Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm

Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because...

Full description

Saved in:
Bibliographic Details
Published inLinear algebra and its applications Vol. 513; pp. 342 - 375
Main Authors Domanov, Ignat, De Lathauwer, Lieven
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 15.01.2017
American Elsevier Company, Inc
Subjects
Online AccessGet full text
ISSN0024-3795
1873-1856
1873-1856
DOI10.1016/j.laa.2016.10.019

Cover

Abstract Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3. In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)/2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1).
AbstractList Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3.In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)√2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1).
Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3. In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)/2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1).
Author Domanov, Ignat
De Lathauwer, Lieven
Author_xml – sequence: 1
  givenname: Ignat
  surname: Domanov
  fullname: Domanov, Ignat
  email: ignat.domanov@kuleuven.be
  organization: Group Science, Engineering and Technology, KU Leuven – Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
– sequence: 2
  givenname: Lieven
  surname: De Lathauwer
  fullname: De Lathauwer, Lieven
  email: lieven.delathauwer@kuleuven.be
  organization: Group Science, Engineering and Technology, KU Leuven – Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium
BookMark eNqNkEtLZDEQhYMo2D5-gLvArG-b5Oa-xtXQzIyCIIiuQ3VSV9Okk2uSnrH_vWnblQtxlUpxvkOdc0IOffBIyAVnc854e7maO4C5KGP5zxkfDsiM911d8b5pD8mMMSGruhuaY3KS0ooxJjsmZsQvoDhZDY5OwW3BWE0N6rCeQrLZBk_DSPOzjaYK0WCkGX0KMf2k9-jgFQ3dePuyQY8pUR28eYcSBW8ouCdcRiiOZQrR5uf1GTkawSU8_3hPyeOf3w-L6-r27u_N4tdtpWUrciV6QGyNHBrRGQ2SQ7-ULQwN7w0wFE1ttK6BtVI349jiKNmSi6bjTMDSDGN9SsTed-Mn2P4H59QU7RriVnGmdo2plSqNqV1ju1VprEA_9tAUQ4mUslqFTfTlziLrh060TMqi6vYqHUNKEUelbYZd6lyyui_9-SfyOzdd7Rksbf2zGFXSFr1GYyPqrEywX9BvgJam8g
CitedBy_id crossref_primary_10_1016_j_image_2018_10_006
crossref_primary_10_1016_j_laa_2019_11_005
crossref_primary_10_1016_j_chemolab_2019_103822
crossref_primary_10_1080_02664763_2017_1381669
crossref_primary_10_1109_TWC_2021_3053580
crossref_primary_10_1016_j_laa_2018_07_004
crossref_primary_10_1016_j_laa_2020_03_042
crossref_primary_10_4218_etrij_2019_0343
crossref_primary_10_1109_LSP_2022_3156870
crossref_primary_10_1016_j_laa_2021_03_022
crossref_primary_10_1137_21M1399415
crossref_primary_10_1002_cem_3235
crossref_primary_10_1002_nla_2190
crossref_primary_10_1007_s00500_019_04320_9
crossref_primary_10_1109_TSP_2017_2690524
crossref_primary_10_1137_17M1140790
crossref_primary_10_1016_j_apnum_2022_08_005
crossref_primary_10_1109_MSP_2020_3003544
crossref_primary_10_1109_TSP_2018_2873545
crossref_primary_10_1137_21M1423026
crossref_primary_10_1109_TSP_2018_2835423
crossref_primary_10_1137_23M1557246
crossref_primary_10_1109_ACCESS_2017_2695497
crossref_primary_10_1109_TSP_2018_2830317
crossref_primary_10_1155_2019_7389306
crossref_primary_10_1109_TNNLS_2020_3009210
crossref_primary_10_1145_3555369
crossref_primary_10_3389_fams_2022_836433
