A preliminary prediction model using a deep learning software program for prolonged hospitalization after cardiovascular surgery

A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning sof...

Full description

Saved in:
Bibliographic Details
Published inSurgery Today Vol. 53; no. 3; pp. 393 - 395
Main Authors Ryota, Murase, Yasushige, Shingu, Satoru, Wakasa
Format Journal Article
LanguageEnglish
Published Singapore Springer Science and Business Media LLC 01.03.2023
Springer Nature Singapore
Subjects
Online AccessGet full text
ISSN0941-1291
1436-2813
1436-2813
DOI10.1007/s00595-022-02565-w

Cover

Abstract A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery.
AbstractList A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery.A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery.
A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there are no established prediction models for a prolonged LOS. We therefore created a prediction model of a prolonged LOS using a deep learning software program (Prediction One; Sony Network Communications Inc., Tokyo, Japan) using preoperative data. Subjects were 157 patients (121 for training data, 36 for validation data). A prolonged LOS was defined as a more than 30-day postoperative stay due to physical inactivity. The area under the receiver operating characteristic curve and the accuracy of the model in the validation data were 0.806 and 67%, respectively. In conclusion, the preliminary model demonstrated acceptable performance for the prediction of a prolonged LOS after cardiovascular surgery.
Author Satoru, Wakasa
Ryota, Murase
Yasushige, Shingu
Author_xml – sequence: 1
  fullname: Ryota, Murase
– sequence: 2
  orcidid: 0000-0001-8471-5166
  fullname: Yasushige, Shingu
– sequence: 3
  fullname: Satoru, Wakasa
BackLink https://cir.nii.ac.jp/crid/1870020693328119552$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/35931880$$D View this record in MEDLINE/PubMed
BookMark eNp9kU9v1DAQxS1URLeFL8AB-cCBS2D8L4mPVQW0UiUucLa8znhxldiLnbAqJz46TlM4crA9ln5vNPPeBTmLKSIhrxm8ZwDdhwKgtGqA83pUq5rTM7JjUrQN75k4IzvQkjWMa3ZOLkq5B-CyB3hBzoXSgvU97MjvK3rMOIYpRJsf1noIbg4p0ikNONKlhHiglg6IRzqizXH9l-Tnk81Y-XTIdqI-5bUeUzzgQL-ncgyzHcMv-9jK-hkzdTYPIf20xS2jzbQs-YD54SV57u1Y8NXTe0m-ffr49fqmufvy-fb66q5xsmVz4z131ikFyLp9p-x-r7Qf5F5qxkApjtUK6C0bsPO-HaSTvRTKtrK1AnrGxCV5t_WtY_5YsMxmCsXhONqIaSmGt1p30AouK_rmCV32Ew7mmMNUzTF_XasA3wCXUykZ_T-EgVmjMVs0pkZjHqMxpyoSm6hUuNqUzX1acqw7_1_1dlPFEIwL6836riYJrRai5sx03V78AVkqniI
Cites_doi 10.1016/S1010-7940(97)01216-5
10.1371/journal.pone.0169772
10.25259/SNI_636_2020
ContentType Journal Article
Copyright The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. 2022
2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd.
Copyright_xml – notice: The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd. 2022
– notice: 2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd.
DBID RYH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1007/s00595-022-02565-w
DatabaseName CiNii Complete
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1436-2813
EndPage 395
ExternalDocumentID 35931880
10_1007_s00595_022_02565_w
Genre Journal Article
GroupedDBID ---
-~C
.86
.VR
06C
06D
0R~
0VY
123
203
29Q
29~
2J2
2JN
2JY
2KG
2KM
2LR
2WC
2~H
30V
4.4
406
408
409
40D
40E
53G
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABSXP
ABTEG
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACHVE
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADJJI
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AXYYD
AYFIA
AZFZN
B-.
BA0
BGNMA
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBD
EBLON
EBS
EIOEI
EMOBN
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KPH
LAS
LLZTM
M4Y
MA-
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9S
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RHV
ROL
RPX
RRX
RSV
RYH
S16
S27
S37
S3B
SAP
SDH
SDM
SHX
SISQX
SJYHP
SMD
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZ9
