Enhancing Performance of Single-Channel SSVEP-Based Visual Acuity Assessment via Mode Decomposition

This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-p...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on neural systems and rehabilitation engineering Vol. 31; pp. 4203 - 4210
Main Authors Zheng, Xiaowei, Zhang, Xun, Xu, Guanghua, Zhang, Rui
Format Journal Article
LanguageEnglish
Published United States IEEE 2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1534-4320
1558-0210
1558-0210
DOI10.1109/TNSRE.2023.3323000

Cover

Abstract This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-pass filtering and other four mode decomposition methods, i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and variational mode decomposition (VMD), were used to preprocess the single-channel SSVEP signals from Oz electrode. After comparing the SSVEP signal characteristics corresponding to each mode decomposition method, the visual acuity threshold estimation criterion was used to obtain the final visual acuity results. The agreement between subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for band-pass filtering (−0.095 logMAR), EMD (−0.112 logMAR), EEMD (−0.098 logMAR), ICEEMDAN (−0.093 logMAR), and VMD (−0.090 logMAR) was all pretty good, with an acceptable difference between FrACT and SSVEP acuity for band-pass filtering (0.129 logMAR), EMD (0.083 logMAR), EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and VMD (0.108 logMAR), finding that the visual acuity obtained by these four mode decompositions had a lower limit of agreement and a lower or close difference compared to the traditional band-pass filtering method. This study proved that the mode decomposition methods can enhance the performance of single-channel SSVEP-based visual acuity assessment, and also recommended ICEEEMDAN as the mode decomposition method for single-channel electroencephalography (EEG) signal denoising in the SSVEP visual acuity assessment.
AbstractList This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-pass filtering and other four mode decomposition methods, i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and variational mode decomposition (VMD), were used to preprocess the single-channel SSVEP signals from Oz electrode. After comparing the SSVEP signal characteristics corresponding to each mode decomposition method, the visual acuity threshold estimation criterion was used to obtain the final visual acuity results. The agreement between subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for band-pass filtering (-0.095 logMAR), EMD (-0.112 logMAR), EEMD (-0.098 logMAR), ICEEMDAN (-0.093 logMAR), and VMD (-0.090 logMAR) was all pretty good, with an acceptable difference between FrACT and SSVEP acuity for band-pass filtering (0.129 logMAR), EMD (0.083 logMAR), EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and VMD (0.108 logMAR), finding that the visual acuity obtained by these four mode decompositions had a lower limit of agreement and a lower or close difference compared to the traditional band-pass filtering method. This study proved that the mode decomposition methods can enhance the performance of single-channel SSVEP-based visual acuity assessment, and also recommended ICEEEMDAN as the mode decomposition method for single-channel electroencephalography (EEG) signal denoising in the SSVEP visual acuity assessment.
This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-pass filtering and other four mode decomposition methods, i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and variational mode decomposition (VMD), were used to preprocess the single-channel SSVEP signals from Oz electrode. After comparing the SSVEP signal characteristics corresponding to each mode decomposition method, the visual acuity threshold estimation criterion was used to obtain the final visual acuity results. The agreement between subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for band-pass filtering (-0.095 logMAR), EMD (-0.112 logMAR), EEMD (-0.098 logMAR), ICEEMDAN (-0.093 logMAR), and VMD (-0.090 logMAR) was all pretty good, with an acceptable difference between FrACT and SSVEP acuity for band-pass filtering (0.129 logMAR), EMD (0.083 logMAR), EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and VMD (0.108 logMAR), finding that the visual acuity obtained by these four mode decompositions had a lower limit of agreement and a lower or close difference compared to the traditional band-pass filtering method. This study proved that the mode decomposition methods can enhance the performance of single-channel SSVEP-based visual acuity assessment, and also recommended ICEEEMDAN as the mode decomposition method for single-channel electroencephalography (EEG) signal denoising in the SSVEP visual acuity assessment.This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-pass filtering and other four mode decomposition methods, i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and variational mode decomposition (VMD), were used to preprocess the single-channel SSVEP signals from Oz electrode. After comparing the SSVEP signal characteristics corresponding to each mode decomposition method, the visual acuity threshold estimation criterion was used to obtain the final visual acuity results. The agreement between subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for band-pass filtering (-0.095 logMAR), EMD (-0.112 logMAR), EEMD (-0.098 logMAR), ICEEMDAN (-0.093 logMAR), and VMD (-0.090 logMAR) was all pretty good, with an acceptable difference between FrACT and SSVEP acuity for band-pass filtering (0.129 logMAR), EMD (0.083 logMAR), EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and VMD (0.108 logMAR), finding that the visual acuity obtained by these four mode decompositions had a lower limit of agreement and a lower or close difference compared to the traditional band-pass filtering method. This study proved that the mode decomposition methods can enhance the performance of single-channel SSVEP-based visual acuity assessment, and also recommended ICEEEMDAN as the mode decomposition method for single-channel electroencephalography (EEG) signal denoising in the SSVEP visual acuity assessment.
