Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm
Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because...
Saved in:
| Published in | Linear algebra and its applications Vol. 513; pp. 342 - 375 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier Inc
15.01.2017
American Elsevier Company, Inc |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0024-3795 1873-1856 1873-1856 |
| DOI | 10.1016/j.laa.2016.10.019 |
Cover
| Abstract | Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3.
In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)/2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1). |
|---|---|
| AbstractList | Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3.In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)√2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1). Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic conditions for the uniqueness of individual rank-1 tensors in CPD and present an algorithm to recover them. We call the algorithm “algebraic” because it relies only on standard linear algebra. It does not involve more advanced procedures than the computation of the null space of a matrix and eigen/singular value decomposition. Simulations indicate that the new conditions for uniqueness and the working assumptions for the algorithm hold for a randomly generated I×J×K tensor of rank R≥K≥J≥I≥2 if R is bounded as R≤(I+J+K−2)/2+(K−(I−J)2+4K)/2 at least for the dimensions that we have tested. This improves upon the famous Kruskal bound for uniqueness R≤(I+J+K−2)/2 as soon as I≥3. In the particular case R=K, the new bound above is equivalent to the bound R≤(I−1)(J−1) which is known to be necessary and sufficient for the generic uniqueness of the CPD. An existing algebraic algorithm (based on simultaneous diagonalization of a set of matrices) computes the CPD under the more restrictive constraint R(R−1)≤I(I−1)J(J−1)/2 (implying that R<(J−12)(I−12)/2+1). We give an example of a low-dimensional but high-rank CPD that cannot be found by optimization-based algorithms in a reasonable amount of time while our approach takes less than a second. We demonstrate that, at least for R≤24, our algorithm can recover the rank-1 tensors in the CPD up to R≤(I−1)(J−1). |
| Author | Domanov, Ignat De Lathauwer, Lieven |
| Author_xml | – sequence: 1 givenname: Ignat surname: Domanov fullname: Domanov, Ignat email: ignat.domanov@kuleuven.be organization: Group Science, Engineering and Technology, KU Leuven – Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium – sequence: 2 givenname: Lieven surname: De Lathauwer fullname: De Lathauwer, Lieven email: lieven.delathauwer@kuleuven.be organization: Group Science, Engineering and Technology, KU Leuven – Kulak, E. Sabbelaan 53, 8500 Kortrijk, Belgium |
| BookMark | eNqNkEtLZDEQhYMo2D5-gLvArG-b5Oa-xtXQzIyCIIiuQ3VSV9Okk2uSnrH_vWnblQtxlUpxvkOdc0IOffBIyAVnc854e7maO4C5KGP5zxkfDsiM911d8b5pD8mMMSGruhuaY3KS0ooxJjsmZsQvoDhZDY5OwW3BWE0N6rCeQrLZBk_DSPOzjaYK0WCkGX0KMf2k9-jgFQ3dePuyQY8pUR28eYcSBW8ouCdcRiiOZQrR5uf1GTkawSU8_3hPyeOf3w-L6-r27u_N4tdtpWUrciV6QGyNHBrRGQ2SQ7-ULQwN7w0wFE1ttK6BtVI349jiKNmSi6bjTMDSDGN9SsTed-Mn2P4H59QU7RriVnGmdo2plSqNqV1ju1VprEA_9tAUQ4mUslqFTfTlziLrh060TMqi6vYqHUNKEUelbYZd6lyyui_9-SfyOzdd7Rksbf2zGFXSFr1GYyPqrEywX9BvgJam8g |
