A Fortran–Python interface for integrating machine learning parameterization into earth system models
Parameterizations in earth system models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex probl...
Saved in:
| Published in | Geoscientific Model Development Vol. 18; no. 6; pp. 1917 - 1928 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Katlenburg-Lindau
Copernicus GmbH
24.03.2025
Copernicus Publications, EGU Copernicus Publications |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1991-9603 1991-959X 1991-962X 1991-9603 1991-962X |
| DOI | 10.5194/gmd-18-1917-2025 |
Cover
| Abstract | Parameterizations in earth system models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex problems has spawned immense interests in climate science applications. Specifically, ML-based parameterizations have been developed to represent convection, radiation, and microphysics processes in ESMs by learning from observations or high-resolution simulations, which have the potential to improve the accuracies and alleviate the uncertainties. Previous works have developed some surrogate models for these processes using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran–Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and scikit-learn. We demonstrate the interface's modularity and reusability through two cases: an ML trigger function for convection parameterization and an ML wildfire model. We conduct a comprehensive evaluation of memory usage and computational overhead resulting from the integration of Python codes into the Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, tested, and integrated into ESMs. |
|---|---|
| AbstractList | Parameterizations in earth system models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete understanding of the underlying physical processes. Recently, the growing representational capability of machine learning (ML) in solving complex problems has spawned immense interests in climate science applications. Specifically, ML-based parameterizations have been developed to represent convection, radiation, and microphysics processes in ESMs by learning from observations or high-resolution simulations, which have the potential to improve the accuracies and alleviate the uncertainties. Previous works have developed some surrogate models for these processes using ML. These surrogate models need to be coupled with the dynamical core of ESMs to investigate the effectiveness and their performance in a coupled system. In this study, we present a novel Fortran-Python interface designed to seamlessly integrate ML parameterizations into ESMs. This interface showcases high versatility by supporting popular ML frameworks like PyTorch, TensorFlow, and scikit-learn. We demonstrate the interface's modularity and reusability through two cases: an ML trigger function for convection parameterization and an ML wildfire model. We conduct a comprehensive evaluation of memory usage and computational overhead resulting from the integration of Python codes into the Fortran ESMs. By leveraging this flexible interface, ML parameterizations can be effectively developed, tested, and integrated into ESMs. |
