Gaussian mutation–orca predation algorithm–deep residual shrinkage network (DRSN)–temporal convolutional network (TCN)–random forest model: an advanced machine learning model for predicting monthly rainfall and filtering irrelevant data

Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN mod...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental sciences Europe Vol. 36; no. 1; p. 13
Main Authors Ehteram, Mohammad, Afshari Nia, Mahdie, Panahi, Fatemeh, Shabanian, Hanieh
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2024
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN2190-4715
2190-4715
DOI10.1186/s12302-024-00841-9

Cover

Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction.
AbstractList Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction.
Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction.
ArticleNumber 13
Author Ehteram, Mohammad
Shabanian, Hanieh
Afshari Nia, Mahdie
Panahi, Fatemeh
Author_xml – sequence: 1
  givenname: Mohammad
  surname: Ehteram
  fullname: Ehteram, Mohammad
  email: mohammdehteram@semnan.ac.ir
  organization: Department of Water Engineering, Semnan University
– sequence: 2
  givenname: Mahdie
  surname: Afshari Nia
  fullname: Afshari Nia, Mahdie
  organization: Faculty of Natural Resources and Earth Sciences, University of Kashan
– sequence: 3
  givenname: Fatemeh
  surname: Panahi
  fullname: Panahi, Fatemeh
  organization: Faculty of Natural Resources and Earth Sciences, University of Kashan
– sequence: 4
  givenname: Hanieh
  surname: Shabanian
  fullname: Shabanian, Hanieh
  organization: Department of Computer Science, Western New England University
BookMark eNqNUkFu1DAUjVCRKKUXYGWJTVkEYsfOJOzQAKVSBRKUtfXH_pnx1LGD7bTqjjtwQ87AAfBMqoK6qPDG9vd7T_99v6fFgfMOi-I5rV5R2javI2V1xcqK8bKqWk7L7lFxyGhXlXxBxcE_5yfFcYzbKi_B2gUXh8XvU5hiNODIMCVIxrtfP376oICMAfW-QMCufTBpM-QnjTiSgNHoCSyJm2DcJayROEzXPlySk3dfvn56mYEJh9GHjFHeXXk77ZTy7Q53sdzDAjjtB9L7rJnI4DXaNyR3A_oKnEJNBlAb45BYhOCMW8-YHWHfoVFpLrq0sTckgHE9WJslNOmNTRh2zyYEtJgVE8me4FnxOIMiHt_uR8W3D-8vlh_L88-nZ8u356XiDUslg7YXfNXVAroVV3oBiikuFpTxXtSMaVS6rpo8Xd31qkGsVrVAZIpqSmuxqo-Ks1lXe9jKMZgBwo30YOS-4MNaQkhGWZS0ErxZCGiFqLlatdDrHlmdJ5APXNCsVc9akxvh5jp7vBOkldzlQM45kDkHcp8D2WXWycwag_8-5RHLwUSF1oJDP0VZU1E3dZXpGfriHnTrp5D_LErWZTtdwzjPqHZGqeBjDNhLZebcpDx7-3Av7B71vwzc2o7j7icx_O3qAdYfyKT-Ug
CitedBy_id crossref_primary_10_1088_1361_6501_ad889a
Cites_doi 10.1016/j.jcp.2021.110784
10.3390/electronics12112512
10.3390/ma15041477
10.1007/s11831-022-09849-x
10.1016/j.energy.2021.121981
10.2166/ws.2022.115
10.1016/j.asoc.2022.108941
10.1007/s00521-017-2988-6
10.1016/j.cie.2022.108213
10.3390/w15122225
10.1016/j.jhydrol.2017.06.020
10.3233/JIFS-189763
10.1007/s12665-018-7898-0
10.3390/s22093504
10.1016/j.jss.2023.111772
10.1007/s11269-023-03454-8
10.3390/en16145302
10.1016/j.scitotenv.2022.156867
10.1007/s12517-022-10098-2
10.3390/w14030492
10.1016/j.jenvman.2022.114869
10.1016/j.eswa.2021.116026
10.1016/j.jhydrol.2019.01.062
10.1016/j.jhydrol.2021.126350
10.1016/j.jhydrol.2020.124647
10.1016/j.est.2022.104480
10.1007/s12665-018-7498-z
10.1016/j.eswa.2023.120616
10.1002/met.1797
10.1007/s11356-022-18914-8
10.1007/s11356-022-21727-4
10.1016/j.comnet.2021.108616
10.1007/978-3-030-92245-0_4
10.1016/j.catena.2019.02.012
10.2166/ws.2020.214
10.1002/joc.3676
10.1038/s41598-023-32620-6
10.1007/s11227-023-05147-w
10.3390/su14138209
10.1002/met.1635
10.2166/wcc.2021.287
10.1016/j.jclepro.2020.122640
10.3390/computers11010009
ContentType Journal Article
Copyright The Author(s) 2024
The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2024
– notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
8C1
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
CCPQU
DWQXO
FYUFA
GHDGH
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
ADTOC
UNPAY
DOA
DOI 10.1186/s12302-024-00841-9
DatabaseName Springer Nature OA Free Journals
CrossRef
Public Health Database (subscription)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection (subscription)
ProQuest Central Essentials
ProQuest Central
ProQuest Natural Science Collection
ProQuest One Community College
ProQuest Central
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest SciTech Premium Collection
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest One Sustainability
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest Public Health
ProQuest One Academic Eastern Edition
Health Research Premium Collection (Alumni)
