaufman 2014; 345 Aidelsburger 2022; 380 Borla, Jeevanesan, Pollmann, Moroz 2022; 105 Peruzzo 2014; 5 Gross, Bloch 2017; 357 Morgado, Whitlock 2021; 3 Jaksch, Zoller 2005; 315 Martinez 2016; 534 Mi 2022; 601 Fradkin 2013 Aramthottil 2022; 106 Barends 2015; 6 McClean, Romero, Babbush, Aspuru-Guzik 2016; 18 Lam 2021; 11 Iadecola, Schecter 2020; 101 Daley, Boyd, Ye, Zoller 2008; 101 Nascimbène 2012; 108 Berges, Heller, Mazeliauskas, Venugopalan 2021; 93 Klco, Roggero, Savage 2022; 85 Robens, Alt, Meschede, Emary, Alberti 2015; 5 Whitfield, Havlíček, Troyer 2016; 94 Levine 2019; 123 Yan 2022; 129 Scholl 2022; 3 Kandala 2017; 549 Lamm, Lawrence, Yamauchi 2019; 100 Lloyd 1995; 75 Wen 2017; 89 Semeghini 2021; 374 Salathé 2015; 5 Serwane 2011; 332 Anand 2022; 51 de Léséleuc 2019; 365 Dalmonte, Montangero 2016; 57 Bañuls 2020; 74 Assaad, Grover 2016; 6 Zhang 2022; 607 Ringbauer 2022; 18 O’Malley 2016; 6 Zohar, Farace, Reznik, Cirac 2017; 118 Jaksch, Briegel, Cirac, Gardiner, Zoller 1999; 82 Zhang 2017; 543 Pagano 2022; 4 Ball 2005; 95 McClean 2020; 5 Mandel 2003; 425 Randall 2021; 374 Verstraete, Cirac 2005; 2005 Mandel 2003; 91 Cooper 2018; 8 Ruttley 2023; 130 Bluvstein 2022; 604 Varma 2020; 92 Klco 2018; 98 De Chiara 2008; 77 Lloyd 1996; 273 2020; 369 Bishof 2011; 84 Kyprianidis 2021; 372 McArdle, Endo, Aspuru-Guzik, Benjamin, Yuan 2020; 92 Cong 2022; 12 Graham 2019; 123 Naldesi 2023; 131 Becher 2020; 125 Hartke, Oreg, Jia, Zwierlein 2022; 601 Feynman 1981; 21 Belmechri 2013; 46 Wilson 2022; 128 Tang 2021; 2 Trotter 1959; 10 Kokail 2019; 569 Ebadi 2021; 595 Grimsley, Economou, Barnes, Mayhall 2019; 10 González-Cuadra, Tagliacozzo, Lewenstein, Bermudez 2020; 10 Wiese 2013; 525 Whitfield, Biamonte, Aspuru-Guzik 2011; 109 Reiher, Wiebe, Svore, Wecker, Troyer 2017; 114 Keesling 2019; 568 Ortiz, Gubernatis, Knill, Laflamme 2001; 64 Bergschneider 2019; 15 Lanyon 2011; 334 Spar, Guardado-Sanchez, Chi, Yan, Bakr 2022; 128 Henriet 2020; 4 Satzinger 2021; 374 Murmann 2015; 114 Heinz 2020; 124 Halimeh, Barbiero, Hauke, Grusdt, Bohrdt 2023; 7 Lewenstein 2007; 56 Wilk 2010; 104 Bravyi, Kitaev 2002; 298 Baskaran, Anderson 1988; 37 Hahn 1950; 80 Goban 2018; 563 Schine, Young, Eckner, Martin, Kaufman 2022; 18 Young, Eckner, Schine, Childs, Kaufman 2022; 377 González-Cuadra, Zache, Carrasco, Kraus, Zoller 2022; 129 Saffman, Walker, Mølmer 2010; 82 Saffman 2016; 49 Borla, Verresen, Grusdt, Moroz 2020; 124 Zohar, Cirac, Reznik 2015; 79 Derby, Klassen, Bausch, Cubitt 2021; 104 Ye, Kimble, Katori 2008; 320 Zhang 2014; 345 Abrams, Lloyd 1997; 79 Choi 2017; 543 Troyer, Wiese 2005; 94 Hempel 2018; 8 e_1_3_4_3_2 e_1_3_4_110_2 e_1_3_4_61_2 Robens C. (e_1_3_4_65_2) 2015; 5 e_1_3_4_84_2 e_1_3_4_7_2 e_1_3_4_118_2 e_1_3_4_80_2 e_1_3_4_23_2 e_1_3_4_69_2 e_1_3_4_42_2 Assaad F. F. (e_1_3_4_97_2) 2016; 6 e_1_3_4_27_2 e_1_3_4_46_2 e_1_3_4_88_2 Lam M. R. (e_1_3_4_114_2) 2021; 11 e_1_3_4_102_2 e_1_3_4_72_2 e_1_3_4_95_2 e_1_3_4_106_2 e_1_3_4_30_2 e_1_3_4_91_2 e_1_3_4_11_2 e_1_3_4_34_2 e_1_3_4_57_2 Lam M. R. (e_1_3_4_66_2) 2021; 11 e_1_3_4_53_2 e_1_3_4_15_2 e_1_3_4_38_2 e_1_3_4_76_2 O’Malley P. J. J. (e_1_3_4_14_2) 2016; 6 e_1_3_4_99_2 e_1_3_4_19_2 e_1_3_4_2_2 e_1_3_4_62_2 e_1_3_4_85_2 Hempel C. (e_1_3_4_17_2) 2018; 8 e_1_3_4_117_2 e_1_3_4_6_2 e_1_3_4_81_2 e_1_3_4_43_2 e_1_3_4_24_2 e_1_3_4_47_2 e_1_3_4_89_2 e_1_3_4_28_2 e_1_3_4_101_2 e_1_3_4_73_2 e_1_3_4_96_2 e_1_3_4_105_2 e_1_3_4_50_2 e_1_3_4_92_2 e_1_3_4_109_2 e_1_3_4_12_2 e_1_3_4_58_2 e_1_3_4_54_2 e_1_3_4_31_2 e_1_3_4_16_2 Cooper A. (e_1_3_4_74_2) 2018; 8 e_1_3_4_77_2 e_1_3_4_35_2 e_1_3_4_39_2 e_1_3_4_1_2 González-Cuadra D. (e_1_3_4_93_2) 2020; 10 e_1_3_4_112_2 e_1_3_4_82_2 e_1_3_4_9_2 e_1_3_4_116_2 e_1_3_4_63_2 e_1_3_4_40_2 e_1_3_4_5_2 e_1_3_4_44_2 e_1_3_4_21_2 e_1_3_4_48_2 e_1_3_4_86_2 e_1_3_4_25_2 e_1_3_4_67_2 e_1_3_4_29_2 e_1_3_4_100_2 Salathé Y. (e_1_3_4_20_2) 2015; 5 e_1_3_4_104_2 e_1_3_4_51_2 e_1_3_4_108_2 e_1_3_4_70_2 e_1_3_4_55_2 e_1_3_4_32_2 e_1_3_4_59_2 e_1_3_4_13_2 e_1_3_4_36_2 e_1_3_4_111_2 e_1_3_4_60_2 e_1_3_4_83_2 e_1_3_4_115_2 e_1_3_4_8_2 e_1_3_4_41_2 e_1_3_4_119_2 e_1_3_4_4_2 e_1_3_4_22_2 e_1_3_4_45_2 e_1_3_4_68_2 e_1_3_4_26_2 e_1_3_4_49_2 e_1_3_4_64_2 e_1_3_4_87_2 e_1_3_4_71_2 e_1_3_4_94_2 e_1_3_4_103_2 e_1_3_4_52_2 e_1_3_4_90_2 e_1_3_4_107_2 e_1_3_4_79_2 e_1_3_4_33_2 e_1_3_4_10_2 e_1_3_4_75_2 e_1_3_4_98_2 e_1_3_4_37_2 e_1_3_4_56_2 e_1_3_4_18_2 Cong I. (e_1_3_4_113_2) 2022; 12 Zhou L. (e_1_3_4_78_2) 2020; 10  | 
    