| CitedBy_id | crossref_primary_10_1016_j_image_2018_10_006 crossref_primary_10_1016_j_laa_2019_11_005 crossref_primary_10_1016_j_chemolab_2019_103822 crossref_primary_10_1080_02664763_2017_1381669 crossref_primary_10_1109_TWC_2021_3053580 crossref_primary_10_1016_j_laa_2018_07_004 crossref_primary_10_1016_j_laa_2020_03_042 crossref_primary_10_4218_etrij_2019_0343 crossref_primary_10_1109_LSP_2022_3156870 crossref_primary_10_1016_j_laa_2021_03_022 crossref_primary_10_1137_21M1399415 crossref_primary_10_1002_cem_3235 crossref_primary_10_1002_nla_2190 crossref_primary_10_1007_s00500_019_04320_9 crossref_primary_10_1109_TSP_2017_2690524 crossref_primary_10_1137_17M1140790 crossref_primary_10_1016_j_apnum_2022_08_005 crossref_primary_10_1109_MSP_2020_3003544 crossref_primary_10_1109_TSP_2018_2873545 crossref_primary_10_1137_21M1423026 crossref_primary_10_1109_TSP_2018_2835423 crossref_primary_10_1137_23M1557246 crossref_primary_10_1109_ACCESS_2017_2695497 crossref_primary_10_1109_TSP_2018_2830317 crossref_primary_10_1155_2019_7389306 crossref_primary_10_1109_TNNLS_2020_3009210 crossref_primary_10_1145_3555369 crossref_primary_10_3389_fams_2022_836433 crossref_primary_10_1016_j_sigpro_2022_108716 crossref_primary_10_1090_mcom_3681 crossref_primary_10_1109_LSENS_2018_2865448 crossref_primary_10_1109_TSP_2017_2736505 crossref_primary_10_1080_03081087_2023_2211717 crossref_primary_10_1155_2019_5794791 crossref_primary_10_1007_s00009_021_01788_4 crossref_primary_10_1109_TSP_2016_2617858 crossref_primary_10_1109_TSP_2017_2786208 crossref_primary_10_1137_18M1200531 crossref_primary_10_1016_j_swevo_2021_100995 crossref_primary_10_1109_TNNLS_2021_3106654 crossref_primary_10_1137_21M1426444 crossref_primary_10_1007_s00521_022_08023_5 crossref_primary_10_1007_s10013_019_00372_4 crossref_primary_10_1016_j_neunet_2022_05_023 crossref_primary_10_1109_TSP_2023_3289730 |
| Cites_doi | 10.1137/120877258 10.1137/0614071 10.1137/07070111X 10.1137/040608830 10.1109/10.2119 10.1137/110825765 10.1109/MSP.2013.2297439 10.1016/0167-9473(94)90132-5 10.1002/sapm192761164 10.1137/120868323 10.1137/110829180 10.1137/120877234 10.1016/j.laa.2013.05.023 10.1137/140970276 10.1016/0024-3795(77)90069-6 10.1007/BF02310791 10.1137/130916084 10.1109/TSP.2004.832022 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Inc. Copyright American Elsevier Company, Inc. Jan 15, 2017 |
| Copyright_xml | – notice: 2016 Elsevier Inc. – notice: Copyright American Elsevier Company, Inc. Jan 15, 2017 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1016/j.laa.2016.10.019 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1873-1856 |
| EndPage | 375 |
| ExternalDocumentID | 10.1016/j.laa.2016.10.019 10_1016_j_laa_2016_10_019 S002437951630492X |
| GrantInformation_xml | – fundername: Belgian Federal Science Policy Office grantid: IUAP P7 – fundername: European Research Council grantid: 339804 funderid: http://dx.doi.org/10.13039/501100000781 – fundername: F.W.O. grantid: G.0830.14N; G.0881.14N – fundername: Research Council KU Leuven grantid: c16/15/059-nD; CoE PFV/10/002 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 6TJ 7-5 71M 8P~ 9JN AACTN AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AASFE AAXUO ABAOU ABJNI ABMAC ABVKL ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGUBO AGYEJ AHHHB AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE IXB J1W KOM M26 M41 MCRUF MHUIS MO0 N9A O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SES SPC SPCBC SSW SSZ T5K TN5 TWZ WH7 XPP YQT ZMT ~G- 29L 5VS AAEDT AAQFI AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABEFU ABFNM ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO ADVLN AEIPS AETEA AEUPX AFFNX AFJKZ AFPUW AGHFR AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FA8 FGOYB G-2 HZ~ MVM OHT R2- SEW T9H WUQ ~HD 7SC 8FD AFXIZ AGCQF AGRNS JQ2 L7M L~C L~D SSH ADTOC UNPAY |
| ID | FETCH-LOGICAL-c462t-28aee6d49527dca41a8b46a9518da0e253dcc3a064c5ff6ef40b1257102abd9f3 |
| IEDL.DBID | .~1 |
| ISSN | 0024-3795 1873-1856 |