Environmental Science Collection
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef

AGRICOLA
ProQuest Central Student

Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 2190-4715
EndPage 13
ExternalDocumentID oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451
10.1186/s12302-024-00841-9
10_1186_s12302_024_00841_9
GroupedDBID -A0
0R~
4.4
40G
5VS
7XC
8C1
8FE
8FH
AAFWJ
AAHBH
AAJSJ
AAKKN
ABEEZ
ABUWG
ACACY
ACGFS
ACULB
ADBBV
ADINQ
AEUYN
AFBBN
AFGXO
AFKRA
AFPKN
AHBYD
AHYZX
ALIPV
ALMA_UNASSIGNED_HOLDINGS
AMKLP
ATCPS
BAPOH
BCNDV
BENPR
BHPHI
BPHCQ
C24
C6C
CCPQU
EBLON
EBS
EDH
FYUFA
GROUPED_DOAJ
H4N
HCIFZ
HZ~
KQ8
M~E
O9-
OK1
PATMY
PQQKQ
PROAC
PYCSY
RBZ
RSV
SEV
SOJ
U2A
UKHRP
AASML
AAYXX
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
AZQEC
DWQXO
GNUQQ
PKEHL
PQEST
PQUKI
PRINS
7S9
L.6
2VQ
AAIAL
AAYZH
ABFSG
ABQSL
ACSTC
ADHKG
ADQRH
ADRFC
ADTOC
AEZWR
AFHIU
AFLOW
AGJBK
AGQPQ
AHSBF
AHWEU
AIXLP
ASPBG
AVWKF
AZFZN
EJD
HG6
N2Q
SCK
SCLPG
UNPAY
ID FETCH-LOGICAL-c462t-2a8f54b935a9b4cd7ac2c457124f5322decd306219d9fc6ee0b35ee2c1d1135b3
IEDL.DBID DOA
ISSN 2190-4715
IngestDate Fri Oct 03 12:41:59 EDT 2025
Tue Aug 19 17:40:30 EDT 2025
Fri Sep 05 15:07:41 EDT 2025
Sat Oct 11 05:42:39 EDT 2025
Wed Oct 01 04:57:32 EDT 2025
Thu Apr 24 22:58:57 EDT 2025
Fri Feb 21 02:41:24 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Deep learning models
Feature selection
Hybrid models
Optimizers
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-2a8f54b935a9b4cd7ac2c457124f5322decd306219d9fc6ee0b35ee2c1d1135b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
OpenAccessLink https://doaj.org/article/1054675a85534cb8afdfe23cedfdf451
PQID 2913596244
PQPubID 1026358
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451
unpaywall_primary_10_1186_s12302_024_00841_9
proquest_miscellaneous_3153630118
proquest_journals_2913596244
crossref_citationtrail_10_1186_s12302_024_00841_9
crossref_primary_10_1186_s12302_024_00841_9
springer_journals_10_1186_s12302_024_00841_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Environmental sciences Europe
PublicationTitleAbbrev Environ Sci Eur
PublicationYear 2024
Publisher Springer Berlin Heidelberg
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
– name: SpringerOpen
References Chen, Lin, Cai, Yin, Chen, Towey (CR4) 2023
Lotfirad, Esmaeili-Gisavandani, Adib (CR20) 2022
Jiang, Wu, Zhu, Zhang (CR13) 2022
Afshari Nia, Panahi, Ehteram (CR1) 2023
Elbeltagi, Zerouali, Bailek, Bouchouicha, Pande, Santos, Towfiqul Islam, Al-Ansari, El-kenawy (CR8) 2022
Luo, Zhou, qing, Yang, F., Chen, J. cai, Chen, J. jun, & Wang, Y. jun. (CR22) 2023
Johny, Pai, S., A. (CR14) 2022
Prasad, Deo, Li, Maraseni (CR28) 2019
Choubin, Zehtabian, Azareh, Rafiei-Sardooi, Sajedi-Hosseini, Kişi (CR6) 2018
Lyu, Yu, Samali, Rashidi, Mohammadi, Nguyen, Nguyen (CR23) 2022
Qiao, Peng, Sun, Zhang, Liu, Zhang, Wang, Shahzad Nazir (CR29) 2023
Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (CR3) 2019
Pan, Gong (CR27) 2023; 16
Choubin, Malekian, Samadi, Khalighi-Sigaroodi, Sajedi-Hosseini (CR5) 2017
Li, Jiang, Chen, Qian (CR19) 2022
Han, Zhang, Ren, Dong, Jiang, Zhuang (CR11) 2023
Kumar Sharma, Brahmachari, Singhal, Gupta (CR17) 2022
Wang, Tian, Fang, Chen, Qin (CR38) 2022
Masrur Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (CR44) 2021
Yu, Yang, Chen, Kuo, Tseng (CR39) 2017
Zeng, Li, Shi, Wang (CR40) 2023; 1
Vu, Ng, Richter, An (CR36) 2022
Gracia-Velásquez, Morales-Rodríguez, Montoya (CR9) 2022
Zhao, Xiao, Shen, Li (CR42) 2022; 842
Devarapalli, Venkateswara Rao, Dey, Vinod Kumar, Malik, Garcia Marquez (CR7) 2022
Mohamadi, Sheikh Khozani, Ehteram, Ahmed, El-Shafie (CR24) 2022
Rahman, Abbas, Gollapalli, Ahmed, Aftab, Ahmad, Khan, Mosavi (CR30) 2022
Kisi, Mohsenzadeh Karimi, Shiri, Keshavarzi (CR15) 2019
Wang, Wang, Fan, Mo (CR37) 2022
Ali, Prasad, Xiang, Yaseen (CR2) 2020
Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (CR32) 2022
Li, Wei, An, Jiao, Wei (CR18) 2022
Sayed, Hassanien, Azar (CR31) 2019
Shijun, Qin, Yanmei, Guangwen, Xiaoyan, Liang (CR33) 2020
Zhou, Wang (CR43) 2022
Gu, Liu, Zhou, Chalov, Zhuang (CR10) 2022
Mohar, Goyal, Kaur (CR25) 2023
Vergni, Todisco (CR35) 2023
Hussein, Ghaziasgar, Thron, Vaccari, Jafta (CR12) 2022
Zhang, Zhao, Wang, Wu, Duan (CR41) 2022
Kisi, Shiri (CR16) 2014
Sulaiman, Shiri, Shiralizadeh, Kisi, Yaseen (CR34) 2018
Nayak, Swapnarekha, Naik, Dhiman, Vimal (CR26) 2023
Lu, Kanghong, Guo, Wang, Yildizbasi (CR21) 2020