| References_xml | – volume: 4 start-page: 033019 year: 2022 article-title: Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms publication-title: Phys. Rev. Res. – volume: 334 start-page: 57 year: 2011 end-page: 61 article-title: Universal digital quantum simulation with trapped ions publication-title: Science – volume: 10 start-page: 041007 year: 2020 article-title: Robust topological order in fermionic Z2 gauge theories: From Aharonov–Bohm instability to soliton-induced deconfinement publication-title: Phys. Rev. X – volume: 106 start-page: L041101 year: 2022 article-title: Scar states in deconfined Z2 lattice gauge theories publication-title: Phys. Rev. B – volume: 374 start-page: 1474 year: 2021 end-page: 1478 article-title: Many-body–localized discrete time crystal with a programmable spin-based quantum simulator publication-title: Science – volume: 101 start-page: 170504 year: 2008 article-title: Quantum computing with alkaline-earth-metal atoms publication-title: Phys. Rev. Lett. – volume: 374 start-page: 1242 year: 2021 end-page: 1247 article-title: Probing topological spin liquids on a programmable quantum simulator publication-title: Science – volume: 64 start-page: 022319 year: 2001 article-title: Quantum algorithms for fermionic simulations publication-title: Phys. Rev. A – volume: 2005 start-page: P09012 year: 2005 end-page: P09012 article-title: Mapping local Hamiltonians of fermions to local Hamiltonians of spins publication-title: J. Stat. Mech.: Theory Exp. – volume: 124 start-page: 120503 year: 2020 article-title: Confined phases of one-dimensional spinless fermions coupled to Z2 gauge theory publication-title: Phys. Rev. Lett. – volume: 549 start-page: 242 year: 2017 end-page: 246 article-title: Hardware-efficient variational quantum Eigensolver for small molecules and quantum magnets publication-title: Nature – volume: 129 start-page: 123201 year: 2022 article-title: Two-dimensional programmable tweezer arrays of fermions publication-title: Phys. Rev. Lett. – volume: 18 start-page: 1067 year: 2022 end-page: 1073 article-title: Long-lived bell states in an array of optical clock qubits publication-title: Nat. Phys. – volume: 95 start-page: 176407 year: 2005 article-title: Fermions without fermion fields publication-title: Phys. Rev. Lett. – volume: 128 start-page: 223202 year: 2022 article-title: Realization of a Fermi–Hubbard optical tweezer array publication-title: Phys. Rev. Lett. – volume: 16 start-page: 857 year: 2020 end-page: 861 article-title: High-fidelity entanglement and detection of alkaline-earth Rydberg atoms publication-title: Nat. Phys. – volume: 128 start-page: 033201 year: 2022 article-title: Trapping alkaline earth Rydberg atoms optical tweezer arrays publication-title: Phys. Rev. Lett. – volume: 10 start-page: 545 year: 1959 end-page: 551 article-title: On the product of semi-groups of operators publication-title: Proc. Am. Math. Soc. – volume: 56 start-page: 243 year: 2007 end-page: 379 article-title: Ultracold atomic gases in optical lattices: Mimicking condensed matter physics and beyond publication-title: Adv. Phys. – volume: 3 start-page: 023501 year: 2021 article-title: Quantum simulation and computing with Rydberg-interacting qubits publication-title: AVS Quant. Sci. – volume: 551 start-page: 579 year: 2017 end-page: 584 article-title: Probing many-body dynamics on a 51-atom quantum simulator publication-title: Nature – volume: 91 start-page: 010407 year: 2003 article-title: Coherent transport of neutral atoms in spin-dependent optical lattice potentials publication-title: Phys. Rev. Lett. – volume: 98 start-page: 032331 year: 2018 article-title: Quantum-classical computation of Schwinger model dynamics using quantum computers publication-title: Phys. Rev. A – volume: 604 start-page: 451 year: 2022 end-page: 456 article-title: A quantum processor based on coherent transport of entangled atom arrays publication-title: Nature – volume: 320 start-page: 1734 year: 2008 end-page: 1738 article-title: Quantum state engineering and precision metrology using state-insensitive light traps publication-title: Science – volume: 79 start-page: 014401 year: 