crossref_primary_10_1016_j_sigpro_2022_108716
crossref_primary_10_1090_mcom_3681
crossref_primary_10_1109_LSENS_2018_2865448
crossref_primary_10_1109_TSP_2017_2736505
crossref_primary_10_1080_03081087_2023_2211717
crossref_primary_10_1155_2019_5794791
crossref_primary_10_1007_s00009_021_01788_4
crossref_primary_10_1109_TSP_2016_2617858
crossref_primary_10_1109_TSP_2017_2786208
crossref_primary_10_1137_18M1200531
crossref_primary_10_1016_j_swevo_2021_100995
crossref_primary_10_1109_TNNLS_2021_3106654
crossref_primary_10_1137_21M1426444
crossref_primary_10_1007_s00521_022_08023_5
crossref_primary_10_1007_s10013_019_00372_4
crossref_primary_10_1016_j_neunet_2022_05_023
crossref_primary_10_1109_TSP_2023_3289730
Cites_doi 10.1137/120877258
10.1137/0614071
10.1137/07070111X
10.1137/040608830
10.1109/10.2119
10.1137/110825765
10.1109/MSP.2013.2297439
10.1016/0167-9473(94)90132-5
10.1002/sapm192761164
10.1137/120868323
10.1137/110829180
10.1137/120877234
10.1016/j.laa.2013.05.023
10.1137/140970276
10.1016/0024-3795(77)90069-6
10.1007/BF02310791
10.1137/130916084
10.1109/TSP.2004.832022
ContentType Journal Article
Copyright 2016 Elsevier Inc.
Copyright American Elsevier Company, Inc. Jan 15, 2017
Copyright_xml – notice: 2016 Elsevier Inc.
– notice: Copyright American Elsevier Company, Inc. Jan 15, 2017
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.laa.2016.10.019
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1873-1856
EndPage 375
ExternalDocumentID 10.1016/j.laa.2016.10.019
10_1016_j_laa_2016_10_019
S002437951630492X
GrantInformation_xml – fundername: Belgian Federal Science Policy Office
  grantid: IUAP P7
– fundername: European Research Council
  grantid: 339804
  funderid: http://dx.doi.org/10.13039/501100000781
– fundername: F.W.O.
  grantid: G.0830.14N; G.0881.14N
– fundername: Research Council KU Leuven
  grantid: c16/15/059-nD; CoE PFV/10/002
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
6TJ
7-5
71M
8P~
9JN
AACTN
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AASFE
AAXUO
ABAOU
ABJNI
ABMAC
ABVKL
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
IXB
J1W
KOM
M26
M41
MCRUF
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSW
SSZ
T5K
TN5
TWZ
WH7
XPP
YQT
ZMT
~G-
29L
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
ADVLN
AEIPS
AETEA
AEUPX
AFFNX
AFJKZ
AFPUW
AGHFR
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FA8
FGOYB
G-2
HZ~
MVM
OHT
R2-
SEW
T9H
WUQ
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
JQ2
L7M
L~C
L~D
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c462t-28aee6d49527dca41a8b46a9518da0e253dcc3a064c5ff6ef40b1257102abd9f3
IEDL.DBID .~1
ISSN 0024-3795
1873-1856
IngestDate Tue Aug 19 23:45:09 EDT 2025
Sun Jul 13 04:04:34 EDT 2025
Thu Apr 24 22:55:10 EDT 2025
Wed Oct 01 03:57:18 EDT 2025
Fri Feb 23 02:35:53 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Canonical polyadic decomposition
CANDECOMP/PARAFAC decomposition
Tensor
Uniqueness of CPD
15A23
Eigenvalue decomposition
Uni-mode uniqueness
15A69
CP decomposition
Singular value decomposition
Language English
License publisher-specific-oa
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c462t-28aee6d49527dca41a8b46a9518da0e253dcc3a064c5ff6ef40b1257102abd9f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.laa.2016.10.019