| IngestDate | Tue Aug 19 23:45:09 EDT 2025 Sun Jul 13 04:04:34 EDT 2025 Thu Apr 24 22:55:10 EDT 2025 Wed Oct 01 03:57:18 EDT 2025 Fri Feb 23 02:35:53 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Canonical polyadic decomposition CANDECOMP/PARAFAC decomposition Tensor Uniqueness of CPD 15A23 Eigenvalue decomposition Uni-mode uniqueness 15A69 CP decomposition Singular value decomposition |
| Language | English |
| License | publisher-specific-oa |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-28aee6d49527dca41a8b46a9518da0e253dcc3a064c5ff6ef40b1257102abd9f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.laa.2016.10.019 |
| PQID | 2089726044 |
| PQPubID | 2047554 |
| PageCount | 34 |
| ParticipantIDs | unpaywall_primary_10_1016_j_laa_2016_10_019 proquest_journals_2089726044 crossref_citationtrail_10_1016_j_laa_2016_10_019 crossref_primary_10_1016_j_laa_2016_10_019 elsevier_sciencedirect_doi_10_1016_j_laa_2016_10_019 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-01-15 |
| PublicationDateYYYYMMDD | 2017-01-15 |
| PublicationDate_xml | – month: 01 year: 2017 text: 2017-01-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Linear algebra and its applications |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc American Elsevier Company, Inc |
| Publisher_xml | – name: Elsevier Inc – name: American Elsevier Company, Inc |
| References | Sorber, Van Barel, De Lathauwer (br0230) 2013; 23 (br0050) 2010 Domanov, De Lathauwer (br0080) 2013; 34 Kruskal (br0190) 1977; 18 Carroll, Chang (br0020) 1970; 35 Zhang, Huang, Zhu, Feng (br0240) 2013; 439 Sidiropoulos, De Lathauwer, Fu, Huang, Papalexakis, Faloutsos (br0220) 2016 Harshman (br0130) 1972; 22 Leurgans, Ross, Abel (br0200) October 1993; 14 Harshman, Lundy (br0140) 1984 Domanov, De Lathauwer (br0070) 2013; 34 Harshman, Lundy (br0150) 1994 Möcks (br0210) 1988; 35 Hitchcock (br0160) 1927; 6 Chiantini, Ottaviani (br0030) 2012; 33 De Lathauwer (br0060) 2006; 28 Guo, Miron, Brie, Stegeman (br0110) 2012; 33 Bocci, Chiantini, Ottaviani (br0010) 2013 Jiang, Sidiropoulos (br0170) September 2004; 52 Cichocki, Mandic, Caiafa, Phan, Zhou, Zhao, De Lathauwer (br0040) March 2015; 32 Kolda, Bader (br0180) 2009; 51 Domanov, De Lathauwer (br0100) 2015; 36 Domanov, De Lathauwer (br0090) 2014; 35 Harshman (br0120) 1970; 16 Harshman (10.1016/j.laa.2016.10.019_br0130) 1972; 22 Kolda (10.1016/j.laa.2016.10.019_br0180) 2009; 51 Möcks (10.1016/j.laa.2016.10.019_br0210) 1988; 35 Carroll (10.1016/j.laa.2016.10.019_br0020) 1970; 35 Zhang (10.1016/j.laa.2016.10.019_br0240) 2013; 439 Hitchcock (10.1016/j.laa.2016.10.019_br0160) 1927; 6 Domanov (10.1016/j.laa.2016.10.019_br0090) 2014; 35 Kruskal (10.1016/j.laa.2016.10.019_br0190) 1977; 18 Domanov (10.1016/j.laa.2016.10.019_br0080) 2013; 34 Sidiropoulos (10.1016/j.laa.2016.10.019_br0220) 2016 Bocci (10.1016/j.laa.2016.10.019_br0010) 2013 Chiantini (10.1016/j.laa.2016.10.019_br0030) 2012; 33 Harshman (10.1016/j.laa.2016.10.019_br0150) 1994 Harshman (10.1016/j.laa.2016.10.019_br0120) 1970; 16 De Lathauwer (10.1016/j.laa.2016.10.019_br0060) 2006; 28 Leurgans (10.1016/j.laa.2016.10.019_br0200) 1993; 14 Domanov (10.1016/j.laa.2016.10.019_br0070) 2013; 34 Domanov (10.1016/j.laa.2016.10.019_br0100) 2015; 36 Cichocki (10.1016/j.laa.2016.10.019_br0040) 2015; 32 Jiang (10.1016/j.laa.2016.10.019_br0170) 2004; 52 (10.1016/j.laa.2016.10.019_br0050) 2010 Sorber (10.1016/j.laa.2016.10.019_br0230) 2013; 23 Guo (10.1016/j.laa.2016.10.019_br0110) 2012; 33 Harshman (10.1016/j.laa.2016.10.019_br0140) 1984 |
