Gaussian mutation–orca predation algorithm–deep residual shrinkage network (DRSN)–temporal convolutional network (TCN)–random forest model: an advanced machine learning model for predicting monthly rainfall and filtering irrelevant data
Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN mod...
Saved in:
| Published in | Environmental sciences Europe Vol. 36; no. 1; p. 13 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.12.2024
Springer Nature B.V SpringerOpen |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2190-4715 2190-4715 |
| DOI | 10.1186/s12302-024-00841-9 |
Cover
| Abstract | Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction. |
|---|---|
| AbstractList | Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction. Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage network (DRSN)—temporal convolutional network (TCN) to remove redundant features and extract temporal features from rainfall data. The TCN model extracts temporal features, and the DRSN enhances the quality of the extracted features. Then, the DRSN–TCN is coupled with a random forest (RF) model to model rainfall data. Since the RF model may be unable to classify and predict complex patterns and data, our study develops the RF model to model outputs with high accuracy. Since the DRSN–TCN model uses advanced operators to extract temporal features and remove irrelevant features, it can improve the performance of the RF model for predicting rainfall. We use a new optimizer named the Gaussian mutation (GM)–orca predation algorithm (OPA) to set the DRSN–TCN–RF (DTR) parameters and determine the best input scenario. This paper introduces a new machine learning model for rainfall prediction, improves the accuracy of the original TCN, and develops a new optimization method for input selection. The models used the lagged rainfall data to predict monthly data. GM–OPA improved the accuracy of the orca predation algorithm (OPA) for feature selection. The GM–OPA reduced the root mean square error (RMSE) values of OPA and particle swarm optimization (PSO) by 1.4%–3.4% and 6.14–9.54%, respectively. The GM–OPA can simplify the modeling process because it can determine the most important input parameters. Moreover, the GM–OPA can automatically determine the optimal input scenario. The DTR reduced the testing mean absolute error values of the TCN–RAF, DRSN–TCN, TCN, and RAF models by 5.3%, 21%, 40%, and 46%, respectively. Our study indicates that the proposed model is a reliable model for rainfall prediction. |
| ArticleNumber | 13 |
| Author | Ehteram, Mohammad Shabanian, Hanieh Afshari Nia, Mahdie Panahi, Fatemeh |
| Author_xml | – sequence: 1 givenname: Mohammad surname: Ehteram fullname: Ehteram, Mohammad email: mohammdehteram@semnan.ac.ir organization: Department of Water Engineering, Semnan University – sequence: 2 givenname: Mahdie surname: Afshari Nia fullname: Afshari Nia, Mahdie organization: Faculty of Natural Resources and Earth Sciences, University of Kashan – sequence: 3 givenname: Fatemeh surname: Panahi fullname: Panahi, Fatemeh organization: Faculty of Natural Resources and Earth Sciences, University of Kashan – sequence: 4 givenname: Hanieh surname: Shabanian fullname: Shabanian, Hanieh organization: Department of Computer Science, Western New England University |
| BookMark | eNqNUkFu1DAUjVCRKKUXYGWJTVkEYsfOJOzQAKVSBRKUtfXH_pnx1LGD7bTqjjtwQ87AAfBMqoK6qPDG9vd7T_99v6fFgfMOi-I5rV5R2javI2V1xcqK8bKqWk7L7lFxyGhXlXxBxcE_5yfFcYzbKi_B2gUXh8XvU5hiNODIMCVIxrtfP376oICMAfW-QMCufTBpM-QnjTiSgNHoCSyJm2DcJayROEzXPlySk3dfvn56mYEJh9GHjFHeXXk77ZTy7Q53sdzDAjjtB9L7rJnI4DXaNyR3A_oKnEJNBlAb45BYhOCMW8-YHWHfoVFpLrq0sTckgHE9WJslNOmNTRh2zyYEtJgVE8me4FnxOIMiHt_uR8W3D-8vlh_L88-nZ8u356XiDUslg7YXfNXVAroVV3oBiikuFpTxXtSMaVS6rpo8Xd31qkGsVrVAZIpqSmuxqo-Ks1lXe9jKMZgBwo30YOS-4MNaQkhGWZS0ErxZCGiFqLlatdDrHlmdJ5APXNCsVc9akxvh5jp7vBOkldzlQM45kDkHcp8D2WXWycwag_8-5RHLwUSF1oJDP0VZU1E3dZXpGfriHnTrp5D_LErWZTtdwzjPqHZGqeBjDNhLZebcpDx7-3Av7B71vwzc2o7j7icx_O3qAdYfyKT-Ug |
| CitedBy_id | crossref_primary_10_1088_1361_6501_ad889a |
| Cites_doi | 10.1016/j.jcp.2021.110784 10.3390/electronics12112512 10.3390/ma15041477 10.1007/s11831-022-09849-x 10.1016/j.energy.2021.121981 10.2166/ws.2022.115 10.1016/j.asoc.2022.108941 10.1007/s00521-017-2988-6 10.1016/j.cie.2022.108213 10.3390/w15122225 10.1016/j.jhydrol.2017.06.020 10.3233/JIFS-189763 10.1007/s12665-018-7898-0 10.3390/s22093504 10.1016/j.jss.2023.111772 10.1007/s11269-023-03454-8 10.3390/en16145302 10.1016/j.scitotenv.2022.156867 10.1007/s12517-022-10098-2 10.3390/w14030492 10.1016/j.jenvman.2022.114869 10.1016/j.eswa.2021.116026 10.1016/j.jhydrol.2019.01.062 10.1016/j.jhydrol.2021.126350 10.1016/j.jhydrol.2020.124647 10.1016/j.est.2022.104480 10.1007/s12665-018-7498-z 10.1016/j.eswa.2023.120616 10.1002/met.1797 10.1007/s11356-022-18914-8 10.1007/s11356-022-21727-4 10.1016/j.comnet.2021.108616 10.1007/978-3-030-92245-0_4 10.1016/j.catena.2019.02.012 10.2166/ws.2020.214 10.1002/joc.3676 10.1038/s41598-023-32620-6 10.1007/s11227-023-05147-w 10.3390/su14138209 10.1002/met.1635 10.2166/wcc.2021.287 10.1016/j.jclepro.2020.122640 10.3390/computers11010009 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2024 The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2024 – notice: The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 8C1 ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI CCPQU DWQXO FYUFA GHDGH GNUQQ HCIFZ PATMY PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 ADTOC UNPAY DOA |
| DOI | 10.1186/s12302-024-00841-9 |
| DatabaseName | Springer Nature OA Free Journals CrossRef Public Health Database (subscription) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection (subscription) ProQuest Central Essentials ProQuest Central ProQuest Natural Science Collection ProQuest One Community College ProQuest Central Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest SciTech Premium Collection Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China ProQuest Central ProQuest One Sustainability ProQuest Health & Medical Research Collection Health Research Premium Collection Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest Public Health ProQuest One Academic Eastern Edition Health Research Premium Collection (Alumni) Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | CrossRef AGRICOLA ProQuest Central Student |
| Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 4 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 2190-4715 |
| EndPage | 13 |
| ExternalDocumentID | oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451 10.1186/s12302-024-00841-9 10_1186_s12302_024_00841_9 |
| GroupedDBID | -A0 0R~ 4.4 40G 5VS 7XC 8C1 8FE 8FH AAFWJ AAHBH AAJSJ AAKKN ABEEZ ABUWG ACACY ACGFS ACULB ADBBV ADINQ AEUYN AFBBN AFGXO AFKRA AFPKN AHBYD AHYZX ALIPV ALMA_UNASSIGNED_HOLDINGS AMKLP ATCPS BAPOH BCNDV BENPR BHPHI BPHCQ C24 C6C CCPQU EBLON EBS EDH FYUFA GROUPED_DOAJ H4N HCIFZ HZ~ KQ8 M~E O9- OK1 PATMY PQQKQ PROAC PYCSY RBZ RSV SEV SOJ U2A UKHRP AASML AAYXX CITATION PHGZM PHGZT PJZUB PPXIY PUEGO AZQEC DWQXO GNUQQ PKEHL PQEST PQUKI PRINS 7S9 L.6 2VQ AAIAL AAYZH ABFSG ABQSL ACSTC ADHKG ADQRH ADRFC ADTOC AEZWR AFHIU AFLOW AGJBK AGQPQ AHSBF AHWEU AIXLP ASPBG AVWKF AZFZN EJD HG6 N2Q SCK SCLPG UNPAY |
| ID | FETCH-LOGICAL-c462t-2a8f54b935a9b4cd7ac2c457124f5322decd306219d9fc6ee0b35ee2c1d1135b3 |
| IEDL.DBID | DOA |
| ISSN | 2190-4715 |
| IngestDate | Fri Oct 03 12:41:59 EDT 2025 Tue Aug 19 17:40:30 EDT 2025 Fri Sep 05 15:07:41 EDT 2025 Sat Oct 11 05:42:39 EDT 2025 Wed Oct 01 04:57:32 EDT 2025 Thu Apr 24 22:58:57 EDT 2025 Fri Feb 21 02:41:24 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Deep learning models Feature selection Hybrid models Optimizers |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-2a8f54b935a9b4cd7ac2c457124f5322decd306219d9fc6ee0b35ee2c1d1135b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| OpenAccessLink | https://doaj.org/article/1054675a85534cb8afdfe23cedfdf451 |
| PQID | 2913596244 |
| PQPubID | 1026358 |
| PageCount | 1 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451 unpaywall_primary_10_1186_s12302_024_00841_9 proquest_miscellaneous_3153630118 proquest_journals_2913596244 crossref_citationtrail_10_1186_s12302_024_00841_9 crossref_primary_10_1186_s12302_024_00841_9 springer_journals_10_1186_s12302_024_00841_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-12-01 |
| PublicationDateYYYYMMDD | 2024-12-01 |
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Environmental sciences Europe |
| PublicationTitleAbbrev | Environ Sci Eur |
| PublicationYear | 2024 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V SpringerOpen |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V – name: SpringerOpen |
