High-risk prescribing and opioid overdose: prospects for prescription drug monitoring program–based proactive alerts

To develop a simple, valid model to identify patients at high risk of opioid overdose–related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of...

Full description

Saved in:
Bibliographic Details
Published inPain (Amsterdam) Vol. 159; no. 1; pp. 150 - 156
Main Authors Geissert, Peter, Hallvik, Sara, Van Otterloo, Joshua, O'Kane, Nicole, Alley, Lindsey, Carson, Jody, Leichtling, Gillian, Hildebran, Christi, Wakeland, Wayne, Deyo, Richard A.
Format Journal Article
LanguageEnglish
Published United States Wolters Kluwer 01.01.2018
Subjects
Online AccessGet full text
ISSN0304-3959
1872-6623
1872-6623
DOI10.1097/j.pain.0000000000001078

Cover

Abstract To develop a simple, valid model to identify patients at high risk of opioid overdose–related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of risk factors from the literature and a second simplified model. Receiver operating characteristic curves, sensitivity, and specificity of the models were analyzed. Variables retained in the final model were categories such as older than 35 years, number of prescribers, number of pharmacies, and prescriptions for long-acting opioids, benzodiazepines or sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (area under the receiver operating characteristic curve = 0.82, Nagelkerke R 2 = 0.11). The positive predictive value of the model was low. Computationally simple models can identify high-risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the prescription drug monitoring program. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.
AbstractList In order to develop a simple, valid model to identify patients at high risk for opioid overdose-related hospitalization and mortality Oregon PDMP, Vital Records, and Hospital Discharge data were linked to estimate two logistic models; A first model that included a broad range of risk factors from the literature and a second simplified model. ROC curves, sensitivity and specificity of the models were analyzed. Variables retained in the final model were age categories over 35, number of prescribers, number of pharmacies, and prescriptions for long acting opioids, benzodiazepines/sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (AUC = .82, Nagelkerke R2 = .11). The positive predictive value of the model was low. Computationally simple models can identify high risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the PDMP. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.
To develop a simple, valid model to identify patients at high risk of opioid overdose-related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of risk factors from the literature and a second simplified model. Receiver operating characteristic curves, sensitivity, and specificity of the models were analyzed. Variables retained in the final model were categories such as older than 35 years, number of prescribers, number of pharmacies, and prescriptions for long-acting opioids, benzodiazepines or sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (area under the receiver operating characteristic curve = 0.82, Nagelkerke R = 0.11). The positive predictive value of the model was low. Computationally simple models can identify high-risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the prescription drug monitoring program. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.To develop a simple, valid model to identify patients at high risk of opioid overdose-related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of risk factors from the literature and a second simplified model. Receiver operating characteristic curves, sensitivity, and specificity of the models were analyzed. Variables retained in the final model were categories such as older than 35 years, number of prescribers, number of pharmacies, and prescriptions for long-acting opioids, benzodiazepines or sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (area under the receiver operating characteristic curve = 0.82, Nagelkerke R = 0.11). The positive predictive value of the model was low. Computationally simple models can identify high-risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the prescription drug monitoring program. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.
To develop a simple, valid model to identify patients at high risk of opioid overdose-related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of risk factors from the literature and a second simplified model. Receiver operating characteristic curves, sensitivity, and specificity of the models were analyzed. Variables retained in the final model were categories such as older than 35 years, number of prescribers, number of pharmacies, and prescriptions for long-acting opioids, benzodiazepines or sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (area under the receiver operating characteristic curve = 0.82, Nagelkerke R = 0.11). The positive predictive value of the model was low. Computationally simple models can identify high-risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the prescription drug monitoring program. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.
To develop a simple, valid model to identify patients at high risk of opioid overdose–related hospitalization and mortality, Oregon prescription drug monitoring program, Vital Records, and Hospital Discharge data were linked to estimate 2 logistic models; a first model that included a broad range of risk factors from the literature and a second simplified model. Receiver operating characteristic curves, sensitivity, and specificity of the models were analyzed. Variables retained in the final model were categories such as older than 35 years, number of prescribers, number of pharmacies, and prescriptions for long-acting opioids, benzodiazepines or sedatives, or carisoprodol. The ability of the model to discriminate between patients who did and did not overdose was reasonably good (area under the receiver operating characteristic curve = 0.82, Nagelkerke R 2 = 0.11). The positive predictive value of the model was low. Computationally simple models can identify high-risk patients based on prescription history alone, but improvement of the predictive value of models may require information from outside the prescription drug monitoring program. Patient or prescription features that predict opioid overdose may differ from those that predict diversion.