PQID 2089726044
PQPubID 2047554
PageCount 34
ParticipantIDs unpaywall_primary_10_1016_j_laa_2016_10_019
proquest_journals_2089726044
crossref_citationtrail_10_1016_j_laa_2016_10_019
crossref_primary_10_1016_j_laa_2016_10_019
elsevier_sciencedirect_doi_10_1016_j_laa_2016_10_019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-01-15
PublicationDateYYYYMMDD 2017-01-15
PublicationDate_xml – month: 01
  year: 2017
  text: 2017-01-15
  day: 15
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Linear algebra and its applications
PublicationYear 2017
Publisher Elsevier Inc
American Elsevier Company, Inc
Publisher_xml – name: Elsevier Inc
– name: American Elsevier Company, Inc
References Sorber, Van Barel, De Lathauwer (br0230) 2013; 23
(br0050) 2010
Domanov, De Lathauwer (br0080) 2013; 34
Kruskal (br0190) 1977; 18
Carroll, Chang (br0020) 1970; 35
Zhang, Huang, Zhu, Feng (br0240) 2013; 439
Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos (br0220) 2016
Harshman (br0130) 1972; 22
Leurgans, Ross, Abel (br0200) October 1993; 14
Harshman, Lundy (br0140) 1984
Domanov, De Lathauwer (br0070) 2013; 34
Harshman, Lundy (br0150) 1994
Möcks (br0210) 1988; 35
Hitchcock (br0160) 1927; 6
Chiantini, Ottaviani (br0030) 2012; 33
De Lathauwer (br0060) 2006; 28
Guo, Miron, Brie, Stegeman (br0110) 2012; 33
Bocci, Chiantini, Ottaviani (br0010) 2013
Jiang, Sidiropoulos (br0170) September 2004; 52
Cichocki, Mandic, Caiafa, Phan, Zhou, Zhao, De Lathauwer (br0040) March 2015; 32
Kolda, Bader (br0180) 2009; 51
Domanov, De Lathauwer (br0100) 2015; 36
Domanov, De Lathauwer (br0090) 2014; 35
Harshman (br0120) 1970; 16
Harshman (10.1016/j.laa.2016.10.019_br0130) 1972; 22
Kolda (10.1016/j.laa.2016.10.019_br0180) 2009; 51
Möcks (10.1016/j.laa.2016.10.019_br0210) 1988; 35
Carroll (10.1016/j.laa.2016.10.019_br0020) 1970; 35
Zhang (10.1016/j.laa.2016.10.019_br0240) 2013; 439
Hitchcock (10.1016/j.laa.2016.10.019_br0160) 1927; 6
Domanov (10.1016/j.laa.2016.10.019_br0090) 2014; 35
Kruskal (10.1016/j.laa.2016.10.019_br0190) 1977; 18
Domanov (10.1016/j.laa.2016.10.019_br0080) 2013; 34
Sidiropoulos (10.1016/j.laa.2016.10.019_br0220) 2016
Bocci (10.1016/j.laa.2016.10.019_br0010) 2013
Chiantini (10.1016/j.laa.2016.10.019_br0030) 2012; 33
Harshman (10.1016/j.laa.2016.10.019_br0150) 1994
Harshman (10.1016/j.laa.2016.10.019_br0120) 1970; 16
De Lathauwer (10.1016/j.laa.2016.10.019_br0060) 2006; 28
Leurgans (10.1016/j.laa.2016.10.019_br0200) 1993; 14
Domanov (10.1016/j.laa.2016.10.019_br0070) 2013; 34
Domanov (10.1016/j.laa.2016.10.019_br0100) 2015; 36
Cichocki (10.1016/j.laa.2016.10.019_br0040) 2015; 32
Jiang (10.1016/j.laa.2016.10.019_br0170) 2004; 52
(10.1016/j.laa.2016.10.019_br0050) 2010
Sorber (10.1016/j.laa.2016.10.019_br0230) 2013; 23
Guo (10.1016/j.laa.2016.10.019_br0110) 2012; 33
Harshman (10.1016/j.laa.2016.10.019_br0140) 1984
References_xml – volume: 6
  start-page: 164
  year: 1927
  end-page: 189
  ident: br0160
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
– start-page: 1
  year: 2013
  end-page: 12
  ident: br0010
  article-title: Refined methods for the identifiability of tensors
  publication-title: Ann. Mat. Pura Appl.
