A preliminary prediction model using a deep learning software program for prolonged hospitalization after cardiovascular surgery
A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning sof...
Saved in:
Published in | Surgery Today Vol. 53; no. 3; pp. 393 - 395 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Singapore
Springer Science and Business Media LLC
01.03.2023
Springer Nature Singapore |
Subjects | |
Online Access | Get full text |
ISSN | 0941-1291 1436-2813 1436-2813 |
DOI | 10.1007/s00595-022-02565-w |
Cover
Abstract | A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery. |
---|---|
AbstractList | A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery.A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery. A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery. |
Author | Satoru, Wakasa Ryota, Murase Yasushige, Shingu |
Author_xml | – sequence: 1 fullname: Ryota, Murase – sequence: 2 orcidid: 0000-0001-8471-5166 fullname: Yasushige, Shingu – sequence: 3 fullname: Satoru, Wakasa |
BackLink | https://cir.nii.ac.jp/crid/1870020693328119552$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/35931880$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kU9v1DAQxS1URLeFL8AB-cCBS2D8L4mPVQW0UiUucLa8znhxldiLnbAqJz46TlM4crA9ln5vNPPeBTmLKSIhrxm8ZwDdhwKgtGqA83pUq5rTM7JjUrQN75k4IzvQkjWMa3ZOLkq5B-CyB3hBzoXSgvU97MjvK3rMOIYpRJsf1noIbg4p0ikNONKlhHiglg6IRzqizXH9l-Tnk81Y-XTIdqI-5bUeUzzgQL-ncgyzHcMv-9jK-hkzdTYPIf20xS2jzbQs-YD54SV57u1Y8NXTe0m-ffr49fqmufvy-fb66q5xsmVz4z131ikFyLp9p-x-r7Qf5F5qxkApjtUK6C0bsPO-HaSTvRTKtrK1AnrGxCV5t_WtY_5YsMxmCsXhONqIaSmGt1p30AouK_rmCV32Ew7mmMNUzTF_XasA3wCXUykZ_T-EgVmjMVs0pkZjHqMxpyoSm6hUuNqUzX1acqw7_1_1dlPFEIwL6836riYJrRai5sx03V78AVkqniI |
Cites_doi | 10.1016/S1010-7940(97)01216-5 10.1371/journal.pone.0169772 10.25259/SNI_636_2020 |
ContentType | Journal Article |
Copyright | The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. 2022 2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. |
Copyright_xml | – notice: The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. 2022 – notice: 2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. |
DBID | RYH AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1007/s00595-022-02565-w |
DatabaseName | CiNii Complete CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1436-2813 |
EndPage | 395 |
ExternalDocumentID | 35931880 10_1007_s00595_022_02565_w |
Genre | Journal Article |
GroupedDBID | --- -~C .86 .VR 06C 06D 0R~ 0VY 123 203 29Q 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2WC 2~H 30V 4.4 406 408 409 40D 40E 53G 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIPD ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABPLI ABQBU ABSXP ABTEG ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACHVE ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADJJI ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHIZS AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ AKMHD ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AXYYD AYFIA AZFZN B-. BA0 BGNMA BSONS CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBD EBLON EBS EIOEI EMOBN ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IMOTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KPH LAS LLZTM M4Y MA- NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P9S PF0 PT4 PT5 QOK QOR QOS R89 R9I RHV ROL RPX RRX RSV RYH S16 S27 S37 S3B SAP SDH SDM SHX SISQX SJYHP SMD SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW SSXJD STPWE SV3 SZ9 SZN T13 TSG TSK TSV TT1 TUC U2A U9L UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WJK WK8 YLTOR Z45 ZMTXR ZOVNA ~A9 ~EX -53 -5E -5G -BR -EM -Y2 .55 .GJ 1SB 2.D 28- 2P1 2VQ 3O- 5QI AANXM AARHV AAYTO ABQSL ABULA ACBXY ACUDM ADINQ AEBTG AEFIE AEKMD AFEXP AGGDS AJBLW BBWZM BDATZ CAG COF EJD EN4 FINBP FSGXE GQ6 GRRUI H13 KOW N2Q NDZJH O9- OK1 RNI RZK S1Z S26 S28 SCLPG SDE T16 X7M Z7U Z7X Z82 Z87 Z8O Z8V Z91 AAYXX ABRTQ ADHKG AGQPQ CITATION CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c461t-ff2cac550e17b75abb59fd4b49110552e05908a1de7ff6d4c48435a646a308113 |