A Elbeltagi (841_CR8) 2022
JJ Wang (841_CR37) 2022
M Lotfirad (841_CR20) 2022
S Mohamadi (841_CR24) 2022
GI Sayed (841_CR31) 2019
C Shijun (841_CR33) 2020
O Kisi (841_CR15) 2019
Z Lyu (841_CR23) 2022
EA Hussein (841_CR12) 2022
D Kumar Sharma (841_CR17) 2022
Y Luo (841_CR22) 2023
SS Mohar (841_CR25) 2023
AK Singh (841_CR32) 2022
Z Wang (841_CR38) 2022
SO Sulaiman (841_CR34) 2018
HL Vu (841_CR36) 2022
Y Jiang (841_CR13) 2022
D Zhou (841_CR43) 2022
J Chen (841_CR4) 2023
T Han (841_CR11) 2023
X Qiao (841_CR29) 2023
PS Yu (841_CR39) 2017
R Prasad (841_CR28) 2019
X Lu (841_CR21) 2020
O Kisi (841_CR16) 2014
L Vergni (841_CR35) 2023
B Choubin (841_CR5) 2017
R Devarapalli (841_CR7) 2022
DG Gracia-Velásquez (841_CR9) 2022
D Li (841_CR19) 2022
A Azad (841_CR3) 2019
J Gu (841_CR10) 2022
B Choubin (841_CR6) 2018
W Li (841_CR18) 2022
AU Rahman (841_CR30) 2022
M Ali (841_CR2) 2020
K Johny (841_CR14) 2022
AA Masrur Ahmed (841_CR44) 2021
J Nayak (841_CR26) 2023
Z Zhao (841_CR42) 2022; 842
M Afshari Nia (841_CR1) 2023
L Zeng (841_CR40) 2023; 1
H Pan (841_CR27) 2023; 16
X Zhang (841_CR41) 2022
References_xml – year: 2022
  ident: CR37
  article-title: A deep learning framework for constitutive modeling based on temporal convolutional network
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110784
– year: 2023
  ident: CR11
  article-title: Speech emotion recognition based on deep residual shrinkage network
  publication-title: Electronics (Switzerland)
  doi: 10.3390/electronics12112512
– year: 2022
  ident: CR23
  article-title: Back-propagation neural network optimized by k-fold cross-validation for prediction of torsional strength of reinforced concrete beam
  publication-title: Materials
  doi: 10.3390/ma15041477
– year: 2023
  ident: CR26
  article-title: 25 Years of particle swarm optimization: flourishing voyage of two decades
  publication-title: In Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09849-x
– year: 2022
  ident: CR19
  article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121981
– year: 2022
  ident: CR41
  article-title: A novel rainfall prediction model based on CEEMDAN-PSO-ELM coupled model
  publication-title: Water Supply
  doi: 10.2166/ws.2022.115
– year: 2022
  ident: CR14
  article-title: A multivariate EMD-LSTM model aided with time dependent intrinsic cross-correlation for monthly rainfall prediction
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108941
– year: 2019
  ident: CR31
  article-title: Feature selection via a novel chaotic crow search algorithm
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2988-6
– year: 2022
  ident: CR17
  article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108213
– year: 2023
  ident: CR35
  article-title: A random forest machine learning approach for the identification and quantification of erosive events
  publication-title: Water
  doi: 10.3390/w15122225
– year: 2017
  ident: CR39
  article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.06.020
– year: 2022
  ident: CR7
  article-title: An approach to solve OPF problems using a novel hybrid whale and sine cosine optimization algorithm
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189763
– year: 2018
  ident: CR34
  article-title: Precipitation pattern modeling using cross-station perception: regional investigation
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7898-0
– year: 2022
  ident: CR30
  article-title: Rainfall prediction system using machine learning fusion for smart cities
  publication-title: Sensors
  doi: 10.3390/s22093504
– year: 2023
  ident: CR4
  article-title: BiTCN_DRSN: An effective software vulnerability detection model based on an improved temporal convolutional network
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2023.111772
– year: 2023
  ident: CR1
  article-title: Convolutional Neural Network- ANN- E (Tanh): a new deep learning model for predicting rainfall
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-023-03454-8
– volume: 16
  start-page: 5302
  issue: 14
  year: 2023
  ident: CR27
  article-title: Application of Particle Swarm Optimization (PSO) algorithm in determining thermodynamics of solid combustibles
  publication-title: Energies
  doi: 10.3390/en16145302
– volume: 842
  year: 2022
  ident: CR42
  article-title: Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with in China
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156867
– year: 2022
  ident: CR8