– volume: 35
  start-page: 636
  year: 2014
  end-page: 660
  ident: br0090
  article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 14
  start-page: 1064
  year: October 1993
  end-page: 1083
  ident: br0200
  article-title: A decomposition for three-way arrays
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 36
  start-page: 1567
  year: 2015
  end-page: 1589
  ident: br0100
  article-title: Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2016
  ident: br0220
  article-title: Tensor Decomposition for Signal Processing and Machine Learning
– volume: 439
  start-page: 1918
  year: 2013
  end-page: 1928
  ident: br0240
  article-title: Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings
  publication-title: Linear Algebra Appl.
– volume: 35
  start-page: 283
  year: 1970
  end-page: 319
  ident: br0020
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition
  publication-title: Psychometrika
– volume: 16
  start-page: 1
  year: 1970
  end-page: 84
  ident: br0120
  article-title: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis
  publication-title: UCLA Work. Pap. Phon.
– volume: 28
  start-page: 642
  year: 2006
  end-page: 666
  ident: br0060
  article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal. Appl.
– year: 2010
  ident: br0050
  publication-title: Handbook of Blind Source Separation, Independent Component Analysis and Applications
– volume: 34
  start-page: 855
  year: 2013
  end-page: 875
  ident: br0070
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 22
  start-page: 111
  year: 1972
  end-page: 117
  ident: br0130
  article-title: Determination and proof of minimum uniqueness conditions for PARAFAC1
  publication-title: UCLA Work. Pap. Phon.
– volume: 18
  start-page: 95
  year: 1977
  end-page: 138
  ident: br0190
  article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
  publication-title: Linear Algebra Appl.
– volume: 23
  start-page: 695
  year: 2013
  end-page: 720
  ident: br0230
  article-title: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-
  publication-title: SIAM J. Optim.
– volume: 33
  start-page: 111
  year: 2012
  end-page: 129
  ident: br0110
  article-title: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 34
  start-page: 876
  year: 2013
  end-page: 903
  ident: br0080
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
– volume: 35
  start-page: 482
  year: 1988
  end-page: 484
  ident: br0210
  article-title: Topographic components model for event-related potentials and some biophysical considerations
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 122
  year: 1984
  end-page: 215
  ident: br0140
  article-title: The PARAFAC model for three-way factor analysis and multidimensional scaling
  publication-title: Research Methods for Multimode Data Analysis
– volume: 33
  start-page: 1018
  year: 2012
  end-page: 1037
  ident: br0030
  article-title: On generic identifiability of 3-tensors of small rank
  publication-title: SIAM J. Matrix Anal. Appl.
– start-page: 39
  year: 1994
  end-page: 72
  ident: br0150
  article-title: Parafac: parallel factor analysis
  publication-title: Comput. Statist. Data Anal.
– volume: 32
  start-page: 145
  year: March 2015
  end-page: 163
  ident: br0040
  article-title: Tensor decompositions for signal processing applications. From two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
– volume: 52
  start-page: 2625
  year: September 2004
  end-page: 2636
  ident: br0170
  article-title: Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints
  publication-title: IEEE Trans. Signal Process.
– volume: 51
  start-page: 455
  year: 2009
  end-page: 500
  ident: br0180
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
– volume: 34
  start-page: 876
  year: 2013
  ident: 10.1016/j.laa.2016.10.019_br0080
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120877258
– volume: 14
  start-page: 1064
  issue: 4
  year: 1993
  ident: 10.1016/j.laa.2016.10.019_br0200
  article-title: A decomposition for three-way arrays
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/0614071
– volume: 51
  start-page: 455
  year: 2009
  ident: 10.1016/j.laa.2016.10.019_br0180
  article-title: Tensor decompositions and applications
  publication-title: SIAM Rev.
  doi: 10.1137/07070111X
– volume: 28
  start-page: 642
  year: 2006
  ident: 10.1016/j.laa.2016.10.019_br0060
  article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/040608830
– volume: 16
  start-page: 1
  year: 1970
  ident: 10.1016/j.laa.2016.10.019_br0120
  article-title: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis
  publication-title: UCLA Work. Pap. Phon.