2015 article-title: Quantum simulations of lattice gauge theories using ultracold atoms in optical lattices publication-title: Rep. Progr. Phys. – volume: 569 start-page: 355 year: 2019 end-page: 360 article-title: Self-verifying variational quantum simulation of lattice models publication-title: Nature – volume: 369 start-page: 1084 year: 2020 end-page: 1089 article-title: Hartree–Fock on a superconducting qubit quantum computer publication-title: Science – volume: 365 start-page: 775 year: 2019 end-page: 780 article-title: Observation of a symmetry-protected topological phase of interacting bosons with Rydberg atoms publication-title: Science – volume: 601 start-page: 531 year: 2022 end-page: 536 article-title: Time-crystalline eigenstate order on a quantum processor publication-title: Nature – volume: 563 start-page: 369 year: 2018 end-page: 373 article-title: Emergence of multi-body interactions in a fermionic lattice clock publication-title: Nature – volume: 77 start-page: 052333 year: 2008 article-title: Optimal control of atom transport for quantum gates in optical lattices publication-title: Phys. Rev. A – volume: 595 start-page: 227 year: 2021 end-page: 232 article-title: Quantum phases of matter on a 256-atom programmable quantum simulator publication-title: Nature – volume: 105 start-page: 075132 year: 2022 article-title: Quantum phases of two-dimensional Z2 gauge theory coupled to single-component fermion matter publication-title: Phys. Rev. B – volume: 108 start-page: 205301 year: 2012 article-title: Experimental realization of plaquette resonating valence-bond states with ultracold atoms in optical superlattices publication-title: Phys. Rev. Lett. – volume: 3 start-page: 020303 year: 2022 article-title: Microwave engineering of programmable xxz Hamiltonians in arrays of Rydberg atoms publication-title: PRX Quant. – volume: 8 start-page: 031022 year: 2018 article-title: Quantum chemistry calculations on a trapped-ion quantum simulator publication-title: Phys. Rev. X – volume: 4 start-page: 327 year: 2020 article-title: Quantum computing with neutral atoms publication-title: Quantum – volume: 2 start-page: 020310 year: 2021 article-title: qubit-ADAPT-VQE: An adaptive algorithm for constructing hardware-efficient ansätze on a quantum processor publication-title: PRX Quant. – volume: 6 start-page: 031007 year: 2016 article-title: Scalable quantum simulation of molecular energies publication-title: Phys. Rev. X – volume: 345 start-page: 306 year: 2014 end-page: 309 article-title: Two-particle quantum interference in tunnel-coupled optical tweezers publication-title: Science – volume: 607 start-page: 468 year: 2022 end-page: 473 article-title: Digital quantum simulation of Floquet symmetry-protected topological phases publication-title: Nature – volume: 11 start-page: 011035 year: 2021 article-title: Demonstration of quantum brachistochrones between distant states of an atom publication-title: Phys. Rev. X – volume: 315 start-page: 52 year: 2005 end-page: 79 article-title: The cold atom Hubbard toolbox publication-title: Ann. Phys. – volume: 92 start-page: 015003 year: 2020 article-title: Quantum computational chemistry publication-title: Rev. Mod. Phys. – volume: 345 start-page: 1467 year: 2014 end-page: 1473 article-title: Spectroscopic observation of SU(N)-symmetric interactions in Sr orbital magnetism publication-title: Science – volume: 5 start-page: 011000 year: 2015 article-title: Ideal negative measurements in quantum walks disprove theories based on classical trajectories publication-title: Phys. Rev. X – volume: 534 start-page: 516 year: 2016 end-page: 519 article-title: Real-time dynamics of lattice gauge theories with a few-qubit quantum computer publication-title: Nature – volume: 601 start-page: 537 year: 2022 end-page: 541 article-title: Quantum register of fermion pairs publication-title: Nature – volume: 534 start-page: 667 year: 2016 end-page: 670 article-title: Tunable two-dimensional arrays of single Rydberg atoms for realizing quantum Ising models publication-title: Nature – volume: 104 start-page: 035118 year: 2021 article-title: Compact fermion to qubit mappings publication-title: Phys. Rev. B – volume: 7 start-page: 1004 year: 2023 article-title: Robust quantum many-body scars in