SZN
T13
TSG
TSK
TSV
TT1
TUC
U2A
U9L
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WJK
WK8
YLTOR
Z45
ZMTXR
ZOVNA
~A9
~EX
-53
-5E
-5G
-BR
-EM
-Y2
.55
.GJ
1SB
2.D
28-
2P1
2VQ
3O-
5QI
AANXM
AARHV
AAYTO
ABQSL
ABULA
ACBXY
ACUDM
ADINQ
AEBTG
AEFIE
AEKMD
AFEXP
AGGDS
AJBLW
BBWZM
BDATZ
CAG
COF
EJD
EN4
FINBP
FSGXE
GQ6
GRRUI
H13
KOW
N2Q
NDZJH
O9-
OK1
RNI
RZK
S1Z
S26
S28
SCLPG
SDE
T16
X7M
Z7U
Z7X
Z82
Z87
Z8O
Z8V
Z91
AAYXX
ABRTQ
ADHKG
AGQPQ
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c461t-ff2cac550e17b75abb59fd4b49110552e05908a1de7ff6d4c48435a646a308113
IEDL.DBID AGYKE
ISSN 0941-1291
1436-2813
IngestDate Fri Sep 05 10:34:11 EDT 2025
Thu Apr 03 07:01:55 EDT 2025
Wed Oct 01 01:53:35 EDT 2025
Fri Feb 21 02:45:14 EST 2025
Fri Jun 27 00:58:46 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Deep learning
Cardiovascular surgery
Prolonged hospital stay
Artificial intelligence
Language English
License 2022. The Author(s) under exclusive licence to Springer Nature Singapore Pte Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c461t-ff2cac550e17b75abb59fd4b49110552e05908a1de7ff6d4c48435a646a308113
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8471-5166
OpenAccessLink http://hdl.handle.net/2115/91338
PMID 35931880
PQID 2699706324
PQPubID 23479
PageCount 3
ParticipantIDs proquest_miscellaneous_2699706324
pubmed_primary_35931880
crossref_primary_10_1007_s00595_022_02565_w
springer_journals_10_1007_s00595_022_02565_w
nii_cinii_1870020693328119552
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-03-01
PublicationDateYYYYMMDD 2023-03-01
PublicationDate_xml – month: 03
  year: 2023
  text: 2023-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
– name: Japan
PublicationSubtitle Official Journal of the Japan Surgical Society
PublicationTitle Surgery Today
PublicationTitleAbbrev Surg Today
PublicationTitleAlternate Surg Today
PublicationYear 2023
Publisher Springer Science and Business Media LLC
Springer Nature Singapore
Publisher_xml – name: Springer Science and Business Media LLC
– name: Springer Nature Singapore
References Allyn, Allou, Augustin, Philip, Martinet, Belghiti (CR2) 2017; 12
Fernandez, Chen, Anolik, Brdlik, Laub, Anderson (CR1) 1997; 11
Katsuki, Kakizawa, Nishikawa, Yamamoto, Uchiyama (CR3) 2020; 11
J Fernandez (2565_CR1) 1997; 11
J Allyn (2565_CR2) 2017; 12
M Katsuki (2565_CR3) 2020; 11
References_xml – volume: 11
  start-page: 1133
  year: 1997
  end-page: 1140
  ident: CR1
  article-title: Perioperative risk factors affecting hospital stay and hospital costs in open heart surgery for patients > or = 65 years old
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1016/S1010-7940(97)01216-5
– volume: 12
  start-page: e0169772
  year: 2017
  ident: CR2
  article-title: A Comparison of a Machine Learning Model with EuroSCORE II in predicting mortality after elective cardiac surgery: a decision curve analysis
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169772
– volume: 11
  start-page: 374
  year: 2020
  ident: CR3
  article-title: Easily created prediction model using deep learning software (Prediction One, Sony Network Communications Inc.) for subarachnoid hemorrhage outcomes from small dataset at admission
  publication-title: Surg Neurol Int
  doi: 10.25259/SNI_636_2020
– volume: 11
  start-page: 1133
  year: 1997
  ident: 2565_CR1
  publication-title: Eur J Cardiothorac Surg
  doi: 10.1016/S1010-7940(97)01216-5
– volume: 12
  start-page: e0169772
  year: 2017
  ident: 2565_CR2
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0169772
– volume: 11
  start-page: 374
  year: 2020
  ident: 2565_CR3
  publication-title: Surg Neurol Int
  doi: 10.25259/SNI_636_2020
SSID ssj0024800
ssib058494468
ssib023047949
ssib050995488
ssib041933373
ssib004299549
Score 2.3275387
Snippet A prolonged length of hospital stay (LOS) has become an important issue among patients undergoing cardiovascular surgery in our aging society. However, there...
