Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae)

Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper th...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in genetics Vol. 10; p. 678
Main Authors de Moraes, Renata Luiza Rosa, Sember, Alexandr, Bertollo, Luiz Antônio Carlos, de Oliveira, Ezequiel Aguiar, Ráb, Petr, Hatanaka, Terumi, Marinho, Manoela Maria Ferreira, Liehr, Thomas, Al-Rikabi, Ahmed B. H., Feldberg, Eliana, Viana, Patrik F., Cioffi, Marcelo de Bello
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 02.08.2019
Subjects
Online AccessGet full text
ISSN1664-8021
1664-8021
DOI10.3389/fgene.2019.00678

Cover

Abstract Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in and . Our results showed 2n = 42 in both sexes of , while the difference in 2n between male and female in (♂41/♀42) stands out due to the presence of a multiple X X Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male- .-female CGH experiments in highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the . -derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X and X chromosomes in both male and female chromosomes of In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
AbstractList Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in and . Our results showed 2n = 42 in both sexes of , while the difference in 2n between male and female in (♂41/♀42) stands out due to the presence of a multiple X X Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male- .-female CGH experiments in highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the . -derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X and X chromosomes in both male and female chromosomes of In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species’ genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis. Our results showed 2n = 42 in both sexes of P. brevis, while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X1X2Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male-vs.-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species' genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P. semifasciata-derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X1 and X2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged modern molecular cytogenetic techniques (such as comparative genomic hybridization = CGH and whole chromosome painting = WCP) to analyze deeper the karyotype evolution of specific groups, especially the historically neglected small-sized ones. Representatives of the family Lebiasinidae (Characiformes) are a notable example, where only a few cytogenetic investigations have been conducted thus far. Here, we aim to elucidate the evolutionary processes behind the karyotype differentiation of Pyrrhulina species on a finer-scale cytogenetic level. To achieve this, we applied C-banding, repetitive DNA mapping, CGH and WCP in Pyrrhulina semifasciata and P. brevis . Our results showed 2n = 42 in both sexes of P. brevis , while the difference in 2n between male and female in P. semifasciata (♂41/♀42) stands out due to the presence of a multiple X 1 X 2 Y sex chromosome system, until now undetected in this family. As a remarkable common feature, multiple 18S and 5S rDNA sites are present, with an occasional synteny or tandem-repeat amplification. Male- vs .-female CGH experiments in P. semifasciata highlighted the accumulation of male-enriched repetitive sequences in the pericentromeric region of the Y chromosome. Inter-specific CGH experiments evidenced a divergence between both species’ genomes based on the presence of several species-specific signals, highlighting their inner genomic diversity. WCP with the P . semifasciata -derived Y (PSEMI-Y) probe painted not only the entire metacentric Y chromosome in males but also the X 1 and X 2 chromosomes in both male and female chromosomes of P. semifasciata. In the cross-species experiments, the PSEMI-Y probe painted four acrocentric chromosomes in both males and females of the other tested Pyrrhulina species. In summary, our results show that both intra- and interchromosomal rearrangements together with the dynamics of repetitive DNA significantly contributed to the karyotype divergence among Pyrrhulina species, possibly promoted by specific populational and ecological traits and accompanied in one species by the origin of neo-sex chromosomes. The present results suggest how particular evolutionary scenarios found in fish species can help to clarify several issues related to genome organization and the karyotype evolution of vertebrates in general.
Author Hatanaka, Terumi
Marinho, Manoela Maria Ferreira
Cioffi, Marcelo de Bello
Liehr, Thomas
de Moraes, Renata Luiza Rosa
Bertollo, Luiz Antônio Carlos
Viana, Patrik F.
Al-Rikabi, Ahmed B. H.
Sember, Alexandr
Feldberg, Eliana
Ráb, Petr
de Oliveira, Ezequiel Aguiar
AuthorAffiliation 1 Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos , Brazil
3 Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT , Cuiabá , Brazil
2 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences , Liběchov , Czechia
6 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade , Manaus , Brazil
4 Museu de Zoologia da Universidade de São Paulo, (MZUSP) , São Paulo , Brazil
5 Institute of Human Genetics, University Hospital Jena , Jena , Germany
AuthorAffiliation_xml – name: 6 Laboratório de Genética Animal, Instituto Nacional de Pesquisas da Amazônia, Coordenação de Biodiversidade , Manaus , Brazil
– name: 1 Laboratório de Citogenética de Peixes, Departamento de Genética e Evolução, Universidade Federal de São Carlos (UFSCar) , São Carlos , Brazil
– name: 2 Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences , Liběchov , Czechia
– name: 4 Museu de Zoologia da Universidade de São Paulo, (MZUSP) , São Paulo , Brazil
– name: 5 Institute of Human Genetics, University Hospital Jena , Jena , Germany
– name: 3 Secretaria de Estado de Educação de Mato Grosso – SEDUC-MT , Cuiabá , Brazil
Author_xml – sequence: 1
  givenname: Renata Luiza Rosa
  surname: de Moraes
  fullname: de Moraes, Renata Luiza Rosa
– sequence: 2
  givenname: Alexandr
  surname: Sember
  fullname: Sember, Alexandr
– sequence: 3
  givenname: Luiz Antônio Carlos
  surname: Bertollo
  fullname: Bertollo, Luiz Antônio Carlos
– sequence: 4
  givenname: Ezequiel Aguiar
  surname: de Oliveira
  fullname: de Oliveira, Ezequiel Aguiar
– sequence: 5
  givenname: Petr
  surname: Ráb
  fullname: Ráb, Petr
– sequence: 6
  givenname: Terumi
  surname: Hatanaka
  fullname: Hatanaka, Terumi
– sequence: 7
  givenname: Manoela Maria Ferreira
  surname: Marinho
  fullname: Marinho, Manoela Maria Ferreira
– sequence: 8
  givenname: Thomas
  surname: Liehr
  fullname: Liehr, Thomas
– sequence: 9
  givenname: Ahmed B. H.
  surname: Al-Rikabi
  fullname: Al-Rikabi, Ahmed B. H.