| Audience | Academic |
| Author | Morcrette, Cyril Liu, Ye Van Weverberg, Kwinten Lin, Wuyin Rodrigues, Joana Zhang, Meng Xie, Shaocheng Zhang, Tao |
| Author_xml | – sequence: 1 givenname: Tao surname: Zhang fullname: Zhang, Tao – sequence: 2 givenname: Cyril orcidid: 0000-0002-4240-8472 surname: Morcrette fullname: Morcrette, Cyril – sequence: 3 givenname: Meng surname: Zhang fullname: Zhang, Meng – sequence: 4 givenname: Wuyin surname: Lin fullname: Lin, Wuyin – sequence: 5 givenname: Shaocheng orcidid: 0000-0001-8931-5145 surname: Xie fullname: Xie, Shaocheng – sequence: 6 givenname: Ye orcidid: 0000-0001-5131-8412 surname: Liu fullname: Liu, Ye – sequence: 7 givenname: Kwinten orcidid: 0000-0002-5397-7320 surname: Van Weverberg fullname: Van Weverberg, Kwinten – sequence: 8 givenname: Joana surname: Rodrigues fullname: Rodrigues, Joana |
| BackLink | https://www.osti.gov/biblio/2537956$$D View this record in Osti.gov |
| BookMark | eNqFkU1v1DAQhiNUJNrCnWMEJw4p_nZ8XFUUVqoE4uNsOc4k61ViL7ZXZTnxH_iH_BK8DQJWQkI-2J553vHM64vqzAcPVfUUoyuOFXs5zn2D2wYrLBuCCH9QnWOlcKMEomd_nR9VFyltERJKCnlejav6JsQcjf_x7fu7Q94EXzufIQ7GQj2EeH8bo8nOj_Vs7MZ5qCcw0R8DOxPNDAV3XwuxaENdsnlTp0PKMNdz6GFKj6uHg5kSPPm1X1afbl59vH7T3L59vb5e3TaWCZIb0iLFBQMAKWFgRoDsBBOUqkGI3lLO-44MnDMjuzKRVKIntEedYcwCaSW9rNZL3T6Yrd5FN5t40ME4fR8IcdSlOWcn0B1nxAymx7ZVzFCsOmwJEN5JJq3oaKmFl1p7vzOHOzNNvwtipI-u6-K6xq0-uq6PrhfNs0UTUnY6WZfBbmzwHmzWJS_LeAV6vkC7GD7vIWW9Dfvoiy-a4hZxwhlGf6jRlG6dH0L5Jju7ZPWqpYQoJBAu1NU_qLJ6mF15GAZX4ieCFyeCwmT4kkezT0mvP7w_ZdHC2hhSijD834CfKRnKhQ |
| Cites_doi | 10.5194/gmd-13-4443-2020 10.1155/2013/485913 10.1007/s40641-019-00136-9 10.1029/2018MS001351 10.1029/2000JD900170 10.1002/essoar.10511174.1 10.1029/2022MS003415 10.1029/2018GL078510 10.1155/2020/8888811 10.2172/1171504 10.1073/pnas.1810286115 10.1038/s41586-024-07744-y 10.1002/asl.172 10.5194/gmd-10-1487-2017 10.5194/acp-22-3445-2022 10.1002/2013GL057998 10.1029/2018MS001603 10.5194/gmd-15-3923-2022 10.1175/JHM581.1 10.1175/BAMS-D-15-00135.1 10.1029/2020MS002076 10.5194/gmd-13-1999-2020 10.5194/gmd-13-6029-2020 10.1175/BAMS-D-18-0167.1 10.1029/2019MS001711 10.1029/2018MS001578 10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2 10.1029/2004JD004692 10.1029/2020MS002268 10.1029/2020MS002365 10.1256/qj.03.103 10.1016/j.atmosenv.2013.06.003 10.1175/BAMS-84-11-1547 10.1256/smsqj.57405 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 Copernicus GmbH 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 Copernicus GmbH – notice: 2025. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| CorporateAuthor | Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| CorporateAuthor_xml | – name: Pacific Northwest National Laboratory (PNNL), Richland, WA (United States) |
| DBID | AAYXX CITATION ISR 7TG 7TN 7UA 8FD 8FE 8FG ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS OTOTI ADTOC UNPAY DOA |
| DOI | 10.5194/gmd-18-1917-2025 |
| DatabaseName | CrossRef Gale In Context: Science Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central ProQuest Central Essentials ProQuest Central Continental Europe Database ProQuest Technology Collection (LUT) Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Engineering Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection OSTI.GOV Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database ProQuest One Sustainability ProQuest Engineering Collection Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Natural Science Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Continental Europe Database ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology |
| EISSN | 1991-9603 1991-962X |
| EndPage | 1928 |
| ExternalDocumentID | oai_doaj_org_article_b542afad1c894a319b1c2e25b747c6b3 10.5194/gmd-18-1917-2025 2537956 A832290601 10_5194_gmd_18_1917_2025 |
| GroupedDBID | 5VS 8R4 8R5 AAFWJ AAYXX ABDBF ACUHS ADBBV AENEX AFPKN AHGZY ALMA_UNASSIGNED_HOLDINGS BCNDV CITATION ESX GROUPED_DOAJ H13 IAO IEA IEP ISR ITC KQ8 OK1 P2P Q2X RKB RNS TR2 TUS 7TG 7TN 7UA 8FD 8FE 8FG 8FH ABJCF ABUWG AEUYN AFKRA AZQEC BENPR BFMQW BGLVJ BHPHI BKSAR BPHCQ C1K CCPQU DWQXO F1W H8D H96 HCIFZ KL. L.G L6V L7M LK5 M7R M7S PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PROAC PTHSS BBORY OTOTI ADTOC C1A IPNFZ RIG UNPAY |
| ID | FETCH-LOGICAL-c462t-2809564eee77ef4a6e7b646339f66dc355db2f554a7b991796d23d0ba44ce2873 |
| IEDL.DBID | UNPAY |
| ISSN | 1991-9603 1991-959X 1991-962X |
| IngestDate | Fri Oct 03 12:53:36 EDT 2025 Sun Oct 26 02:04:44 EDT 2025 Mon Mar 31 02:25:31 EDT 2025 Tue Jul 22 07:11:27 EDT 2025 Mon Oct 20 22:44:53 EDT 2025 Mon Oct 20 16:51:37 EDT 2025 Thu Oct 16 15:35:13 EDT 2025 Tue Jul 01 05:13:34 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c462t-2809564eee77ef4a6e7b646339f66dc355db2f554a7b991796d23d0ba44ce2873 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities (SUF) AC05-76RL01830; AC52-07NA27344; SC0012704; A05-76RL01830 USDOE Laboratory Directed Research and Development (LDRD) Program PNNL-SA-197330 USDOE Office of Science (SC), Biological and Environmental Research (BER) |
| ORCID | 0000-0002-5397-7320 0000-0002-4240-8472 0000-0001-8931-5145 0000-0001-5131-8412 0000000189315145 0000000253977320 0000000242408472 0000000151318412 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.5194/gmd-18-1917-2025 |
| PQID | 3180525410 |
| PQPubID | 105726 |
| PageCount | 12 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b542afad1c894a319b1c2e25b747c6b3 unpaywall_primary_10_5194_gmd_18_1917_2025 osti_scitechconnect_2537956 proquest_journals_3180525410 gale_infotracmisc_A832290601 gale_infotracacademiconefile_A832290601 gale_incontextgauss_ISR_A832290601 crossref_primary_10_5194_gmd_18_1917_2025 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-24 |
| PublicationDateYYYYMMDD | 2025-03-24 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-24 day: 24 |
| PublicationDecade | 2020 |
| PublicationPlace | Katlenburg-Lindau |
| PublicationPlace_xml | – name: Katlenburg-Lindau – name: United States |
| PublicationTitle | Geoscientific Model Development |