IEDL.DBID | AGYKE |
ISSN | 0941-1291 1436-2813 |
IngestDate | Fri Sep 05 10:34:11 EDT 2025 Thu Apr 03 07:01:55 EDT 2025 Wed Oct 01 01:53:35 EDT 2025 Fri Feb 21 02:45:14 EST 2025 Fri Jun 27 00:58:46 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Deep learning Cardiovascular surgery Prolonged hospital stay Artificial intelligence |
Language | English |
License | 2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c461t-ff2cac550e17b75abb59fd4b49110552e05908a1de7ff6d4c48435a646a308113 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-8471-5166 |
OpenAccessLink | http://hdl.handle.net/2115/91338 |
PMID | 35931880 |
PQID | 2699706324 |
PQPubID | 23479 |
PageCount | 3 |
ParticipantIDs | proquest_miscellaneous_2699706324 pubmed_primary_35931880 crossref_primary_10_1007_s00595_022_02565_w springer_journals_10_1007_s00595_022_02565_w nii_cinii_1870020693328119552 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-03-01 |
PublicationDateYYYYMMDD | 2023-03-01 |
PublicationDate_xml | – month: 03 year: 2023 text: 2023-03-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Singapore |
PublicationPlace_xml | – name: Singapore – name: Japan |
PublicationSubtitle | Official Journal of the Japan Surgical Society |
PublicationTitle | Surgery Today |
PublicationTitleAbbrev | Surg Today |
PublicationTitleAlternate | Surg Today |
PublicationYear | 2023 |
Publisher | Springer Science and Business Media LLC Springer Nature Singapore |
Publisher_xml | – name: Springer Science and Business Media LLC – name: Springer Nature Singapore |
References | Allyn, Allou, Augustin, Philip, Martinet, Belghiti (CR2) 2017; 12 Fernandez, Chen, Anolik, Brdlik, Laub, Anderson (CR1) 1997; 11 Katsuki, Kakizawa, Nishikawa, Yamamoto, Uchiyama (CR3) 2020; 11 J Fernandez (2565_CR1) 1997; 11 J Allyn (2565_CR2) 2017; 12 M Katsuki (2565_CR3) 2020; 11 |
References_xml | – volume: 11 start-page: 1133 year: 1997 end-page: 1140 ident: CR1 article-title: Perioperative risk factors affecting hospital stay and hospital costs in open heart surgery for patients > or = 65 years old publication-title: Eur J Cardiothorac Surg doi: 10.1016/S1010-7940(97)01216-5 – volume: 12 start-page: e0169772 year: 2017 ident: CR2 article-title: A Comparison of a Machine Learning Model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis publication-title: PLoS ONE doi: 10.1371/journal.pone.0169772 – volume: 11 start-page: 374 year: 2020 ident: CR3 article-title: Easily created prediction model using deep learning software (Prediction One, Sony Network Communications Inc.) for subarachnoid hemorrhage outcomes from small dataset at admission publication-title: Surg Neurol Int doi: 10.25259/SNI_636_2020 – volume: 11 start-page: 1133 year: 1997 ident: 2565_CR1 publication-title: Eur J Cardiothorac Surg doi: 10.1016/S1010-7940(97)01216-5 – volume: 12 start-page: e0169772 year: 2017 ident: 2565_CR2 publication-title: PLoS ONE doi: 10.1371/journal.pone.0169772 – volume: 11 start-page: 374 year: 2020 ident: 2565_CR3 publication-title: Surg Neurol Int doi: 10.25259/SNI_636_2020 |
SSID | ssj0024800 ssib058494468 ssib023047949 ssib050995488 ssib041933373 ssib004299549 |
Score | 2.3275387 |
Snippet | A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there... |
SourceID | proquest pubmed crossref springer nii |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 393 |