– sequence: 10
  givenname: Eliana
  surname: Feldberg
  fullname: Feldberg, Eliana
– sequence: 11
  givenname: Patrik F.
  surname: Viana
  fullname: Viana, Patrik F.
– sequence: 12
  givenname: Marcelo de Bello
  surname: Cioffi
  fullname: Cioffi, Marcelo de Bello
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31428127$$D View this record in MEDLINE/PubMed
BookMark eNp1kk1vEzEQhleoiJbSOyfkY5HY4K849gWpWpFSKQKkwIGT5fWOE1e7drA3lcKB346TlKpFwj54ZL_zjO15X1YnIQaoqtcETxiT6r1bQYAJxURNMBYz-aw6I0LwWmJKTh7Fp9VFzre4DK4YY_xFdcoIp5LQ2Vn1u4nDxiQz-jtAzW6Me-jobUYmdOgzxPoHmsc0FEEMyAe0HEzf10v_Czo093mNlhuwHjKKDo1rQNcQthl93aW03vY-GHTZrAvfelcokN-hBbTeZB98Z-Dtq-q5M32Gi_v1vPo-__it-VQvvlzfNFeL2nJBx5pzR2edkNjZqaAUi450UpVP4DPCiTItBsy5mNlpq6TCU6xoS5hiyjnGzRSz8-rmyO2iudWb5AeTdjoarw8bMa20SeXZPWhrjSOGASiqOAHXtm4qWiqUdWVyW1gfjqzNth2gsxDGZPon0Kcnwa_1Kt5pIaRSUhbA5T0gxZ9byKMefLbQ9yZA3GZNGRNKYklYkb55XOuhyN8GFgE-CmyKOSdwDxKC9d4m-mATvbeJPtikpIh_UqwfD_0tt_X9_xP_AAjmw5A
CitedBy_id crossref_primary_10_1371_journal_pone_0292689
crossref_primary_10_1038_s41598_020_69349_5
crossref_primary_10_3897_CompCytogen_v15_i2_60649
crossref_primary_10_1186_s12862_024_02230_5
crossref_primary_10_3389_fgene_2022_877522
crossref_primary_10_3389_fgene_2022_869073
crossref_primary_10_3390_genes11040365
crossref_primary_10_1159_000530428
crossref_primary_10_1371_journal_pone_0226746
crossref_primary_10_3390_genes11080849
crossref_primary_10_3390_ijms241713654
crossref_primary_10_3390_ijms20143571
crossref_primary_10_3897_CompCytogen_v15i2_60649
crossref_primary_10_1007_s13237_024_00504_3
crossref_primary_10_1371_journal_pone_0285388
crossref_primary_10_1098_rstb_2020_0098
crossref_primary_10_1111_jfb_15275
crossref_primary_10_3390_biology11020315
crossref_primary_10_1007_s10577_021_09674_1
crossref_primary_10_1186_s12862_024_02262_x
crossref_primary_10_1590_1982_0224_2021_0153
crossref_primary_10_3390_genes11010091
crossref_primary_10_3390_genes14010192
crossref_primary_10_3390_genes14091662
crossref_primary_10_1590_1678_4685_gmb_2020_0091
crossref_primary_10_3389_fgene_2021_769984
Cites_doi 10.1007/s10709-011-9610-0
10.1201/b18534-17
10.1038/nsmb.2474
10.1007/s10641-011-9853-8
10.1111/j.1095-8649.2012.03272.x
10.1186/1471-2156-11-28
10.1007/s004120050366
10.1159/000124382
10.5772/35890
10.1111/evo.12481
10.1159/000321571
10.1038/hdy.2016.83
10.1159/000355908
10.1159/000354039
10.1371/journal.pone.0018843
10.1089/zeb.2017.1465
10.1007/s10709-014-9759-4
10.1186/1471-2156-14-60
10.1186/1471-2148-13-42
10.1038/s41467-017-01761-4
10.1007/s40142-018-0148-7
10.3389/fgene.2018.00071
10.1098/rspb.1999.0603
10.1089/zeb.2017.1432
10.1007/BF00713046
10.1098/rspb.2016.0821
10.1139/G08-024
10.4238/2014.April.3.19
10.1508/cytologia.75.463
10.1038/nature08441
10.1111/j.1095-8649.2007.01365.x
10.1073/pnas.1220372110
10.1159/000133792
10.1023/A:1013743431738
10.1186/s12862-015-0532-9
10.1007/s00412-017-0651-8
10.1007/s00412-017-0648-3
10.1534/genetics.110.118596
10.1007/978-4-431-53877-6
10.1159/000354832
10.1590/S1415-4757382220140189
10.1016/0014-4827(72)90558-7
10.1038/nrg3366
10.2174/1389202918666170711160528
10.1186/1471-2156-12-90
10.1159/000381764
10.3390/genes8100258
10.1128/MMBR.00006-15
10.11646/zootaxa.3664.3.7
10.1590/1982-0224-20180016
10.1371/journal.pone.0107169
10.1371/journal.pone.0137231
10.1007/s10709-007-9231-9
10.1023/A:1013768104422
10.1089/zeb.2016.1333
10.1007/978-3-540-70581-9_29
10.1007/s00412-016-0576-7
10.3390/genes9020096
10.1038/sj.hdy.6800511
10.1371/journal.pone.0195054
10.1186/1755-8166-6-58
10.3390/genes9060279
10.3390/insects2010049
10.1007/s00438-008-0405-7
10.1371/journal.pone.0037305
10.1007/978-3-540-70581-9_3
10.1016/j.tree.2010.07.008
10.1038/hdy.2010.82
10.15252/embr.201540667
10.1159/000227838
10.1111/mec.13648
10.1038/sj.hdy.6800697
10.1371/journal.pone.0045519
10.1007/s10577-006-1041-x
10.1159/000056991
10.1016/S0044-8486(02)00057-1
10.1038/s41559-016-0020
10.1201/b18534-4
10.1186/s13039-016-0228-x
10.1007/s00412-015-0569-y
10.1186/1471-2156-12-65
10.1111/j.1601-5223.1964.tb01953.x
10.1139/g97-020
10.1159/000489693
10.1371/journal.pgen.1005237
ContentType Journal Article
Copyright Copyright © 2019 de Moraes, Sember, Bertollo, de Oliveira, Ráb, Hatanaka, Marinho, Liehr, Al-Rikabi, Feldberg, Viana and Cioffi 2019 de Moraes, Sember, Bertollo, de Oliveira, Ráb, Hatanaka, Marinho, Liehr, Al-Rikabi, Feldberg, Viana and Cioffi
Copyright_xml – notice: Copyright © 2019 de Moraes, Sember, Bertollo, de Oliveira, Ráb, Hatanaka, Marinho, Liehr, Al-Rikabi, Feldberg, Viana and Cioffi 2019 de Moraes, Sember, Bertollo, de Oliveira, Ráb, Hatanaka, Marinho, Liehr, Al-Rikabi, Feldberg, Viana and Cioffi
DBID AAYXX
CITATION
NPM
7X8
5PM
DOA
DOI 10.3389/fgene.2019.00678
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed

MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-8021
ExternalDocumentID oai_doaj_org_article_ccaf1a3ee92941efbbf56b269cfcfc4c
PMC6689988
31428127
10_3389_fgene_2019_00678
Genre Journal Article
GrantInformation_xml – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  grantid: 401575/2016-0 , 302449/2018-3
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  grantid: 2015/26322-0
– fundername: Alexander von Humboldt-Stiftung
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFS
ACXDI
ADBBV
ADRAZ
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M~E
OK1
PGMZT
RNS
RPM
IAO
IEA
IHR
IPNFZ
ISR
M48
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c462t-44f27d680fc562206d1d89389471419ab0e04467c5b98905092b13939ff34a503
IEDL.DBID M48
ISSN 1664-8021
IngestDate Wed Aug 27 01:31:59 EDT 2025
Thu Aug 21 17:59:57 EDT 2025
Fri Sep 05 03:57:36 EDT 2025
Thu Jan 02 23:01:54 EST 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Jul 01 02:33:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords karyotype evolution
comparative genomic hybridization (CGH)
molecular cytogenetics
sex chromosome
chromosomal painting
fishes
Language English
License This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-44f27d680fc562206d1d89389471419ab0e04467c5b98905092b13939ff34a503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Philipp G. Maass, Hospital for Sick Children, Canada
This article was submitted to Genetic Disorders, a section of the journal Frontiers in Genetics
These authors share first authorship.
Reviewed by: Ricardo Utsunomia, São Paulo State University, Brazil; Mara Cristina De Almeida, Universidade Estadual de Ponta Grossa, Brazil
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fgene.2019.00678
PMID 31428127
PQID 2336980813
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_ccaf1a3ee92941efbbf56b269cfcfc4c
pubmedcentral_primary_oai_pubmedcentral_nih_gov_6689988
proquest_miscellaneous_2336980813
pubmed_primary_31428127
crossref_primary_10_3389_fgene_2019_00678
crossref_citationtrail_10_3389_fgene_2019_00678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-08-02
PublicationDateYYYYMMDD 2019-08-02
PublicationDate_xml – month: 08
  year: 2019
  text: 2019-08-02
  day: 02
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in genetics
PublicationTitleAlternate Front Genet
PublicationYear 2019
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Smith (B76) 2016; 283
Devlin (B26) 2002; 208
Margarido (B49) 2007; 70
Kitano (B43) 2009; 461
Xiaobo (B88) 2013; 6
Yang (B90) 2009
Cioffi (B23) 2018; 6
Cioffi (B19) 2013; 141
Sember (B74) 2018; 13
Cardoso (B14) 2015; 38
Sember (B75) 2015; 15
Sumner (B79) 1972; 75
Nguyen (B56) 2013; 110
Barros (B6) 2018; 12
Sember (B73) 2018; 9
Symonová (B80) 2018; 9
Kitano (B42) 2012; 94
Mrasek (B53) 2001; 93
Yano (B92) 2017; 118
Zrzavá (B94) 2018; 9
Yano (B91) 2017
Cioffi (B22) 2012; 80
Buckup (B13) 1998
Moraes (B52) 2017; 14
Sochorová (B78) 2018; 127
B32
Cavalli (B15) 2013; 20
Cioffi (B21) 2012
Nagamachi (B54) 2010; 11
Symonová (B82) 2015
Almeida-Toledo (B1) 2001; 111
Phillips (B64) 2001; 111
Bachtrog (B5) 2013; 14
Arcila (B4) 2017; 1
Bracewell (B12) 2017; 8
Machado (B48) 2011; 12
Sangpakdee (B69) 2016; 9
Soares (B77) 2014; 13
Traut (B83) 1999; 108
Symonová (B81) 2013; 13
Henning (B37) 2011; 106
Weitzman (B86) 2003
Scheel (B72) 1973
Fraser (B30) 2015; 79
Liu (B47) 2012; 7
Mariotti (B50) 2009; 281
Oliveira (B58) 2018; 127
Pennell (B63) 2015; 11
Basset (B7) 2006; 14
Gamble (B33) 2016; 25
Arcila (B3) 2018; 16
Pokorná (B65) 2011; 12
Poltronieri (B66) 2014; 142
Cioffi (B20) 2009; 125
Schartl (B71) 2016; 125
Yasukochi (B93) 2011; 6
Henning (B38) 2008; 121
Bertollo (B9) 2004; 93
Zwick (B95) 1997; 40
Guerrero (B35) 2014; 68
Levan (B45) 1964; 52
Charlesworth (B16) 1999; 266
Cioffi (B25) 2017; 8
Bertollo (B8) 2015
Blanco (B11) 2014; 142
Cioffi (B24) 2011; 139
Gornung (B34) 2013; 141
Reed (B67) 1995; 3
Freitas (B31) 2018; 18
Fernandes (B29) 2017; 14
Arai (B2) 2011
Guiguen (B36) 2019
van Doorn (B84) 2010; 186
Montiel (B51) 2017; 126
Charlesworth (B17) 2005; 95
Liehr (B46) 2016; 58
Cioffi (B18) 2011; 132
Parise-Maltempi (B61) 2013; 14
Kejnovský (B41) 2013; 8
Pendás (B62) 1994; 67
Kawakami (B40) 2011; 2
Oliveira (B59) 2008; 134
Faria (B27) 2010; 25
Kubát (B44) 2008; 51
Netto-Ferreira (B55) 2013; 3664
Bitencourt (B10) 2016; 14
Herpin (B39) 2015; 16
Oliveira (B57) 1991; 14
Fernandes (B28) 2010; 75
Weitzman (B87) 1988; 101
Sambrook (B68) 2001
Weise (B85) 2015; 145
Yang (B89) 2009
Scacchetti (B70) 2015; 10
Pansonato-Alves (B60) 2014; 9
References_xml – volume: 139