Author Van Otterloo, Joshua
Deyo, Richard A.
Hallvik, Sara
Wakeland, Wayne
Hildebran, Christi
Geissert, Peter
O'Kane, Nicole
Alley, Lindsey
Carson, Jody
Leichtling, Gillian
AuthorAffiliation Prescription Drug Monitoring Program, Oregon Health Authority, Portland, OR, USA
Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
HealthInsight Oregon, Portland, OR, USA
Department of Systems Science, Portland State University, Portland, OR, USA
AuthorAffiliation_xml – name: Prescription Drug Monitoring Program, Oregon Health Authority, Portland, OR, USA
– name: Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
– name: HealthInsight Oregon, Portland, OR, USA
– name: Department of Systems Science, Portland State University, Portland, OR, USA
Author_xml – sequence: 1
  givenname: Peter
  surname: Geissert
  fullname: Geissert, Peter
  organization: Department of Systems Science, Portland State University, Portland, OR, USA
– sequence: 2
  givenname: Sara
  surname: Hallvik
  fullname: Hallvik, Sara
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 3
  givenname: Joshua
  surname: Van Otterloo
  fullname: Van Otterloo, Joshua
  organization: Prescription Drug Monitoring Program, Oregon Health Authority, Portland, OR, USA
– sequence: 4
  givenname: Nicole
  surname: O'Kane
  fullname: O'Kane, Nicole
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 5
  givenname: Lindsey
  surname: Alley
  fullname: Alley, Lindsey
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 6
  givenname: Jody
  surname: Carson
  fullname: Carson, Jody
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 7
  givenname: Gillian
  surname: Leichtling
  fullname: Leichtling, Gillian
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 8
  givenname: Christi
  surname: Hildebran
  fullname: Hildebran, Christi
  organization: HealthInsight Oregon, Portland, OR, USA
– sequence: 9
  givenname: Wayne
  surname: Wakeland
  fullname: Wakeland, Wayne
  organization: Department of Systems Science, Portland State University, Portland, OR, USA
– sequence: 10
  givenname: Richard A.
  surname: Deyo
  fullname: Deyo, Richard A.
  organization: Department of Family Medicine, Oregon Health & Science University, Portland, OR, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28976421$$D View this record in MEDLINE/PubMed
BookMark eNqVkc1u1DAQgC1URLeFV4AcuWTxTxLHSCBVFbRIlbjA2XLsSdbbxA52sqveeAfekCfB6bZQegJfRpa_b2Y8c4KOnHeA0CuC1wQL_ma7HpV1a_zgEMzrJ2hFak7zqqLsCK0ww0XORCmO0UmM2wRRSsUzdExrwauCkhXaXdpukwcbr7MxQNTBNtZ1mXIm86P1NoUdBOMjvE2AjyPoKWatD_f4OFnvMhPmLhu8s5MPi5_QLqjh5_cfjYpglrvSk91BpnoIU3yOnraqj_DiLp6irx8_fDm_zK8-X3w6P7vKdVFRkQuMBXBjtCoN55w2LTElN4IUpFVcl4qxUhXAFRMJrErTANYUtwXjpG4Lwk5Rfcg7u1Hd7FXfyzHYQYUbSbBcRim3chmlfDzKpL4_qOPcDGA0uCmoP7pXVv794uxGdn4ny1qwgoqU4PVdguC_zRAnOdiooe-VAz9HSUTBCcalqBL68mGt30Xu95QAfgB02kEM0P7HN949MrWd1LK01LTt_8EvDv7e9xOEeN3PewhyA6qfNrd4xUSVU0zqJGCcL6JgvwDLT8_o
CitedBy_id crossref_primary_10_1111_add_15039
crossref_primary_10_1007_s11469_021_00626_8
crossref_primary_10_1097_EDE_0000000000001110
crossref_primary_10_1016_j_drugalcdep_2021_109143
crossref_primary_10_1016_j_peptides_2021_170547
crossref_primary_10_1177_20494637211013052