This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition methods. Using the SSVEP dataset induced by the vertical sinusoidal gratings at six spatial frequency steps from 11 subjects, 3-40-Hz band-pass filtering and other four mode decomposition methods, i.e., empirical mode decomposition (EMD), ensemble empirical mode decomposition (EEMD), improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN), and variational mode decomposition (VMD), were used to preprocess the single-channel SSVEP signals from Oz electrode. After comparing the SSVEP signal characteristics corresponding to each mode decomposition method, the visual acuity threshold estimation criterion was used to obtain the final visual acuity results. The agreement between subjective Freiburg Visual Acuity and Contrast Test (FrACT) and SSVEP visual acuity for band-pass filtering (−0.095 logMAR), EMD (−0.112 logMAR), EEMD (−0.098 logMAR), ICEEMDAN (−0.093 logMAR), and VMD (−0.090 logMAR) was all pretty good, with an acceptable difference between FrACT and SSVEP acuity for band-pass filtering (0.129 logMAR), EMD (0.083 logMAR), EEMD (0.120 logMAR), ICEEMDAN (0.103 logMAR), and VMD (0.108 logMAR), finding that the visual acuity obtained by these four mode decompositions had a lower limit of agreement and a lower or close difference compared to the traditional band-pass filtering method. This study proved that the mode decomposition methods can enhance the performance of single-channel SSVEP-based visual acuity assessment, and also recommended ICEEEMDAN as the mode decomposition method for single-channel electroencephalography (EEG) signal denoising in the SSVEP visual acuity assessment.
Author Zheng, Xiaowei
Zhang, Rui
Zhang, Xun
Xu, Guanghua
Author_xml – sequence: 1
  givenname: Xiaowei
  orcidid: 0000-0002-8653-7129
  surname: Zheng
  fullname: Zheng, Xiaowei
  organization: Medical Big Data Research Center and the School of Mathematics, Northwest University, Xi'an, China
– sequence: 2
  givenname: Xun
  orcidid: 0000-0002-2165-7525
  surname: Zhang
  fullname: Zhang, Xun
  organization: School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 3
  givenname: Guanghua
  orcidid: 0000-0002-7409-4068
  surname: Xu
  fullname: Xu, Guanghua
  organization: State Key Laboratory for Manufacturing Systems Engineering and the School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an, China
– sequence: 4
  givenname: Rui
  orcidid: 0000-0001-9547-2585
  surname: Zhang
  fullname: Zhang, Rui
  email: rzhang@nwu.edu.cn
  organization: Medical Big Data Research Center and the School of Mathematics, Northwest University, Xi'an, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37812551$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1v0zAchy00xLbCF0AIReKyS4pf4tg5llJg0oCJVrtajv33cJXEnZ0g7dvPXTuEduDkt-f5yfbvHJ0MYQCE3hI8JwQ3Hzc_1r9Wc4opmzNGGcb4BTojnMsSU4JP9nNWlRWj-BSdp7TFmIiai1folAlJKOfkDJnV8FsPxg-3xTVEF2KfV1AEV6zzXgflMh8P0BXr9c3quvykE9jixqdJd8XCTH68LxYpQUo9DGPxx-vie7BQfAYT-l1IfvRheI1eOt0leHMcZ2jzZbVZfiuvfn69XC6uSlPVdCwZY67BBsumrZgz0GrbONK2LW1aQTiVtq5rUUvSEmOYoRVugXNXN8BkZSo2Q5eHWBv0Vu2i73W8V0F79bgR4q3ScfSmA2W5pa4WLXNZbSqnjSRggNjKaGZz-gxdHLJ2MdxNkEbV-2Sg6_QAYUqKSsGZxBTzjH54hm7DFIf80ExJygUWfE-9P1JT24P9e72nJjIgD4CJIaUIThk_6v33jVH7ThGs9qWrx9LVvnR1LD2r9Jn6lP5f6d1B8gDwj0BFJUjNHgC4krbz