SourceID proquest
pubmed
crossref
springer
nii
SourceType Aggregation Database
Index Database
Publisher
StartPage 393
SubjectTerms Aging
Deep Learning
Humans
Length of Stay
Medicine
Medicine & Public Health
Risk Factors
Short Communication
Software
Surgery
Surgical Oncology
Title A preliminary prediction model using a deep learning software program for prolonged hospitalization after cardiovascular surgery
URI https://cir.nii.ac.jp/crid/1870020693328119552
https://link.springer.com/article/10.1007/s00595-022-02565-w
https://www.ncbi.nlm.nih.gov/pubmed/35931880
https://www.proquest.com/docview/2699706324
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-2813
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024800
  issn: 0941-1291
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-2813
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024800
  issn: 0941-1291
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-2813
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0024800
  issn: 0941-1291
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6RVEJceD8MNFokbuAqu95dx8cUNVSg9kSkcrL2WSIqJ4oTRXDipzO7XgcVKqReLB8sez2zOw_NfPMBvK2UpIpJTHIKFyjMmMy1tTRXxpqKWeepDODks3N5OuefLsRFAoW1fbd7X5KMlnoPdgs4yYAmZnnw0yLfDeBAhARlCAfTj18_n_yZsTfpoCcVpzn6M5rAMje_5ZpDGjSLxU2x5j910uh-Zg9g3i-86zr5frTd6CPz86-Zjrf9s4dwP8WjZNptoEdwxzWP4e5Zqrg_gV9Tslq7q8j9tf4R7u0iQiFI5NAhoW_-kihinVuRREFxSVo07ju1diS1fxEMjcP91RKXZcm3RFaSMKAkEpUTc601lrQdYPspzGcnXz6c5om1ITdc0k3uPTPKYOLjaKlLobQWlbdcczSrYyGYizTrilpXei8tN3yCIZuSXKoC4xNaPINhs2zcCyDlmCtmvFDcGO6F1yVml2ZsMKUU2paTDN71qqtX3XCOej-GOQq1RqHWUaj1LoND1G6N0sMrRTuFkbKsioJNwtg7wTJ40-u9xjMWCieqccttWzNZVeU4DLbP4Hm3IfbfK0RVhJl2GbzvlVsnM9D-ZzEvb_f4K7gXeO675rfXMNyst-4Qo6GNHuHmnx0fn4_SIRjBYM6mvwEehAKM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Nb9MwFH9inQRc-GYEGBiJG2SqHdtJjhXaKGzdaZXGyXJsZ1Sb0qppVcGJP51nxykaTEi7RDlEifOe_T703u_9AN6XWlLNJCY5mfMUZkymlbU01caakllXU-nByZNTOZ7yr-fiPILC2r7bvS9JBku9Bbt5nKRHE7PU-2mRbnZgl9Oi4APYHX3-dnz4Z8Ze0UFPSk5T9Gc0gmVufss1h7TTzGY3xZr_1EmD-zl6CNN-4V3XyeXBelUdmJ9_zXS87Z89ggcxHiWjbgM9hjuueQJ3J7Hi_hR-jchi6a4C99fyh7-3swCFIIFDh_i--QuiiXVuQSIFxQVp0bhv9NKR2P5FMDT291dzXJYl3yNZScSAkkBUTsy11ljSdoDtZzA9Ojz7NE4ja0NquKSrtK6Z0QYTH0fzKhe6qkRZW15xNKtDIZgLNOuaWpfXtbTc8AJDNi251BnGJzR7DoNm3rgXQPIh18zUQnNjeC3qKsfs0gwNppSisnmRwIdedWrRDedQ2zHMQagKhaqCUNUmgX3UrkLp4ZWincJIWZZZxgo_9k6wBN71eld4xnzhRDduvm4Vk2WZD_1g-wT2ug2x_V4myszPtEvgY69cFc1A-5_FvLzd42_h3vhscqJOvpwev4L7nvO-a4R7DYPVcu32MTJaVW_iQfgNQ_MDGA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LaxsxEB4aF0IvJW362CZuFeitXWJpJa33aNKatE1MDzXkJrR6JAazNn5geutP70grOw01hV4WHZZdoU_SzDDzzQfwvtKSaiYxyClckDBjMq-tpbk21lTMOk9lICdfj-TlmH-9ETd_sPhjtfs2JdlyGkKXpmZ1Prf-fEd8C5zJwCxmebDZIt8cwGOOtjqEX2M2uO-2129JKBWnOVo2mmgz-7_xwDQdNJPJPq_zr4xpNETDI3iaPEgyaCF_Bo9c8xwOr1OO_Bh-Dch84aZRrWvxM4ztJJIXSFS9IaHS_ZZoYp2bkyQacUuWeB1v9MKRVLBF0JkN4-kM52DJXZIXSaxNEqXFiXlQzEqWLcX6BYyHn39cXOZJZyE3XNJV7j0z2mCo4mhZl0LXtai85TXHi7AnBHNRGF1T60rvpeWG99HJ0pJLXaBHQYuX0GlmjXsNpOxxzYwXmhvDvfB1ifGg6RkMAkVty34GH7ZLrOZtOw21a5wcAVEIiIqAqE0GXURB4erhk-LNgr6trIqC9UOjOsEyONvio_BUhFSHbtxsvVRMVlXZC63oM3jVArf7XyGqInShy-DjFkmVDu7yH5N583-vv4PD75-G6urL6NsJPAki9W3l2il0Vou166Irs6rfxt36G4ET6g0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+preliminary+prediction+model+using+a+deep+learning+software+program+for+prolonged+hospitalization+after+cardiovascular+surgery&rft.jtitle=Surgery+today+%28Tokyo%2C+Japan%29&rft.au=Murase%2C+Ryota&rft.au=Shingu%2C+Yasushige&rft.au=Wakasa%2C+Satoru&rft.date=2023-03-01&rft.issn=0941-1291&rft.eissn=1436-2813&rft.volume=53&rft.issue=3&rft.spage=393&rft.epage=395&rft_id=info:doi/10.1007%2Fs00595-022-02565-w&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s00595_022_02565_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0941-1291&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0941-1291&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0941-1291&client=summon