  article-title: Optimizing hyperparameters of deep hybrid learning for rainfall prediction: a case study of a Mediterranean basin
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10098-2
– year: 2022
  ident: CR10
  article-title: A stacking ensemble learning model for monthly rainfall prediction in the Taihu basin
  publication-title: China Water (Switzerland)
  doi: 10.3390/w14030492
– volume: 1
  start-page: 1
  year: 2023
  end-page: 47
  ident: CR40
  article-title: Spiral aquila optimizer based on dynamic gaussian mutation: applications in global optimization and engineering
  publication-title: Neural Process Lett
– year: 2022
  ident: CR36
  article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2022.114869
– year: 2022
  ident: CR13
  article-title: Orca predation algorithm: a novel bio-inspired algorithm for global optimization problems
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116026
– year: 2019
  ident: CR3
  article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.01.062
– year: 2021
  ident: CR44
  article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126350
– year: 2020
  ident: CR2
  article-title: Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124647
– year: 2022
  ident: CR43
  article-title: Battery health prognosis using improved temporal convolutional network modeling
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2022.104480
– year: 2018
  ident: CR6
  article-title: Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7498-z
– year: 2023
  ident: CR29
  article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120616
– year: 2019
  ident: CR15
  article-title: Modelling long term monthly rainfall using geographical inputs: assessing heuristic and geostatistical models
  publication-title: Meteorol Appl
  doi: 10.1002/met.1797
– year: 2022
  ident: CR18
  article-title: LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18914-8
– year: 2022
  ident: CR24
  article-title: Rainfall prediction using multiple inclusive models and large climate indices
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-21727-4
– year: 2022
  ident: CR38
  article-title: LightLog: A lightweight temporal convolutional network for log anomaly detection on the edge
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108616
– year: 2022
  ident: CR12
  article-title: Rainfall prediction using machine learning models: literature survey
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-030-92245-0_4
– year: 2019
  ident: CR28
  article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.02.012
– year: 2020
  ident: CR33
  article-title: Medium- A nd long-term runoff forecasting based on a random forest regression model
  publication-title: Water Sci Technol
  doi: 10.2166/ws.2020.214
– year: 2014
  ident: CR16
  article-title: Prediction of long-term monthly air temperature using geographical inputs
  publication-title: Int J Climatol
  doi: 10.1002/joc.3676
– year: 2023
  ident: CR22
  article-title: Construction and analysis of a conjunctive diagnostic model of HNSCC with random forest and artificial neural network
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-32620-6
– year: 2023
  ident: CR25
  article-title: Exploration of different topologies for optimal sensor nodes deployment in wireless sensor networks using jaya-sine cosine optimization algorithm
  publication-title: J Supercomp
  doi: 10.1007/s11227-023-05147-w
– year: 2022
  ident: CR32
  article-title: An integrated statistical-machine learning approach for runoff prediction
  publication-title: Sustainability (Switzerland)
  doi: 10.3390/su14138209
– year: 2017
  ident: CR5
  article-title: An ensemble forecast of semi-arid rainfall using large-scale climate predictors
  publication-title: Meteorol Appl
  doi: 10.1002/met.1635
– year: 2022
  ident: CR20
  article-title: Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2021.287
– year: 2020
  ident: CR21
  article-title: Optimal estimation of the Proton Exchange Membrane Fuel Cell model parameters based on extended version of Crow Search Algorithm
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122640
– year: 2022
  ident: CR9
  article-title: Application of the crow search algorithm to the problem of the parametric estimation in transformers considering voltage and current measures
  publication-title: Computers
  doi: 10.3390/computers11010009
– year: 2017
  ident: 841_CR5