lattice gauge theories publication-title: Quantum – volume: 125 start-page: 180402 year: 2020 article-title: Measurement of identical particle entanglement and the influence of antisymmetrization publication-title: Phys. Rev. Lett. – volume: 37 start-page: 580 year: 1988 end-page: 583 article-title: Gauge theory of high-temperature superconductors and strongly correlated fermi systems publication-title: Phys. Rev. B – volume: 123 start-page: 230501 year: 2019 article-title: Rydberg-mediated entanglement in a two-dimensional neutral atom qubit array publication-title: Phys. Rev. Lett. – volume: 94 start-page: 170201 year: 2005 article-title: Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations publication-title: Phys. Rev. Lett. – volume: 5 start-page: 021027 year: 2015 article-title: Digital quantum simulation of spin models with circuit quantum electrodynamics publication-title: Phys. Rev. X – volume: 332 start-page: 336 year: 2011 end-page: 338 article-title: Deterministic preparation of a tunable few-fermion system publication-title: Science – volume: 123 start-page: 170503 year: 2019 article-title: Parallel implementation of high-fidelity multiqubit gates with neutral atoms publication-title: Phys. Rev. Lett. – volume: 377 start-page: 885 year: 2022 end-page: 889 article-title: Tweezer-programmable 2D quantum walks in a Hubbard-regime lattice publication-title: Science – volume: 100 start-page: 034518 year: 2019 article-title: General methods for digital quantum simulation of gauge theories publication-title: Phys. Rev. D – volume: 49 start-page: 202001 year: 2016 article-title: Quantum computing with atomic qubits and Rydberg interactions: Progress and challenges publication-title: J. Phys. B: Atomic, Mol. Opt. Phys. – volume: 6 start-page: 7654 year: 2015 article-title: Digital quantum simulation of fermionic models with a superconducting circuit publication-title: Nat. Commun. – volume: 543 start-page: 217 year: 2017 end-page: 220 article-title: Observation of a discrete time crystal publication-title: Nature – volume: 74 start-page: 165 year: 2020 article-title: Simulating lattice gauge theories within quantum technologies publication-title: Eur. Phys. J. D – volume: 12 start-page: 021049 year: 2022 article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms publication-title: Phys. Rev. X – volume: 92 start-page: 031001 year: 2020 article-title: Colloquium: Linear in temperature resistivity and associated mysteries including high temperature superconductivity publication-title: Rev. Mod. Phys. – volume: 543 start-page: 221 year: 2017 end-page: 225 article-title: Observation of discrete time-crystalline order in a disordered dipolar many-body system publication-title: Nature – volume: 51 start-page: 1659 year: 2022 end-page: 1684 article-title: A quantum computing view on unitary coupled cluster theory publication-title: Chem. Soc. Rev. – volume: 101 start-page: 024306 year: 2020 article-title: Quantum many-body scar states with emergent kinetic constraints and finite-entanglement revivals publication-title: Phys. Rev. B – volume: 21 start-page: 467 year: 1981 end-page: 488 article-title: Simulating physics with computers publication-title: Int. J. Theor. Phys. – volume: 273 start-page: 1073 year: 1996 end-page: 1078 article-title: Universal quantum simulators publication-title: Science – volume: 380 start-page: 20210064 year: 2022 article-title: Cold atoms meet lattice gauge theory publication-title: Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. – volume: 118 start-page: 070501 year: 2017 article-title: Digital quantum simulation of Z2 lattice gauge theories with dynamical fermionic matter publication-title: Phys. Rev. Lett. – volume: 89 start-page: 041004 year: 2017 article-title: Colloquium: Zoo of quantum-topological phases of matter publication-title: Rev. Mod. Phys. – volume: 525 start-page: 777 year: 2013 end-page: 796 article-title: Ultracold quantum gases and lattice systems: Quantum simulation of lattice gauge theories publication-title: Ann. Phys. – volume: 80 start-page: 580 year: 1950 end-page: 594 article-title: Spin echoes publication-title: Phys. Rev. – volume: 18 start-page: 1053 year: 2022 end-page: 1057 article-title: A universal qudit quantum processor with trapped ions publication-title: Nat. Phys. – volume: 374 start-page: 1237 year: 2021 end-page: 1241 article-title: Realizing topologically ordered states on a quantum processor publication-title: Science – volume: 84 start-page: 052716 year: 2011 article-title: Inelastic collisions and density-dependent excitation suppression in a 87Sr optical lattice clock publication-title: Phys. Rev. A – volume: 131 year: 2023 article-title: Fermionic correlation functions from randomized measurements in programmable atomic quantum devices publication-title: Phys. Rev. Lett. – volume: 425 start-page: 937 year: 2003 end-page: 940 article-title: Controlled collisions for multi-particle entanglement of optically trapped atoms publication-title: Nature – volume: 114 start-page: 080402 year: 2015 article-title: Two fermions in a double well: Exploring a fundamental building block of the Hubbard model publication-title: Phys. Rev. Lett. – volume: 82 start-page: 2313 year: 2010 end-page: 2363 article-title: Quantum information with Rydberg atoms publication-title: Rev. Mod. Phys. – volume: 75 start-page: 346 year: 1995 end-page: 349 article-title: Almost any quantum logic gate is universal publication-title: Phys. Rev. Lett. – volume: 93 start-page: 035003 year: 2021 article-title: QCD thermalization: Ab initio approaches and interdisciplinary connections publication-title: Rev. Mod. Phys. – volume: 18 start-page: 023023 year: 2016 article-title: The theory of variational hybrid quantum-classical algorithms publication-title: New J. Phys. – volume: 298 start-page: 210 year: 2002 end-page: 226 article-title: Fermionic quantum computation publication-title: Ann. Phys. – volume: 57 start-page: 388 year: 2016 end-page: 412 article-title: Lattice gauge theory simulations in the quantum information era publication-title: Contemp. Phys. – volume: 15 start-page: 640 year: 2019 end-page: 644 article-title: Experimental characterization of two-particle entanglement through position and momentum correlations publication-title: Nat. Phys. – volume: 6 start-page: 041049 year: 2016 article-title: Simple fermionic model of deconfined phases and phase transitions publication-title: Phys. Rev. X – volume: 5 start-page: 034014 year: 2020 article-title: OpenFermion: The electronic structure package for quantum computers publication-title: Quant. Sci. Technol. – volume: 595 start-page: 233 year: 2021 end-page: 238 article-title: Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms publication-title: Nature – year: 2013 publication-title: Field Theories of Condensed Matter Physics – volume: 129 start-page: 160501 year: 2022 article-title: Hardware efficient quantum simulation of non-abelian gauge theories with qudits on Rydberg platforms publication-title: Phys. Rev. Lett. – volume: 94 start-page: 030301 year: 2016 article-title: Local spin operators for fermion simulations publication-title: Phys. Rev. A – volume: 85 start-page: 064301 year: 2022 article-title: Standard model physics and the digital quantum revolution: Thoughts about the interface publication-title: Rep. Progr. Phys. – volume: 46 start-page: 104006 year: 2013 article-title: Microwave control of atomic motional states in a spin-dependent optical lattice publication-title: J. Phys. B: Atomic, Mol. Opt. Phys. – volume: 5 start-page: 4213 year: 2014 article-title: A variational eigenvalue solver on a photonic quantum processor publication-title: Nat. Commun. – volume: 124 start-page: 203201 year: 2020 article-title: State-dependent optical lattices for the strontium optical qubit publication-title: Phys. Rev. Lett. – volume: 8 start-page: 041055 year: 2018 article-title: Alkaline-earth atoms in optical tweezers publication-title: Phys. Rev. X – volume: 82 start-page: 1975 year: 1999 end-page: 1978 article-title: Entanglement of atoms via cold controlled collisions publication-title: Phys. Rev. Lett. – volume: 114 start-page: 7555 year: 2017 end-page: 7560 article-title: Elucidating reaction mechanisms on quantum computers publication-title: Proc. Natl. Acad. Sci. U.S.A. – volume: 372 start-page: 1192 year: 2021 end-page: 1196 article-title: Observation of a prethermal discrete time crystal publication-title: Science – volume: 10 start-page: 021067 year: 2020 article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices publication-title: Phys. Rev. X – volume: 104 start-page: 010502 year: 2010 article-title: Entanglement of two individual neutral atoms using Rydberg blockade publication-title: Phys. Rev. Lett. – volume: 130 start-page: 223401 year: 2023 article-title: Formation of ultracold molecules by merging optical tweezers publication-title: Phys. Rev. Lett. – volume: 568 start-page: 207 year: 2019 end-page: 211 article-title: Quantum Kibble–Zurek mechanism and critical dynamics on a programmable Rydberg simulator publication-title: Nature – volume: 10 start-page: 3007 year: 2019 article-title: An adaptive variational algorithm for exact molecular simulations on a quantum computer publication-title: Nat. Commun. – volume: 357 start-page: 995 year: 2017 end-page: 1001 article-title: Quantum simulations with ultracold atoms in optical lattices publication-title: Science – volume: 79 start-page: 2586 year: 1997 end-page: 2589 article-title: Simulation of many-body fermi systems on a universal quantum computer publication-title: Phys. Rev. Lett. – volume: 109 start-page: 735 year: 2011 end-page: 750 article-title: Simulation of electronic structure Hamiltonians using quantum computers publication-title: Mol. Phys. – ident: e_1_3_4_90_2 – volume: 8 start-page: 041055 year: 2018 ident: e_1_3_4_74_2 article-title: Alkaline-earth atoms in optical tweezers publication-title: Phys. Rev. X – ident: e_1_3_4_18_2 doi: 10.1126/science.abb9811 – ident: e_1_3_4_92_2 doi: 10.1103/PhysRevLett.124.120503 – ident: e_1_3_4_101_2 doi: 10.22331/q-2023-05-15-1004 – ident: e_1_3_4_9_2 doi: 10.1080/00268976.2011.552441 – ident: e_1_3_4_117_2 doi: 10.1126/science.1254978 – ident: e_1_3_4_51_2 doi: 10.1103/PRXQuantum.3.020303 – ident: e_1_3_4_70_2 doi: 10.1103/PhysRevLett.75.346 – ident: e_1_3_4_13_2 doi: 10.1038/ncomms5213 – ident: e_1_3_4_79_2 doi: 10.1103/PhysRevB.104.035118 – ident: e_1_3_4_119_2 doi: 10.1103/PhysRevA.84.052716 – ident: e_1_3_4_44_2 doi: 10.1038/nature18274 – ident: e_1_3_4_19_2 doi: 10.1126/science.1208001 – ident: e_1_3_4_91_2 – ident: e_1_3_4_75_2 doi: 10.1103/PhysRevLett.124.203201 – ident: e_1_3_4_45_2 doi: 10.1038/nature24622 – ident: e_1_3_4_116_2 doi: 10.1103/PhysRevLett.108.205301 – ident: e_1_3_4_39_2 doi: 10.1103/PhysRevLett.123.230501 – ident: e_1_3_4_46_2 doi: 10.1038/s41586-019-1070-1 – ident: e_1_3_4_32_2 doi: 10.1016/j.aop.2004.09.010 – ident: e_1_3_4_59_2 doi: 10.1038/s41586-021-04205-8 – ident: e_1_3_4_36_2 doi: 10.1103/RevModPhys.82.2313 – ident: e_1_3_4_77_2 doi: 10.1103/PhysRevLett.128.033201 – volume: 12 start-page: 021049 year: 2022 ident: e_1_3_4_113_2 article-title: Hardware-efficient, fault-tolerant quantum computation with Rydberg atoms publication-title: Phys. Rev. X – ident: e_1_3_4_100_2 doi: 10.1103/PhysRevB.106.L041101 – ident: e_1_3_4_53_2 doi: 10.1103/PhysRevLett.114.080402 – ident: e_1_3_4_58_2 doi: 10.1103/PhysRevLett.129.123201 – ident: e_1_3_4_48_2 doi: 10.1038/s41586-021-03582-4 – ident: e_1_3_4_12_2 doi: 10.1103/PhysRevA.94.030301 – ident: e_1_3_4_15_2 doi: 10.1088/1367-2630/18/2/023023 – ident: e_1_3_4_26_2 doi: 10.1126/science.abk0603 – ident: e_1_3_4_106_2 doi: 10.1098/rsta.2021.0064 – ident: e_1_3_4_28_2 doi: 10.1038/s41586-022-04854-3 – ident: e_1_3_4_4_2 doi: 10.1103/PhysRevLett.94.170201 – ident: e_1_3_4_29_2 doi: 10.1038/nature18318 – ident: e_1_3_4_37_2 doi: 10.1088/0953-4075/49/20/202001 – ident: e_1_3_4_55_2 doi: 10.1103/PhysRevLett.125.180402 – ident: e_1_3_4_27_2 doi: 10.1038/s41586-021-04257-w – volume: 10 start-page: 041007 year: 2020 ident: e_1_3_4_93_2 article-title: Robust topological order in fermionic Z2 gauge theories: From Aharonov–Bohm instability to soliton-induced deconfinement publication-title: Phys. Rev. X – ident: e_1_3_4_5_2 doi: 10.1007/BF02650179 – volume: 6 start-page: 031007 year: 2016 ident: e_1_3_4_14_2 article-title: Scalable quantum simulation of molecular energies publication-title: Phys. Rev. X – ident: e_1_3_4_3_2 doi: 10.1073/pnas.1619152114 – ident: e_1_3_4_40_2 doi: 10.1038/s41567-020-0903-z – ident: e_1_3_4_54_2 doi: 10.1038/s41567-019-0508-6 – volume: 5 start-page: 021027 year: 2015 ident: e_1_3_4_20_2 article-title: Digital quantum simulation of spin models with circuit quantum electrodynamics publication-title: Phys. Rev. X – ident: e_1_3_4_68_2 doi: 10.1038/s41567-022-01658-0 – ident: e_1_3_4_105_2 doi: 10.1140/epjd/e2020-100571-8 – ident: e_1_3_4_24_2 doi: 10.1126/science.abi8378 – ident: e_1_3_4_47_2 doi: 10.1126/science.aav9105 – ident: e_1_3_4_22_2 doi: 10.1038/nature21426 – ident: e_1_3_4_69_2 doi: 10.1126/science.273.5278.1073 – ident: e_1_3_4_81_2 doi: 10.1090/S0002-9939-1959-0108732-6 – ident: e_1_3_4_96_2 doi: 10.1103/RevModPhys.89.041004 – ident: e_1_3_4_104_2 doi: 10.1080/00107514.2016.1151199 – ident: e_1_3_4_107_2 doi: 10.1088/1361-6633/ac58a4 – ident: e_1_3_4_67_2 – ident: e_1_3_4_111_2 – ident: e_1_3_4_64_2 doi: 10.1088/0953-4075/46/10/104006 – ident: e_1_3_4_1_2 doi: 10.1103/RevModPhys.93.035003 – ident: e_1_3_4_108_2 doi: 10.1103/PhysRevLett.118.070501 – ident: e_1_3_4_10_2 doi: 10.1103/PhysRevLett.95.176407 – ident: e_1_3_4_49_2 doi: 10.1038/s41586-021-03585-1 – ident: e_1_3_4_21_2 doi: 10.1038/ncomms8654 – ident: e_1_3_4_52_2 doi: 10.1126/science.1250057 – ident: e_1_3_4_118_2 doi: 10.1038/s41586-018-0661-6 – ident: e_1_3_4_103_2 doi: 10.1088/0034-4885/79/1/014401 – ident: e_1_3_4_50_2 doi: 10.1126/science.abi8794 – ident: e_1_3_4_43_2 doi: 10.1116/5.0036562 – ident: e_1_3_4_16_2 doi: 10.1038/nature23879 – ident: e_1_3_4_99_2 doi: 10.1103/PhysRevB.101.024306 – ident: e_1_3_4_83_2 doi: 10.1103/PhysRevLett.131.060601 – volume: 11 start-page: 011035 year: 2021 ident: e_1_3_4_114_2 article-title: Demonstration of quantum brachistochrones between distant states of an atom publication-title: Phys. Rev. X – ident: e_1_3_4_63_2 doi: 10.1103/PhysRevLett.101.170504 – ident: e_1_3_4_80_2 doi: 10.1038/nature23879 – volume: 6 start-page: 041049 year: 2016 ident: e_1_3_4_97_2 article-title: Simple fermionic model of deconfined phases and phase transitions publication-title: Phys. Rev. X – ident: e_1_3_4_89_2 doi: 10.1103/PRXQuantum.2.020310 – volume: 10 start-page: 021067 year: 2020 ident: e_1_3_4_78_2 article-title: Quantum approximate optimization algorithm: Performance, mechanism, and implementation on near-term devices publication-title: Phys. Rev. X – ident: e_1_3_4_94_2 doi: 10.1017/CBO9781139015509 – ident: e_1_3_4_38_2 doi: 10.1103/PhysRevLett.123.170503 – ident: e_1_3_4_61_2 doi: 10.1103/PhysRevLett.91.010407 – ident: e_1_3_4_35_2 doi: 10.1103/PhysRevLett.104.010502 – ident: e_1_3_4_56_2 doi: 10.1103/PhysRevLett.128.223202 – ident: e_1_3_4_30_2 doi: 10.1103/PhysRevA.98.032331 – ident: e_1_3_4_98_2 doi: 10.1103/PhysRevB.105.075132 – volume: 8 start-page: 031022 year: 2018 ident: e_1_3_4_17_2 article-title: Quantum chemistry calculations on a trapped-ion quantum simulator publication-title: Phys. Rev. X – ident: e_1_3_4_57_2 doi: 10.1126/science.abo0608 – volume: 5 start-page: 011000 year: 2015 ident: e_1_3_4_65_2 article-title: Ideal negative measurements in quantum walks disprove theories based on classical trajectories publication-title: Phys. Rev. X – ident: e_1_3_4_6_2 doi: 10.1103/PhysRevLett.79.2586 – ident: e_1_3_4_86_2 doi: 10.1103/PhysRevA.77.052333 – ident: e_1_3_4_109_2 doi: 10.1103/PhysRevD.100.034518 – ident: e_1_3_4_102_2 doi: 10.1002/andp.201300104 – ident: e_1_3_4_11_2 doi: 10.1088/1742-5468/2005/09/P09012 – ident: e_1_3_4_82_2 doi: 10.1039/D1CS00932J – ident: e_1_3_4_2_2 doi: 10.1103/RevModPhys.92.031001 – ident: e_1_3_4_84_2 – ident: e_1_3_4_87_2 doi: 10.1103/PhysRevResearch.4.033019 – volume: 11 start-page: 011035 year: 2021 ident: e_1_3_4_66_2 article-title: Demonstration of quantum brachistochrones between distant states of an atom publication-title: Phys. Rev. X – ident: e_1_3_4_25_2 doi: 10.1126/science.abg8102 – ident: e_1_3_4_95_2 doi: 10.1103/PhysRevB.37.580 – ident: e_1_3_4_7_2 doi: 10.1103/PhysRevA.64.022319 – ident: e_1_3_4_110_2 doi: 10.1103/PhysRevLett.129.160501 – ident: e_1_3_4_31_2 doi: 10.1038/s41586-019-1177-4 – ident: e_1_3_4_112_2 doi: 10.1126/science.1201351 – ident: e_1_3_4_33_2 doi: 10.1080/00018730701223200 – ident: e_1_3_4_76_2 doi: 10.1038/s41567-022-01678-w – ident: e_1_3_4_115_2 doi: 10.1103/PhysRev.80.580 – ident: e_1_3_4_73_2 doi: 10.1126/science.1148259 – ident: e_1_3_4_23_2 doi: 10.1038/nature21413 – ident: e_1_3_4_41_2 doi: 10.22331/q-2020-09-21-327 – ident: e_1_3_4_71_2 doi: 10.1103/RevModPhys.92.015003 – ident: e_1_3_4_60_2 doi: 10.1103/PhysRevLett.82.1975 – ident: e_1_3_4_34_2 doi: 10.1126/science.aal3837 – ident: e_1_3_4_72_2 doi: 10.1103/PhysRevLett.130.223401 – ident: e_1_3_4_8_2 doi: 10.1006/aphy.2002.6254 – ident: e_1_3_4_62_2 doi: 10.1038/nature02008 – ident: e_1_3_4_85_2 doi: 10.1088/2058-9565/ab8ebc – ident: e_1_3_4_88_2 doi: 10.1038/s41467-019-10988-2 – ident: e_1_3_4_42_2 doi: 10.1038/s41586-022-04592-6  | 
    
| SSID | ssj0009580 | 
    
| Score | 2.66778 | 
    
| Snippet | SignificanceNeutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum... Simulating the properties of many-body fermionic systems is an outstanding computational challenge relevant to material science, quantum chemistry, and... Neutral atoms trapped in tweezer arrays have recently emerged as powerful quantum simulation platforms, with recent experiments targeting quantum spin models....  | 
    
| SourceID | unpaywall pubmedcentral osti proquest crossref pnas  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 1 | 
    
| SubjectTerms | Algorithms Arrays ATOMIC AND MOLECULAR PHYSICS Computers digital quantum simulation Fermi-Dirac statistics fermionic quantum processor Fermions Gates Gates (circuits) Gauge theory Hardware lattice gauge theories Microprocessors Neutral atoms Particle physics Physical Sciences Physics Quantum chemistry Quantum computers Qubits (quantum computing) Simulation Spelling Statistics tweezer arrays  | 
    
| Title | Fermionic quantum processing with programmable neutral atom arrays | 
    
| URI | https://www.pnas.org/doi/10.1073/pnas.2304294120 https://www.proquest.com/docview/2860375320 https://www.proquest.com/docview/2856322178 https://www.osti.gov/servlets/purl/2421694 https://pubmed.ncbi.nlm.nih.gov/PMC10468619 https://doi.org/10.1073/pnas.2304294120  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 120 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: HH5 dateStart: 19150101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: KQ8 dateStart: 19150115 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: DIK dateStart: 19150101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1091-6490 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1091-6490 dateEnd: 20250502 omitProxy: true ssIdentifier: ssj0009580 issn: 0027-8424 databaseCode: RPM dateStart: 19150101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6VcCiXAm0RLg8tEgc4OI2967V9BESIkEA9NFJ6snbttaiaOCGxVaW_npl4k2IQAq7e8WMf4_lmZ_YbgOPA0wgclMQZCJVLJY1dHXvG5Wg88Eouw5wOON_cyl5fXA-CgSVJorMwjfh9yL9PCjWjZGX8bQrPR998XQYIuluw3r_9cfarTuDA_6yoy9ei9XOliDtLEp_nT2jYn9YY9YhoTVGmATGfJkh-rIqJmv9Vw-Ej69PdhN7yu-ukkz_tqtTt9N8TSsc3dGwLPlkEys7qJbMNH0zxGbatjs_YiSWiPv0C513KlCHuXHZf4QxUIzapzxWgvWO0g8tseteIDmCxwlTUD4Z-_Iip6VTNZ1-h3738edFzbc0FNxXSLxcbbX6o0bCjoiO44loJkZnQcCNUkMs4CnRmjBEI_Dy0r5nnmUimMY86MjdZzHegVYwLswtMRUHe8ZVBH0yIHN0ajegjQ7yQac5FEDvQXs5EklpCcqqLMUwWgfGQJzRGyf8xcuBkdcOk5uJ4WXSPpjZBGEFcuCklDaVlQvFvGQsHjhfyrz5kf7kiEqvZ2BxJKhvMqflo1Yw6SYEWVZhxRTI4cD46e5EDUWMlrV5JrN7NluL33YLdm4LuEbq1DpyuFt1rX_rtHbJ7sOEjUKN9cT_eh1Y5rcwBAqtSH8La1cA7tKr1AOc1Gqc | 
    
| linkProvider | Unpaywall | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB6hcKCXQlpQDRRtJQ7h4DT2rtf2kSKiCImIQyOFk7Vrr0XVxAmJLQS_npl4EzBVRXv1jh_7GM83O7PfAJwGnkbgoCTOQKhcKmns6tgzLkfjgVdyGeZ0wPl6KAcjcTUOxpYkic7CNOL3If8-L9SSkpXxtyk8H33zbRkg6G7B9mh4c35bJ3Dgf1bU5WvR-rlSxL01ic-fT2jYn9YM9YhoTVGmATHfJkjuVMVcPT6oyeSV9envwmD93XXSye9uVepu-vSG0vEfOrYHHy0CZef1kmnDlik-Qdvq-JJ1LBH12Wf40adMGeLOZfcVzkA1ZfP6XAHaO0Y7uMymd03pABYrTEX9YOjHT5laLNTjch9G_cufFwPX1lxwUyH9crXR5ocaDTsqOoIrrpUQmQkNN0IFuYyjQGfGGIHAz0P7mnmeiWQa86gnc5PF_ABaxawwX4CpKMh7vjLogwmRo1ujEX1kiBcyzbkIYge665lIUktITnUxJskqMB7yhMYoeRkjBzqbG-Y1F8ffRY9oahOEEcSFm1LSUFomFP-WsXDgdCX_7kOO1ysisZqNzZGkssGcmr9tmlEnKdCiCjOrSAYHzkdnL3IgaqykzSuJ1bvZUvy6W7F7U9A9QrfWgbPNonvvSw__Q_YIPvgI1Ghf3I-PoVUuKvMVgVWpT6xSPQNNExm2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fermionic+quantum+processing+with+programmable+neutral+atom+arrays&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Gonz%C3%A1lez-Cuadra%2C+D.&rft.au=Bluvstein%2C+D.&rft.au=Kalinowski%2C+M.&rft.au=Kaubruegger%2C+R.&rft.date=2023-08-29&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=120&rft.issue=35&rft_id=info:doi/10.1073%2Fpnas.2304294120&rft.externalDBID=n%2Fa&rft.externalDocID=10_1073_pnas_2304294120 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon |