EXIT Chart-Based Power Allocation for Iterative Frequency Domain MIMO Detector

Transmission power allocation in single-carrier multiple-input multiple-output (MIMO) systems with iterative frequency-domain (FD) soft cancellation (SC) minimum mean-squared error (MMSE) equalization is considered. A novel framework for transmission power minimization subject to equalizer convergen...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 59; no. 4; pp. 1624 - 1641
Main Authors Karjalainen, J, Codreanu, M, Tolli, A, Juntti, M, Matsumoto, T
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.04.2011
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2010.2104143

Cover

More Information
Summary:Transmission power allocation in single-carrier multiple-input multiple-output (MIMO) systems with iterative frequency-domain (FD) soft cancellation (SC) minimum mean-squared error (MMSE) equalization is considered. A novel framework for transmission power minimization subject to equalizer convergence constraints, referred as convergence constrained power allocation (CCPA) method, is proposed based on extrinsic information transfer (EXIT) chart analysis. The proposed method decouples the spatial interference between the streams using singular value decomposition (SVD), and minimizes the transmission power while achieving the target mutual information for each stream after iterations at the receiver. We show that the transmission power optimization can be formulated as a convex optimization problem. Three CCPA methods, one approximately optimal, and other two heuristic methods inspired by the Lagrange duality are derived. The numerical results demonstrate that the proposed scheme outperforms the existing linear precoding schemes. Moreover, the proposed heuristic schemes can achieve performance close with that of the approximately optimal method in terms of the equalizer convergence properties as well as transmission power.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2010.2104143