  publication-title: Meteorol Appl
  doi: 10.1002/met.1635
– year: 2018
  ident: 841_CR6
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7498-z
– year: 2022
  ident: 841_CR10
  publication-title: China Water (Switzerland)
  doi: 10.3390/w14030492
– year: 2019
  ident: 841_CR15
  publication-title: Meteorol Appl
  doi: 10.1002/met.1797
– year: 2022
  ident: 841_CR19
  publication-title: Energy
  doi: 10.1016/j.energy.2021.121981
– year: 2020
  ident: 841_CR21
  publication-title: J Clean Prod
  doi: 10.1016/j.jclepro.2020.122640
– year: 2022
  ident: 841_CR18
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-18914-8
– year: 2019
  ident: 841_CR28
  publication-title: CATENA
  doi: 10.1016/j.catena.2019.02.012
– year: 2017
  ident: 841_CR39
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2017.06.020
– year: 2023
  ident: 841_CR26
  publication-title: In Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09849-x
– year: 2022
  ident: 841_CR17
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2022.108213
– year: 2022
  ident: 841_CR43
  publication-title: J Energy Stor
  doi: 10.1016/j.est.2022.104480
– year: 2022
  ident: 841_CR23
  publication-title: Materials
  doi: 10.3390/ma15041477
– year: 2021
  ident: 841_CR44
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126350
– year: 2022
  ident: 841_CR14
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2022.108941
– year: 2019
  ident: 841_CR3
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2019.01.062
– year: 2022
  ident: 841_CR12
  publication-title: Stud Comput Intell
  doi: 10.1007/978-3-030-92245-0_4
– year: 2022
  ident: 841_CR9
  publication-title: Computers
  doi: 10.3390/computers11010009
– year: 2023
  ident: 841_CR1
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-023-03454-8
– year: 2020
  ident: 841_CR33
  publication-title: Water Sci Technol
  doi: 10.2166/ws.2020.214
– year: 2022
  ident: 841_CR7
  publication-title: J Intell Fuzzy Syst
  doi: 10.3233/JIFS-189763
– year: 2022
  ident: 841_CR30
  publication-title: Sensors
  doi: 10.3390/s22093504
– year: 2023
  ident: 841_CR11
  publication-title: Electronics (Switzerland)
  doi: 10.3390/electronics12112512
– year: 2023
  ident: 841_CR25
  publication-title: J Supercomp
  doi: 10.1007/s11227-023-05147-w
– year: 2022
  ident: 841_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.116026
– year: 2019
  ident: 841_CR31
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-2988-6
– year: 2022
  ident: 841_CR36
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2022.114869
– year: 2018
  ident: 841_CR34
  publication-title: Environ Earth Sci
  doi: 10.1007/s12665-018-7898-0
– volume: 842
  year: 2022
  ident: 841_CR42
  publication-title: Sci Total Environ
  doi: 10.1016/j.scitotenv.2022.156867
– year: 2022
  ident: 841_CR8
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-022-10098-2
– year: 2023
  ident: 841_CR29
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120616
– volume: 1
  start-page: 1
  year: 2023
  ident: 841_CR40
  publication-title: Neural Process Lett
– year: 2014
  ident: 841_CR16
  publication-title: Int J Climatol
  doi: 10.1002/joc.3676
– year: 2022
  ident: 841_CR41
  publication-title: Water Supply
  doi: 10.2166/ws.2022.115
– year: 2020
  ident: 841_CR2
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.124647
– year: 2022
  ident: 841_CR37
  publication-title: J Comput Phys
  doi: 10.1016/j.jcp.2021.110784
– volume: 16
  start-page: 5302
  issue: 14
  year: 2023
  ident: 841_CR27
  publication-title: Energies
  doi: 10.3390/en16145302
– year: 2023
  ident: 841_CR35
  publication-title: Water
  doi: 10.3390/w15122225
– year: 2022
  ident: 841_CR24
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-022-21727-4
– year: 2022
  ident: 841_CR38
  publication-title: Comput Netw
  doi: 10.1016/j.comnet.2021.108616
– year: 2023
  ident: 841_CR22
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-32620-6
– year: 2022
  ident: 841_CR20
  publication-title: J Water Clim Change
  doi: 10.2166/wcc.2021.287
– year: 2023
  ident: 841_CR4
  publication-title: J Syst Softw
  doi: 10.1016/j.jss.2023.111772
– year: 2022
  ident: 841_CR32
  publication-title: Sustainability (Switzerland)
  doi: 10.3390/su14138209
SSID ssj0000528745
Score 2.3408434
Snippet Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage...
Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual...