| PublicationYear | 2025 |
| Publisher | Copernicus GmbH Copernicus Publications, EGU Copernicus Publications |
| Publisher_xml | – name: Copernicus GmbH – name: Copernicus Publications, EGU – name: Copernicus Publications |
| References | ref13 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 ref30 ref11 ref33 ref10 ref32 ref2 ref1 ref17 ref16 ref38 ref19 ref18 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 ref8 ref7 ref9 ref4 ref3 ref6 ref5 |
| References_xml | – ident: ref2 doi: 10.5194/gmd-13-4443-2020 – ident: ref7 – ident: ref18 doi: 10.1155/2013/485913 – ident: ref20 – ident: ref14 doi: 10.1007/s40641-019-00136-9 – ident: ref22 doi: 10.1029/2018MS001351 – ident: ref33 doi: 10.1029/2000JD900170 – ident: ref12 doi: 10.1002/essoar.10511174.1 – ident: ref6 doi: 10.1029/2022MS003415 – ident: ref3 doi: 10.1029/2018GL078510 – ident: ref23 doi: 10.1155/2020/8888811 – ident: ref8 doi: 10.2172/1171504 – ident: ref26 doi: 10.1073/pnas.1810286115 – ident: ref17 doi: 10.1038/s41586-024-07744-y – ident: ref32 doi: 10.1002/asl.172 – ident: ref29 doi: 10.5194/gmd-10-1487-2017 – ident: ref30 doi: 10.5194/acp-22-3445-2022 – ident: ref24 doi: 10.1002/2013GL057998 – ident: ref11 doi: 10.1029/2018MS001603 – ident: ref31 doi: 10.5194/gmd-15-3923-2022 – ident: ref19 doi: 10.1175/JHM581.1 – ident: ref15 doi: 10.1175/BAMS-D-15-00135.1 – ident: ref13 doi: 10.1029/2020MS002076 – ident: ref38 – ident: ref5 doi: 10.5194/gmd-13-1999-2020 – ident: ref16 doi: 10.5194/gmd-13-6029-2020 – ident: ref21 – ident: ref27 doi: 10.1175/BAMS-D-18-0167.1 – ident: ref4 doi: 10.1029/2019MS001711 – ident: ref9 doi: 10.1029/2018MS001578 – ident: ref35 doi: 10.1175/1520-0469(1996)053<3084:ASCPFU>2.0.CO;2 – ident: ref34 doi: 10.1029/2004JD004692 – ident: ref10 doi: 10.1029/2020MS002268 – ident: ref37 doi: 10.1029/2020MS002365 – ident: ref1 doi: 10.1256/qj.03.103 – ident: ref36 doi: 10.1016/j.atmosenv.2013.06.003 – ident: ref25 doi: 10.1175/BAMS-84-11-1547 – ident: ref28 doi: 10.1256/smsqj.57405 |
| SSID | ssj0069767 ssj0069768 |
| Score | 2.376418 |
| Snippet | Parameterizations in earth system models (ESMs) are subject to biases and uncertainties arising from subjective empirical assumptions and incomplete... |
| SourceID | doaj unpaywall osti proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 1917 |
| SubjectTerms | Algorithms Analysis artificial intelligence Bridges Case studies Climate science Convection Deep learning Earth FORTRAN Learning algorithms Machine learning Microphysics Modularity Neural networks Observational learning Parameterization Python Simulation Technology application Uncertainty Variables Wildfires |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF2hSAguiE9hWtCqQkIgWc2ud9feY0CElgNCQKXcVvsxDofGqRpHVW79D_xDfgkzthMlp1642mPLfp6deSPPvmHsLRTaq-RVrnSKuapA59bUIU9BQFIgDPRqn9_M2YX6OtOzvVFf1BPWywP3wJ0GraSvfRKxssqjwwQRJUgdkAdHEzqdz3Flt8VUH4MNJtlurAr19VhtZ_0PSmQr6nS-SLnAygnrFHQRGpG9l5A63f5ddB4tcZkdUM8H6-bKb2785eVeFpo-Zo8G-sgn_WM_Yfegecruf-nG826esfmET5FPY_75e_vn-4Z0ATgJQlzXPgJHfsq38hCYsfiia6QEPkyOmHPSAV9Qf8ywOZOslxzPtr95L_nMu8k5q-fsYvr516ezfBilkEdlZJvLigQHFQCUJdTKGyiDUaYobG1Mikg6UpA1UgtfBsSstCbJIo2DVyoCFlXFCzZqlg28ZNyMKx-8CAirUaEU3mOUMDJoKLwFqDL2founu-oVMxxWGoS9Q-ydqBxh7wj7jH0kwHd2pHXdHUAPcIMHuLs8IGMn9LkcqVk01C4z9-vVyp3__OEmFK8sSc5k7N1gVC_xK0Q_7D7AdyIBrAPL4wNLXG7x4PQReYVDgkIqu5HakWLrpC5KRBgv3jqLG4LBymHYpGmBSowz9mHnQHeC8-p_gHPEHtK9qGtOqmM2aq_X8BppVBvedCvmH_wGGNA priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1Lb9NAEF6VVAguiKdwW9AKISGQrMbr9do-IJSihsIhqgqVclvtY2wOjR3yUJUb_4F_yC9hxo-QXOBoe2LJn2fnEc9-H2OvIU6M9EaGMvEulBkkYa4KG3obgZcQKWjZPifq4lp-mSbTAzbp98LQWGUfE5tA7WtH_5Gfou-R5JqMhh_mP0JSjaKvq72EhumkFfz7hmLsDjsUxIw1YIdn55PLqz42K0y-6e5Bs1OOhn9yJabtV0wsaeRpOfNhhO0VNjPoR6SjvZO1GnL_bQgf1LgW9-rTe-tqbja35uZmJ1WNH7IHXY3JR61TPGIHUD1mdz81Gr6bJ6wc8TEW3Zikfv_8dbkh8gBOrBGLwjjgWMTynkMC0xqfNdOWwDt5iZITWfiMhmi6HZxkXXO8uvrOW15o3sjrLJ-y6_H5t48XYae3EDqpxCoUGbESSgBIUyikUZBaJVUc54VS3mFl4q0osP4wqUXM0lx5EfuhNVI6wM4rfsYGVV3Bc8bVMDPWRDZPciVtGhmDoUQJm0BscoAsYG97PPW8pdXQ2I4Q9hqx11GmCXtN2AfsjADf2hEhdnOiXpS6W1_aJlKYwvjIZbk0GFds5ASIxGK75JSNA_aKXpcmyouKZmpKs14u9eevV3pEQS0nXpqAvemMihrfgjPdFgV8JmLJ2rM82bPENen2Lh-TV2isYoiK19HMkltpkcQpIow_7p1FdxFjqf_6d8DebR3ov-Ac_ftex-w-WdHQnJAnbLBarOEFVlEr-7JbGn8AYb4ZJA priority: 102 providerName: ProQuest |
| Title | A Fortran–Python interface for integrating machine learning parameterization into earth system models |
| URI | https://www.proquest.com/docview/3180525410 https://www.osti.gov/biblio/2537956 https://doi.org/10.5194/gmd-18-1917-2025 https://doaj.org/article/b542afad1c894a319b1c2e25b747c6b3 |
| UnpaywallVersion | publishedVersion |
| Volume | 18 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069767 issn: 1991-9603 databaseCode: ABDBF dateStart: 20090701 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVPQU databaseName: Continental Europe Database customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BFMQW dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/conteurope providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1991-9603 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069768 issn: 1991-9603 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fb9MwELdYK8Re-I_oNioLISGQsjWO7SSPKSwbPFTVoFJ5smzHKRJrOi2pUHniO_AN-STcJWm1ICTgyVF8iZQ7-_y7-Pw7Ql64QGieae5xkVmPR054scyNlxnfZdz50jVsnxN5PuPv52Le_u_AszA39u8BW_CTxTLzfIhzIKoAgzKxR_pSAOrukf5sMk0-1ZvGse_FIp7vruUoaHYk__iKzgpUE_Xv3HFvBfOqgzXvrIsrvfmqLy9vLDvpvYYDqazZCjHb5MvxujLH9ttvXI7_8kX3yd0We9KkGSwPyC1XPCS3z-ravptHZJHQFMA4LF4_v_-YbpBUgCKbxHWuraMAbumWWwKWO7qsszAdbctOLCiSiC8xuaY92YnSKwq91Wfa8EXTuuxO-ZjM0tOPb869tg6DZ7lklcciZCvkzrkwdDnX0oVGchkEcS5lZgGxZIblgEt0aED_YSwzFmQjozm3DiKy4AnpFavCPSVUjiJttG_AXJKb0NcaXIxkRrhAx85FA_Jqaxt11dBtKAhTUHEKFKf8SKHiFCpuQMZovJ0cEmXXN0Dbqp13ygjOdK4z30Yx1-BvjG-ZY8JAGGWlCQbkOZpeIRVGgbk2C70uS_Xuw4VK0NnFyFczIC9boXwFVrC6PboA34TsWR3Jo44kzFXb6T7EEaYA3SBFr8VcJlspJoIQNAwPbweeaj1JqcDnYqlB7o8G5PVuMP5VOQf_I3xI9rHB1DrGj0ivul67Z4C1KjMke1F6NiT9ZPx2nEI7Pp1ML4b1n4thOwV_ARRtJgQ |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2VVKhsEE9hWmCEQAgkq_F4PLYXFUqhIaElqkorZTedl8OiiUMeqrLjH_gfPoYv4V5nHJINrLp0PB7Jd-4zvvccQl65OFHcKh7yxJqQZy4Jc1Ho0OrIWe4i4ZZonz3RueCf-0l_i_yqZ2GwrbL2iZWjtqXB_8j3QfeQco1Hzffj7yGyRuHX1ZpCQ3lqBXtQQYz5wY5jt7iGEm560P0I5_2asfbR-YdO6FkGQsMFm4UsQyw-7pxLU1dwJVyqBRdxnBdCWAPx2GpWQNRVqYZkKs2FZbFtasW5cVBvxLDvLbLNY55D8bd9eNQ7PatjgYBgn65fVJN52GyUC9ZffjWFFIrvD4Y2jKCcg_1Bb5G3ey1KVmQCq5DRKMH2N_LhnflorBbX6upqLTS275G7PqelraUS3idbbvSA3P5UcQYvHpJBi7YhyYeg-PvHz9MFghVQRKmYFMo4CkkzrTErIIzSYdXd6ainsxhQBCcfYtOOnxjF1SWFu7NvdIlDTSs6n-kjcnEjkn9MGqNy5J4QKpqZ0irSeZILrtNIKXBdgunExSp3LgvI21qecryE8ZBQ_qDsJcheRplE2UuUfUAOUeCrdQjAXf1QTgbS27PUCWeqUDYyWc4V-DEdGeZYoqE8M0LHAXmJxyURYmOEPTwDNZ9OZffrmWyhE80RBycgb_yiooRTMMqPRMA7ISrXxsq9jZXgA8zG7V3UCglZE0L_GuyRMjPJkjgFCcPDtbJI76Gm8q89BeTdSoH-K5yn_97rBdnpnH85kSfd3vEuuYNPYMMe43ukMZvM3TPI4Gb6uTcTSi5v2jL_AExpVWg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6VIB4XxFOEFlghEALJSrxer-0DQoGSNhRVFVApt-0-xuHQxCEPVbnxH_g3_Bx-CTN-hOQCpx5tj1fy7Dy9M98w9hyi2EhvZCBj7wKZQhxkKreBtyF4CaGCCu3zWB2eyo_DeLjDfjW9MFRW2djE0lD7wtE_8g7KHo1ck2G3k9dlESf7_bfT7wFNkKKT1macRiUiR7C6wPRt_mawj3v9Qoj-h6_vD4N6wkDgpBKLQKSEwycBIEkgl0ZBYpVUUZTlSnmHvthbkaPHNYnFQCrJlBeR71ojpQPMNSJc9wq7mhCKO3Wp9w8aL6DQzSebF2VPHpUZZUoMq_NSDJ5kZzT2QYiJHK6OEksTuzf8YzlGYO0sWgVq_VYkfGM5mZrVhTk_33CK_dvsVh3N8l4lfnfYDkzusmsH5bTg1T026vE-hvfoDn__-HmyIpgCTvgUs9w44Bgu8watAh0oH5d1ncDrQRYjTrDkYyrXqXtFibrg-HTxjVcI1Lwc5DO_z04vhe8PWGtSTOAh46qbGmtCm8WZkjYJjUGjpYSNITIZQNpmrxp-6mkF4KEx8SHea-S9DlNNvNfE-zZ7Rwxf0xH0dnmjmI10rcnaxlKY3PjQpZk0aMFs6ASI2GJi5pSN2uwZbZcmcI0JienILOdzPfjyWffIfGaEgNNmL2uivMBdcKZuhsBvIjyuLcq9LUrUfrf1eJekQmO8RKC_jqqj3EKLOEqQw_hyIyy6tk1z_VeT2uz1WoD-y5xH_17rKbuO-qg_DY6PdtlNeoEq9YTcY63FbAmPMXRb2CeljnB2dtlK-QfmBFMC |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1fi9QwEA-6h-iL_8V6pwQRRKHnJk3S9nEV19OH41AX1qeQf13B2-5x7SLrk9_Bb-gncabNLlcR1KeWZlrITDL5TTP5DSFPQiaN8EakQnqXiiLItFSVTb1lwYvAVOjZPo_V0Uy8m8t5_N-BZ2Eu7N8DthAvFkufMohzIKoAg3J5mewpCah7RPZmxyeTT92mccnSUpbz3b0aZ_2O5B8_MViBOqL-nTserWBeDbDm1XV9ZjZfzenphWVneqPnQGo6tkLMNvlyuG7tofv2G5fjv_ToJrkesSed9IPlFrkU6tvkypuutu_mDllM6BTAOCxeP7__ONkgqQBFNonzyrhAAdzSLbcELHd02WVhBhrLTiwokogvMbkmnuxE6RWF1vYz7fmiaVd2p7lLZtPXH18dpbEOQ-qE4m3KC2QrFCGEPA-VMCrkVgmVZWWllHeAWLzlFeASk1vQf14qzzM_tkYIFyAiy-6RUb2qw31C1bgw1jAL5lLC5swYcDGKWxkyU4ZQJOTZ1jb6rKfb0BCmoOI0KE6zQqPiNCouIS_ReDs5JMruHoC2dZx32krBTWU8c0UpDPgbyxwPXFoIo5yyWUIeo-k1UmHUmGuzMOum0W8_vNcTdHYl8tUk5GkUqlZgBWfi0QXoE7JnDSQPBpIwV92geR9HmAZ0gxS9DnOZXKu5zHLQMLy8HXg6epJGg8_FUoOCjRPyfDcY_6qcB_8jvE-u4QVT67g4IKP2fB0eAtZq7aM4zX4BPJIhHQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Fortran%E2%80%93Python+interface+for+integrating+machine+learning+parameterization+into+earth+system+models&rft.jtitle=Geoscientific+model+development&rft.au=Zhang%2C+Tao&rft.au=Morcrette%2C+Cyril&rft.au=Zhang%2C+Meng&rft.au=Lin%2C+Wuyin&rft.date=2025-03-24&rft.pub=Copernicus+Publications%2C+EGU&rft.issn=1991-9603&rft.volume=18&rft.issue=6&rft_id=info:doi/10.5194%2Fgmd-18-1917-2025&rft.externalDocID=2537956 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1991-9603&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1991-9603&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1991-9603&client=summon |