crossref_primary_10_1097_j_pain_0000000000001156
crossref_primary_10_3390_pharmacy11050164
crossref_primary_10_1097_j_pain_0000000000001157
crossref_primary_10_1093_jamiaopen_ooac020
crossref_primary_10_1080_10826084_2020_1868520
crossref_primary_10_1055_s_0043_1771395
crossref_primary_10_1093_jamia_ocab218
crossref_primary_10_1371_journal_pone_0288339
crossref_primary_10_1111_dar_12959
crossref_primary_10_1371_journal_pone_0290098
crossref_primary_10_1016_j_drugalcdep_2019_107693
crossref_primary_10_1093_pm_pny291
crossref_primary_10_1007_s11606_023_08419_6
crossref_primary_10_1016_j_ypmed_2019_105883
crossref_primary_10_1097_MLR_0000000000001389
crossref_primary_10_1111_add_16133
crossref_primary_10_1007_s40140_018_0289_y
crossref_primary_10_1016_j_drugpo_2022_103856
crossref_primary_10_1093_pm_pnab344
crossref_primary_10_1016_j_drugalcdep_2023_109856
crossref_primary_10_1111_dar_13431
crossref_primary_10_1016_j_sapharm_2018_10_024
crossref_primary_10_1001_jamapsychiatry_2020_1689
crossref_primary_10_1016_j_drugalcdep_2019_04_016
crossref_primary_10_1016_j_amepre_2019_07_026
crossref_primary_10_1016_j_trsl_2021_03_012
crossref_primary_10_1136_injuryprev_2020_044113
Cites_doi 10.1111/j.1365-2125.2007.02847.x
10.1002/pds.4003
10.1136/bmj.g6380
10.1016/S0895-4356(03)00207-5
10.1016/j.pain.2014.07.006
10.1111/j.1526-4637.2011.01260.x
10.1016/j.patrec.2005.10.010
10.1111/pme.12777
10.1007/s11606-016-3810-3
10.1002/pds.1878
10.1080/10550887.2011.554778
10.1111/j.1752-7325.2012.00343.x
10.7326/0003-4819-152-2-201001190-00006
10.1016/j.jsr.2012.08.009
10.1002/pds.4039
10.1016/j.jpain.2015.01.475
10.1136/amiajnl-2012-001089
10.1111/pme.12480
10.1016/j.drugalcdep.2010.05.017
10.1001/jamainternmed.2013.12711
10.1001/jama.2011.370
10.1016/j.jpain.2014.11.007
10.1177/1460458208088855
10.7326/M14-0697
10.1001/archinternmed.2011.117
10.1016/j.clinthera.2007.10.003
10.1001/jama.2016.7789
10.1177/0897190013515001
ContentType Journal Article
Copyright Wolters Kluwer
Copyright_xml – notice: Wolters Kluwer
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
ADTOC
UNPAY
DOI 10.1097/j.pain.0000000000001078
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-6623
EndPage 156
ExternalDocumentID oai:pubmedcentral.nih.gov:5893429
PMC5893429
28976421
10_1097_j_pain_0000000000001078
00006396-201801000-00019
Genre Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NIDA NIH HHS
  grantid: R01 DA031208
GroupedDBID ---
--K
026
0R~
123
1B1
1~5
4.4
71M
AAAAV
AAAXR
AAGIX
AAHPQ
AAIQE
AAMOA
AAQKA
AARTV
AASCR
AASXQ
AAUEB
AAXQO
ABASU
ABBUW
ABDIG
ABIVO
ABJNI
ABLJU
ABOCM
ABPXF
ABVCZ
ABXVJ
ABZAD
ABZZY
ACDDN
ACDOF
ACEWG
ACGFO
ACGFS
ACILI
ACLDA
ACNWC
ACOAL
ACWDW
ACWRI
ACXJB
ACXNZ
ACZKN
ADGGA
ADHPY
AEETU
AEKER
AENEX
AERZD
AFBFQ
AFDTB
AFMBP
AFSOK
AGGSO
AHOMT
AHQNM
AHVBC
AHXIK
AIJEX
AINUH
AJCLO
AJIOK
AJNWD
AJZMW
AKCTQ
AKRWK
AKULP
ALKUP
ALMA_UNASSIGNED_HOLDINGS
ALMTX
AMJPA
AMKUR
AMNEI
AOHHW
AOQMC
BOYCO
BQLVK
BYPQX
C45
CS3
DIWNM
DU5
EBS
EEVPB
EJD
ERAAH
EX3
F5P
FCALG
FDB
GNXGY
GQDEL
HLJTE
HMQ
HZ~
IHE
IKREB
IKYAY
L-C
L7B
MJL
MO0
N9A
O-L
O9-
OBH
OPUJH
OVD
OVDNE
OVIDH
OVLEI
OVOZU
OXXIT
OZT
P2P
RLZ
RPZ
SCC
SEL
SES
TEORI
TSPGW
TWZ
.55
.GJ
.~1
1CY
1RT
1~.