SourceID doaj
unpaywall
proquest
crossref
springer
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 13
SubjectTerms Accuracy
Algorithms
Deep learning
Deep learning models
Earth and Environmental Science
Ecotoxicology
Environment
Feature selection
forests
Hybrid models
Hydrologic data
Learning algorithms
Machine learning
Mathematical models
meteorological data
Mutation
Normal distribution
Optimizers
Parameters
Particle swarm optimization
Pollution
Predation
prediction
Predictions
Predictive analytics
rain
Rainfall
Root-mean-square errors
shrinkage
system optimization
Temporal variations
Water monitoring
Water resources
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAcEK-KpQUZiQOIRt04dh5ICNGypUJihUor9Rb5ld2KbLLdZIV64z_wD_kN_ABmnMfSy4pbEo-tcTKeGccz8xHyMuFhpvVIe4FWI49zGXuxirQXy0iB9dWcKdwofpmEJ-f884W42CKTLhcGwyo7negUtSk1_iM_YIkfIFIM5-8XVx6iRuHpagehIVtoBfPOlRi7RbYZVsYakO3D8eTraf_XZSRcffcueyYODypQ3RiEy7iHteV9L7lhoVwh_xveZ39gepfcXhULef1D5vk_Nun4PrnXOpP0Q_P1H5AtWzwkO-N17ho0tou3ekT-fJKrCnMm6XzVHMD__vmrXGpJF0vbQCtRmU9h0vVsDk3G2gWF3bhL16LVDPj5DtqHFk3kOH318fTb5DUQtuWtcooh7K0ow11Pd3bkyMAqmnJOwUuGGVIHwfOWAjddGAKdu8BOS1ski2lDgx0ch5i84h4W9Sy_pohtkcFLgSEMzS7x1B-bL5cIAwMj1hSjXx-T8-Px2dGJ14I-eJqHrPaYjDPBVRIImSiuTSQ101xE4IdkArSPsdrANgcUrUkyHVo7UoGwlmnf-CAhKtghg6Is7BNCR5IF0tpIxpGEsbkMjAJ_yATMD5U0yZD43YdOdVsRHYE58tTtjOIwbYQjBeFInXCk0OdN32fR1APZSH2I8tNTYi1v96BcTtNWNUB3AdZKyFiIgGsVy8xklgXw3uGCC39I9jrpS1sFU6Xr5TAkL_pmUA143iMLW66qNABrFqICj4dkv5Pa9RCb2N7vJfs_Zvl0M4O75A7D5eVigPbIoF6u7DPw5Gr1vF2efwEm6U-k
  priority: 102
  providerName: ProQuest
– databaseName: Springer Nature OA Free Journals
  dbid: C24
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3JbtQw1IJyAA4VW9WhBRmJA4hGTLxk4QZDS4VED9BKvVneMjMik4ySjFBv_AN_yDfwATw7TkolVMFtJn7vyU7eZr0Noec5SwqtpzqiWk0jxmQWZSrVUSZTBdZXM6LcRfHTSXJ8xj6e8_NQFNYO2e5DSNJrai_WWfK6BR3rsmUJi1wT-DjKb6Jb4H8QN7BhFmoc-o7evof7UCHzV9QrVsg367_iYY5B0bvo9qZay4tvsiz_sDtH99B2cBjx2_4L30c3bPUA7Rxe1qfBYhDQ9iH69UFuWlcXiVebPsj-8_uPutESrxvbj0_CspzXzbJbrGDJWLvGcOP2JVm4XcB-voKGwVWfHY5fvP_85eQlAIYWViV2aeqBXeHfCHc682Bg-Uy9wuAJwwmxH7PzBsNuhlQDvPLJmxaHaRXzHsYh-B26AhX_sOoW5QV28ysKeClAwuBi6SL7bnnZuFEvQLHDLsP1ETo7OjydHUdhsEOkWUK6iMis4EzllMtcMW1SqYlmPAVfo-CgYYzVBq4yoExNXujE2qmi3FqiYxPHlCu6g7aqurK7CE8lodLaVGapBNpMUqPA5zGUxImSJp-gePjQQoeu5274Rin87SdLRM8cAphDeOYQgPNqxFn3PT-uhX7n-GeEdP26_YO6mYsg_oDOwSJxmXFOmVaZLExhCYX3Dj8Yjydof-A-EZRIK0gOh83hUGyCno3LIP4upiMrW29aQcFiJU5JZxN0MHDtJYnrtn0wcvY_nPLx_1HfQ3eIEzef97OPtrpmY5-A99app15YfwMkzEXB
  priority: 102
  providerName: Springer Nature
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvKsuFGQkDiCa7Sax8-BWSkuFxApBK5VT5Fd2l2aTVZIFlRP_gX_Ib-AHMOM8ShGqQOK2G48tTzyeGccz8xHyOGZBqtRYOb6SY4cxETmRDJUTiVCC9VXMk3hQfDMJDo7Y62N-3JYUwlwYk38y9jP0qLuXRBSpJrkBwRNMub3UabPXo2C7AsWLIbQec7AyvOvEl8lawMEtH5C1o8nbnQ8ILofp0qCEeZc088eO5wyTrd9_zuns70mvkSurfClOP4ss-8UU7d8gHzsmmgiUk9GqliP15bf6jv-Fy5vkeuuw0p1Gwm6RSya_Tdb3zvLjoLFVENUd8uOVWFWYl0kXq-aS__vXb0WpBF2WpoFvoiKbFuW8ni2gSRuzpHDitylhtJrBNE9Aw9G8iU6nT16-ez95CoRtCa2MYph8u13gX093uGvJwPLqYkHBE4fXSS3Mz3MKs-lCHejCBo8a2qJlTBsa7GBniAky9mFez7JTivgZKawADKFpOsfIAmyelwg1AyPWFCNs75Kj_b3D3QOnBZZwFAu82vFElHImY5-LWDKlQ6E8xXgIvk7KQcNpozQcpUBudJyqwJix9LkxnnK16_pc-utkkBe52SB0LDxfGBOKKBQwNhO-luBzad9zAyl0PCRuJ1WJaquuI_hHltjTVxQkzeImsLiJXdwE-jzr-yybmiMXUr9AYe0psV64fVCU06RVP9Cdg0XkIuLcZ0pGItWp8Xx47_CDcXdINjtRT1olViVeDMzGwBQbkkd9M6gfvFMSuSlWVeKDxQzQSERDstUJ89kQF017q99Gf8HlvX8jv0-uerhdbNzRJhnU5co8AO-xlg9bvfATaZ5yyg