  start-page: 1065
  year: 2011
  ident: B24
  article-title: Whole chromosome painting reveals independent origin of sex chromosomes in closely related forms of a fish species
  publication-title: Genetica
  doi: 10.1007/s10709-011-9610-0
– start-page: 118
  volume-title: Fish techniques, ray-fin fishes and chondrichthyans
  year: 2015
  ident: B82
  article-title: “Characterization of fish genomes by GISH and CGH,”
  doi: 10.1201/b18534-17
– volume: 20
  start-page: 290
  year: 2013
  ident: B15
  article-title: Functional implications of genome topology
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/nsmb.2474
– volume: 94
  start-page: 549
  year: 2012
  ident: B42
  article-title: Turnover of sex chromosomes and speciation in fishes
  publication-title: Environ. Biol. Fishes
  doi: 10.1007/s10641-011-9853-8
– volume: 80
  start-page: 2125
  year: 2012
  ident: B22
  article-title: The contrasting role of heterochromatin in the differentiation of sex chromosomes: an overview from Neotropical fishes
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2012.03272.x
– volume: 11
  start-page: 28
  year: 2010
  ident: B54
  article-title: Multiple rearrangements in cryptic species of electric knifefish, Gymnotus carapo (Gymnotidae, Gymnotiformes) revealed by chromosome painting
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-11-28
– volume: 108
  start-page: 173
  year: 1999
  ident: B83
  article-title: Molecular differentiation of sex chromosomes probed by comparative genomic hybridization
  publication-title: Chromosoma
  doi: 10.1007/s004120050366
– volume: 121
  start-page: 55
  year: 2008
  ident: B38
  article-title: Non-homologous sex chromosomes in two species of the genus Eigenmannia (Teleostei: Gymnotiformes)
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000124382
– start-page: 125
  volume-title: Recent trends in cytogenetic studies – Methodologies and applications
  year: 2012
  ident: B21
  article-title: “Chromosomes as tools for discovering biodiversity – the case of Erythrinidae fish family,”
  doi: 10.5772/35890
– volume: 68
  start-page: 2747
  year: 2014
  ident: B35
  article-title: Local adaptation and the evolution of chromosome fusions
  publication-title: Evolution
  doi: 10.1111/evo.12481
– volume: 132
  start-page: 188
  year: 2011
  ident: B18
  article-title: Repetitive DNAs and differentiation of sex chromosomes in Neotropical fishes
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000321571
– volume: 118
  start-page: 276
  year: 2017
  ident: B92
  article-title: Highly conserved Z and molecularly diverged W chromosomes in the fish genus Triportheus (Characiformes, Triportheidae)
  publication-title: Heredity
  doi: 10.1038/hdy.2016.83
– volume: 142
  start-page: 40
  year: 2014
  ident: B66
  article-title: Comparative chromosomal mapping of microsatellites in Leporinus species (Characiformes, Anostomidae): unequal accumulation on the W chromosomes
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000355908
– volume: 141
  start-page: 186
  year: 2013
  ident: B19
  article-title: Independent sex chromosome evolution in lower vertebrates: a molecular cytogenetic overview in the Erythrinidae fish family
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000354039
– volume-title: Molecular cloning: a laboratory manual
  year: 2001
  ident: B68
– volume: 6
  year: 2011
  ident: B93
  article-title: Sex-linked pheromone receptor genes of the European corn borer, Ostrinia nubilalis, are in tandem arrays
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0018843
– volume: 14
  start-page: 536
  year: 2017
  ident: B52
  article-title: Evolutionary relationships and cytotaxonomy considerations in the genus Pyrrhulina (Characiformes, Lebiasinidae)
  publication-title: Zebrafish
  doi: 10.1089/zeb.2017.1465
– volume: 142
  start-page: 119
  year: 2014
  ident: B11
  article-title: Origin of the X1X1X2X2/X1X2Y sex chromosome system of Harttia punctata (Siluriformes, Loricariidae) inferred from chromosome painting and FISH with ribosomal DNA markers
  publication-title: Genetica
  doi: 10.1007/s10709-014-9759-4
– volume: 14
  start-page: 60
  year: 2013
  ident: B61
  article-title: Comparative analysis of sex chromosomes in Leporinus species (Teleostei, Characiformes) using chromosome painting
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-14-60
– volume: 13
  start-page: 42
  year: 2013
  ident: B81
  article-title: Genome differentiation in a species pair of coregonine fishes: an extremely rapid speciation driven by stress-activated retrotransposons mediating extensive ribosomal DNA multiplications
  publication-title: BMC Evol. Biol.
  doi: 10.1186/1471-2148-13-42
– volume: 8
  start-page: 1953
  year: 2017
  ident: B12
  article-title: Rapid neo-sex chromosome evolution and incipient speciation in a major forest pest
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-01761-4
– volume: 6
  start-page: 176
  year: 2018
  ident: B23
  article-title: Conventional cytogenetic approaches-useful and indispensable tools in discovering fish biodiversity
  publication-title: Curr. Genet. Med. Rep.
  doi: 10.1007/s40142-018-0148-7
– volume: 9
  start-page: 71
  year: 2018
  ident: B73
  article-title: Sex chromosome evolution and genomic divergence in the fish Hoplias malabaricus (Characiformes, Erythrinidae)
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2018.00071
– volume: 266
  start-page: 51
  year: 1999
  ident: B16
  article-title: Inbreeding, heterozygote advantage and the evolution of neo-X and neo-Y sex chromosomes
  publication-title: Proc. R. Soc. Lond. B
  doi: 10.1098/rspb.1999.0603
– volume: 14
  start-page: 471
  year: 2017
  ident: B29
  article-title: Comparative cytogenetics of the black ghost knifefish (Gymnotiformes: Apteronotidae): evidence of chromosomal fusion and pericentric inversions in karyotypes of two Apteronotus species
  publication-title: Zebrafish
  doi: 10.1089/zeb.2017.1432
– volume: 3
  start-page: 221
  year: 1995
  ident: B67
  article-title: Microdissection of the Y chromosome and fluorescence in situ hybridization analysis of the sex chromosomes of lake trout, Salvelinus namaycush
  publication-title: Chromosome Res.
  doi: 10.1007/BF00713046
– volume: 283
  year: 2016
  ident: B76
  article-title: A neo-W chromosome in a tropical butterfly links colour pattern, male-killing, and speciation
  publication-title: Proc. R. Soc. B
  doi: 10.1098/rspb.2016.0821
– volume: 51
  start-page: 350
  year: 2008
  ident: B44
  article-title: Microsatellite accumulation in the Y chromosome of Silene latifolia
  publication-title: Genome
  doi: 10.1139/G08-024
– volume: 13
  start-page: 2470
  year: 2014
  ident: B77
  article-title: Chromosomal distribution of two multigene families and the unusual occurrence of an X1X1X2X2/X1X2Y sex chromosome system in the dolphinfish (Coryphaenidae): an evolutionary perspective
  publication-title: Genet. Mol. Res.
  doi: 10.4238/2014.April.3.19
– volume: 75
  start-page: 463
  year: 2010
  ident: B28
  article-title: System of multiple sex chromosomes in Eigenmannia trilineata López & Castello, 1966 (Sternopygidae, Gymnotiformes) from Iguatemi River Basin, MS, Brazil
  publication-title: Cytologia
  doi: 10.1508/cytologia.75.463
– volume: 461
  start-page: 1079
  year: 2009
  ident: B43
  article-title: A role for a neo-sex chromosome in stickleback speciation
  publication-title: Nature
  doi: 10.1038/nature08441
– volume: 70
  start-page: 155
  year: 2007
  ident: B49
  article-title: Cytogenetic analysis of three sympatric Gymnotus (Gymnotiformes, Gymnotidae) species verifies invasive species in the Upper Paraná River basin, Brazil
  publication-title: J. Fish Biol.
  doi: 10.1111/j.1095-8649.2007.01365.x
– volume: 110
  start-page: 6931
  year: 2013
  ident: B56
  article-title: Neo-sex chromosomes and adaptive potential in tortricid pests
  publication-title: Proc. Natl. Acad. Sci. U.S.A.
  doi: 10.1073/pnas.1220372110
– volume: 67
  start-page: 31
  year: 1994
  ident: B62
  article-title: Chromosomal mapping and nucleotide sequence of two tandem repeats of the Atlantic salmon 5S rDNA
  publication-title: Cytogenet. Cell Genet.
  doi: 10.1159/000133792
– volume: 111
  start-page: 119
  year: 2001
  ident: B64
  article-title: Chromosome painting supports lack of homology among sex chromosomes in Oncorhynchus, Salmo, and Salvelinus (Salmonidae)
  publication-title: Genetica
  doi: 10.1023/A:1013743431738
– volume: 15
  start-page: 251
  year: 2015
  ident: B75
  article-title: Karyotype differentiation in 19 species of river loach fishes (Nemacheilidae, Teleostei): extensive variability associated with rDNA and heterochromatin distribution and its phylogenetic and ecological interpretation
  publication-title: BMC Evol. Biol.
  doi: 10.1186/s12862-015-0532-9
– volume: 127
  start-page: 141
  year: 2018
  ident: B78
  article-title: Evolutionary trends in animal ribosomal DNA loci: introduction to a new online database
  publication-title: Chromosoma
  doi: 10.1007/s00412-017-0651-8
– volume: 127
  start-page: 115
  year: 2018
  ident: B58
  article-title: Tracking the evolutionary pathway of sex chromosomes among fishes: characterizing the unique XX/XY1Y2 system in Hoplias malabaricus (Teleostei, Characiformes)
  publication-title: Chromosoma
  doi: 10.1007/s00412-017-0648-3
– volume: 186
  start-page: 629
  year: 2010
  ident: B84
  article-title: Transitions between male and female heterogamety caused by sex-antagonistic selection
  publication-title: Genetics
  doi: 10.1534/genetics.110.118596
– volume-title: Fish karyotypes: a check list. 1st Edn
  year: 2011
  ident: B2
  doi: 10.1007/978-4-431-53877-6
– volume: 141
  start-page: 90
  year: 2013
  ident: B34
  article-title: Twenty years of physical mapping of major ribosomal RNA genes across the teleosts: a review of research
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000354832
– volume: 38
  start-page: 213
  year: 2015
  ident: B14
  article-title: X1X1X2X2/X1X2Y sex chromosome systems in the Neotropical Gymnotiformes electric fish of the genus Brachyhypopomus
  publication-title: Genet. Mol. Biol.
  doi: 10.1590/S1415-4757382220140189
– volume: 75
  start-page: 304
  year: 1972
  ident: B79
  article-title: A simple technique for demonstrating centromeric heterochromatin
  publication-title: Exp. Cell Res.
  doi: 10.1016/0014-4827(72)90558-7
– start-page: 429
  volume-title: Application guide, 2nd Edn
  year: 2017
  ident: B91
  article-title: “Fish-FISH: molecular cytogenetics in fish species,” in Fluorescence in situ hybridization (FISH)–
– volume: 14
  start-page: 113
  year: 2013
  ident: B5
  article-title: Y-chromosome evolution: emerging insights into processes of Y-chromosome degeneration
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg3366
– volume: 101
  start-page: 444
  year: 1988
  ident: B87
  article-title: Miniaturization in South American freshwater fishes: an overview and discussion
  publication-title: Proc. Biol. Soc. Wash.
– volume: 18
  start-page: 01
  year: 2018
  ident: B31
  article-title: Early stages of XY sex chromosomes differentiation in the fish Hoplias malabaricus (Characiformes, Erythrinidae) revealed by DNA repeats accumulation
  publication-title: Curr. Genomics
  doi: 10.2174/1389202918666170711160528
– volume: 12
  start-page: 90
  year: 2011
  ident: B65
  article-title: Microsatellite distribution on sex chromosomes at different stages of heteromorphism and heterochromatinization in two lizard species (Squamata: Eublepharidae: Coleonyx elegans and Lacertidae: Eremias velox)
  publication-title: BMC Genet.
  doi: 10.1186/1471-2156-12-90
– volume: 14
  start-page: 685
  year: 1991
  ident: B57
  article-title: Karyotype and nucleolus organizer regions of Pyrrhulina cf. australis (Pisces, Characiformes, Lebiasinidae)
  publication-title: Rev. Bras. Genet.
– volume: 145
  start-page: 42
  year: 2015
  ident: B85
  article-title: Comprehensive analyses of white-handed gibbon chromosomes enables access to evolutionary conserved breakpoints compared to the human genome
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000381764
– volume: 8
  start-page: 258
  year: 2017
  ident: B25
  article-title: Chromosomal evolution in lower vertebrates: sex chromosomes in neotropical fishes
  publication-title: Genes
  doi: 10.3390/genes8100258
– volume: 79
  start-page: 347
  year: 2015
  ident: B30
  article-title: An overview of genome organization and how we got there: from FISH to Hi-C
  publication-title: Microbiol. Mol. Biol. Rev.
  doi: 10.1128/MMBR.00006-15
– volume: 3664
  start-page: 369
  year: 2013
  ident: B55
  article-title: New species of Pyrrhulina (Ostariophysi: Characiformes: Lebiasinidae) from the Brazilian Shield, with comments on a putative monophyletic group of species in the genus
  publication-title: Zootaxa
  doi: 10.11646/zootaxa.3664.3.7
– volume: 16
  year: 2018
  ident: B3
  article-title: Phylogenetic relationships of the family Tarumaniidae (Characiformes) based on nuclear and mitochondrial data
  publication-title: Neotrop. Ichthyol.
  doi: 10.1590/1982-0224-20180016
– volume: 9
  year: 2014
  ident: B60
  article-title: Single origin of sex chromosomes and multiple origins of B chromosomes in fish genus Characidium
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0107169
– volume: 10
  year: 2015
  ident: B70
  article-title: Repetitive DNA sequences and evolution of ZZ/ZW sex chromosomes in Characidium (Teleostei: Characiformes)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0137231
– volume: 134
  start-page: 243
  year: 2008
  ident: B59
  article-title: Occurrence of multiple sexual chromosomes (XX/XY1Y2 and Z1Z1Z2Z2/Z1Z2W1W2) in catfishes of the genus Ancistrus(Siluriformes: Loricariidae) from the Amazon basin
  publication-title: Genetica
  doi: 10.1007/s10709-007-9231-9
– volume: 111
  start-page: 91
  year: 2001
  ident: B1
  article-title: Morphologically differentiated sex chromosomes in Neotropical freshwater fish
  publication-title: Genetica
  doi: 10.1023/A:1013768104422
– volume: 14
  start-page: 90
  year: 2016
  ident: B10
  article-title: First report of sex chromosomes in Achiridae (Teleostei: Pleuronectiformes) with inferences about the origin of the multiple X1X1X2X2/X1X2Y system and dispersal of ribosomal genes in Achirus achirus
  publication-title: Zebrafish
  doi: 10.1089/zeb.2016.1333
– start-page: 22
  volume-title: Fish chromosomes and their evolution
  year: 1973
  ident: B72
– volume-title: Fluorescence In Situ Hybridization (FISH)
  year: 2009
  ident: B89
  article-title: “Animal probes and ZOO-fish,”
  doi: 10.1007/978-3-540-70581-9_29
– volume: 126
  start-page: 105
  year: 2017
  ident: B51
  article-title: Discovery of the youngest sex chromosomes reveals first case of convergent co-option of ancestral autosomes in turtles
  publication-title: Chromosoma
  doi: 10.1007/s00412-016-0576-7
– volume: 9
  start-page: 96
  year: 2018
  ident: B80
  article-title: Vertebrate genome evolution in the light of fish cytogenomics and rDNAomics
  publication-title: Genes
  doi: 10.3390/genes9020096
– volume: 93
  start-page: 228
  year: 2004
  ident: B9
  article-title: Chromosome evolution in the erythrinid fish, Erythrinus erythrinus (Teleostei: Characiformes)
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800511
– volume: 13
  start-page: 1
  year: 2018
  ident: B74
  article-title: Dynamics of tandemly repeated DNA sequences during evolution of diploid and tetraploid botiid loaches (Teleostei: Cobitoidea: Botiidae)
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0195054
– volume: 6
  start-page: 58
  year: 2013
  ident: B88
  article-title: First detailed reconstruction of the karyotype of Trachypithecus cristatus (Mammalia: Cercopithecidae)
  publication-title: Mol. Cytogenet.
  doi: 10.1186/1755-8166-6-58
– volume: 9
  start-page: 279
  year: 2018
  ident: B94
  article-title: Sex chromosomes of the iconic moth Abraxas grossulariata (Lepidoptera, Geometridae) and its congener A. sylvata
  publication-title: Genes
  doi: 10.3390/genes9060279
– volume: 2
  start-page: 49
  year: 2011
  ident: B40
  article-title: Chromosomal speciation revisited: modes of diversification in Australian morabine grasshoppers (Vandiemenella, viatica species group)
  publication-title: Insects
  doi: 10.3390/insects2010049
– volume: 281
  start-page: 249
  year: 2009
  ident: B50
  article-title: Accumulation of Y-specific satellite DNAs during the evolution of Rumex acetosa sex chromosomes. Molecular
  publication-title: Genet. Genom.
  doi: 10.1007/s00438-008-0405-7
– volume: 7
  year: 2012
  ident: B47
  article-title: Chromosome evolution and genome miniaturization in minifish
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0037305
– start-page: 241
  volume-title: Checklist of the freshwater fishes of South and Central America
  year: 2003
  ident: B86
  article-title: “Lebiasinidae (Pencil fishes),”
– volume-title: Fluorescence In Situ Hybridization (FISH)
  year: 2009
  ident: B90
  article-title: “Generation of paint probes by flow-sorted and microdissected chromosomes,”
  doi: 10.1007/978-3-540-70581-9_3
– volume: 25
  start-page: 660
  year: 2010
  ident: B27
  article-title: Chromosomal speciation revisited: rearranging theory with pieces of evidence
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2010.07.008
– volume: 106
  start-page: 391
  year: 2011
  ident: B37
  article-title: Independent fusions and recent origins of sex chromosomes in the evolution and diversification of glass knife fishes (Eigenmannia)
  publication-title: Heredity
  doi: 10.1038/hdy.2010.82
– volume: 16
  start-page: 1260
  year: 2015
  ident: B39
  article-title: Plasticity of gene-regulatory networks controlling sex-determination: of masters, slaves, usual suspects, newcomers, and usurpators
  publication-title: EMBO Rep.
  doi: 10.15252/embr.201540667
– volume: 125
  start-page: 132
  year: 2009
  ident: B20
  article-title: Chromosomal variability among allopatric populations of erythrinidae fish Hoplias malabaricus: mapping of three classes of repetitive DNAs
  publication-title: Cytogenet. Genome Res.
  doi: 10.1159/000227838
– volume: 58
  start-page: 476
  year: 2016
  ident: B46
  article-title: Benign and pathological gain or loss of genetic material - about microscopic and submicroscopic copy number variations (CNVs) in human genetics
  publication-title: Tsitologiia
– volume: 25
  start-page: 2114
  year: 2016
  ident: B33
  article-title: Using RAD-seq to recognize sex-specific markers and sex chromosome systems
  publication-title: Mol. Ecol.
  doi: 10.1111/mec.13648
– volume: 95
  start-page: 118
  year: 2005
  ident: B17
  article-title: Steps in the evolution of heteromorphic sex chromosomes
  publication-title: Heredity
  doi: 10.1038/sj.hdy.6800697
– volume: 8
  year: 2013
  ident: B41
  article-title: Expansion of microsatellites on evolutionary young Y chromosome
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0045519
– volume: 14
  start-page: 253
  year: 2006
  ident: B7
  article-title: Chromosome localization of microsatellite markers in the shrews of the Sorex araneus group
  publication-title: Chromosome Res.
  doi: 10.1007/s10577-006-1041-x
– volume: 93
  start-page: 242
  year: 2001
  ident: B53
  article-title: Reconstruction of the female Gorilla gorilla karyotype using 25-color FISH and multicolor banding (MCB)
  publication-title: Cytogenet. Cell Genet.
  doi: 10.1159/000056991
– volume: 208
  start-page: 191
  year: 2002
  ident: B26
  article-title: Sex determination and sex differentiation in fish: an overview of genetic, physiological, and environmental influences
  publication-title: Aquaculture
  doi: 10.1016/S0044-8486(02)00057-1
– start-page: 35
  volume-title: Sex control in aquaculture
  year: 2019
  ident: B36
  article-title: “Sex determination and differentiation in fish: genetic, genomic, and endocrine aspects,”
– volume: 1
  start-page: 20
  year: 2017
  ident: B4
  article-title: Genome-wide interrogation advances resolution of recalcitrant groups in the tree of life
  publication-title: Nat. Ecol. Evol.
  doi: 10.1038/s41559-016-0020
– start-page: 21
  volume-title: Fish cytogenetic techniques: Ray-fin fishes and chondrichthyans
  year: 2015
  ident: B8
  article-title: “Direct chromosome preparations from freshwater Teleost fishes,”
  doi: 10.1201/b18534-4
– start-page: 123
  volume-title: Phylogeny and classification of neotropical fishes
  year: 1998
  ident: B13
  article-title: “Relationships of the Characidiinae and phylogeny of characiform fishes (Teleostei: Characiformes),”
– volume: 9
  start-page: 17
  year: 2016
  ident: B69
  article-title: Application of multicolor banding combined with heterochromatic and locus-specific probes identify evolutionary conserved breakpoints in Hylobates pileatus
  publication-title: Mol. Cytogenet.
  doi: 10.1186/s13039-016-0228-x
– volume: 125
  start-page: 553
  year: 2016
  ident: B71
  article-title: Dynamics of vertebrate sex chromosome evolution: from equal size to giants and dwarfs
  publication-title: Chromosoma
  doi: 10.1007/s00412-015-0569-y
– volume: 12
  start-page: 65
  year: 2011
  ident: B48
  article-title: Chromosomal painting and ZW sex chromosomes differentiation in Characidium (Characiformes, Crenuchidae)
  publication-title: BMC Genet
  doi: 10.1186/1471-2156-12-65
– ident: B32
– volume: 52
  start-page: 201
  year: 1964
  ident: B45
  article-title: Nomenclature for centromeric position on chromosomes
  publication-title: Hereditas
  doi: 10.1111/j.1601-5223.1964.tb01953.x
– volume: 40
  start-page: 138
  year: 1997
  ident: B95
  article-title: A rapid procedure for the isolation of C0t-1 DNA from plants
  publication-title: Genome
  doi: 10.1139/g97-020
– volume: 12
  start-page: 204
  year: 2018
  ident: B6
  article-title: Differentiation and evolution of the W chromosome in the fish species of Megaleporinus (Characiformes, Anostomidae)
  publication-title: Sex. Dev.