29O
3O-
4G.
53G
5VS
7-5
9JO
AABNK
AAGUQ
AAIKJ
AALRI
AAQFI
AAQQT
AAXUO
AAYWO
AAYXX
ABBQC
ABCQJ
ABFNM
ABMAC
ABZDS
ACIUM
ACJTP
ACXNI
ADBBV
ADKSD
ADNKB
ADSXY
AFXBA
AGWIK
AGYEJ
AHHHB
AIGII
AITUG
AJNYG
AJRQY
AKBMS
AKYEP
ALCLG
AMRAJ
CITATION
DUNZO
EO8
EO9
EP2
EP3
FEDTE
FGOYB
FIRID
FNPLU
G-2
G-Q
HDV
HMK
HMO
HVGLF
H~9
IPNFZ
J1W
J5H
LX1
M29
M2V
M41
OHT
OUVQU
P-8
P-9
PC.
Q38
R2-
RIG
ROL
SAE
SDF
SDG
SDP
SEW
SNS
SSZ
WUQ
X7M
XPP
ZGI
ZZMQN
~HD
AACTN
ACIJW
CGR
CUY
CVF
ECM
EIF
NPM
YCJ
7X8
5PM
ADTOC
UNPAY
ID FETCH-LOGICAL-c4629-9009e7ddca5d7772bf1d57d9141fa7c5a335a4e7a3909e65dbe0c20f43718f413
IEDL.DBID UNPAY
ISSN 0304-3959
1872-6623
IngestDate Wed Aug 20 00:21:12 EDT 2025
Tue Sep 30 16:37:45 EDT 2025
Sat Sep 27 19:49:36 EDT 2025
Thu Apr 03 06:50:11 EDT 2025
Wed Oct 01 03:15:52 EDT 2025
Thu Apr 24 23:07:26 EDT 2025
Fri May 16 03:50:13 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4629-9009e7ddca5d7772bf1d57d9141fa7c5a335a4e7a3909e65dbe0c20f43718f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.ncbi.nlm.nih.gov/pmc/articles/5893429
PMID 28976421
PQID 1947100596
PQPubID 23479
PageCount 7
ParticipantIDs unpaywall_primary_10_1097_j_pain_0000000000001078
pubmedcentral_primary_oai_pubmedcentral_nih_gov_5893429
proquest_miscellaneous_1947100596
pubmed_primary_28976421
crossref_primary_10_1097_j_pain_0000000000001078
crossref_citationtrail_10_1097_j_pain_0000000000001078
wolterskluwer_health_00006396-201801000-00019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-January-01
2018-01-00
20180101
PublicationDateYYYYMMDD 2018-01-01
PublicationDate_xml – month: 01
  year: 2018
  text: 2018-January-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Pain (Amsterdam)
PublicationTitleAlternate Pain
PublicationYear 2018
Publisher Wolters Kluwer
Publisher_xml – name: Wolters Kluwer
References Paulozzi (R25-20230818) 2012; 43
Liang (R20-20230818) 2015; 16
O'Kane (R23-20230818) 2016
Dunn (R11-20230818) 2010; 152
Edlund (R12-20230818) 2010; 112
Beil (R1-20230818) 2013; 73
Bohnert (R3-20230818) 2011; 305
Bramness (R4-20230818) 2007; 64
Collins (R8-20230818) 2015; 162
Fawcett (R14-20230818) 2006; 27
Bleeker (R2-20230818) 2003; 56
Paulozzi (R26-20230818) 2012; 13
Manasco (R21-20230818) 2016; 25
Gomes (R16-20230818) 2011; 171
Katz (R19-20230818) 2010; 19
Owens (R24-20230818) 2007; 29
Deyo (R10-20230818) 2015; 350
Jann (R18-20230818) 2014; 27
Zedler (R32-20230818) 2014; 15
Ray (R28-20230818) 2016; 315
Yang (R30-20230818) 2015; 16
Ekholm (R13-20230818) 2014; 155
Deyo (R9-20230818) 2017; 32
Gwira Baumblatt (R17-20230818) 2014; 174
Zedler (R31-20230818) 2015; 16
Forrester (R15-20230818) 2011; 30
Phansalkar (R27-20230818) 2013; 20
Campbell (R5-20230818) 2008; 14
References_xml – volume: 64
  start-page: 210
  year: 2007
  ident: R4-20230818
  article-title: Carisoprodol use and abuse in Norway. A pharmacoepidemiological study
  publication-title: Br J Clin Pharmacol
  doi: 10.1111/j.1365-2125.2007.02847.x
– volume: 25
  start-page: 847
  year: 2016
  ident: R21-20230818
  article-title: Characteristics of state prescription drug monitoring programs: a state-by-state survey
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4003
– volume: 350
  start-page: g6380
  year: 2015
  ident: R10-20230818
  article-title: Opioids for low back pain
  publication-title: BMJ
  doi: 10.1136/bmj.g6380
– volume: 56
  start-page: 826
  year: 2003
  ident: R2-20230818
  article-title: External validation is necessary in prediction research: a clinical example
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(03)00207-5
– volume: 155
  start-page: 2486
  year: 2014
  ident: R13-20230818
  article-title: Chronic pain, opioid prescriptions, and mortality in Denmark: a population-based cohort study
  publication-title: PAIN
  doi: 10.1016/j.pain.2014.07.006
– volume: 13
  start-page: 87
  year: 2012
  ident: R26-20230818
  article-title: A history of being prescribed controlled substances and risk of drug overdose death
  publication-title: Pain Med
  doi: 10.1111/j.1526-4637.2011.01260.x
– volume: 27
  start-page: 861
  year: 2006
  ident: R14-20230818
  article-title: An introduction to ROC analysis
  publication-title: Pattern Recognit Lett
  doi: 10.1016/j.patrec.2005.10.010
– volume: 16
  start-page: 1566
  year: 2015
  ident: R31-20230818
  article-title: Development of a risk index for serious prescription opioid-induced respiratory depression or overdose in Veterans' health administration patients
  publication-title: Pain Med
  doi: 10.1111/pme.12777
– volume: 32
  start-page: 21
  year: 2017
  ident: R9-20230818
  article-title: Association between initial opioid prescribing patterns and subsequent long-term use among opioid-naive patients: a Statewide Retrospective Cohort Study
  publication-title: J Gen Intern Med
  doi: 10.1007/s11606-016-3810-3
– volume: 19
  start-page: 115
  year: 2010
  ident: R19-20230818
  article-title: Usefulness of prescription monitoring programs for surveillance-analysis of schedule II opioid prescription data in Massachusetts, 1996-2006
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.1878
– volume: 30
  start-page: 110
  year: 2011
  ident: R15-20230818
  article-title: Ingestions of hydrocodone, carisoprodol, and alprazolam in combination reported to Texas poison centers
  publication-title: J Addict Dis
  doi: 10.1080/10550887.2011.554778
– volume: 73
  start-page: 89
  year: 2013
  ident: R1-20230818
  article-title: Accuracy of record linkage software in merging dental administrative data sets
  publication-title: J Public Health Dent
  doi: 10.1111/j.1752-7325.2012.00343.x
– volume: 152
  start-page: 85
  year: 2010
  ident: R11-20230818
  article-title: Opioid prescriptions for chronic pain and overdose: a cohort study
  publication-title: Ann Intern Med
  doi: 10.7326/0003-4819-152-2-201001190-00006
– volume: 43
  start-page: 283
  year: 2012
  ident: R25-20230818
  article-title: Prescription drug overdoses: a review
  publication-title: J Saf Res
  doi: 10.1016/j.jsr.2012.08.009
– year: 2016
  ident: R23-20230818
  article-title: Preparing a prescription drug monitoring program data set for research purposes
  publication-title: Pharmacoepidemiol Drug Saf
  doi: 10.1002/pds.4039
– volume: 16
  start-page: 445
  year: 2015
  ident: R30-20230818
  article-title: Defining risk for prescription opioid overdose: pharmacy shopping and overlapping prescriptions among long-term opioid users in medicaid
  publication-title: J Pain
  doi: 10.1016/j.jpain.2015.01.475
– volume: 20
  start-page: 489
  year: 2013
  ident: R27-20230818
  article-title: Drug—drug interactions that should be non-interruptive in order to reduce alert fatigue in electronic health records
  publication-title: J Am Med Inform Assoc
  doi: 10.1136/amiajnl-2012-001089
– volume: 15
  start-page: 1911
  year: 2014
  ident: R32-20230818
  article-title: Risk factors for serious prescription opioid-related toxicity or overdose among veterans health administration patients
  publication-title: Pain Med
  doi: 10.1111/pme.12480
– volume: 112
  start-page: 90
  year: 2010
  ident: R12-20230818
  article-title: Risks for opioid abuse and dependence among recipients of chronic opioid therapy: results from the TROUP study
  publication-title: Drug Alcohol Depend
  doi: 10.1016/j.drugalcdep.2010.05.017
– volume: 174
  start-page: 796
  year: 2014
  ident: R17-20230818
  article-title: High-risk use by patients prescribed opioids for pain and its role in overdose deaths
  publication-title: JAMA Intern Med
  doi: 10.1001/jamainternmed.2013.12711
– volume: 305
  start-page: 1315
  year: 2011
  ident: R3-20230818
  article-title: ASsociation between opioid prescribing patterns and opioid overdose-related deaths
  publication-title: JAMA
  doi: 10.1001/jama.2011.370
– volume: 16
  start-page: 318
  year: 2015
  ident: R20-20230818
  article-title: Assessing risk for drug overdose in a national cohort: role for both daily and total opioid dose?
  publication-title: J Pain
  doi: 10.1016/j.jpain.2014.11.007
– volume: 14
  start-page: 5
  year: 2008
  ident: R5-20230818
  article-title: Record linkage software in the public domain: a comparison of link plus, the link king, and a “basic” deterministic algorithm
  publication-title: Health Inform J
  doi: 10.1177/1460458208088855
– volume: 162
  start-page: 55
  year: 2015
  ident: R8-20230818
  article-title: Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement
  publication-title: Ann Intern Med
  doi: 10.7326/M14-0697
– volume: 171
  start-page: 686
  year: 2011
  ident: R16-20230818
  article-title: OPioid dose and drug-related mortality in patients with nonmalignant pain
  publication-title: Arch Intern Med
  doi: 10.1001/archinternmed.2011.117
– volume: 29
  start-page: 2222
  year: 2007
  ident: R24-20230818
  article-title: Abuse potential of carisoprodol: a retrospective review of Idaho medicaid pharmacy and medical claims data
  publication-title: Clin Ther
  doi: 10.1016/j.clinthera.2007.10.003
– volume: 315
  start-page: 2415
  year: 2016
  ident: R28-20230818
  article-title: Prescription of long-acting opioids and mortality in patients with chronic noncancer pain
  publication-title: JAMA
  doi: 10.1001/jama.2016.7789
– volume: 27
  start-page: 5
  year: 2014
  ident: R18-20230818
  article-title: Benzodiazepines: a major component in unintentional prescription drug overdoses with opioid analgesics
  publication-title: J Pharm Pract
  doi: 10.1177/0897190013515001
SSID ssj0002229
Score 2.4073048
Snippet To develop a simple, valid model to identify patients at high risk of opioid overdose–related hospitalization and mortality, Oregon prescription drug...
To develop a simple, valid model to identify patients at high risk of opioid overdose-related hospitalization and mortality, Oregon prescription drug...
In order to develop a simple, valid model to identify patients at high risk for opioid overdose-related hospitalization and mortality Oregon PDMP, Vital...