  priority: 102
  providerName: Unpaywall
Title Gaussian mutation–orca predation algorithm–deep residual shrinkage network (DRSN)–temporal convolutional network (TCN)–random forest model: an advanced machine learning model for predicting monthly rainfall and filtering irrelevant data
URI https://link.springer.com/article/10.1186/s12302-024-00841-9
https://www.proquest.com/docview/2913596244
https://www.proquest.com/docview/3153630118
https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00841-9
https://doaj.org/article/1054675a85534cb8afdfe23cedfdf451
UnpaywallVersion publishedVersion
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: KQ8
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: BENPR
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Public Health Database
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: 8C1
  dateStart: 20240101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: Springer Nature HAS Fully OA
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: AAJSJ
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: C6C
  dateStart: 19890301
  isFulltext: true
  titleUrlDefault: http://www.springeropen.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Nature OA Free Journals
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: C24
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: Springer Open Access Hybrid - NESLI2 2011-2012
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: 40G
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com/
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2190-4715
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000528745
  issn: 2190-4715
  databaseCode: U2A
  dateStart: 20100201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BewAOiFfVQIkWiQOIWtj7sNfc2pC2QiKqSiOVk7UvNxGOE8WOUG_8B_4hv4EfwOzacdNL4cBlFXtnVzPOt7Oz2nkg9Dplca51qAOqVRgwJkUgVKIDIRMFu69mRLmD4udRfDJmny74xUapL-cT1qQHbj4crGoOa5lLwTllWgmZm9wSqq2BH8wHT5NQpBuHqSart8_jvo6SEfH7ClS0c7YlLHA55KMgvbET-YT9N6zM7mL0Abq3Khfy6rssio295-gRetgajfigYfYxumPLJ2hneB2jBp3tIq2eot_HclW52Eg8WzUX7b9-_JwvtcSLpW1KKGFZXM6X03oygy5j7QLDqduHZeFqAvx8Ay2Dy8ZDHL_5ePZl9BYI2zRWBXau6i1k4amjOx94Mtj9zHyGwRoGCbEvtfMBAzdrdwM88w6cFrcVKy4bGjfAc-iCVPzLsp4UV9jVsMjho8AUBudTd7vvuqdLV-4FZqyx83J9hsZHw_PBSdAWdwg0i0kdEClyzlRKuUwV0yaRmmjGE7A3cg5axlht4DgDCtWkuY6tDRXl1hIdmSiiXNEdtFXOS7uLcCgJldYmUiQS5maSGgV2j6EkipU0aQ9F6z86023mc1eAo8j8CUjEWQOODMCReXBkMOZdN2bR5P24lfrQ4aejdDm7_QtActYiOfsbkntob42-rFUkVUZSEDYFoVgPveq6QQW4ex1Z2vmqyijsWrFT1KKH9teovZ7iNrb3O2T_g5TP_4eUL9B94hah9wjaQ1v1cmVfgl1Xqz66y8JjaMUg6qPtw-Ho9AyeBoS5Nh70_RKHdkyg3R6PTg--_gH6r1ns