SubjectTerms | Aging Deep Learning Humans Length of Stay Medicine Medicine & Public Health Risk Factors Short Communication Software Surgery Surgical Oncology |
Title | A preliminary prediction model using a deep learning software program for prolonged hospitalization after cardiovascular surgery |
URI | https://cir.nii.ac.jp/crid/1870020693328119552 https://link.springer.com/article/10.1007/s00595-022-02565-w https://www.ncbi.nlm.nih.gov/pubmed/35931880 https://www.proquest.com/docview/2699706324 |
Volume | 53 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1436-2813 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024800 issn: 0941-1291 databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1436-2813 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024800 issn: 0941-1291 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1436-2813 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0024800 issn: 0941-1291 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RVEJceD8MNFokbuAqu95dx8cUNVSg9kSkcrL2WSIqJ4oTRXDipzO7XgcVKqReLB8sez2zOw_NfPMBvK2UpIpJTHIKFyjMmMy1tTRXxpqKWeepDODks3N5OuefLsRFAoW1fbd7X5KMlnoPdgs4yYAmZnnw0yLfDeBAhARlCAfTj18_n_yZsTfpoCcVpzn6M5rAMje_5ZpDGjSLxU2x5j910uh-Zg9g3i-86zr5frTd6CPz86-Zjrf9s4dwP8WjZNptoEdwxzWP4e5Zqrg_gV9Tslq7q8j9tf4R7u0iQiFI5NAhoW_-kihinVuRREFxSVo07ju1diS1fxEMjcP91RKXZcm3RFaSMKAkEpUTc601lrQdYPspzGcnXz6c5om1ITdc0k3uPTPKYOLjaKlLobQWlbdcczSrYyGYizTrilpXei8tN3yCIZuSXKoC4xNaPINhs2zcCyDlmCtmvFDcGO6F1yVml2ZsMKUU2paTDN71qqtX3XCOej-GOQq1RqHWUaj1LoND1G6N0sMrRTuFkbKsioJNwtg7wTJ40-u9xjMWCieqccttWzNZVeU4DLbP4Hm3IfbfK0RVhJl2GbzvlVsnM9D-ZzEvb_f4K7gXeO675rfXMNyst-4Qo6GNHuHmnx0fn4_SIRjBYM6mvwEehAKM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9inQRc-GYEGBiJG2SqHdtJjhXaKGzdaZXGyXJsZ1Sb0qppVcGJP51nxykaTEi7RDlEifOe_T703u_9AN6XWlLNJCY5mfMUZkymlbU01caakllXU-nByZNTOZ7yr-fiPILC2r7bvS9JBku9Bbt5nKRHE7PU-2mRbnZgl9Oi4APYHX3-dnz4Z8Ze0UFPSk5T9Gc0gmVufss1h7TTzGY3xZr_1EmD-zl6CNN-4V3XyeXBelUdmJ9_zXS87Z89ggcxHiWjbgM9hjuueQJ3J7Hi_hR-jchi6a4C99fyh7-3swCFIIFDh_i--QuiiXVuQSIFxQVp0bhv9NKR2P5FMDT291dzXJYl3yNZScSAkkBUTsy11ljSdoDtZzA9Ojz7NE4ja0NquKSrtK6Z0QYTH0fzKhe6qkRZW15xNKtDIZgLNOuaWpfXtbTc8AJDNi251BnGJzR7DoNm3rgXQPIh18zUQnNjeC3qKsfs0gwNppSisnmRwIdedWrRDedQ2zHMQagKhaqCUNUmgX3UrkLp4ZWincJIWZZZxgo_9k6wBN71eld4xnzhRDduvm4Vk2WZD_1g-wT2ug2x_V4myszPtEvgY69cFc1A-5_FvLzd42_h3vhscqJOvpwev4L7nvO-a4R7DYPVcu32MTJaVW_iQfgNQ_MDGA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4aF0IvJW362CZuFeitXWJpJa33aNKatE1MDzXkJrR6JAazNn5geutP70grOw01hV4WHZZdoU_SzDDzzQfwvtKSaiYxyClckDBjMq-tpbk21lTMOk9lICdfj-TlmH-9ETd_sPhjtfs2JdlyGkKXpmZ1Prf-fEd8C5zJwCxmebDZIt8cwGOOtjqEX2M2uO-2129JKBWnOVo2mmgz-7_xwDQdNJPJPq_zr4xpNETDI3iaPEgyaCF_Bo9c8xwOr1OO_Bh-Dch84aZRrWvxM4ztJJIXSFS9IaHS_ZZoYp2bkyQacUuWeB1v9MKRVLBF0JkN4-kM52DJXZIXSaxNEqXFiXlQzEqWLcX6BYyHn39cXOZJZyE3XNJV7j0z2mCo4mhZl0LXtai85TXHi7AnBHNRGF1T60rvpeWG99HJ0pJLXaBHQYuX0GlmjXsNpOxxzYwXmhvDvfB1ifGg6RkMAkVty34GH7ZLrOZtOw21a5wcAVEIiIqAqE0GXURB4erhk-LNgr6trIqC9UOjOsEyONvio_BUhFSHbtxsvVRMVlXZC63oM3jVArf7XyGqInShy-DjFkmVDu7yH5N583-vv4PD75-G6urL6NsJPAki9W3l2il0Vou166Irs6rfxt36G4ET6g0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+preliminary+prediction+model+using+a+deep+learning+software+program+for+prolonged+hospitalization+after+cardiovascular+surgery&rft.jtitle=Surgery+today+%28Tokyo%2C+Japan%29&rft.au=Murase%2C+Ryota&rft.au=Shingu%2C+Yasushige&rft.au=Wakasa%2C+Satoru&rft.date=2023-03-01&rft.issn=0941-1291&rft.eissn=1436-2813&rft.volume=53&rft.issue=3&rft.spage=393&rft.epage=395&rft_id=info:doi/10.1007%2Fs00595-022-02565-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00595_022_02565_w |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-1291&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-1291&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-1291&client=summon |