| References_xml | – volume: 6 start-page: 164 year: 1927 end-page: 189 ident: br0160 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. – start-page: 1 year: 2013 end-page: 12 ident: br0010 article-title: Refined methods for the identifiability of tensors publication-title: Ann. Mat. Pura Appl. – volume: 35 start-page: 636 year: 2014 end-page: 660 ident: br0090 article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. – volume: 14 start-page: 1064 year: October 1993 end-page: 1083 ident: br0200 article-title: A decomposition for three-way arrays publication-title: SIAM J. Matrix Anal. Appl. – volume: 36 start-page: 1567 year: 2015 end-page: 1589 ident: br0100 article-title: Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL publication-title: SIAM J. Matrix Anal. Appl. – year: 2016 ident: br0220 article-title: Tensor Decomposition for Signal Processing and Machine Learning – volume: 439 start-page: 1918 year: 2013 end-page: 1928 ident: br0240 article-title: Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings publication-title: Linear Algebra Appl. – volume: 35 start-page: 283 year: 1970 end-page: 319 ident: br0020 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition publication-title: Psychometrika – volume: 16 start-page: 1 year: 1970 end-page: 84 ident: br0120 article-title: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis publication-title: UCLA Work. Pap. Phon. – volume: 28 start-page: 642 year: 2006 end-page: 666 ident: br0060 article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. Appl. – year: 2010 ident: br0050 publication-title: Handbook of Blind Source Separation, Independent Component Analysis and Applications – volume: 34 start-page: 855 year: 2013 end-page: 875 ident: br0070 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix publication-title: SIAM J. Matrix Anal. Appl. – volume: 22 start-page: 111 year: 1972 end-page: 117 ident: br0130 article-title: Determination and proof of minimum uniqueness conditions for PARAFAC1 publication-title: UCLA Work. Pap. Phon. – volume: 18 start-page: 95 year: 1977 end-page: 138 ident: br0190 article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics publication-title: Linear Algebra Appl. – volume: 23 start-page: 695 year: 2013 end-page: 720 ident: br0230 article-title: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank- publication-title: SIAM J. Optim. – volume: 33 start-page: 111 year: 2012 end-page: 129 ident: br0110 article-title: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings publication-title: SIAM J. Matrix Anal. Appl. – volume: 34 start-page: 876 year: 2013 end-page: 903 ident: br0080 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness publication-title: SIAM J. Matrix Anal. Appl. – volume: 35 start-page: 482 year: 1988 end-page: 484 ident: br0210 article-title: Topographic components model for event-related potentials and some biophysical considerations publication-title: IEEE Trans. Biomed. Eng. – start-page: 122 year: 1984 end-page: 215 ident: br0140 article-title: The PARAFAC model for three-way factor analysis and multidimensional scaling publication-title: Research Methods for Multimode Data Analysis – volume: 33 start-page: 1018 year: 2012 end-page: 1037 ident: br0030 article-title: On generic identifiability of 3-tensors of small rank publication-title: SIAM J. Matrix Anal. Appl. – start-page: 39 year: 1994 end-page: 72 ident: br0150 article-title: Parafac: parallel factor analysis publication-title: Comput. Statist. Data Anal. – volume: 32 start-page: 145 year: March 2015 end-page: 163 ident: br0040 article-title: Tensor decompositions for signal processing applications. From two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. – volume: 52 start-page: 2625 year: September 2004 end-page: 2636 ident: br0170 article-title: Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints publication-title: IEEE Trans. Signal Process. – volume: 51 start-page: 455 year: 2009 end-page: 500 ident: br0180 article-title: Tensor decompositions and applications publication-title: SIAM Rev. – volume: 34 start-page: 876 year: 2013 ident: 10.1016/j.laa.2016.10.019_br0080 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part II: overall uniqueness publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120877258 – volume: 14 start-page: 1064 issue: 4 year: 1993 ident: 10.1016/j.laa.2016.10.019_br0200 article-title: A decomposition for three-way arrays publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/0614071 – volume: 51 start-page: 455 year: 2009 ident: 10.1016/j.laa.2016.10.019_br0180 article-title: Tensor decompositions and applications publication-title: SIAM Rev. doi: 10.1137/07070111X – volume: 28 start-page: 642 year: 2006 ident: 10.1016/j.laa.2016.10.019_br0060 article-title: A link between the canonical decomposition in multilinear algebra and simultaneous matrix diagonalization publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/040608830 – volume: 16 start-page: 1 year: 1970 ident: 10.1016/j.laa.2016.10.019_br0120 article-title: Foundations of the PARAFAC procedure: models and conditions for an “explanatory” multi-modal factor analysis publication-title: UCLA Work. Pap. Phon. – volume: 35 start-page: 482 year: 1988 ident: 10.1016/j.laa.2016.10.019_br0210 article-title: Topographic components model for event-related potentials and some biophysical considerations publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.2119 – volume: 33 start-page: 111 year: 2012 ident: 10.1016/j.laa.2016.10.019_br0110 article-title: Uni-mode and partial uniqueness conditions for CANDECOMP/PARAFAC of three-way arrays with linearly dependent loadings publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110825765 – volume: 32 start-page: 145 year: 2015 ident: 10.1016/j.laa.2016.10.019_br0040 article-title: Tensor decompositions for signal processing applications. From two-way to multiway component analysis publication-title: IEEE Signal Process. Mag. doi: 10.1109/MSP.2013.2297439 – start-page: 39 year: 1994 ident: 10.1016/j.laa.2016.10.019_br0150 article-title: Parafac: parallel factor analysis publication-title: Comput. Statist. Data Anal. doi: 10.1016/0167-9473(94)90132-5 – volume: 6 start-page: 164 year: 1927 ident: 10.1016/j.laa.2016.10.019_br0160 article-title: The expression of a tensor or a polyadic as a sum of products publication-title: J. Math. Phys. doi: 10.1002/sapm192761164 – volume: 23 start-page: 695 year: 2013 ident: 10.1016/j.laa.2016.10.019_br0230 article-title: Optimization-based algorithms for tensor decompositions: canonical polyadic decomposition, decomposition in rank-(Lr,Lr,1) terms and a new generalization publication-title: SIAM J. Optim. doi: 10.1137/120868323 – volume: 33 start-page: 1018 issue: 3 year: 2012 ident: 10.1016/j.laa.2016.10.019_br0030 article-title: On generic identifiability of 3-tensors of small rank publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/110829180 – volume: 34 start-page: 855 year: 2013 ident: 10.1016/j.laa.2016.10.019_br0070 article-title: On the uniqueness of the canonical polyadic decomposition of third-order tensors — Part I: basic results and uniqueness of one factor matrix publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/120877234 – volume: 439 start-page: 1918 issue: 7 year: 2013 ident: 10.1016/j.laa.2016.10.019_br0240 article-title: Uni-mode uniqueness conditions for CANDECOMP/PARAFAC decomposition of n-way arrays with linearly dependent loadings publication-title: Linear Algebra Appl. doi: 10.1016/j.laa.2013.05.023 – volume: 36 start-page: 1567 issue: 4 year: 2015 ident: 10.1016/j.laa.2016.10.019_br0100 article-title: Generic uniqueness conditions for the canonical polyadic decomposition and INDSCAL publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/140970276 – start-page: 122 year: 1984 ident: 10.1016/j.laa.2016.10.019_br0140 article-title: The PARAFAC model for three-way factor analysis and multidimensional scaling – year: 2010 ident: 10.1016/j.laa.2016.10.019_br0050 – start-page: 1 year: 2013 ident: 10.1016/j.laa.2016.10.019_br0010 article-title: Refined methods for the identifiability of tensors publication-title: Ann. Mat. Pura Appl. – volume: 18 start-page: 95 year: 1977 ident: 10.1016/j.laa.2016.10.019_br0190 article-title: Three-way arrays: rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics publication-title: Linear Algebra Appl. doi: 10.1016/0024-3795(77)90069-6 – volume: 35 start-page: 283 year: 1970 ident: 10.1016/j.laa.2016.10.019_br0020 article-title: Analysis of individual differences in multidimensional scaling via an N-way generalization of “Eckart–Young” decomposition publication-title: Psychometrika doi: 10.1007/BF02310791 – year: 2016 ident: 10.1016/j.laa.2016.10.019_br0220 – volume: 22 start-page: 111 year: 1972 ident: 10.1016/j.laa.2016.10.019_br0130 article-title: Determination and proof of minimum uniqueness conditions for PARAFAC1 publication-title: UCLA Work. Pap. Phon. – volume: 35 start-page: 636 issue: 2 year: 2014 ident: 10.1016/j.laa.2016.10.019_br0090 article-title: Canonical polyadic decomposition of third-order tensors: reduction to generalized eigenvalue decomposition publication-title: SIAM J. Matrix Anal. Appl. doi: 10.1137/130916084 – volume: 52 start-page: 2625 issue: 9 year: 2004 ident: 10.1016/j.laa.2016.10.019_br0170 article-title: Kruskal's permutation lemma and the identification of Candecomp/Parafac and bilinear models with constant modulus constraints publication-title: IEEE Trans. Signal Process. doi: 10.1109/TSP.2004.832022 |
| SSID | ssj0004702 |
| Score | 2.4445508 |
| Snippet | Canonical Polyadic Decomposition (CPD) of a third-order tensor is a minimal decomposition into a sum of rank-1 tensors. We find new mild deterministic... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 342 |
| SubjectTerms | Algebra Algorithms CANDECOMP/PARAFAC decomposition Canonical polyadic decomposition Computer simulation CP decomposition Decomposition Eigenvalue decomposition Linear algebra Mathematical analysis Matrix Singular value decomposition Tensor Tensors Uni-mode uniqueness Uniqueness Uniqueness of CPD |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd2A7MGBMdGzIB04gV4ntOAm3adpUIa3isErlFD3_iNYtJFWbio2_nuf8qLoJBtwix7bi9-z4e_Ln7xHywVrBQVjFINHAEP8LlnBImXMuTg2WQXPL9XKixlP5ZRbNOrFofxfmwfl9w8MqwMsDhWrkSVhe4HNHRQi7B2RnOvl6-q2lcEhcKE2GlTCJBcM9SPUnmL_r40970BbGfL4uF3D_A4pia7u52G-JWqtGpdCzTG5H61qPzM9HGo7_NJKX5EUHOulpO0tekWeufE32LjeKrasDUp5BWTV3JOmiKu7Bzg21zhPOO1YXrXJaX8-XljVqndQz36vl6jP1dLo7Z-m6kYL1f06KMbZtqWAUSkt9KhEMyrFHfKqW8_r6-xsyvTi_OhuzLhcDM1LxmvEEnFMWwykeWwMyRN9KBYjPEguB45GwxghAgGOiPFcul4FG7OTxC2ib5uKQDHAY7i2hIQ_zQECq4hAwunRaR0nuEtDa8Fy4aEiC3juZ6YTKfb6MIusZaTcZmjLzpvRFaMoh-bhpsmhVOp6qLHuXZx3MaOFDhi57qtlxPz2ybp2v8H2SxhgSSjkknzZT5u_fcPRftd-RXe7RRBCyMDomg3q5dieIhWr9vlsFvwDsKAQF priority: 102 providerName: Unpaywall |
| Title | Canonical polyadic decomposition of third-order tensors: Relaxed uniqueness conditions and algebraic algorithm |
| URI | https://dx.doi.org/10.1016/j.laa.2016.10.019 https://www.proquest.com/docview/2089726044 https://doi.org/10.1016/j.laa.2016.10.019 |
| UnpaywallVersion | publishedVersion |
| Volume | 513 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-1856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-1856 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Freedom Collection Journals customDbUrl: eissn: 1873-1856 dateEnd: 20211015 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct customDbUrl: eissn: 1873-1856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Free and Delayed Access Journal customDbUrl: eissn: 1873-1856 dateEnd: 20211105 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: IXB dateStart: 19680101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-1856 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004702 issn: 1873-1856 databaseCode: AKRWK dateStart: 19680101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYQO7Adpm1sWhkgH3YaMiSO82u3rhoqQ1Q7UKmcohfbEUEhqdpUGxf-dt5LncKkiUm7xY4dOX6O_T3le99j7LMxgYTARAKSHATi_0AkElJhrY1TjXXQRbleTKLxVP2YhbMtNupjYYhW6fb-9Z7e7dau5sTN5sm8LCnGtxPTCxFRIMyVM4pgVzFlMTi-f6R5qNhziuFKUOv-z2bH8aqApIf86JgIXiS28_ez6Qn23FnVc7j7BVX15Bg6fcNeO_zIh-shvmVbtn7HXl1sxFeXu6weQd104Y583lR3YErNjSXuuCNo8abg7XW5MKIT3uREYm8Wy6-cmHG_reGrTtWVNkGO7rJZs7o41IZTVhD0r_GJeNUsyvb69j2bnn6_HI2FS6sgtIpkK2QC1kYGPSMZGw3KRzOpCHAiEwOelWFgtA4AsYoOiyKyhfJyhEEERSA3aRF8YNv4GvYj4770Cy-ANIp9QEfR5nmYFDaBPNeyCGw4YF4_oZl2muOU-qLKenLZTYY2yMgGVIU2GLAvmy7zteDGc41Vb6Xsj1WT4YHwXLf93qKZ-2SXeD9JY_TulBqwo42V_z2Gvf8bwyf2UhJC8Hzhh_tsu12s7AHimzY_7BbwIXsxPDsfT7B0NvuGpenk5_DqAR-a_ms |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2VcigcEJ9ioYAPnEBuE8f54oZWVAt0e2qlvUUT21FThWS1mxX0wm9nJussRUJF4hZN7MjxOOM3yptngLfWRgojm0jMSpSE_yOZKcylcy7NDdlwqHKdnyWzC_1lES_2YDrWwjCt0sf-bUwforW3HPvZPF7WNdf4DmJ6MSEKgrlqcQfu6lilnIEd_fzN89Bp4CXDteTm46_NgeTVIGsPhckRM7xYbefvm9MN8HmwaZd4_R2b5sY-dPIQHngAKT5ux_gI9lz7GO7Pd-qr6yfQTrHthnpHseyaa7S1EdYxedwztERXif6yXlk5KG8KZrF3q_UHwdS4H86KzSDrylFQUL5st7Quga0VfCwIJdj0RLrqVnV_-e0pXJx8Op_OpD9XQRqdqF6qDJ1LLKVGKrUGdUh-0gnSTGYWA6fiyBoTIYEVE1dV4iodlISDGItgafMqegb79BruOYhQhVUQYZ6kIVKm6MoyziqXYVkaVUUunkAwTmhhvOg4n33RFCO77KogHxTsAzaRDybwbtdluVXcuK2xHr1U_LFsCtoRbut2OHq08N_smu5neUrpndYTeL_z8r_H8OL_xvAGDmbn89Pi9PPZ15dwTzFcCEIZxoew36827hWBnb58PSzmXxS-_Uw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFLZQd2A7MGBMdGzIB04gV4ntOAm3adpUIa3isErlFD3_iNYtJFWbio2_nuf8qLoJBtwix7bi9-z4e_Ln7xHywVrBQVjFINHAEP8LlnBImXMuTg2WQXPL9XKixlP5ZRbNOrFofxfmwfl9w8MqwMsDhWrkSVhe4HNHRQi7B2RnOvl6-q2lcEhcKE2GlTCJBcM9SPUnmL_r40970BbGfL4uF3D_A4pia7u52G-JWqtGpdCzTG5H61qPzM9HGo7_NJKX5EUHOulpO0tekWeufE32LjeKrasDUp5BWTV3JOmiKu7Bzg21zhPOO1YXrXJaX8-XljVqndQz36vl6jP1dLo7Z-m6kYL1f06KMbZtqWAUSkt9KhEMyrFHfKqW8_r6-xsyvTi_OhuzLhcDM1LxmvEEnFMWwykeWwMyRN9KBYjPEguB45GwxghAgGOiPFcul4FG7OTxC2ib5uKQDHAY7i2hIQ_zQECq4hAwunRaR0nuEtDa8Fy4aEiC3juZ6YTKfb6MIusZaTcZmjLzpvRFaMoh-bhpsmhVOp6qLHuXZx3MaOFDhi57qtlxPz2ybp2v8H2SxhgSSjkknzZT5u_fcPRftd-RXe7RRBCyMDomg3q5dieIhWr9vlsFvwDsKAQF |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Canonical+polyadic+decomposition+of+third-order+tensors%3A+Relaxed+uniqueness+conditions+and+algebraic+algorithm&rft.jtitle=Linear+algebra+and+its+applications&rft.au=Domanov%2C+Ignat&rft.au=De+Lathauwer%2C+Lieven&rft.date=2017-01-15&rft.pub=Elsevier+Inc&rft.issn=0024-3795&rft.eissn=1873-1856&rft.volume=513&rft.spage=342&rft.epage=375&rft_id=info:doi/10.1016%2Fj.laa.2016.10.019&rft.externalDocID=S002437951630492X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-3795&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-3795&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-3795&client=summon |