SourceID unpaywall
pubmedcentral
proquest
pubmed
crossref
wolterskluwer
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 150
SubjectTerms Analgesics, Opioid - poisoning
Chronic Pain - drug therapy
Drug Overdose - prevention & control
Drug Prescriptions
Humans
Models, Theoretical
Prescription Drug Monitoring Programs
Risk Factors
Title High-risk prescribing and opioid overdose: prospects for prescription drug monitoring program–based proactive alerts
URI https://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00006396-201801000-00019
https://www.ncbi.nlm.nih.gov/pubmed/28976421
https://www.proquest.com/docview/1947100596
https://pubmed.ncbi.nlm.nih.gov/PMC5893429
https://www.ncbi.nlm.nih.gov/pmc/articles/5893429
UnpaywallVersion submittedVersion
Volume 159
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-6623
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002229
  issn: 0304-3959
  databaseCode: AKRWK
  dateStart: 0
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9NAEF2VRIID4htqBNUicbXjtXe9Xm4RoqqoWqGKiHKy1rvrkjaxrThuBSf-A_-QX8Ls2o5Ie-AjF0fy2ImVtzNvMm9mEXrNilhJDplqEqbUp0xSPxeJ9qM4T8MCGAV127cdHScHM_r-lJ3uIDL0wjjRvsrnQblYBuX8i9NW1ks1GXRiEwYRFpzoLTROGCTMIzSeHX-Yfu6qBdSPhdsgjaQ88hOI7YOmS_DJeVBDtt1NLOxfkPyk2xHpBs28qZa805a1_HolF_D-7lVlq9rNhRO1_xaa9u-jk-GhOkXKRdCu80B9uzbv8Z-e-gG61xNVPO1OPUQ7pnyEbh_1pfjH6NIqRHyrTMdWSwvOB3LsMyxLjat6Xs3hAKtEV415AwaV6-hsMFDkwdz5KqxX7RleOsdi_2HEvV7s5_cfNr5q7Dq-rEvGEMlW6-YJmu2_-_j2wO83cfAVTSLhCyBxhmutJNMcqHxeEM24FoSSQnLFZBwDQAyXsQDDhOnchCoKCxpD1CwgxD5Fo7IqzS7CkOwxSiABM6GmghoptaKFYTKiShQp8VAy_JCZ6iec2402FtlQaT_PLAKy6wjwULi5sO6GfPz5klcDUjJYkLbKIktTtU1GBLUTk5hIPPSsQ87mppDdcttZ7CG-hamNgR32vX0G0OCGfvcA8BDZoO_vv6u_hdKsa7F1dkBQE_CUBIhK2M0YIOL5f3zGCzRar1rzEhjaOt9D4-nhyafDvX5t_gIgkDsx
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFLVGJ8ED4nssCJCReHUaJ3Yc8zYhpglpE0JUGk-RYzujW5tETbMJnvgP_EN-CddOUtHtgY--pFJu0kY9vvfc3nOvEXrNy0QrAZlqGmWMMK4YKWRqSJwUWVQCo2B--7bjk_Roxt6f8tMdRMdeGC_a18U8rBbLsJp_8drKZqmno05syiHCghO9hXZTDgnzBO3OTj4cfO6rBYwk0m-QRjMRkxRi-6jpkmJ6HjaQbfcTC4cXJD_ZdkS6QTNvqiXvdFWjvl6pBby_e1W7qnZ74UXtv4Wmw_vo4_hQvSLlIuzWRai_XZv3-E9P_QDdG4gqPuhPPUQ7tnqEbh8PpfjH6NIpRIhTpmOnpQXnAzn2GVaVwXUzr-dwgFVi6ta-AYPad3S2GCjyaO59FTar7gwvvWNx_zDiQS_28_sPF18N9h1fziVjiGSrdfsEzQ7ffXp7RIZNHIhmaSyJBBJnhTFacSOAyhclNVwYSRktldBcJQkAxAqVSDBMuSlspOOoZAlEzRJC7B6aVHVl9xGGZI8zCgmYjQyTzCplNCstVzHTssxogNLxh8z1MOHcbbSxyMdK-3nuEJBfR0CAos2FTT_k48-XvBqRksOCdFUWVdm6a3MqmZuYxGUaoKc9cjY3hexWuM7iAIktTG0M3LDv7TOABj_0ewBAgOgGfX__XckWSvO-xdbbAUFNwVNSICpRP2OAymf_8RnP0WS96uwLYGjr4uWwJn8BTvw5jg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=High-risk+prescribing+and+opioid+overdose%3A+prospects+for+prescription+drug+monitoring+program-based+proactive+alerts&rft.jtitle=Pain+%28Amsterdam%29&rft.au=Geissert%2C+Peter&rft.au=Hallvik%2C+Sara&rft.au=Van+Otterloo%2C+Joshua&rft.au=O%27Kane%2C+Nicole&rft.date=2018-01-01&rft.eissn=1872-6623&rft.volume=159&rft.issue=1&rft.spage=150&rft_id=info:doi/10.1097%2Fj.pain.0000000000001078&rft_id=info%3Apmid%2F28976421&rft.externalDocID=28976421
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3959&client=summon