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKORQOiFdFoICRQALRVbN-7AMJIUhbUtrmAK3U2-LXJhWb3ZBNVOXGf-B_8KP4DfwAxt5H6CXi0luyHluz9nhmvJ6ZD6HnMQtSpbrKo0p2PcZE5EUyVF4kQgnWVzEi7UHxeBD0T9mnM362hn41uTA2rLLRiU5R60LZb-Q7JPapRYph7N3ku2dRo-ztagOhUYnFoVlcwJGtfHuwC-v7gpD9vZNe36tRBTzFAjLziIhSzmRMuYglUzoUiijGQzB0KQfx1kZp8KNhJ-s4VYExXUm5MUT52gcWJIVxr6HrjJLQKoKo57ffdLrcVY9vcnOiYKcEw2BDfAnzbOV634sv2T8HE3DJt22vY2-ijXk-EYsLkWX_WLz92-hW7ari95Vs3UFrJr-LNveWmXHQWKuG8h7681HMS5uRicfz6nr_94-fxVQJPJmaCrgJi2wIUzobjaFJGzPBcNZ3yWC4HAE_30C34byKS8cvdz9_GbwCwrp4VoZtgHy9UeBfS3fSc2Rgc3UxxuCDwxtiB_DzBgM3TZADHruwUYNrnIxhRWM7OA5taox7mM9G2QJb5IwUJgWG0Dg9tzEFtvl8akFmYMQZtrG199HplSz-JlrPi9w8QLgrCBXGhCIKBYzNBNUSvC1NiR9IoeMO8puFTlRdb93CfmSJO3dFQVIJRwLCkTjhSKDP67bPpKo2spL6g5WfltJWCncPiukwqRUPdOdgC7mIOKdMyUikOjWEwrzDD8b9DtpqpC-p1VeZLDdbBz1rm0Hx2NskkZtiXiYUbGVgzUPUQduN1C6HWMX2divZ__GWD1cz-BRt9E-Oj5Kjg8HhI3SD2K3moo220PpsOjePwWecySduo2L09ao1w18dR4Yn
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELVKkbg8IG4VgQJGAglEV8l67b0gIQRJQ0shQrSV-rb4tknFZjdkN6ryxj_wN3wO38AHMPZeQl8iXvqWrMfWrD2eGa9n5iD0NKJ-ImVPOp4UPYdSHjqhCKQT8kCA9ZWUCHNQ_DTy947phxN2soF-NbkwJqyy0YlWUatcmm_kXRK5nkGKobSb1GERnwfDN7PvjkGQMjetDZxGJSIHenkGx7fi9f4A1voZIcPdo_6eUyMMOJL6pHQIDxNGReQxHgkqVcAlkZQFYPQSBqKutFTgU8OuVlEifa17wmNaE-kqF9gRHox7CV0OPN83dfvDvtt-3-kxW0m-ydMJ_W4BRsKE-xLqmCr2rhOds4UWMuCcn9tezV5HVxfZjC_PeJr-Y_2GN9GN2m3Fbys5u4U2dHYbbe2usuSgsVYTxR305z1fFCY7E08X1VX_7x8_87nkeDbXFYgT5ukYprScTKFJaT3DcO63iWG4mAA_30DP4ayKUcfPB18ORy-AsC6klWITLF9vGvjX0h31LRnYX5VPMfjj8IbYgv28wsBNE_CApzaEVOMaM2Nc0ZgOlkOTJmMfZuUkXWKDopHApMAQCienJr7ANJ_ODeAMjFhiE2d7Fx1fyOJvoc0sz_Q9hHuceFzrgIcBh7Ep95QAz0t5xPUFV1EHuc1Cx7KuvW4gQNLYnsFCP66EIwbhiK1wxNDnZdtnVlUeWUv9zshPS2mqhtsH-Xwc10oIujOwi4yHjHlUipAnKtHEg3mHH5S5HbTdSF9cq7IiXm28DnrSNoMSMjdLPNP5oog9sJu-MRVhB-00UrsaYh3bO61k_8db3l_P4GN0BXRC_HF_dPAAXSNmp9nAo220Wc4X-iG4j6V4ZPcpRl8vWjH8BRfEimE
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvKsuFGQkDiCa7Sax8-BWSkuFxApBK5VT5Fd2l2aTVZIFlRP_gX_Ib-AHMOM8ShGqQOK2G48tTzyeGccz8xHyOGZBqtRYOb6SY4cxETmRDJUTiVCC9VXMk3hQfDMJDo7Y62N-3JYUwlwYk38y9jP0qLuXRBSpJrkBwRNMub3UabPXo2C7AsWLIbQec7AyvOvEl8lawMEtH5C1o8nbnQ8ILofp0qCEeZc088eO5wyTrd9_zuns70mvkSurfClOP4ss-8UU7d8gHzsmmgiUk9GqliP15bf6jv-Fy5vkeuuw0p1Gwm6RSya_Tdb3zvLjoLFVENUd8uOVWFWYl0kXq-aS__vXb0WpBF2WpoFvoiKbFuW8ni2gSRuzpHDitylhtJrBNE9Aw9G8iU6nT16-ez95CoRtCa2MYph8u13gX093uGvJwPLqYkHBE4fXSS3Mz3MKs-lCHejCBo8a2qJlTBsa7GBniAky9mFez7JTivgZKawADKFpOsfIAmyelwg1AyPWFCNs75Kj_b3D3QOnBZZwFAu82vFElHImY5-LWDKlQ6E8xXgIvk7KQcNpozQcpUBudJyqwJix9LkxnnK16_pc-utkkBe52SB0LDxfGBOKKBQwNhO-luBzad9zAyl0PCRuJ1WJaquuI_hHltjTVxQkzeImsLiJXdwE-jzr-yybmiMXUr9AYe0psV64fVCU06RVP9Cdg0XkIuLcZ0pGItWp8Xx47_CDcXdINjtRT1olViVeDMzGwBQbkkd9M6gfvFMSuSlWVeKDxQzQSERDstUJ89kQF017q99Gf8HlvX8jv0-uerhdbNzRJhnU5co8AO-xlg9bvfATaZ5yyg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+mutation%E2%80%93orca+predation+algorithm%E2%80%93deep+residual+shrinkage+network+%28DRSN%29%E2%80%93temporal+convolutional+network+%28TCN%29%E2%80%93random+forest+model%3A+an+advanced+machine+learning+model+for+predicting+monthly+rainfall+and+filtering+irrelevant+data&rft.jtitle=Environmental+sciences+Europe&rft.au=Mohammad+Ehteram&rft.au=Mahdie+Afshari+Nia&rft.au=Fatemeh+Panahi&rft.au=Hanieh+Shabanian&rft.date=2024-12-01&rft.pub=SpringerOpen&rft.eissn=2190-4715&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs12302-024-00841-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4715&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4715&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4715&client=summon