– volume: 35
  start-page: 482
  year: 1988
  ident: 10.1016/j.laa.2016.10.019_br0210
  article-title: Topographic components model for event-related potentials and some biophysical considerations
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.2119
– volume: 33
  start-page: 111
  year: 2012
  ident: 10.1016/j.laa.2016.10.019_br0110
  article-title: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110825765
– volume: 32
  start-page: 145
  year: 2015
  ident: 10.1016/j.laa.2016.10.019_br0040
  article-title: Tensor decompositions for signal processing applications. From two-way to multiway component analysis
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2013.2297439
– start-page: 39
  year: 1994
  ident: 10.1016/j.laa.2016.10.019_br0150
  article-title: Parafac: parallel factor analysis
  publication-title: Comput. Statist. Data Anal.
  doi: 10.1016/0167-9473(94)90132-5
– volume: 6
  start-page: 164
  year: 1927
  ident: 10.1016/j.laa.2016.10.019_br0160
  article-title: The expression of a tensor or a polyadic as a sum of products
  publication-title: J. Math. Phys.
  doi: 10.1002/sapm192761164
– volume: 23
  start-page: 695
  year: 2013
  ident: 10.1016/j.laa.2016.10.019_br0230
  article-title: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr,Lr,1) terms and a new generalization
  publication-title: SIAM J. Optim.
  doi: 10.1137/120868323
– volume: 33
  start-page: 1018
  issue: 3
  year: 2012
  ident: 10.1016/j.laa.2016.10.019_br0030
  article-title: On generic identifiability of 3-tensors of small rank
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/110829180
– volume: 34
  start-page: 855
  year: 2013
  ident: 10.1016/j.laa.2016.10.019_br0070
  article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/120877234
– volume: 439
  start-page: 1918
  issue: 7
  year: 2013
  ident: 10.1016/j.laa.2016.10.019_br0240
  article-title: Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings
  publication-title: Linear Algebra Appl.
  doi: 10.1016/j.laa.2013.05.023
– volume: 36
  start-page: 1567
  issue: 4
  year: 2015
  ident: 10.1016/j.laa.2016.10.019_br0100
  article-title: Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/140970276
– start-page: 122
  year: 1984
  ident: 10.1016/j.laa.2016.10.019_br0140
  article-title: The PARAFAC model for three-way factor analysis and multidimensional scaling
– year: 2010
  ident: 10.1016/j.laa.2016.10.019_br0050
– start-page: 1
  year: 2013
  ident: 10.1016/j.laa.2016.10.019_br0010
  article-title: Refined methods for the identifiability of tensors
  publication-title: Ann. Mat. Pura Appl.
– volume: 18
  start-page: 95
  year: 1977
  ident: 10.1016/j.laa.2016.10.019_br0190
  article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics
  publication-title: Linear Algebra Appl.
  doi: 10.1016/0024-3795(77)90069-6
– volume: 35
  start-page: 283
  year: 1970
  ident: 10.1016/j.laa.2016.10.019_br0020
  article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition
  publication-title: Psychometrika
  doi: 10.1007/BF02310791
– year: 2016
  ident: 10.1016/j.laa.2016.10.019_br0220
– volume: 22
  start-page: 111
  year: 1972
  ident: 10.1016/j.laa.2016.10.019_br0130
  article-title: Determination and proof of minimum uniqueness conditions for PARAFAC1
  publication-title: UCLA Work. Pap. Phon.