  doi: 10.1159/000489693
– volume: 11
  year: 2015
  ident: B63
  article-title: Y fuse? Sex chromosome fusions in fishes and reptiles
  publication-title: PLoS Genet.
  doi: 10.1371/journal.pgen.1005237
SSID ssj0000493334
Score 2.360843
Snippet Although fishes have traditionally been the subject of comparative evolutionary studies, few reports have concentrated on the application of multipronged...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 678
SubjectTerms chromosomal painting
comparative genomic hybridization (CGH)
fishes
Genetics
karyotype evolution
molecular cytogenetics
sex chromosome
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3Ni9QwFA-yIHgRv61fRPDggmXaJE2bow6Oi8girAvrKeTjhe0y28p05jAe_NvNS2fGGRG9SG9t2jzyXprfIy-_HyGvQETYWdUqV44XuQilyW0AlUf0bDyERIGC1Ran8uRcfLyoLvakvrAmbKQHHgduEnuIH-AAcR0XJQRrQyUtk8qFeAmHf99CFXvJ1NWIeznnYtyXjFmYmoToD6TFLJGfUqKq2t46lOj6_4Qxfy-V3Ft7ZnfI7Q1opG9HY--SG9DdIzdHGcn1ffJj-ovCm07Xyx6NQPplajpPT6HPv9LZ9pAibTt6dm3m8_ys_Q6eovY5TSr0MNA-0AgI6QfoVgP9vF4sLrFQ3dDX08TrjKe4rmF4Qz-Bbc3Qdq03cPyAnM_ef5me5BtdhdwJyZa5EIHVXjZFcBH9sEL60kfY0qi4UIlSGVsAbvPWrrKqUUgQw2wEilyFwIWpCv6QHHV9B48JLYRrKlcaZoUX1lvLmPdFbXnMwqAubUYm21HWbkM6jtoXcx2TD_SLTn7R6Bed_JKR490b30bCjb-0fYeO27VDqux0IwaQ3gSQ_lcAZeTl1u06Ti3cLzEd9KtBM86lQmUSnpFHYxjsuuLIVFeyOiP1QYAc2HL4pGsvE323lJjjNk_-h_FPyS0cjlSRyJ6Ro-ViBc8jSlraF2lC_AQLHBQ9
  priority: 102
  providerName: Directory of Open Access Journals
Title Comparative Cytogenetics and Neo-Y Formation in Small-Sized Fish Species of the Genus Pyrrhulina (Characiformes, Lebiasinidae)
URI https://www.ncbi.nlm.nih.gov/pubmed/31428127
https://www.proquest.com/docview/2336980813
https://pubmed.ncbi.nlm.nih.gov/PMC6689988
https://doaj.org/article/ccaf1a3ee92941efbbf56b269cfcfc4c
Volume 10
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bi9QwFA66ouyLeF3rZYnggwvWbZP0kgcRHZxdRBdhHRifStIkbmW21XYGHB_87Z6TdmZ3ZPBBCn1oGxrOpec7zcl3CHlmBcDOJJOhLHkUCherUDsrQ0DPyljnKVCw2uIkPZ6I99NkerE9ehBgtzW1w35Sk3b28ueP5Wtw-FeYcUK8PXQgamS8jJF6Ej6-V8k1iEsMbfzjAPa_9ViYcy76tcqtA3fJDY4MZL7HzKUw5dn8t0HQvyspL4Wm8S1yc8CU9E1vBLfJFVvfIdf7LpPLu-T36ILhm46W8wbng-zMVNWGntgm_ELHqz2MtKrp6bmazcLT6pc1FFujU9-k3na0cRTwIj2y9aKjn5Zte4Z17Io-H3naZ9zkdW67F_SD1ZXqqroyyh7cI5Pxu8-j43BouxCWImXzUAjHMpPmkSsBHLEoNbEBVJNLiGMilkpHFleBszLRMpfIH8M04EguneNCJRG_T3bqprYPCI1EmSdlrJgWRmijNWPGRJnmkKTZLNYBOVxJuSgHTnJsjTErIDdBFRVeRQWqqPAqCsjBesT3no_jH8--RcWtn0MmbX-hab8Wg2MWYMFgoNxawIkitk5rl6SapbJ0cIgyIE9Xai_A83A5RdW2WXQF4zyV2LiEB2SvN4P1q1ZmFJBsw0A25rJ5p67OPLt3mmIKnD_875GPyC7KwFcpssdkZ94u7BNATnO97_84wPloGu975_gDsm8b6Q
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Cytogenetics+and+Neo-Y+Formation+in+Small-Sized+Fish+Species+of+the+Genus+Pyrrhulina+%28Characiformes%2C+Lebiasinidae%29&rft.jtitle=Frontiers+in+genetics&rft.au=de+Moraes%2C+Renata+Luiza+Rosa&rft.au=Sember%2C+Alexandr&rft.au=Bertollo%2C+Luiz+Ant%C3%B4nio+Carlos&rft.au=de+Oliveira%2C+Ezequiel+Aguiar&rft.date=2019-08-02&rft.pub=Frontiers+Media+S.A&rft.eissn=1664-8021&rft.volume=10&rft_id=info:doi/10.3389%2Ffgene.2019.00678&rft_id=info%3Apmid%2F31428127&rft.externalDocID=PMC6689988
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-8021&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-8021&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-8021&client=summon