CODEN ITNSB3
CitedBy_id crossref_primary_10_1109_LSENS_2024_3375378
Cites_doi 10.1109/ACCESS.2020.3032129
10.1109/TNSRE.2021.3104825
10.1007/s10633-020-09770-3
10.1076/opep.5.1.41.1499
10.1016/j.bspc.2021.102701
10.1007/BF00927673
10.1007/s10633-019-09672-z
10.1109/ICASSP.2011.5947265
10.1142/S1793536909000187
10.1016/S2214-109X(17)30293-0
10.1167/15.6.4
10.1007/s10633-016-9553-y
10.1016/j.bspc.2020.102337
10.1016/j.bspc.2014.06.009
10.1155/2016/8301962
10.1109/TSP.2013.2288675
10.1016/j.bspc.2021.103209
10.1088/1741-2552/aa6a23
10.1098/rspa.1998.0193
10.1109/TSP.2013.2265222
10.3389/fnins.2021.716051
10.1007/s10633-012-9359-5
10.1142/S1793536909000047
10.1007/s10633-009-9177-6
10.1016/j.ophtha.2018.04.013
10.1007/s10633-020-09780-1
10.1007/s10633-019-09701-x
10.3390/s20195542
10.1016/j.bspc.2018.06.010
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOA
DOI 10.1109/TNSRE.2023.3323000
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Neurosciences Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Materials Research Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Occupational Therapy & Rehabilitation
EISSN 1558-0210
EndPage 4210
ExternalDocumentID oai_doaj_org_article_d5d2f67b3f38494fac81ece1d4ca3dcc
37812551
10_1109_TNSRE_2023_3323000
10274716
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Key Industry Innovation Chain (Group) of Shaanxi Province
  grantid: 2019ZDLSF02-09-02
  funderid: 10.13039/501100017591
– fundername: National Natural Science Foundation of China
  grantid: 12071369
  funderid: 10.13039/501100001809
GroupedDBID ---
-~X
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAFWJ
AAJGR
AASAJ
AAWTH
ABAZT
ABVLG
ACGFO
ACGFS
ACIWK
ACPRK
AENEX
AETIX
AFPKN
AFRAH
AGSQL
AIBXA
ALMA_UNASSIGNED_HOLDINGS
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
ESBDL
F5P
GROUPED_DOAJ
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
OK1
P2P
RIA
RIE
RNS
AAYXX
CITATION
RIG
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c462t-333f90c089b43fcebad9f1bbb29b71528d6667681b1cc3c240be55f69e384c43
IEDL.DBID RIE
ISSN 1534-4320
1558-0210
IngestDate Wed Aug 27 01:31:50 EDT 2025
Fri Jul 11 15:41:21 EDT 2025
Mon Jul 14 07:02:29 EDT 2025
Wed Feb 19 02:05:09 EST 2025
Tue Jul 01 00:43:29 EDT 2025
Thu Apr 24 23:01:25 EDT 2025
Wed Aug 27 02:35:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by-nc-nd/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-333f90c089b43fcebad9f1bbb29b71528d6667681b1cc3c240be55f69e384c43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2165-7525
0000-0002-7409-4068
0000-0002-8653-7129
0000-0001-9547-2585
OpenAccessLink https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/document/10274716
PMID 37812551
PQID 2882570755
PQPubID 85423
PageCount 8
ParticipantIDs proquest_journals_2882570755
doaj_primary_oai_doaj_org_article_d5d2f67b3f38494fac81ece1d4ca3dcc
pubmed_primary_37812551
ieee_primary_10274716
crossref_citationtrail_10_1109_TNSRE_2023_3323000
crossref_primary_10_1109_TNSRE_2023_3323000