– volume: 35
  start-page: 636
  issue: 2
  year: 2014
  ident: 10.1016/j.laa.2016.10.019_br0090
  article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition
  publication-title: SIAM J. Matrix Anal. Appl.
  doi: 10.1137/130916084
– volume: 52
  start-page: 2625
  issue: 9
  year: 2004
  ident: 10.1016/j.laa.2016.10.019_br0170
  article-title: Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2004.832022
SSID ssj0004702
Score 2.4445508
Snippet Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 342
SubjectTerms Algebra
Algorithms
CANDECOMP/PARAFAC decomposition
Canonical polyadic decomposition
Computer simulation
CP decomposition
Decomposition
Eigenvalue decomposition
Linear algebra
Mathematical analysis
Matrix
Singular value decomposition
Tensor
Tensors
Uni-mode uniqueness
Uniqueness
Uniqueness of CPD
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd2A7MGBMdGzIB04gV4ntOAm3adpUIa3isErlFD3_iNYtJFWbio2_nuf8qLoJBtwix7bi9-z4e_Ln7xHywVrBQVjFINHAEP8LlnBImXMuTg2WQXPL9XKixlP5ZRbNOrFofxfmwfl9w8MqwMsDhWrkSVhe4HNHRQi7B2RnOvl6-q2lcEhcKE2GlTCJBcM9SPUnmL_r40970BbGfL4uF3D_A4pia7u52G-JWqtGpdCzTG5H61qPzM9HGo7_NJKX5EUHOulpO0tekWeufE32LjeKrasDUp5BWTV3JOmiKu7Bzg21zhPOO1YXrXJaX8-XljVqndQz36vl6jP1dLo7Z-m6kYL1f06KMbZtqWAUSkt9KhEMyrFHfKqW8_r6-xsyvTi_OhuzLhcDM1LxmvEEnFMWwykeWwMyRN9KBYjPEguB45GwxghAgGOiPFcul4FG7OTxC2ib5uKQDHAY7i2hIQ_zQECq4hAwunRaR0nuEtDa8Fy4aEiC3juZ6YTKfb6MIusZaTcZmjLzpvRFaMoh-bhpsmhVOp6qLHuXZx3MaOFDhi57qtlxPz2ybp2v8H2SxhgSSjkknzZT5u_fcPRftd-RXe7RRBCyMDomg3q5dieIhWr9vlsFvwDsKAQF
  priority: 102
  providerName: Unpaywall
Title Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm
URI https://dx.doi.org/10.1016/j.laa.2016.10.019
https://www.proquest.com/docview/2089726044
https://doi.org/10.1016/j.laa.2016.10.019
UnpaywallVersion publishedVersion
Volume 513
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Freedom Collection Journals
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211015
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Free and Delayed Access Journal
  customDbUrl:
  eissn: 1873-1856
  dateEnd: 20211105
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: IXB
  dateStart: 19680101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-1856
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004702
  issn: 1873-1856
  databaseCode: AKRWK