| References | Chen, Lin, Cai, Yin, Chen, Towey (CR4) 2023 Lotfirad, Esmaeili-Gisavandani, Adib (CR20) 2022 Jiang, Wu, Zhu, Zhang (CR13) 2022 Afshari Nia, Panahi, Ehteram (CR1) 2023 Elbeltagi, Zerouali, Bailek, Bouchouicha, Pande, Santos, Towfiqul Islam, Al-Ansari, El-kenawy (CR8) 2022 Luo, Zhou, qing, Yang, F., Chen, J. cai, Chen, J. jun, & Wang, Y. jun. (CR22) 2023 Johny, Pai, S., A. (CR14) 2022 Prasad, Deo, Li, Maraseni (CR28) 2019 Choubin, Zehtabian, Azareh, Rafiei-Sardooi, Sajedi-Hosseini, Kişi (CR6) 2018 Lyu, Yu, Samali, Rashidi, Mohammadi, Nguyen, Nguyen (CR23) 2022 Qiao, Peng, Sun, Zhang, Liu, Zhang, Wang, Shahzad Nazir (CR29) 2023 Azad, Manoochehri, Kashi, Farzin, Karami, Nourani, Shiri (CR3) 2019 Pan, Gong (CR27) 2023; 16 Choubin, Malekian, Samadi, Khalighi-Sigaroodi, Sajedi-Hosseini (CR5) 2017 Li, Jiang, Chen, Qian (CR19) 2022 Han, Zhang, Ren, Dong, Jiang, Zhuang (CR11) 2023 Kumar Sharma, Brahmachari, Singhal, Gupta (CR17) 2022 Wang, Tian, Fang, Chen, Qin (CR38) 2022 Masrur Ahmed, Deo, Feng, Ghahramani, Raj, Yin, Yang (CR44) 2021 Yu, Yang, Chen, Kuo, Tseng (CR39) 2017 Zeng, Li, Shi, Wang (CR40) 2023; 1 Vu, Ng, Richter, An (CR36) 2022 Gracia-Velásquez, Morales-Rodríguez, Montoya (CR9) 2022 Zhao, Xiao, Shen, Li (CR42) 2022; 842 Devarapalli, Venkateswara Rao, Dey, Vinod Kumar, Malik, Garcia Marquez (CR7) 2022 Mohamadi, Sheikh Khozani, Ehteram, Ahmed, El-Shafie (CR24) 2022 Rahman, Abbas, Gollapalli, Ahmed, Aftab, Ahmad, Khan, Mosavi (CR30) 2022 Kisi, Mohsenzadeh Karimi, Shiri, Keshavarzi (CR15) 2019 Wang, Wang, Fan, Mo (CR37) 2022 Ali, Prasad, Xiang, Yaseen (CR2) 2020 Singh, Kumar, Ali, Al-Ansari, Vishwakarma, Kushwaha, Panda, Sagar, Mirzania, Elbeltagi, Kuriqi, Heddam (CR32) 2022 Li, Wei, An, Jiao, Wei (CR18) 2022 Sayed, Hassanien, Azar (CR31) 2019 Shijun, Qin, Yanmei, Guangwen, Xiaoyan, Liang (CR33) 2020 Zhou, Wang (CR43) 2022 Gu, Liu, Zhou, Chalov, Zhuang (CR10) 2022 Mohar, Goyal, Kaur (CR25) 2023 Vergni, Todisco (CR35) 2023 Hussein, Ghaziasgar, Thron, Vaccari, Jafta (CR12) 2022 Zhang, Zhao, Wang, Wu, Duan (CR41) 2022 Kisi, Shiri (CR16) 2014 Sulaiman, Shiri, Shiralizadeh, Kisi, Yaseen (CR34) 2018 Nayak, Swapnarekha, Naik, Dhiman, Vimal (CR26) 2023 Lu, Kanghong, Guo, Wang, Yildizbasi (CR21) 2020 A Elbeltagi (841_CR8) 2022 JJ Wang (841_CR37) 2022 M Lotfirad (841_CR20) 2022 S Mohamadi (841_CR24) 2022 GI Sayed (841_CR31) 2019 C Shijun (841_CR33) 2020 O Kisi (841_CR15) 2019 Z Lyu (841_CR23) 2022 EA Hussein (841_CR12) 2022 D Kumar Sharma (841_CR17) 2022 Y Luo (841_CR22) 2023 SS Mohar (841_CR25) 2023 AK Singh (841_CR32) 2022 Z Wang (841_CR38) 2022 SO Sulaiman (841_CR34) 2018 HL Vu (841_CR36) 2022 Y Jiang (841_CR13) 2022 D Zhou (841_CR43) 2022 J Chen (841_CR4) 2023 T Han (841_CR11) 2023 X Qiao (841_CR29) 2023 PS Yu (841_CR39) 2017 R Prasad (841_CR28) 2019 X Lu (841_CR21) 2020 O Kisi (841_CR16) 2014 L Vergni (841_CR35) 2023 B Choubin (841_CR5) 2017 R Devarapalli (841_CR7) 2022 DG Gracia-Velásquez (841_CR9) 2022 D Li (841_CR19) 2022 A Azad (841_CR3) 2019 J Gu (841_CR10) 2022 B Choubin (841_CR6) 2018 W Li (841_CR18) 2022 AU Rahman (841_CR30) 2022 M Ali (841_CR2) 2020 K Johny (841_CR14) 2022 AA Masrur Ahmed (841_CR44) 2021 J Nayak (841_CR26) 2023 Z Zhao (841_CR42) 2022; 842 M Afshari Nia (841_CR1) 2023 L Zeng (841_CR40) 2023; 1 H Pan (841_CR27) 2023; 16 X Zhang (841_CR41) 2022 |
| References_xml | – year: 2022 ident: CR37 article-title: A deep learning framework for constitutive modeling based on temporal convolutional network publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110784 – year: 2023 ident: CR11 article-title: Speech emotion recognition based on deep residual shrinkage network publication-title: Electronics (Switzerland) doi: 10.3390/electronics12112512 – year: 2022 ident: CR23 article-title: Back-propagation neural network optimized by k-fold cross-validation for prediction of torsional strength of reinforced concrete beam publication-title: Materials doi: 10.3390/ma15041477 – year: 2023 ident: CR26 article-title: 25 Years of particle swarm optimization: flourishing voyage of two decades publication-title: In Arch Comput Methods Eng doi: 10.1007/s11831-022-09849-x – year: 2022 ident: CR19 article-title: Multi-step-ahead wind speed forecasting based on a hybrid decomposition method and temporal convolutional networks publication-title: Energy doi: 10.1016/j.energy.2021.121981 – year: 2022 ident: CR41 article-title: A novel rainfall prediction model based on CEEMDAN-PSO-ELM coupled model publication-title: Water Supply doi: 10.2166/ws.2022.115 – year: 2022 ident: CR14 article-title: A multivariate EMD-LSTM model aided with time dependent intrinsic cross-correlation for monthly rainfall prediction publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108941 – year: 2019 ident: CR31 article-title: Feature selection via a novel chaotic crow search algorithm publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2988-6 – year: 2022 ident: CR17 article-title: Data driven predictive maintenance applications for industrial systems with temporal convolutional networks publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108213 – year: 2023 ident: CR35 article-title: A random forest machine learning approach for the identification and quantification of erosive events publication-title: Water doi: 10.3390/w15122225 – year: 2017 ident: CR39 article-title: Comparison of random forests and support vector machine for real-time radar-derived rainfall forecasting publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.06.020 – year: 2022 ident: CR7 article-title: An approach to solve OPF problems using a novel hybrid whale and sine cosine optimization algorithm publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189763 – year: 2018 ident: CR34 article-title: Precipitation pattern modeling using cross-station perception: regional investigation publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7898-0 – year: 2022 ident: CR30 article-title: Rainfall prediction system using machine learning fusion for smart cities publication-title: Sensors doi: 10.3390/s22093504 – year: 2023 ident: CR4 article-title: BiTCN_DRSN: An effective software vulnerability detection model based on an improved temporal convolutional network publication-title: J Syst Softw doi: 10.1016/j.jss.2023.111772 – year: 2023 ident: CR1 article-title: Convolutional Neural Network- ANN- E (Tanh): a new deep learning model for predicting rainfall publication-title: Water Resour Manage doi: 10.1007/s11269-023-03454-8 – volume: 16 start-page: 5302 issue: 14 year: 2023 ident: CR27 article-title: Application of Particle Swarm Optimization (PSO) algorithm in determining thermodynamics of solid combustibles publication-title: Energies doi: 10.3390/en16145302 – volume: 842 year: 2022 ident: CR42 article-title: Comparison between optimized MaxEnt and random forest modeling in predicting potential distribution: a case study with in China publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156867 – year: 2022 ident: CR8 article-title: Optimizing hyperparameters of deep hybrid learning for rainfall prediction: a case study of a Mediterranean basin publication-title: Arab J Geosci doi: 10.1007/s12517-022-10098-2 – year: 2022 ident: CR10 article-title: A stacking ensemble learning model for monthly rainfall prediction in the Taihu basin publication-title: China Water (Switzerland) doi: 10.3390/w14030492 – volume: 1 start-page: 1 year: 2023 end-page: 47 ident: CR40 article-title: Spiral aquila optimizer based on dynamic gaussian mutation: applications in global optimization and engineering publication-title: Neural Process Lett – year: 2022 ident: CR36 article-title: Analysis of input set characteristics and variances on k-fold cross validation for a Recurrent Neural Network model on waste disposal rate estimation publication-title: J Environ Manage doi: 10.1016/j.jenvman.2022.114869 – year: 2022 ident: CR13 article-title: Orca predation algorithm: a novel bio-inspired algorithm for global optimization problems publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116026 – year: 2019 ident: CR3 article-title: Comparative evaluation of intelligent algorithms to improve adaptive neuro-fuzzy inference system performance in precipitation modelling publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.01.062 – year: 2021 ident: CR44 article-title: Deep learning hybrid model with Boruta-Random forest optimiser algorithm for streamflow forecasting with climate mode indices, rainfall, and periodicity publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126350 – year: 2020 ident: CR2 article-title: Complete ensemble empirical mode decomposition hybridized with random forest and kernel ridge regression model for monthly rainfall forecasts publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124647 – year: 2022 ident: CR43 article-title: Battery health prognosis using improved temporal convolutional network modeling publication-title: J Energy Stor doi: 10.1016/j.est.2022.104480 – year: 2018 ident: CR6 article-title: Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7498-z – year: 2023 ident: CR29 article-title: Metaheuristic evolutionary deep learning model based on temporal convolutional network, improved aquila optimizer and random forest for rainfall-runoff simulation and multi-step runoff prediction publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120616 – year: 2019 ident: CR15 article-title: Modelling long term monthly rainfall using geographical inputs: assessing heuristic and geostatistical models publication-title: Meteorol Appl doi: 10.1002/met.1797 – year: 2022 ident: CR18 article-title: LSTM-TCN: dissolved oxygen prediction in aquaculture, based on combined model of long short-term memory network and temporal convolutional network publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-18914-8 – year: 2022 ident: CR24 article-title: Rainfall prediction using multiple inclusive models and large climate indices publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-21727-4 – year: 2022 ident: CR38 article-title: LightLog: A lightweight temporal convolutional network for log anomaly detection on the edge publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108616 – year: 2022 ident: CR12 article-title: Rainfall prediction using machine learning models: literature survey publication-title: Stud Comput Intell doi: 10.1007/978-3-030-92245-0_4 – year: 2019 ident: CR28 article-title: Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach publication-title: CATENA doi: 10.1016/j.catena.2019.02.012 – year: 2020 ident: CR33 article-title: Medium- A nd long-term runoff forecasting based on a random forest regression model publication-title: Water Sci Technol doi: 10.2166/ws.2020.214 – year: 2014 ident: CR16 article-title: Prediction of long-term monthly air temperature using geographical inputs publication-title: Int J Climatol doi: 10.1002/joc.3676 – year: 2023 ident: CR22 article-title: Construction and analysis of a conjunctive diagnostic model of HNSCC with random forest and artificial neural network publication-title: Sci Rep doi: 10.1038/s41598-023-32620-6 – year: 2023 ident: CR25 article-title: Exploration of different topologies for optimal sensor nodes deployment in wireless sensor networks using jaya-sine cosine optimization algorithm publication-title: J Supercomp doi: 10.1007/s11227-023-05147-w – year: 2022 ident: CR32 article-title: An integrated statistical-machine learning approach for runoff prediction publication-title: Sustainability (Switzerland) doi: 10.3390/su14138209 – year: 2017 ident: CR5 article-title: An ensemble forecast of semi-arid rainfall using large-scale climate predictors publication-title: Meteorol Appl doi: 10.1002/met.1635 – year: 2022 ident: CR20 article-title: Drought monitoring and prediction using SPI, SPEI, and random forest model in various climates of Iran publication-title: J Water Clim Change doi: 10.2166/wcc.2021.287 – year: 2020 ident: CR21 article-title: Optimal estimation of the Proton Exchange Membrane Fuel Cell model parameters based on extended version of Crow Search Algorithm publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122640 – year: 2022 ident: CR9 article-title: Application of the crow search algorithm to the problem of the parametric estimation in transformers considering voltage and current measures publication-title: Computers doi: 10.3390/computers11010009 – year: 2017 ident: 841_CR5 publication-title: Meteorol Appl doi: 10.1002/met.1635 – year: 2018 ident: 841_CR6 publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7498-z – year: 2022 ident: 841_CR10 publication-title: China Water (Switzerland) doi: 10.3390/w14030492 – year: 2019 ident: 841_CR15 publication-title: Meteorol Appl doi: 10.1002/met.1797 – year: 2022 ident: 841_CR19 publication-title: Energy doi: 10.1016/j.energy.2021.121981 – year: 2020 ident: 841_CR21 publication-title: J Clean Prod doi: 10.1016/j.jclepro.2020.122640 – year: 2022 ident: 841_CR18 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-18914-8 – year: 2019 ident: 841_CR28 publication-title: CATENA doi: 10.1016/j.catena.2019.02.012 – year: 2017 ident: 841_CR39 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2017.06.020 – year: 2023 ident: 841_CR26 publication-title: In Arch Comput Methods Eng doi: 10.1007/s11831-022-09849-x – year: 2022 ident: 841_CR17 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2022.108213 – year: 2022 ident: 841_CR43 publication-title: J Energy Stor doi: 10.1016/j.est.2022.104480 – year: 2022 ident: 841_CR23 publication-title: Materials doi: 10.3390/ma15041477 – year: 2021 ident: 841_CR44 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126350 – year: 2022 ident: 841_CR14 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2022.108941 – year: 2019 ident: 841_CR3 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2019.01.062 – year: 2022 ident: 841_CR12 publication-title: Stud Comput Intell doi: 10.1007/978-3-030-92245-0_4 – year: 2022 ident: 841_CR9 publication-title: Computers doi: 10.3390/computers11010009 – year: 2023 ident: 841_CR1 publication-title: Water Resour Manage doi: 10.1007/s11269-023-03454-8 – year: 2020 ident: 841_CR33 publication-title: Water Sci Technol doi: 10.2166/ws.2020.214 – year: 2022 ident: 841_CR7 publication-title: J Intell Fuzzy Syst doi: 10.3233/JIFS-189763 – year: 2022 ident: 841_CR30 publication-title: Sensors doi: 10.3390/s22093504 – year: 2023 ident: 841_CR11 publication-title: Electronics (Switzerland) doi: 10.3390/electronics12112512 – year: 2023 ident: 841_CR25 publication-title: J Supercomp doi: 10.1007/s11227-023-05147-w – year: 2022 ident: 841_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.116026 – year: 2019 ident: 841_CR31 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-2988-6 – year: 2022 ident: 841_CR36 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2022.114869 – year: 2018 ident: 841_CR34 publication-title: Environ Earth Sci doi: 10.1007/s12665-018-7898-0 – volume: 842 year: 2022 ident: 841_CR42 publication-title: Sci Total Environ doi: 10.1016/j.scitotenv.2022.156867 – year: 2022 ident: 841_CR8 publication-title: Arab J Geosci doi: 10.1007/s12517-022-10098-2 – year: 2023 ident: 841_CR29 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120616 – volume: 1 start-page: 1 year: 2023 ident: 841_CR40 publication-title: Neural Process Lett – year: 2014 ident: 841_CR16 publication-title: Int J Climatol doi: 10.1002/joc.3676 – year: 2022 ident: 841_CR41 publication-title: Water Supply doi: 10.2166/ws.2022.115 – year: 2020 ident: 841_CR2 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.124647 – year: 2022 ident: 841_CR37 publication-title: J Comput Phys doi: 10.1016/j.jcp.2021.110784 – volume: 16 start-page: 5302 issue: 14 year: 2023 ident: 841_CR27 publication-title: Energies doi: 10.3390/en16145302 – year: 2023 ident: 841_CR35 publication-title: Water doi: 10.3390/w15122225 – year: 2022 ident: 841_CR24 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-022-21727-4 – year: 2022 ident: 841_CR38 publication-title: Comput Netw doi: 10.1016/j.comnet.2021.108616 – year: 2023 ident: 841_CR22 publication-title: Sci Rep doi: 10.1038/s41598-023-32620-6 – year: 2022 ident: 841_CR20 publication-title: J Water Clim Change doi: 10.2166/wcc.2021.287 – year: 2023 ident: 841_CR4 publication-title: J Syst Softw doi: 10.1016/j.jss.2023.111772 – year: 2022 ident: 841_CR32 publication-title: Sustainability (Switzerland) doi: 10.3390/su14138209 |
| SSID | ssj0000528745 |
| Score | 2.3408434 |
| Snippet | Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual shrinkage... Abstract Monitoring water resources requires accurate predictions of rainfall data. Our study introduces a novel deep learning model named the deep residual... |
| SourceID | doaj unpaywall proquest crossref springer |
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 13 |
| SubjectTerms | Accuracy Algorithms Deep learning Deep learning models Earth and Environmental Science Ecotoxicology Environment Feature selection forests Hybrid models Hydrologic data Learning algorithms Machine learning Mathematical models meteorological data Mutation Normal distribution Optimizers Parameters Particle swarm optimization Pollution Predation prediction Predictions Predictive analytics rain Rainfall Root-mean-square errors shrinkage system optimization Temporal variations Water monitoring Water resources |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwELbK9gAcEK-KpQUZiQOIRt04dh5ICNGypUJihUor9Rb5ld2KbLLdZIV64z_wD_kN_ABmnMfSy4pbEo-tcTKeGccz8xHyMuFhpvVIe4FWI49zGXuxirQXy0iB9dWcKdwofpmEJ-f884W42CKTLhcGwyo7negUtSk1_iM_YIkfIFIM5-8XVx6iRuHpagehIVtoBfPOlRi7RbYZVsYakO3D8eTraf_XZSRcffcueyYODypQ3RiEy7iHteV9L7lhoVwh_xveZ39gepfcXhULef1D5vk_Nun4PrnXOpP0Q_P1H5AtWzwkO-N17ho0tou3ekT-fJKrCnMm6XzVHMD__vmrXGpJF0vbQCtRmU9h0vVsDk3G2gWF3bhL16LVDPj5DtqHFk3kOH318fTb5DUQtuWtcooh7K0ow11Pd3bkyMAqmnJOwUuGGVIHwfOWAjddGAKdu8BOS1ski2lDgx0ch5i84h4W9Sy_pohtkcFLgSEMzS7x1B-bL5cIAwMj1hSjXx-T8-Px2dGJ14I-eJqHrPaYjDPBVRIImSiuTSQ101xE4IdkArSPsdrANgcUrUkyHVo7UoGwlmnf-CAhKtghg6Is7BNCR5IF0tpIxpGEsbkMjAJ_yATMD5U0yZD43YdOdVsRHYE58tTtjOIwbYQjBeFInXCk0OdN32fR1APZSH2I8tNTYi1v96BcTtNWNUB3AdZKyFiIgGsVy8xklgXw3uGCC39I9jrpS1sFU6Xr5TAkL_pmUA143iMLW66qNABrFqICj4dkv5Pa9RCb2N7vJfs_Zvl0M4O75A7D5eVigPbIoF6u7DPw5Gr1vF2efwEm6U-k priority: 102 providerName: ProQuest – databaseName: Springer Nature OA Free Journals dbid: C24 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR3JbtQw1IJyAA4VW9WhBRmJA4hGTLxk4QZDS4VED9BKvVneMjMik4ySjFBv_AN_yDfwATw7TkolVMFtJn7vyU7eZr0Noec5SwqtpzqiWk0jxmQWZSrVUSZTBdZXM6LcRfHTSXJ8xj6e8_NQFNYO2e5DSNJrai_WWfK6BR3rsmUJi1wT-DjKb6Jb4H8QN7BhFmoc-o7evof7UCHzV9QrVsg367_iYY5B0bvo9qZay4tvsiz_sDtH99B2cBjx2_4L30c3bPUA7Rxe1qfBYhDQ9iH69UFuWlcXiVebPsj-8_uPutESrxvbj0_CspzXzbJbrGDJWLvGcOP2JVm4XcB-voKGwVWfHY5fvP_85eQlAIYWViV2aeqBXeHfCHc682Bg-Uy9wuAJwwmxH7PzBsNuhlQDvPLJmxaHaRXzHsYh-B26AhX_sOoW5QV28ysKeClAwuBi6SL7bnnZuFEvQLHDLsP1ETo7OjydHUdhsEOkWUK6iMis4EzllMtcMW1SqYlmPAVfo-CgYYzVBq4yoExNXujE2qmi3FqiYxPHlCu6g7aqurK7CE8lodLaVGapBNpMUqPA5zGUxImSJp-gePjQQoeu5274Rin87SdLRM8cAphDeOYQgPNqxFn3PT-uhX7n-GeEdP26_YO6mYsg_oDOwSJxmXFOmVaZLExhCYX3Dj8Yjydof-A-EZRIK0gOh83hUGyCno3LIP4upiMrW29aQcFiJU5JZxN0MHDtJYnrtn0wcvY_nPLx_1HfQ3eIEzef97OPtrpmY5-A99app15YfwMkzEXB priority: 102 providerName: Springer Nature – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvKsuFGQkDiCa7Sax8-BWSkuFxApBK5VT5Fd2l2aTVZIFlRP_gX_Ib-AHMOM8ShGqQOK2G48tTzyeGccz8xHyOGZBqtRYOb6SY4cxETmRDJUTiVCC9VXMk3hQfDMJDo7Y62N-3JYUwlwYk38y9jP0qLuXRBSpJrkBwRNMub3UabPXo2C7AsWLIbQec7AyvOvEl8lawMEtH5C1o8nbnQ8ILofp0qCEeZc088eO5wyTrd9_zuns70mvkSurfClOP4ss-8UU7d8gHzsmmgiUk9GqliP15bf6jv-Fy5vkeuuw0p1Gwm6RSya_Tdb3zvLjoLFVENUd8uOVWFWYl0kXq-aS__vXb0WpBF2WpoFvoiKbFuW8ni2gSRuzpHDitylhtJrBNE9Aw9G8iU6nT16-ez95CoRtCa2MYph8u13gX093uGvJwPLqYkHBE4fXSS3Mz3MKs-lCHejCBo8a2qJlTBsa7GBniAky9mFez7JTivgZKawADKFpOsfIAmyelwg1AyPWFCNs75Kj_b3D3QOnBZZwFAu82vFElHImY5-LWDKlQ6E8xXgIvk7KQcNpozQcpUBudJyqwJix9LkxnnK16_pc-utkkBe52SB0LDxfGBOKKBQwNhO-luBzad9zAyl0PCRuJ1WJaquuI_hHltjTVxQkzeImsLiJXdwE-jzr-yybmiMXUr9AYe0psV64fVCU06RVP9Cdg0XkIuLcZ0pGItWp8Xx47_CDcXdINjtRT1olViVeDMzGwBQbkkd9M6gfvFMSuSlWVeKDxQzQSERDstUJ89kQF017q99Gf8HlvX8jv0-uerhdbNzRJhnU5co8AO-xlg9bvfATaZ5yyg priority: 102 providerName: Unpaywall |
| Title | Gaussian mutation–orca predation algorithm–deep residual shrinkage network (DRSN)–temporal convolutional network (TCN)–random forest model: an advanced machine learning model for predicting monthly rainfall and filtering irrelevant data |
| URI | https://link.springer.com/article/10.1186/s12302-024-00841-9 https://www.proquest.com/docview/2913596244 https://www.proquest.com/docview/3153630118 https://enveurope.springeropen.com/counter/pdf/10.1186/s12302-024-00841-9 https://doaj.org/article/1054675a85534cb8afdfe23cedfdf451 |
| UnpaywallVersion | publishedVersion |
| Volume | 36 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: KQ8 dateStart: 20110101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2190-4715 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: BENPR dateStart: 20240101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Public Health Database customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: 8C1 dateStart: 20240101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: Springer Nature HAS Fully OA customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: AAJSJ dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: C6C dateStart: 19890301 isFulltext: true titleUrlDefault: http://www.springeropen.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Nature OA Free Journals customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: C24 dateStart: 20110101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature – providerCode: PRVAVX databaseName: Springer Open Access Hybrid - NESLI2 2011-2012 customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: 40G dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com/ providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2190-4715 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000528745 issn: 2190-4715 databaseCode: U2A dateStart: 20100201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9NAEF5BewAOiFfVQIkWiQOIWtj7sNfc2pC2QiKqSiOVk7UvNxGOE8WOUG_8B_4hv4EfwOzacdNL4cBlFXtnVzPOt7Oz2nkg9Dplca51qAOqVRgwJkUgVKIDIRMFu69mRLmD4udRfDJmny74xUapL-cT1qQHbj4crGoOa5lLwTllWgmZm9wSqq2BH8wHT5NQpBuHqSart8_jvo6SEfH7ClS0c7YlLHA55KMgvbET-YT9N6zM7mL0Abq3Khfy6rssio295-gRetgajfigYfYxumPLJ2hneB2jBp3tIq2eot_HclW52Eg8WzUX7b9-_JwvtcSLpW1KKGFZXM6X03oygy5j7QLDqduHZeFqAvx8Ay2Dy8ZDHL_5ePZl9BYI2zRWBXau6i1k4amjOx94Mtj9zHyGwRoGCbEvtfMBAzdrdwM88w6cFrcVKy4bGjfAc-iCVPzLsp4UV9jVsMjho8AUBudTd7vvuqdLV-4FZqyx83J9hsZHw_PBSdAWdwg0i0kdEClyzlRKuUwV0yaRmmjGE7A3cg5axlht4DgDCtWkuY6tDRXl1hIdmSiiXNEdtFXOS7uLcCgJldYmUiQS5maSGgV2j6EkipU0aQ9F6z86023mc1eAo8j8CUjEWQOODMCReXBkMOZdN2bR5P24lfrQ4aejdDm7_QtActYiOfsbkntob42-rFUkVUZSEDYFoVgPveq6QQW4ex1Z2vmqyijsWrFT1KKH9teovZ7iNrb3O2T_g5TP_4eUL9B94hah9wjaQ1v1cmVfgl1Xqz66y8JjaMUg6qPtw-Ho9AyeBoS5Nh70_RKHdkyg3R6PTg--_gH6r1ns |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZKORQOiFdFoICRQALRVbN-7AMJIUhbUtrmAK3U2-LXJhWb3ZBNVOXGf-B_8KP4DfwAxt5H6CXi0luyHluz9nhmvJ6ZD6HnMQtSpbrKo0p2PcZE5EUyVF4kQgnWVzEi7UHxeBD0T9mnM362hn41uTA2rLLRiU5R60LZb-Q7JPapRYph7N3ku2dRo-ztagOhUYnFoVlcwJGtfHuwC-v7gpD9vZNe36tRBTzFAjLziIhSzmRMuYglUzoUiijGQzB0KQfx1kZp8KNhJ-s4VYExXUm5MUT52gcWJIVxr6HrjJLQKoKo57ffdLrcVY9vcnOiYKcEw2BDfAnzbOV634sv2T8HE3DJt22vY2-ijXk-EYsLkWX_WLz92-hW7ari95Vs3UFrJr-LNveWmXHQWKuG8h7681HMS5uRicfz6nr_94-fxVQJPJmaCrgJi2wIUzobjaFJGzPBcNZ3yWC4HAE_30C34byKS8cvdz9_GbwCwrp4VoZtgHy9UeBfS3fSc2Rgc3UxxuCDwxtiB_DzBgM3TZADHruwUYNrnIxhRWM7OA5taox7mM9G2QJb5IwUJgWG0Dg9tzEFtvl8akFmYMQZtrG199HplSz-JlrPi9w8QLgrCBXGhCIKBYzNBNUSvC1NiR9IoeMO8puFTlRdb93CfmSJO3dFQVIJRwLCkTjhSKDP67bPpKo2spL6g5WfltJWCncPiukwqRUPdOdgC7mIOKdMyUikOjWEwrzDD8b9DtpqpC-p1VeZLDdbBz1rm0Hx2NskkZtiXiYUbGVgzUPUQduN1C6HWMX2divZ__GWD1cz-BRt9E-Oj5Kjg8HhI3SD2K3moo220PpsOjePwWecySduo2L09ao1w18dR4Yn |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbhMxELVKkbg8IG4VgQJGAglEV8l67b0gIQRJQ0shQrSV-rb4tknFZjdkN6ryxj_wN3wO38AHMPZeQl8iXvqWrMfWrD2eGa9n5iD0NKJ-ImVPOp4UPYdSHjqhCKQT8kCA9ZWUCHNQ_DTy947phxN2soF-NbkwJqyy0YlWUatcmm_kXRK5nkGKobSb1GERnwfDN7PvjkGQMjetDZxGJSIHenkGx7fi9f4A1voZIcPdo_6eUyMMOJL6pHQIDxNGReQxHgkqVcAlkZQFYPQSBqKutFTgU8OuVlEifa17wmNaE-kqF9gRHox7CV0OPN83dfvDvtt-3-kxW0m-ydMJ_W4BRsKE-xLqmCr2rhOds4UWMuCcn9tezV5HVxfZjC_PeJr-Y_2GN9GN2m3Fbys5u4U2dHYbbe2usuSgsVYTxR305z1fFCY7E08X1VX_7x8_87nkeDbXFYgT5ukYprScTKFJaT3DcO63iWG4mAA_30DP4ayKUcfPB18ORy-AsC6klWITLF9vGvjX0h31LRnYX5VPMfjj8IbYgv28wsBNE_CApzaEVOMaM2Nc0ZgOlkOTJmMfZuUkXWKDopHApMAQCienJr7ANJ_ODeAMjFhiE2d7Fx1fyOJvoc0sz_Q9hHuceFzrgIcBh7Ep95QAz0t5xPUFV1EHuc1Cx7KuvW4gQNLYnsFCP66EIwbhiK1wxNDnZdtnVlUeWUv9zshPS2mqhtsH-Xwc10oIujOwi4yHjHlUipAnKtHEg3mHH5S5HbTdSF9cq7IiXm28DnrSNoMSMjdLPNP5oog9sJu-MRVhB-00UrsaYh3bO61k_8db3l_P4GN0BXRC_HF_dPAAXSNmp9nAo220Wc4X-iG4j6V4ZPcpRl8vWjH8BRfEimE |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwELZgewAOvKsuFGQkDiCa7Sax8-BWSkuFxApBK5VT5Fd2l2aTVZIFlRP_gX_Ib-AHMOM8ShGqQOK2G48tTzyeGccz8xHyOGZBqtRYOb6SY4cxETmRDJUTiVCC9VXMk3hQfDMJDo7Y62N-3JYUwlwYk38y9jP0qLuXRBSpJrkBwRNMub3UabPXo2C7AsWLIbQec7AyvOvEl8lawMEtH5C1o8nbnQ8ILofp0qCEeZc088eO5wyTrd9_zuns70mvkSurfClOP4ss-8UU7d8gHzsmmgiUk9GqliP15bf6jv-Fy5vkeuuw0p1Gwm6RSya_Tdb3zvLjoLFVENUd8uOVWFWYl0kXq-aS__vXb0WpBF2WpoFvoiKbFuW8ni2gSRuzpHDitylhtJrBNE9Aw9G8iU6nT16-ez95CoRtCa2MYph8u13gX093uGvJwPLqYkHBE4fXSS3Mz3MKs-lCHejCBo8a2qJlTBsa7GBniAky9mFez7JTivgZKawADKFpOsfIAmyelwg1AyPWFCNs75Kj_b3D3QOnBZZwFAu82vFElHImY5-LWDKlQ6E8xXgIvk7KQcNpozQcpUBudJyqwJix9LkxnnK16_pc-utkkBe52SB0LDxfGBOKKBQwNhO-luBzad9zAyl0PCRuJ1WJaquuI_hHltjTVxQkzeImsLiJXdwE-jzr-yybmiMXUr9AYe0psV64fVCU06RVP9Cdg0XkIuLcZ0pGItWp8Xx47_CDcXdINjtRT1olViVeDMzGwBQbkkd9M6gfvFMSuSlWVeKDxQzQSERDstUJ89kQF017q99Gf8HlvX8jv0-uerhdbNzRJhnU5co8AO-xlg9bvfATaZ5yyg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Gaussian+mutation%E2%80%93orca+predation+algorithm%E2%80%93deep+residual+shrinkage+network+%28DRSN%29%E2%80%93temporal+convolutional+network+%28TCN%29%E2%80%93random+forest+model%3A+an+advanced+machine+learning+model+for+predicting+monthly+rainfall+and+filtering+irrelevant+data&rft.jtitle=Environmental+sciences+Europe&rft.au=Mohammad+Ehteram&rft.au=Mahdie+Afshari+Nia&rft.au=Fatemeh+Panahi&rft.au=Hanieh+Shabanian&rft.date=2024-12-01&rft.pub=SpringerOpen&rft.eissn=2190-4715&rft.volume=36&rft.issue=1&rft.spage=1&rft.epage=22&rft_id=info:doi/10.1186%2Fs12302-024-00841-9&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1054675a85534cb8afdfe23cedfdf451 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2190-4715&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2190-4715&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2190-4715&client=summon |