proquest_miscellaneous_2875380205
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230000
2023-00-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 20230000
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on neural systems and rehabilitation engineering
PublicationTitleAbbrev TNSRE
PublicationTitleAlternate IEEE Trans Neural Syst Rehabil Eng
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref30
ref11
ref10
ref2
ref1
ref17
ref16
ref19
ref24
ref23
ref26
ref25
ref20
ref22
ref21
pradhan (ref18) 2020; 9
ref28
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/ACCESS.2020.3032129
– volume: 9
  start-page: 495
  year: 2020
  ident: ref18
  article-title: A survey of classification of EEG signals using EMD and VMD for epileptic seizure detection
  publication-title: International Journal of Engine Research
– ident: ref28
  doi: 10.1109/TNSRE.2021.3104825
– ident: ref6
  doi: 10.1007/s10633-020-09770-3
– ident: ref1
  doi: 10.1076/opep.5.1.41.1499
– ident: ref20
  doi: 10.1016/j.bspc.2021.102701
– ident: ref22
  doi: 10.1007/BF00927673
– ident: ref10
  doi: 10.1007/s10633-019-09672-z
– ident: ref14
  doi: 10.1109/ICASSP.2011.5947265
– ident: ref13
  doi: 10.1142/S1793536909000187
– ident: ref2
  doi: 10.1016/S2214-109X(17)30293-0
– ident: ref4
  doi: 10.1167/15.6.4
– ident: ref30
  doi: 10.1007/s10633-016-9553-y
– ident: ref25
  doi: 10.1016/j.bspc.2020.102337
– ident: ref15
  doi: 10.1016/j.bspc.2014.06.009
– ident: ref21
  doi: 10.1155/2016/8301962
– ident: ref16
  doi: 10.1109/TSP.2013.2288675
– ident: ref26
  doi: 10.1016/j.bspc.2021.103209
– ident: ref17
  doi: 10.1088/1741-2552/aa6a23
– ident: ref12
  doi: 10.1098/rspa.1998.0193
– ident: ref27
  doi: 10.1109/TSP.2013.2265222
– ident: ref9
  doi: 10.3389/fnins.2021.716051
– ident: ref11
  doi: 10.1007/s10633-012-9359-5
– ident: ref19
  doi: 10.1142/S1793536909000047
– ident: ref24
  doi: 10.1007/s10633-009-9177-6
– ident: ref3
  doi: 10.1016/j.ophtha.2018.04.013
– ident: ref23
  doi: 10.1007/s10633-020-09780-1
– ident: ref8
  doi: 10.1007/s10633-019-09701-x
– ident: ref5
  doi: 10.3390/s20195542
– ident: ref29
  doi: 10.1016/j.bspc.2018.06.010
SSID ssj0017657
Score 2.3942704
Snippet This study aimed to improve the performance of single-channel steady-state visual evoked potential (SSVEP)-based visual acuity assessment by mode decomposition...
SourceID doaj
proquest
pubmed
crossref
ieee
SourceType Open Website
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 4203
SubjectTerms Acuity
Algorithms
Band-pass filters
Bandpass filters
Decomposition
EEG
Electrodes
Electroencephalography
Electroencephalography - methods
empirical mode decomposition
Evoked Potentials, Visual
Filtering
Frequency dependence
Humans
Performance enhancement
signal denoising
Steady-state
steady-state visual evoked potential
Visual Acuity
Visual evoked potentials
Visual Perception
Visual signals
Visual thresholds
Visualization
White noise
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZQT1wQjwKBgowEXJDbJH4kPrawVYVEVXWXqjcrHttQaZVFdJffz0ziDcsBuHCM49iOZ5z5Jh5_w9hrFes6WROETT4KFVQQ3utKtJVs2gidr4ZkE5_Ozdln9fFaX--k-qKYsJEeeJy4o6BDnUzjZZKtsip10FYRYhUUdDIA0Ne3tOXWmcr7B43RzfaITGmPFufzy9khZQo_lBJBN51n2zFDA1t_Tq_yZ6Q5WJzT--xehor8eBziA3Yn9g_Zm11aYL4YOQH4W375G-P2Iwaz_itRafRf-MWvswF8lfgcy5ZR0LGCPi75fH41uxAnaMwCv7q53VCPsEFszo8n0k7-46bjlDWNf4gUg54DvfbZ4nS2eH8mckIFAcrUayGlTLaEsrVeyQTRd8GmyntfW9-gIW-DoZBXRLIVgAQ09j5qnYyNOPeg5GO216_6-JTxzgQIBnyipgKUHV5im2gG29ToJhSs2k6vg_zqlPNi6Qano7RuEIkjkbgskoK9m575NlJt_LX2CUltqkk02UMBKo_LyuP-pTwF2yeZ73Q3OOmmYAdbJXB5Td-6Gp0R3SDE0gV7Nd3G1UhbLF0fVxuqg-5fixAc6zwZlWdqHJUf0aSunv2PkT9nd2k2xp9BB2xv_X0TXyA8WvuXw0r4CQjnDbI
  priority: 102
  providerName: Directory of Open Access Journals
Title Enhancing Performance of Single-Channel SSVEP-Based Visual Acuity Assessment via Mode Decomposition
URI https://ieeexplore.ieee.org/document/10274716
https://www.ncbi.nlm.nih.gov/pubmed/37812551
https://www.proquest.com/docview/2882570755
https://www.proquest.com/docview/2875380205
https://doaj.org/article/d5d2f67b3f38494fac81ece1d4ca3dcc
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELZoT1x4FgiUykjABTkksePExxa2qpBYVd2l6s2Kx3apWGWrdsOBX8_YedAiFXHbJI4da2Z2Ptsz3xDyVrii8EpaprxxTFhhmTFlzuqcV7WDxuSx2MTXuTz6Jr6clWdDsnrMhXHOxeAzl4af8SzfrqELW2Vo4XENJbfIFupZn6w1HRlUMtJ6ogULJniRjRkymfq4nC9OZmkoFJ5yjpg7C_Xf8FvQuZf5LYcUefuHQit3Y87oew4fkvn41X3IyY-025gUfv1F6Pjf03pEHgwolO73avOY3HPtE_LuJuMwXfZ0A_Q9PblF5v2UwKz9Hlg62nN6_CftgK49XeC9lWMhY6F1K7pYnM6O2QH6SUtPL667MCJ0CPvp_sQHSn9eNDQUZKOfXQhvH2LIdsjycLb8dMSGWg0MhCw2jHPuVQZZrYzgHpxprPK5MaZQpkKMUFsZomkRJOcAHBBHGFeWXirHawGCPyPb7bp1LwhtpAUrwfjQlYWswUvsEz1s7auysgnJR3lpGKYeymmsdFzPZEpHcesgbj2IOyEfpncuexaPf7Y-CGowtQwM3PEGSk0PBq1taQsvK8M9TkAJ30CdO3C5FdBwC5CQnSDpG8P1Qk7I7qhVevi7uNYFrnPKCtFbmZA302M09HB607Ru3YU2uLKsEd1jm-e9Nk6dj7r88o5BX5H7YYL91tEu2d5cde41gqmN2YubEHvRlH4DOKAaNw
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELagHODCs0CggJGAC0qaxI_Exxa2WqBdVd2l6i2KxzatusoiuuHAr2fsPGiRirjtJl471szsfBPPfEPIG27z3ClpYuW0jbnhJtZaZHGZsaK0UOssNJs4mMnpV_75RJz0xeqhFsZaG5LPbOI_hrN8s4LWvypDCw8xlLxJbgkMK8quXGs8NChkIPZEG-YxZ3k61Mikansxmx9NEt8qPGEMUXfqO8Dh06B7F9kVlxSY-_tWK9ejzuB99u6R2fDcXdLJedKudQK__qJ0_O-N3Sd3exxKdzrFeUBu2OYheXuZc5guOsIB-o4eXaHzfkRg0px6no7mGz38U3hAV47O8drSxr5mobFLOp8fTw7jXfSUhh6fXbR-RWgR-NOdkRGU_jyrqW_JRj9an-DeZ5FtksXeZPFhGvfdGmLgMl_HjDGnUkhLpTlzYHVtlMu01rnSBaKE0kifT4swOQNggEhCWyGcVJaVHDh7TDaaVWOfElpLA0aCdn4qA2mNX3FO9LGlK0RhIpIN8qqg37pvqLGsQkSTqiqIu_LirnpxR-T9-JvvHY_HP0fvejUYR3oO7nABpVb1Jl0ZYXInC80cbkBxV0OZWbCZ4VAzAxCRTS_pS8t1Qo7I1qBVVf-HcVHlGOmIAvGbiMjr8Taauj-_qRu7av0YjC1LxPc45kmnjePkgy4_u2bRV-T2dHGwX-1_mn15Tu74zXYvkrbIxvpHa18gtFrrl8GgfgOI3xyV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Enhancing+Performance+of+Single-Channel+SSVEP-Based+Visual+Acuity+Assessment+via+Mode+Decomposition&rft.jtitle=IEEE+transactions+on+neural+systems+and+rehabilitation+engineering&rft.au=Zheng%2C+Xiaowei&rft.au=Zhang%2C+Xun&rft.au=Xu%2C+Guanghua&rft.au=Zhang%2C+Rui&rft.date=2023&rft.eissn=1558-0210&rft.volume=31&rft.spage=4203&rft_id=info:doi/10.1109%2FTNSRE.2023.3323000&rft_id=info%3Apmid%2F37812551&rft.externalDocID=37812551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1534-4320&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1534-4320&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1534-4320&client=summon