  dateStart: 19680101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQO7Adpm1sWhkgH3YaMiSO82u3rhoqQ1Q7UKmcohfbEUEhqdpUGxf-dt5LncKkiUm7xY4dOX6O_T3le99j7LMxgYTARAKSHATi_0AkElJhrY1TjXXQRbleTKLxVP2YhbMtNupjYYhW6fb-9Z7e7dau5sTN5sm8LCnGtxPTCxFRIMyVM4pgVzFlMTi-f6R5qNhziuFKUOv-z2bH8aqApIf86JgIXiS28_ez6Qn23FnVc7j7BVX15Bg6fcNeO_zIh-shvmVbtn7HXl1sxFeXu6weQd104Y583lR3YErNjSXuuCNo8abg7XW5MKIT3uREYm8Wy6-cmHG_reGrTtWVNkGO7rJZs7o41IZTVhD0r_GJeNUsyvb69j2bnn6_HI2FS6sgtIpkK2QC1kYGPSMZGw3KRzOpCHAiEwOelWFgtA4AsYoOiyKyhfJyhEEERSA3aRF8YNv4GvYj4770Cy-ANIp9QEfR5nmYFDaBPNeyCGw4YF4_oZl2muOU-qLKenLZTYY2yMgGVIU2GLAvmy7zteDGc41Vb6Xsj1WT4YHwXLf93qKZ-2SXeD9JY_TulBqwo42V_z2Gvf8bwyf2UhJC8Hzhh_tsu12s7AHimzY_7BbwIXsxPDsfT7B0NvuGpenk5_DqAR-a_ms
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigcEJ9ioYAPnEBuE8f54oZWVAt0e2qlvUUT21FThWS1mxX0wm9nJussRUJF4hZN7MjxOOM3yptngLfWRgojm0jMSpSE_yOZKcylcy7NDdlwqHKdnyWzC_1lES_2YDrWwjCt0sf-bUwforW3HPvZPF7WNdf4DmJ6MSEKgrlqcQfu6lilnIEd_fzN89Bp4CXDteTm46_NgeTVIGsPhckRM7xYbefvm9MN8HmwaZd4_R2b5sY-dPIQHngAKT5ux_gI9lz7GO7Pd-qr6yfQTrHthnpHseyaa7S1EdYxedwztERXif6yXlk5KG8KZrF3q_UHwdS4H86KzSDrylFQUL5st7Quga0VfCwIJdj0RLrqVnV_-e0pXJx8Op_OpD9XQRqdqF6qDJ1LLKVGKrUGdUh-0gnSTGYWA6fiyBoTIYEVE1dV4iodlISDGItgafMqegb79BruOYhQhVUQYZ6kIVKm6MoyziqXYVkaVUUunkAwTmhhvOg4n33RFCO77KogHxTsAzaRDybwbtdluVXcuK2xHr1U_LFsCtoRbut2OHq08N_smu5neUrpndYTeL_z8r_H8OL_xvAGDmbn89Pi9PPZ15dwTzFcCEIZxoew36827hWBnb58PSzmXxS-_Uw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd2A7MGBMdGzIB04gV4ntOAm3adpUIa3isErlFD3_iNYtJFWbio2_nuf8qLoJBtwix7bi9-z4e_Ln7xHywVrBQVjFINHAEP8LlnBImXMuTg2WQXPL9XKixlP5ZRbNOrFofxfmwfl9w8MqwMsDhWrkSVhe4HNHRQi7B2RnOvl6-q2lcEhcKE2GlTCJBcM9SPUnmL_r40970BbGfL4uF3D_A4pia7u52G-JWqtGpdCzTG5H61qPzM9HGo7_NJKX5EUHOulpO0tekWeufE32LjeKrasDUp5BWTV3JOmiKu7Bzg21zhPOO1YXrXJaX8-XljVqndQz36vl6jP1dLo7Z-m6kYL1f06KMbZtqWAUSkt9KhEMyrFHfKqW8_r6-xsyvTi_OhuzLhcDM1LxmvEEnFMWwykeWwMyRN9KBYjPEguB45GwxghAgGOiPFcul4FG7OTxC2ib5uKQDHAY7i2hIQ_zQECq4hAwunRaR0nuEtDa8Fy4aEiC3juZ6YTKfb6MIusZaTcZmjLzpvRFaMoh-bhpsmhVOp6qLHuXZx3MaOFDhi57qtlxPz2ybp2v8H2SxhgSSjkknzZT5u_fcPRftd-RXe7RRBCyMDomg3q5dieIhWr9vlsFvwDsKAQF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+polyadic+decomposition+of+third-order+tensors%3A+Relaxed+uniqueness+conditions+and+algebraic+algorithm&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Domanov%2C+Ignat&rft.au=De+Lathauwer%2C+Lieven&rft.date=2017-01-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=513&rft.spage=342&rft.epage=375&rft_id=info:doi/10.1016%2Fj.laa.2016.10.019&rft.externalDocID=S002437951630492X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon